Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

2

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

3

Better Battery Performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernard MatthewBetter Battery

4

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

5

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

6

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

7

Performance Characterization  

Broader source: Energy.gov [DOE]

Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

8

Characterization of Materials for Li-ion Batteries: Success Stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

9

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

10

Lithium Ion Battery Performance of Silicon Nanowires With Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

11

Diagnostic and Prognostic Analysis of Battery Performance & Aging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

12

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

13

Factors Affecting the Battery Performance of Anthraquinone-based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

14

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

15

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

16

Correlation of Lithium-Ion Battery Performance with Structural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a...

17

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

LCD Glass OLED Materials Color Filter Lithium-Ion Batteries for - Mobile Phone, Laptop, Power Tool - Hybrid & Electric Vehicles - ESS Energy Solution(10%) Petro-...

18

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

19

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

20

High Performance Cathodes for Li-Air Batteries  

SciTech Connect (OSTI)

The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

Xing, Yangchuan

2013-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

SciTech Connect (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

22

High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry  

SciTech Connect (OSTI)

Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

23

E-Print Network 3.0 - acoustic emission characterization Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas... Characterization Thermal Characterization of Battery Performance MicroNanoscale Thermal Transport... Nanomaterials Characterization Renewable Energy...

24

Battery performance at the nanoscale | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study ofJLeadership TeamBattery

25

Optimizing small wind turbine performance in battery charging applications  

SciTech Connect (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

26

Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors (ultracapacitors) offer high power density when compared to battery  

E-Print Network [OSTI]

Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors of super capacitors with batteries and fuel cells under specific loads. Despite the fact that Lithium density compared to conventional capacitors. In the late nineties they have gained considerable attention

Popov, Branko N.

27

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

28

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy  

E-Print Network [OSTI]

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

Subramanian, Venkat

29

The Role of FeS in Initial Activation and Performance Degradation of Na-NiCl2 Batteries  

SciTech Connect (OSTI)

The role of iron sulfide (FeS) in initial cell activation and degradation in the Na-NiCl2 battery was investigated in this work. The research focused on identifying the effects of the FeS level on the electrochemical performance and morphological changes in the cathode. The x-ray photoelectron spectroscopy study along with battery tests revealed that FeS plays a critical role in initial battery activation by removing passivation layers on Ni particles. It was also found that the optimum level of FeS in the cathode resulted in minimum Ni particle growth and improved battery cycling performance. The results of electrochemical characterization indicated that sulfur species generated in situ during initial charging, such as polysulfide and sulfur, are responsible for removing the passivation layer. Consequently, the cells containing elemental sulfur in the cathode exhibited similar electrochemical behavior during initial charging compared to that of the cells containing FeS.

Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Engelhard, Mark H.; Lemmon, John P.; Sprenkle, Vincent L.

2014-12-25T23:59:59.000Z

30

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

31

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

32

Cost and Performance Model for Redox Flow Batteries  

SciTech Connect (OSTI)

A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

2014-02-01T23:59:59.000Z

33

Characterization of Materials for Li-ion Batteries: Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program DOE 2010 Vehicle Technologies Annual Merit Review and Peer...

34

Characterization of Li-ion Batteries using Neutron Diffraction...  

Broader source: Energy.gov (indexed) [DOE]

Li-ion batteries Using Neutron Diffraction and Infrared Imaging Techniques: Success Stories from the High Temperature Materials Laboratory (HTML) User Program DOE 2011 Vehicle...

35

A radiological characterization of remediated tank battery sites  

SciTech Connect (OSTI)

Tank battery sites have historically been used for the initial processing of crude oil which separates water and sediment from the produced oil. Typically, one or more producing wells is connected to a tank battery site consisting of storage and separation tanks. Historical operating practices also included a production holding pit for increaesd separation of oil, water, and sediment.

Hebert, M.B. [NORMCO, Amelia, LA (United States); Scott, L.M. [Louisiana State Univ., Baton Rouge, LA (United States); Zrake, S.J. [Ashland Exploration, Inc., Houston, TX (United States)

1995-03-01T23:59:59.000Z

36

Performance of advanced lead-acid batteries for load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep-discharge cycles. This paper presents the results of performance and life tests obtained to date. Battery capacities and efficiencies are shown as a function of discharge rate. The status of ongoing accelerated life-cycle tests being conducted at 50/sup 0/C and 60/sup 0/C are presented.

Miller, J.F.; Gay, E.C.; Hornstra, G.F.; Yao, N.P.

1984-10-01T23:59:59.000Z

37

Performance of advanced lead-acid batteries for load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep-discharge cycles. This paper presents the results of performance and life tests obtained to date. Battery capacities and efficiencies are shown as a function of discharge rate. The status of ongoing accelerated life-cycle tests being conducted at 50/sup 0/C and 60/sup 0/C are presented.

Miller, J.F.; Gay, E.C.; Hornstra, F.; Yao, N.P.

1984-01-01T23:59:59.000Z

38

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode  

E-Print Network [OSTI]

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

39

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network [OSTI]

on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium

Cui, Yi

40

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)  

SciTech Connect (OSTI)

Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

Not Available

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries  

E-Print Network [OSTI]

Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

Davis, Robin M. (Robin Manes)

2005-01-01T23:59:59.000Z

42

The role of phase transformation in the rate performance limited Lix? V? O? battery cathode  

E-Print Network [OSTI]

It has recently been reported that the rate performance of Lix? V?O?, a widely studied candidate Li-ion battery cathode material, can be significantly improved through a variety of particle size reduction techniques, (e.g. ...

Avery, Kenneth Charles

2009-01-01T23:59:59.000Z

43

Improving the Performance of Lithium Ion Batteries at Low Temperature  

SciTech Connect (OSTI)

The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

Trung H. Nguyen; Peter Marren; Kevin Gering

2007-04-20T23:59:59.000Z

44

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network [OSTI]

change in the battery and a degradation model that estimates capacity loss. A driving and storage profile and stress factors during storage and cycling also affects how quickly the battery will degradeABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need

Michalek, Jeremy J.

45

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

46

Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries  

SciTech Connect (OSTI)

During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

White, Ralph E.; Popov, Branko N.

2002-10-31T23:59:59.000Z

47

Silicon sponge improves lithium-ion battery performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSilicon sponge improves lithium-ion battery

48

Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

49

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

Patel, Shrayesh

2013-01-01T23:59:59.000Z

50

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

51

Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials  

SciTech Connect (OSTI)

Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

2012-02-01T23:59:59.000Z

52

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

53

Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance  

SciTech Connect (OSTI)

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2013-11-04T23:59:59.000Z

54

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

55

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

Burke, Andrew

2009-01-01T23:59:59.000Z

56

Performance of Learning Disabled High School Students on the Armed Services Vocational Aptitude Battery  

E-Print Network [OSTI]

This study examined the performance of 24 LD high school students on the Armed Services Vocational Aptitude Battery, A total of 29.2/. of the LD subjects ware found to qualify for enlistment in the Army based on the requirements for high school...

Harnden, G. Mack; Meyen, Edward L.; Alley, Gordon R.; Deshler, Donald D.

1980-01-01T23:59:59.000Z

57

Performance of a mixing entropy battery alternately flushed with wastewater effluent and  

E-Print Network [OSTI]

Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater. Coastal wastewater treatment plants discharge a continuous stream of low salinity effluent to the ocean cell, the net energy recovery was 0.11 kW h per m3 of wastewater effluent. When twelve cells were

Cui, Yi

58

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

59

Effect of polymer electrode morphology on performance of a lithium/polypyrrole battery  

E-Print Network [OSTI]

/discharge experiments. sevu vive. see 1 s m eszse6 ~ ~ I Figure 12 is a schematic of a battery cathode used to make a fibrillar polypyrrole film. A gold-coated Anopore electrode is attached to one side of a Kel-f' plug with silver epoxy before inserting...EFFECT OF POLYMER ELECTRODE MORPHOLOGY ON PERFORMANCE OI' A LITHIUM/POLYPYRROLE BATTERY A Thesis by MARJORIE ANNE NICHOLSON Submitted to the OfIice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Nicholson, Marjorie Anne

1991-01-01T23:59:59.000Z

60

Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint  

SciTech Connect (OSTI)

Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Adaptive Online Battery Parameters/SOC/Capacity Co-estimation  

E-Print Network [OSTI]

and even storage ageing of the battery. Following our previous publications in which we developed an onlineAdaptive Online Battery Parameters/SOC/Capacity Co-estimation Habiballah Rahimi-Eichi and Mo parameters to characterize the performance and application of a battery. Although the nominal capacity

Chow, Mo-Yuen

62

Highlighting High Performance: Twenty River Terrace, Battery Park City, New York, New York  

SciTech Connect (OSTI)

Case study on high performance building features of the Twenty River Terrace, Battery Park City building. Breezes off the Hudson River waft through Battery Park City, a planned development of residential and commercial buildings and open space at the tip of lower Manhattan. A riverfront walkway and several connecting public parks sprinkled with public art flank Battery Park City on one side, and New York's busy financial district vibrates on the other. Construction continues on Battery Park's newest building, Twenty River Terrace, the first residential apartment building to embrace sustainable design in a systematic way, and the first to follow the Hugh L. Carey Battery Park City Authority Residential Environmental Guidelines. According to the guidelines, which all future Battery Park City development must follow, they ''establish a process for the creation of environmentally responsible residential buildings that are appreciably ahead of current standards and practices for development.'' As a result of the guidelines, and the architects' commitment to incorporating best practices, this 27-story apartment building operates 35% more efficiently than required by the New York State Energy Code, and generates some of its own electricity from building-integrated photovoltaics, especially in the summer when New York power plants struggle to keep up with air-conditioning demands. The Authority hopes the guidelines will be a good model for other developments, in Manhattan and across the world, for incorporating energy-efficient design and renewable energy. The principles of environmentally sound, people-centered planning and development addressed by Twenty River Terrace continue to be a focus of the redevelopment of lower Manhattan.

Not Available

2002-08-01T23:59:59.000Z

63

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

SciTech Connect (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

64

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

65

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

SciTech Connect (OSTI)

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

66

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

67

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

Doeff, Marca M.

2013-01-01T23:59:59.000Z

68

Effects of electrolyte salts on the performance of Li-O2 batteries  

SciTech Connect (OSTI)

It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

2013-02-05T23:59:59.000Z

69

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

binder material for solid-state battery electrodes. The1.10. Proposed new solid-state lithium battery design. The

Patel, Shrayesh

2013-01-01T23:59:59.000Z

70

Performance and Degradation Modeling of Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance Audit ofPlan FAQs

71

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

72

User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications  

SciTech Connect (OSTI)

DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

1990-06-01T23:59:59.000Z

73

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

range. Figure 6: PV/battery system schematic Prospects andAC inverter can be provided by the PV panel or battery aloneor the PV panel and battery in combination. For crystalline

Burke, Andrew

2009-01-01T23:59:59.000Z

74

Methods for thermodynamic evaluation of battery state of health  

DOE Patents [OSTI]

Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

2013-05-21T23:59:59.000Z

75

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

76

Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode  

SciTech Connect (OSTI)

GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

None

2010-09-01T23:59:59.000Z

77

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network [OSTI]

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

Boyer, Edmond

78

Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards  

SciTech Connect (OSTI)

Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

2011-10-19T23:59:59.000Z

79

Mechanical characterization of lithium-ion battery micro components for development of homogenized and multilayer material models  

E-Print Network [OSTI]

The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery's mechanical properties so that individual battery cells and battery packs can be ...

Miller, Kyle M. (Kyle Mark)

2014-01-01T23:59:59.000Z

80

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

initial and life cycle costs of the battery. This paper hasbattery chemistries have the potential for longer cycle life which on a life cycle cost

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications  

E-Print Network [OSTI]

1 Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications D the negative impact of wind power grid integration on the power system stability, which is caused. INTRODUCTION Future wind power plants (WPPs) are intended to function like todays conventional power plants

Teodorescu, Remus

82

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network [OSTI]

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

83

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

84

Methods and systems for thermodynamic evaluation of battery state of health  

DOE Patents [OSTI]

Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

2014-12-02T23:59:59.000Z

85

Machine characterization and benchmark performance prediction  

SciTech Connect (OSTI)

From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

Saavedra-Barrera, R.H.

1988-12-01T23:59:59.000Z

86

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

87

Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis  

E-Print Network [OSTI]

A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

Meier, Joseph D. (Joseph David)

2013-01-01T23:59:59.000Z

88

Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries  

E-Print Network [OSTI]

Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

Kim, Hyunho, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

89

Performance characteristics of an electric-vehicle lead-acid battery pack at elevated temperatures  

SciTech Connect (OSTI)

Data are presented for discharge testing of an 18-Exide IV electric car battery pack over initial electrolyte temperature variations between 27 and 55/sup 0/C. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Results showed that battery discharge capacity increased with temperature for constant current discharges, and that battery energy capacity increased with temperature for constant power discharges. Dynamometer test of the GE Electric Test Vehicle showed an increase in range of 25% for the highest electrolyte temperature.

Chapman, P.

1982-04-01T23:59:59.000Z

90

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

91

Battery Charger Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple battery banks * The dominant batteries in...

92

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

power required by the electric motor. The characteristics ofthe battery size and the electric motor and engine powers,electric range and electric motor power (mid-size passenger

Burke, Andrew

2009-01-01T23:59:59.000Z

93

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

94

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

95

Quick charge battery  

SciTech Connect (OSTI)

Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

Parise, R.J.

1998-07-01T23:59:59.000Z

96

Characterization of Filtration Scale-Up Performance  

SciTech Connect (OSTI)

The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite dissolution kinetics and filter fouling are reported elsewhere (see Table S.1). The primary goal of scale-up testing was to examine how filter length influenced permeate flux rates. To accomplish this, the existing cells unit filter system, which employs a 2-ft-long, 0.5-in. (inner) diameter sintered stainless steel filter element, was redesigned to accommodate an 8-ft. sintered stainless steel filter element of the same diameter. Testing was then performed to evaluate the filtration performance of waste simulant slurries. Scale-up testing consisted of two separate series of filtration tests: 1) scale-up axial velocity (AV)/transmembrane pressure (TMP) matrix tests and 2) scale-up temperature tests. The AV/TMP matrix tests examined filtration performance of two different waste simulant slurries in the 8-ft. cells unit filter system. Waste simulant slurry formulations for the 8-ft. scale-up test was selected to match simulant slurries for which filtration performance had been characterized on the 2-ft CUF. For the scale-up temperature tests, the filtration performance at three test temperatures (i.e., 25°C, 40°C, and 60°C) was determined to evaluate if filter flux versus temperature correlations developed using the 2-ft filters were also valid for the 8-ft filters.

Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

2009-03-09T23:59:59.000Z

97

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

SciTech Connect (OSTI)

We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

2013-04-30T23:59:59.000Z

98

Abstract--This paper examines the impact of battery sizing on the performance and efficiency of power management  

E-Print Network [OSTI]

paper examines plug-in hybrid electric vehicles (PHEVs), which typically utilize onboard battery storage

Krstic, Miroslav

99

Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane  

SciTech Connect (OSTI)

Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

2013-09-02T23:59:59.000Z

100

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design and Characterization of a Novel Battery-less, Solar Powered Wireless Tag for Enhanced-Range  

E-Print Network [OSTI]

a simplified protocol in the absence of a regulated battery supply. The design utilizes super capacitors, which

Tentzeris, Manos

102

Performance characterization of a hydrogen catalytic heater.  

SciTech Connect (OSTI)

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

Johnson, Terry Alan; Kanouff, Michael P.

2010-04-01T23:59:59.000Z

103

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

104

Battery system  

DOE Patents [OSTI]

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

105

batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries batteries Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

106

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

107

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

Doeff, Marca M

2011-01-01T23:59:59.000Z

108

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

109

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

110

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

111

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect (OSTI)

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

112

Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery  

E-Print Network [OSTI]

: Metal-air battery, Lithium anode, Li2O - Al2O3 - TiO2 - P2O5 system, LiPON, Solid electrolyte 1. Introduction Metal-air batteries are based on the use of a metal negative electrode in combination-sur-Loing, France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin

Paris-Sud XI, Université de

113

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

114

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Performance for Lithium Batteries,” J. Electrochem. Soc. ,developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of Power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

115

Battery testing at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

116

Battery testing at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

117

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network [OSTI]

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

118

Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications  

SciTech Connect (OSTI)

A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

Liao, Chen [ORNL] [ORNL; Han, Kee Sung [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Hillesheim, Daniel A [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Lee, Dr. Eun-Sung [University of Texas at Austin] [University of Texas at Austin; Guo, Bingkun [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Hagaman, Edward {Ed} W [ORNL; Brown, Gilbert M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Manthiram, Arumugam [University of Texas at Austin] [University of Texas at Austin; Dai, Sheng [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL

2014-01-01T23:59:59.000Z

119

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

120

Characterization of Li-ion Batteries using Neutron Diffraction and Infrared  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterization and ValorizationImaging

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characterization of Materials for Li-ion Batteries: Success Stories from  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterization and ValorizationImagingthe

122

BOOK CHAPTERS 1. B.Y. Liaw, M. Dubarry, "A roadmap to understand battery performance in electric and hybrid  

E-Print Network [OSTI]

and hybrid vehicle operation," in Electric and Hybrid Vehicles. Power Sources, Models, Sustainability and life prediction," in Industrial Applications of Batteries: From Electric Vehicles to Satellites, M, Estimation and Control of Hybrid Electrical Vehicles Batteries", in the Proceedings of the IEEE International

123

Performance characterization of a packed bed electro-filter  

E-Print Network [OSTI]

PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

Narayanan, Ajay

2012-06-07T23:59:59.000Z

124

In situ Characterizations of New Battery Materials and the Studies of High  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance

125

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

SciTech Connect (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

126

In Situ Characterizations of New Battery Materials and the Studies of High  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance aEnginesInEnergy Density

127

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

128

Response of Lithium Polymer Batteries to Mechanical Loading  

E-Print Network [OSTI]

Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery performance. #12;Lithium Polymer Battery Structure · Al cathode coated with LiCoO2. · Cu anode coated

Petta, Jason

129

Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.  

SciTech Connect (OSTI)

High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell's pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

Lu, W.; Jansen, A.; Dees, D.; Henriksen, G.; Chemical Sciences and Engineering Division

2010-08-01T23:59:59.000Z

130

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

131

New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries  

SciTech Connect (OSTI)

In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

Yang, Xiao-Qing

2008-08-31T23:59:59.000Z

132

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

133

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect (OSTI)

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in ·capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the· lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information· about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

134

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes  

SciTech Connect (OSTI)

A cost effective and scalable method is developed to prepare a core-shell structured Si/B4C composite with graphite coating with high efficiency, exceptional rate performance and long-term stability. In this material, conductive B4C with high Mohs hardness serves not only as micro-/nano- millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in-situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B4C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B4C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ~822 mAh?g-1 (based on the weight of the entire electrode, including binder and conductive carbon) and ~94% capacity retention over 100 cycles at 0.8C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications, and good opportunity for large scale manufacturing using commercially available materials and technologies.

Chen, Xilin; Li, Xiaolin; Ding, Fei; Xu, Wu; Xiao, Jie; Cao, Yuliang; Meduri, Praveen; Liu, Jun; Graff, Gordon L.; Zhang, Jiguang

2012-08-08T23:59:59.000Z

135

Metrics to Characterize Airport Operational Performance Using Surface Surveillance Data  

E-Print Network [OSTI]

Tower BOS Boston General Edward Lawrence Logan International Airport EDCT Expected Departure Clearance International Airport, and are therefore evaluated and discussed using this airport as an example. These metricsMetrics to Characterize Airport Operational Performance Using Surface Surveillance Data Harshad

Gummadi, Ramakrishna

136

Performance Characterization for Fusion Co-design Applications  

E-Print Network [OSTI]

fusion is a long-term solution for producing electrical power for the world, and the large thermonuclear1 Performance Characterization for Fusion Co-design Applications Praveen Narayanan, Alice Koniges international device (ITER) being constructed will produce net energy and a path to fusion energy provided

Oliker, Leonid

137

Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications  

SciTech Connect (OSTI)

The technical and economic feasibility of applying used electric vehicle (EV) batteries in stationary applications was evaluated in this study. In addition to identifying possible barriers to EV battery reuse, steps needed to prepare the used EV batteries for a second application were also considered. Costs of acquiring, testing, and reconfiguring the used EV batteries were estimated. Eight potential stationary applications were identified and described in terms of power, energy, and duty cycle requirements. Costs for assembly and operation of battery energy storage systems to meet the requirements of these stationary applications were also estimated by extrapolating available data on existing systems. The calculated life cycle cost of a battery energy storage system designed for each application was then compared to the expected economic benefit to determine the economic feasibility. Four of the eight applications were found to be at least possible candidates for economically viable reuse of EV batteries. These were transmission support, light commercial load following, residential load following, and distributed node telecommunications backup power. There were no major technical barriers found, however further study is recommended to better characterize the performance and life of used EV batteries before design and testing of prototype battery systems.

CREADY, ERIN; LIPPERT, JOHN; PIHL, JOSH; WEINSTOCK, IRWIN; SYMONS, PHILIP

2003-03-01T23:59:59.000Z

138

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

139

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect (OSTI)

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

140

Instruction-level performance modeling and characterization of multimedia applications  

SciTech Connect (OSTI)

One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic parameters directly related to a processor`s architectural features. Based on microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. The biggest advantage of this new characterization technique is a better understanding of processor utilization efficiency and architectural bottleneck for each application. This technique also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper the authors also attempt to model architectural effect on processor utilization without memory influence. They derive formulas for calculating CPI{sub 0}, CPI without memory effect, and they quantify utilization of architectural parameters. These equations are architecturally diagnostic and predictive in nature. Results provide promise in code characterization, and empirical/analytical modeling.

Luo, Y. [Los Alamos National Lab., NM (United States). Scientific Computing Group; Cameron, K.W. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Computer Science

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Better Battery Performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information About

142

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001 1385 Improving Battery Performance by Using Traffic  

E-Print Network [OSTI]

battery management techniques that exploit the charge recovery effect inherent to many secondary storage of the discharge current. The phenomena of charge recovery that takes place under bursty or pulsed discharge opportunities for charge recovery. We explore stochastic models to track charge recovery in conjunction

143

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).  

SciTech Connect (OSTI)

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has also been added directly to traditional VRLA batteries as an admixture in both the positive and negative plates, the latter of which has been found to result in similar improvements to battery performance under high-rate partial-state-of-charge (HRPSoC) operation. It is this latter construction, where carbon is added directly to the negative active material (NAM) that is the specific incarnation being evaluated through this program. Thus, the carbon-modified (or Pb-C) battery (termed the 'Advanced' VRLA battery by East Penn Manufacturing) is a traditional VRLA battery where an additional component has been added to the negative electrode during production of the negative plate. The addition of select carbon materials to the NAM of VRLA batteries has been demonstrated to increase cycle life by an order of magnitude or more under (HRPSoC) operation. Additionally, battery capacity increases on cycling and, in fact, exceeds the performance of the batteries when new.

Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

2011-10-01T23:59:59.000Z

144

Review of flow battery testing at Sandia  

SciTech Connect (OSTI)

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-01-01T23:59:59.000Z

145

Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance  

SciTech Connect (OSTI)

Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

Bi, Zhonghe [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

146

Battery compatibility with photovoltaic charge controllers  

SciTech Connect (OSTI)

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

147

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

148

Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint  

SciTech Connect (OSTI)

Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-11-01T23:59:59.000Z

149

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

150

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

151

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

152

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).  

SciTech Connect (OSTI)

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

2011-05-01T23:59:59.000Z

153

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).  

SciTech Connect (OSTI)

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in the graph.

Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

2011-05-01T23:59:59.000Z

154

PERFORMANCE ASSESSMENT OF THE CASE WESTERN RESERVE UNIVERSITYWIND TURBINE AND CHARACTERIZATION OF WIND AVAILABILITY.  

E-Print Network [OSTI]

??To better understand the behavior of wind turbines placed in an urban environment, a study was performed to characterize the wind availability and performance of… (more)

Wo, Chung

2014-01-01T23:59:59.000Z

155

2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)  

ScienceCinema (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

None Available

2012-03-21T23:59:59.000Z

156

2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)  

SciTech Connect (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

None Available

2012-02-28T23:59:59.000Z

157

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

158

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

159

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

160

Carbon-enhanced VRLA batteries.  

SciTech Connect (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

162

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

163

battery materials | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

164

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

165

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

166

anisotropic nanoparticles synthesis characterization: Topics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

167

99Tc Process Monitoring System In-Lab Performance Characterization  

SciTech Connect (OSTI)

Executive Summary A 99Tc Process Monitoring (Tc-Mon) System has been designed and built for deployment at the recently constructed 200 West Pump & Treat (200W P&T) Plant in the 200 West Area ZP-1 Operable Unit of the Hanford Site. The plant is operated by CH2M Hill Plateau Remediation Company (CHPRC). The Tc-Mon system was created through collaboration between Pacific Northwest National Laboratory (PNNL) and Burge Environmental, Inc. The new system’s design has been optimized based on experience from an earlier field test (2011) of a prototype system at the 200W-ZP-1 Interim Pump & Treat Plant. A portion of the new 200W P&T Plant is dedicated to removal of 99Tc from contaminated groundwater in the 200 West Area. 99Tc, as the pertechnetate anion (99TcO4-), is remediated through delivery of water into two trains (Trains A and B) of three tandem extraction columns filled with Purolite A530E resin. The resin columns cannot be regenerated; therefore, once they have reached their maximum useful capacity, the columns must be disposed of as radioactive waste. The Tc-Mon system’s primary duty will be to periodically sample and analyze the effluents from each of the two primary extraction columns to determine 99Tc breakthrough. The Tc-Mon system will enable the CH2M Hill Plateau Remediation Company (CHPRC) to measure primary extraction column breakthrough on demand. In this manner, CHPRC will be able to utilize each extraction column to its maximum capacity. This will significantly reduce column disposal and replacement costs over the life of the plant. The Tc-Mon system was constructed by Burge Environmental, Inc. and was delivered to PNNL in June 2013 for setup and initial hardware and software performance testing in the 325 Building. By early July, PNNL had initiated an in-laboratory performance characterization study on the system. The objective was to fully calibrate the system and then evaluate the quality of the analytical outputs 1) against a series of clean groundwater samples prepared as 99Tc standards, and 2) on actual 200W P&T Plant grab samples containing 99Tc (and other radioactive and non-radioactive contaminants) at levels reported by the Waste Sampling and Characterization Facility. These grab samples included pre-treated (Pre-Resin) and post-treated (Post-Resin) 200W P&T Plant waters for May through August 2013. This report contains the following information: • The genesis of the 99Tc sensor and the Tc-Mon analytical system. • A description of the Tc-Mon system’s major hardware and software components. • A description of the operational principles behind the 99Tc sensor. • Results from the calibration of three components within the Tc-Mon system. The three systems requiring calibration are: 1. Sampling Chamber 2. Conductivity Sensor 3. 99Tc Sensor • Presentation of analytical results obtained on the fully calibrated Tc-Mon system. This includes a determination of the precision and accuracy of each system defined above. • Estimation of the 99Tc sensor’s minimum detectable activity and limit of quantification. • A brief discussion of potential chemical and radiological influences on the 99Tc sensor based on known contaminants in 200W P&T Plant water. • Observations regarding 99Tc sensor longevity.

O'Hara, Matthew J.; Niver, Cynthia M.

2014-01-01T23:59:59.000Z

168

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).  

SciTech Connect (OSTI)

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

2011-09-01T23:59:59.000Z

169

Fault-tolerant battery system employing intra-battery network architecture  

DOE Patents [OSTI]

A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

2000-01-01T23:59:59.000Z

170

Synthesis, Characterization, Properties, and Tribological Performance of 2D Nanomaterials  

E-Print Network [OSTI]

of lubricants using novel nanostructured particles. Experimental approaches include synthesis, characterization, and tribological and rheological investigation of nanoparticles, yttrium oxide (Y_(2)O_(3)), ?-zirconium phosphate (ZrP), and boron (B...

He, Xingliang

2014-04-25T23:59:59.000Z

171

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network [OSTI]

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

172

Comparison of advanced battery technologies for electric vehicles  

SciTech Connect (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

173

Operational experiences in lead-acid batteries for photovoltaic systems  

SciTech Connect (OSTI)

MIT Lincoln Laboratory has designed photovoltaic systems which use different kinds of lead-acid batteries, including units normally used for starting, lighting, and ignition (SLI) and for motive power. The experiences gained from four of these battery subsystems during field operation, particularly battery type versus system load, versus performance characteristics, and versus expected lifetime, are compared and analyzed.

Brench, B. L.

1981-01-01T23:59:59.000Z

174

Transition from supercapacitor to battery behavior in electrochemical energy storage  

SciTech Connect (OSTI)

In this paper the storage of electrochemical energy in battery, supercapacitor, and double-layer capacitor devices is considered. A comparison of the mechanisms and performance of such systems enables their essential features to be recognized and distinguished, and the conditions for transition between supercapacitor and battery behavior to be characterized. Supercapacitor systems based on two-dimensional underpotential deposition reactions are highly reversible and their behavior arises from the pseudocapaccitance associated with potential-dependence of two-dimensional coverage of electroactive adatoms on an electrode substrate surface. Such capacitance can be 10-100 times the double-layer capacitance of the same electrode area. An essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants. Quai-two-dimensional systems, such as hyperextended hydrous RuP{sub 2}, also exhibit large pseudocapacitance which, in this case, is associated with a sequence of redox redox processes that are highly reversible.

Conway, B.E. (Ottawa Univ., ON (Canada). Dept. of Chemistry)

1991-06-01T23:59:59.000Z

175

Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report  

SciTech Connect (OSTI)

Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

Not Available

1981-08-01T23:59:59.000Z

176

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

177

A review of flow battery testing at Sandia  

SciTech Connect (OSTI)

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-08-01T23:59:59.000Z

178

NREL: Energy Storage - Battery Ownership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

179

Studies on Hazard Characterization for Performance-based Structural Design  

E-Print Network [OSTI]

-based design procedures. This research examined and extended the state-of-the-art in hazard characterization (wind and surge) and risk-based design procedures (seismic). State-of-the-art hurricane models (including wind field, tracking and decay models...

Wang, Yue

2010-07-14T23:59:59.000Z

180

Potential use of battery packs from NCAP tested vehicles.  

SciTech Connect (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Power Batteries for Renewable Energy Applications 3.09  

SciTech Connect (OSTI)

This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

Rodney Shane

2011-09-30T23:59:59.000Z

182

Redox flow batteries based on supporting solutions containing chloride  

DOE Patents [OSTI]

Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-01-14T23:59:59.000Z

183

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network [OSTI]

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

184

High-discharge-rate lithium ion battery  

SciTech Connect (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

185

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

186

Synthesis and Characterization of Silicon Clathrates for Anode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE...

187

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the ALS. Beamline 6.3.1 scientists are studying magnesium battery performance and degradation with a unique new endstation that offers in situ electrochemical soft x-ray...

188

Battery components employing a silicate binder  

SciTech Connect (OSTI)

A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

2011-05-24T23:59:59.000Z

189

A Characterization of Processor Performance in the VAX-11/780 Joel S. Emer  

E-Print Network [OSTI]

A Characterization of Processor Performance in the VAX-11/780 Joel S. Emer Digital Equipment Corp, MA 01460 ABSTRACT This paper reports the results of a study of VAX- 11/780 processor performance the 'average'fVAX instruction spends in these activities. 1. INTRODUCTION Processor performance is often

Moshovos, Andreas

190

Lithium ion battery with improved safety  

DOE Patents [OSTI]

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

2006-04-11T23:59:59.000Z

191

Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980  

SciTech Connect (OSTI)

The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

Not Available

1981-03-01T23:59:59.000Z

192

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

193

Characterization and estimation of permeability correlation structure from performance data  

SciTech Connect (OSTI)

In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

1997-08-01T23:59:59.000Z

194

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

lithium battery cathode. Electrochemical and Solid Statebattery performance of LiMn2O4 cathode. Solid State Ionics,

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

195

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

196

Surface Modification of LiNi0.5Mn0.3Co0.2O2 Cathode for Improved Battery Performance  

E-Print Network [OSTI]

This thesis details electrical and physical measurements of pulsed laser deposition-applied thin film coatings of Alumina, Ceria, and Yttria-stabilized Zirconia (YSZ) on a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode in a Lithium ion battery. Typical NMC...

Lynch, Thomas

2012-10-19T23:59:59.000Z

197

Figure and finish characterization of high performance metal mirrors  

SciTech Connect (OSTI)

Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it.

Takacs, P.Z. [Brookhaven National Lab., Upton, NY (United States); Church, E.L. [Army Armament Research and Development Command, Dover, NJ (United States)

1991-10-01T23:59:59.000Z

198

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect (OSTI)

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

199

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect (OSTI)

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

200

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

202

Conflicting Roles Of Nickel In Controlling Cathode Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries....

203

Characterization of At-species in simple and biological media by high performance  

E-Print Network [OSTI]

Characterization of At- species in simple and biological media by high performance anion exchange detection system, may be an alternative way to study its chemistry. In this research work, High Performance indicates the existence of negative ion, astatide At- . The methodology was successfully applied

Boyer, Edmond

204

Accepted Manuscript Numerical Characterization of Thermo-mechanical Performance of Breeder  

E-Print Network [OSTI]

Beds Zhiyong An, Alice Ying, Mohamed Abdou PII: S0022-3115(07)00612-5 DOI: 10.1016/j.jnucmat.2007, M. Abdou, Numerical Characterization of Thermo-mechanical Performance of Breeder Pebble Beds of Thermo-mechanical Performance of Breeder Pebble Beds Authors: Zhiyong An* , Alice Y. Ying, Mohamed Abdou

Abdou, Mohamed

205

Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes  

SciTech Connect (OSTI)

Nanostructured ion beam-modified Ge electrodes fabricated directly on Ni current collector substrates were found to exhibit excellent specific capacities during electrochemical cycling in half-cell configuration with Li metal for a wide range of cycling rates. Structural characterization revealed that the nanostructured electrodes lose porosity during cycling but maintain excellent electrical contact with the metallic current collector substrate. These results suggest that nanostructured Ge electrodes have great promise for use as high performance Li ion battery anodes.

Rudawski, N. G.; Darby, B. L.; Yates, B. R.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400 (United States); Elliman, R. G. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Volinsky, A. A. [Department of Mechanical Engineering, University of South Florida, Tampa Florida 33620 (United States)

2012-02-20T23:59:59.000Z

206

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

207

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

208

Negative Electrodes for Li-Ion Batteries  

SciTech Connect (OSTI)

Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

Kinoshita, Kim; Zaghib, Karim

2001-10-01T23:59:59.000Z

209

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

210

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

Subramanian, Venkat

211

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect (OSTI)

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

212

Selecting a PV battery  

SciTech Connect (OSTI)

The primary goal for all photovoltaic systems must be to provide value. Since the total life cycle cost of a system will depend on the type of battery installed, the impact of proper battery selection is considerable. For the designer, selecting an ideal battery can be confusing because he seldom has a reliable frame of reference with which to compare options. This article is an attempt to provide that frame of reference by describing a specific battery design which, for many photovoltaic applications, will represent the best value option. Other battery types can then simply be contrasted to this ''reference battery'' to see if they provide better or worse overall value in any particular application.

Jones, W.

1983-01-01T23:59:59.000Z

213

Lithium battery management system  

DOE Patents [OSTI]

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

214

Flash report: Automotive batteries  

SciTech Connect (OSTI)

Battery inventories soared early in the years after sales plunged 15% due to the mild winter. But in the last 90 days, admist a hot summer, industry leader Exide announced a 5% price hike to assess the current market, OTR interviewed 14 professionals from the battery industry - Contacts include four battery manufacturers, one industry specialists, seven retail chains plus two wholesalers. The nine sales groups supply about 10,000 stores an automotive shops nationwide.

Gates, J.H.

1995-12-01T23:59:59.000Z

215

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

216

Performance Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's Manual3 Short-Period APPLE

217

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

218

Solid Electrolyte Batteries  

Broader source: Energy.gov (indexed) [DOE]

Kim Texas Materials Institute The University of Texas at Austin Solid Electrolyte Batteries This presentation does not contain any proprietary or confidential information. DOE...

219

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

220

Anti-Idling Battery for Truck Applications  

SciTech Connect (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries  

E-Print Network [OSTI]

of the Li-ion batteries through developing electrode materials [1e5], reducing size [6] and optimizing shape,13], as one of the main factors limiting Li-ion battery performance, has not been resolved. Fundamental the ulti- mate performance and stability. Theoretical work of Li-ion batteries has focused on macroscopic

Liu, Fuqiang

222

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network [OSTI]

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

223

Development of High Capacity Anode for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

224

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 28 April 2005 - 15 September 2008  

SciTech Connect (OSTI)

This report focuses on (1) characterizing nc-Si:H from United Solar; (2) studying Si,Ge:H alloys deposited by HWCVD; and (3) characterizing CIGS films and relating to cell performance parameters.

Cohen, J. D.

2009-12-01T23:59:59.000Z

225

Servant dictionary battery, map  

E-Print Network [OSTI]

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

Rosenthal, Jeffrey S.

226

battery, map parcel, med  

E-Print Network [OSTI]

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

Rosenthal, Jeffrey S.

227

Journal of Chromatography A, 1154 (2007) 444453 Characterization and performance of injection molded  

E-Print Network [OSTI]

Journal of Chromatography A, 1154 (2007) 444­453 Characterization and performance of injection March 2007; accepted 30 March 2007 Available online 6 April 2007 Abstract Injection molded poly thermal/electrical properties as indicated by measurement of the current versus applied voltage (I

Cincinnati, University of

228

A Performance Counter Based Workload Characterization on Blue Gene/P  

E-Print Network [OSTI]

A Performance Counter Based Workload Characterization on Blue Gene/P Karthik Ganesan Lizy John V--IBM's Blue Gene/P, the second generation of the Blue Gene supercomputer is designed with a Universal Perfor instrument applications and get a profound insight into its execution on the Blue Gene/P system which could

John, Lizy Kurian

229

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network [OSTI]

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

230

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

231

Self-Charging Battery Project  

SciTech Connect (OSTI)

In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

Yager, Eric

2007-07-25T23:59:59.000Z

232

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network [OSTI]

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

233

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

234

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

235

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

236

Development and Testing of an UltraBattery-Equipped Honda Civic  

SciTech Connect (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

237

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

238

Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications  

E-Print Network [OSTI]

@umich.edu. automotive field, lithium-ion batteries are the core of energy source and storage. In most cases the lithium-ion battery performances play an important role for the energy efficiency of these vehicles, suffering often - 50 C over a short period of about 10 s - 20 s [9]. In order to efficiently manage the battery systems

Stefanopoulou, Anna

239

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network [OSTI]

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

240

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Testing and evaluation of advanced lead-acid batteries for utility load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for utility load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep discharge cycles. This paper describes results obtained to date from the test program. Parametric test results and general performance observations for these batteries are reported.

Miller, J.F.; Corp, D.O.; Hayes, E.R.; Hornstra, F.; Yao, N.P.

1983-01-01T23:59:59.000Z

242

Testing and evaluation of advanced lead-acid batteries for utility load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for utility load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep discharge cycles. This paper describes results obtained to date from the test program. Parametric test results and general performance observations for these batteries are reported.

Miller, J.F.; Corp, D.O.; Hayes, E.R.; Hornstra, F.; Yao, N.P.

1983-08-01T23:59:59.000Z

243

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

244

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

245

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

Doyle, C.M.

2010-01-01T23:59:59.000Z

246

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

247

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

248

Advances in lithium-ion batteries  

E-Print Network [OSTI]

Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

Kerr, John B.

2003-01-01T23:59:59.000Z

249

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

250

Parallel flow diffusion battery  

DOE Patents [OSTI]

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

251

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect (OSTI)

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

252

Side terminal battery  

SciTech Connect (OSTI)

A side terminal battery and method of making same is shown and described. In particular, the terminal includes an electrically conductive plug disposed within an externally extending boss. The plug does not extend into the battery. Rather, a riser is welded to the plug through an aperture disposed at the base of the boss. The terminal is mechanically crimped to further ensure the leak-resistant soundness of the joint between the plug and riser.

Clingenpeel, W.R.

1981-12-08T23:59:59.000Z

253

Synthesis and electrochemical performance of LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as gradient cathode material for lithium batteries  

SciTech Connect (OSTI)

Highlights: ? The gradient precursors Ni{sub 0.7}Co{sub 0.15}Mn{sub 0.15}(OH){sub 2} is prepared by hydroxide co-precipitating. ? The cathode materials is synthesized by mixing the precursor with 5% excess LiOH·H{sub 2}O. ? The XRD results show that cathode materials present layered ?-NaFeO{sub 2} typical crystal. ? Material sintered at 850 °C shows the best performance, with high-capacity and recyclability. -- Abstract: LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as a cathode material for lithium batteries was synthesized by mixing hydroxide co-precipitated precursors with 5% excess LiOH·H{sub 2}O. Its structural and electrochemical properties were investigated using X-ray diffractometry, scanning electron microscopy, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. The results indicated that well-ordering layered LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} cathode materials were successfully prepared in air at 750, 800, and 850°C with ?-NaFeO{sub 2} typical crystal. The results of charge–discharge test demonstrated that the gradient cathode material sintered at 850 °C exhibited the best electrochemical performance with the initial discharge capacity of 164 mA h g{sup ?1} at 0.2 C and lower electrochemical impedance. Nickel has low price. LiNiO{sub 2} cathode materials have high specific capacity, their theoretical capacity is 274 mA h g{sup ?1} and with low self-discharge rate. So the Ni, Co, Mn ternary layer-structural compounds with high Ni content are showing to be promising cathode materials for lithium batteries. The techniques and research results in this paper are utilizable for the study of this kind of lithium battery materials.

Zhang, Lipeng; Dong, Tao [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Yu, Xianjin, E-mail: hgxyzlp@sdut.edu.cn [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Dong, Yunhui; Zhao, Zengdian; Li, Heng [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

2012-11-15T23:59:59.000Z

254

Characterizing the impact of using spare-cores on application performance  

SciTech Connect (OSTI)

Increased parallelism on a single processor is driving improvements in peak-performance at both the node and system levels. However achievable performance, in particular from production scientific applications, is not always directly proportional to the core count. Performance is often limited by constraints in the memory hierarchy and also by a node interconnectivity. Even on state-of-the-art processors, containing between four and eight cores, many applications cannot take full advantage of the compute-performance of all cores. This trend is expected to increase on future processors as the core count per processor increases. In this work we characterize the use of spare-cores, cores that do not provide any improvements in application performance, on current multi-core processors. By using a pulse-width modulation method, we examine the possible performance profile of using a spare-core and quantify under what situations its use will not impact application performance. We show that, for current AMD and Intel multi-core processors, spare-cores can be used for substantial computational tasks but can impact application performance when using shared caches or when significantly accessing main memory.

Sancho Pitarch, Jose Carlos [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

255

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

256

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

257

The Characterization of Scintillator Performance at Temperatures up to 400 Degrees Centigrade  

SciTech Connect (OSTI)

The logging and characterization of geothermal wells requires improved scintillator systems that are capable of operation at temperatures significantly above those commonly encountered in the logging of most conventional oil and gas wells (e.g., temperatures nominally in the range of up to 150oC.) Unfortunately, most of the existing data on the performance of scintillators for radiation detection at elevated temperatures is fragmentary, uncorrelated, and generally limited to relatively low temperatures in most cases to temperatures well below 200oC. We have designed a system for characterizing scintillator performance at temperatures extending up to 400oC under inert atmospheric conditions, and this system is applied here to the determination of scintillator performance at elevated temperatures for a wide range of scintillators including, among others: bismuth germanate, cadmium tungstate, cesium iodide, cesium iodide (Tl), cesium iodide (Na), sodium iodide, sodium iodide (Tl), lutetium oxy-orthosilicate (Ce), zinc tungstate, yttrium aluminum perovskite (Ce), yttrium aluminum garnet (Ce), lutetium aluminum perovskite (Ce), and barium fluoride, strontium iodide(Eu). The results of these high-temperature scintillator performance tests are described in detail here. Comparisons of the relative elevated-temperature properties of the various scintillator materials have resulted in the identification of promising scintillator candidates for high-temperature use in geothermal and fossil-fuel well environments.

Boatner, Lynn A [ORNL; Neal, John S [ORNL; Kolopus, James A [ORNL; Ramey, Joanne Oxendine [ORNL; Akkurt, Hatice [ORNL

2013-01-01T23:59:59.000Z

258

Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination  

SciTech Connect (OSTI)

Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

2013-06-15T23:59:59.000Z

259

New sealed rechargeable batteries and supercapacitors  

SciTech Connect (OSTI)

This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

1993-01-01T23:59:59.000Z

260

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Testimonials- Partnerships in Battery Technologies- CalBattery  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

262

Iron-air battery development program  

SciTech Connect (OSTI)

The progress and status of the research and development program on the iron-air advanced technology battery system at the Westinghouse Electric Corporation during the period June 1978-December 1979 are described. This advanced battery system is being developed for electric vehicle propulsion applications. Testing and evaluation of 100 cm/sup 2/ size cells was undertaken while individual iron and air electrode programs continued. Progress is reported in a number of these study areas. Results of the improvements made in the utilization of the iron electrode active material coupled with manufacturing and processing studies related to improved air electrodes continue to indicate that a fully developed iron-air battery system will be capable of fulfilling the performance requirements for commuter electric vehicles.

Buzzelli, E.S.; Liu, C.T.; Bryant, W.A.

1980-05-01T23:59:59.000Z

263

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

264

Testimonials - Partnerships in Battery Technologies - Capstone...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

265

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

266

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

267

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

268

Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

2000-05-18T23:59:59.000Z

269

Circulating current battery heater  

DOE Patents [OSTI]

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

270

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents [OSTI]

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

271

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

272

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

273

Mechanical design of flow batteries  

E-Print Network [OSTI]

The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

Hopkins, Brandon J. (Brandon James)

2013-01-01T23:59:59.000Z

274

Batteries | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic Batteries Batteries

275

Performance characterization and optimization of a diverging cusped field thruster with a calibrated counter-weighted millinewton thrust stand  

E-Print Network [OSTI]

The previously developed Diverging Cusped Field Thruster (DCFT) has undergone further investigations and performance characterization. The DCFT is a magnetically conned plasma thruster that uses cusped magnetic fields to ...

Daspit, Ryan M

2012-01-01T23:59:59.000Z

276

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

277

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect (OSTI)

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

278

Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules: Preprint  

SciTech Connect (OSTI)

We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe2 (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

Pern, F. J.; Yan, F.; Mansfield, L.; Glynn, S.; Rekow, M.; Murion, R.

2011-07-01T23:59:59.000Z

279

Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage.

None

1997-05-01T23:59:59.000Z

280

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy Savers [EERE]

More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

282

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

283

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

284

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

285

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

286

Analysis of wind power for battery charging  

SciTech Connect (OSTI)

One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

1995-11-01T23:59:59.000Z

287

Sealed Battery Block Provided With A Cooling System  

DOE Patents [OSTI]

The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..

Verhoog, Roelof (Bordeaux, FR); Barbotin, Jean-Loup (Pompignac, FR)

1999-11-16T23:59:59.000Z

288

Graphene-based battery electrodes having continuous flow paths  

SciTech Connect (OSTI)

Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

2014-05-24T23:59:59.000Z

289

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network [OSTI]

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

290

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

291

Characterization of stochastic uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191, 40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of stochastic uncertainty is discussed including drilling intrusion time, drilling location penetration of excavated/nonexcavated areas of the repository, penetration of pressurized brine beneath the repository, borehole plugging patterns, activity level of waste, and occurrence of potash mining. Additional topics discussed include sampling procedures, generation of individual 10,000 yr futures for the WIPP, construction of complementary cumulative distribution functions (CCDFs), mechanistic calculations carried out to support CCDF construction the Kaplan/Garrick ordered triple representation for risk and determination of scenarios and scenario probabilities.

HELTON,JON CRAIG; DAVIS,FREDDIE J.; JOHNSON,J.D.

2000-05-19T23:59:59.000Z

292

Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint  

SciTech Connect (OSTI)

Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

2014-08-01T23:59:59.000Z

293

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

294

Studies on Capacity Fade of Spinel based Li-Ion Batteries  

E-Print Network [OSTI]

Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass , A. Durairajan, Bala S To characterize the capacity fade phenomena of Li- ion batteries. To decrease the capacity fade on both positive the change in capacity of commercially available spinel based Li-ion Cells (Cellbatt cells). Study

Popov, Branko N.

295

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

296

Overview of PNGV Battery Development and Test Programs  

SciTech Connect (OSTI)

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

297

Characterization of New Cathode Materials using Synchrotron-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques and the Studies of Li-Air Batteries Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries 2009 DOE...

298

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring $  

E-Print Network [OSTI]

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important

Peng, Huei

299

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

300

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

302

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

303

Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries  

SciTech Connect (OSTI)

Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, by weight) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, by weight) under a current density of 0.075 mA cm-2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, by volume) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that the decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.

Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2010-01-01T23:59:59.000Z

304

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

SciTech Connect (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

305

Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint  

SciTech Connect (OSTI)

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Heon, G. H.; Smith, K.

2011-01-01T23:59:59.000Z

306

Laboratory evaluation and analysis of advanced lead-acid load-leveling batteries  

SciTech Connect (OSTI)

Argonne National Laboratory has conducted an extensive evaluation of advanced lead-acid batteries developed by the Exide Corporation for load-leveling applications. This paper presents the results of performance and accelerated life tests conducted on these batteries over a five-year period. This paper describes the operational reliability and maintenance requirements for this technology, and also includes analyses of the batteries' thermal characteristics, arsine/stibine emission rates, and cell degradation modes as determined from post-test examinations.

Miller, J.F.; Mulcahey, T.P.; Christianson, C.C.; Marr, J.J.; Smaga, J.A.

1987-01-01T23:59:59.000Z

307

Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4  

E-Print Network [OSTI]

correlate well with the better cycling performance of Al-doped LiMn2O4 in our Li-ion battery tests: LiAl0Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4 Yuan Yang, Chong Xie nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials

Cui, Yi

308

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect (OSTI)

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

309

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

Braatz, Richard D.

310

Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO{sub 4}  

SciTech Connect (OSTI)

NaFePO{sub 4} is a naturally occurring mineral known as maricite. This compound has not been well characterized or examined for its potential use in battery applications. In the present study, NaFePO{sub 4} has been synthesized via the Pechini process with the resulting sample being characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Electrochemical properties have been investigated for possible application as a cathode in sodium-ion batteries. Electrodes of these materials were tested in coin cells using LiPF{sub 6} as the electrolyte and lithium metal as the counter electrode. Constant current cycling, cyclic voltammetry, and in situ frequency response analyses were performed. The results obtained demonstrate constant capacity or progressive increase in capacity with the consistently low internal resistance exhibited over consecutive cycles indicating possible application as a lithium analog in Na-ion batteries.

Sun, Ann; Beck, Faith R.; Haynes, Daniel; Poston, James A. Jr.; Narayanana, S.R.; Kumta, Prashant N.; A. Manivannan

2012-12-01T23:59:59.000Z

311

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

312

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

313

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

314

In-service performance and behavior characterization of the hybrid composite bridge system - a case study  

E-Print Network [OSTI]

The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values. The testing program also included internal and external measurement systems to help characterize the load sharing behavior of the HCB on an element level. The main load carrying elements are the deck in compression and the steel ties in tension, and the FRP shell did not act compositely with the internal components.

John M. Civitillo; Devin K. Harris; Amir Gheitasi; Mark Saliba; Bernard L. Kassner

2014-09-08T23:59:59.000Z

315

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing, Inc.mission of the6,AugustBattery Chargers |santini.pdf MoreThe

316

Hybrid Aerocapacitor{trademark}-battery power sources  

SciTech Connect (OSTI)

PolyStor, Power-One, LLNL and Aerojet are participants in a Technology Reinvestment Program contract supported by the Advanced Research Project Agency for developing carbon aerogel-based Electrolytic Double Layer Capacitors (Aerocapacitors). This paper reports some recent results for organic-electrolyte Aerocapacitors developed under this contract and initial results on their use in electrolytic double layer capacitor (EDLC)-battery power sources. EDLC-battery hybrid power sources offer the potential for increased discharge time, improved low temperature performance and longer cycle life vis-a-vis batteries in pulse discharge applications. The authors previously presented performance results for AA Aerocapacitors but this is the first report of their work on hybrid power sources. Prototype organic-electrolyte Aerocapacitors exhibit low equivalent series resistance (ESR), high capacitance, excellent rate capability at room temperature and low temperatures, and long life. The AA-size devices assembled for testing have ESRs of 20-30 m{Omega} at 1000 Hz and capacitances of about 6 Farads. They are capable of being discharged at very high rates. The capacity at 15 Amps is about 71% of the capacity at 1 Amp. The capacity at 1 Amp and {minus}40{degrees}C is 57% of the room-temperature 1 Amp capacity. AA Aerocapacitors have demonstrated 32,000 cycles in cycle life testing. After an initial capacity decrease of about 17% the capacity remained almost constant between cycle 10,000 and cycle 32,000.

Isaacson, M.J.; Kraemer, B.J.; Laramore, T.J. [PolyStor Corp., Dublin, CA (United States)] [and others

1997-10-01T23:59:59.000Z

317

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

318

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

319

Nanocomposite polymer electrolyte for rechargeable magnesium batteries  

SciTech Connect (OSTI)

Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

2014-12-28T23:59:59.000Z

320

Fe-V redox flow batteries  

DOE Patents [OSTI]

A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

322

SAND94-2862C PERFORMANCE CHARACTERIZATION OF THE NASA STANDARD...  

Office of Scientific and Technical Information (OSTI)

(NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort w a s directed towards providing test results to characterize the...

323

Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions  

SciTech Connect (OSTI)

In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

2010-05-30T23:59:59.000Z

324

NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) collaboration is developing sophisticated software tools to help improve and accelerate battery design and boost the performance and consumer appeal of electric-drive vehicles with the ultimate goal of diminishing petroleum consumption and polluting emissions.

Not Available

2013-11-01T23:59:59.000Z

325

High Capacity Pouch-Type Li-air Batteries  

SciTech Connect (OSTI)

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2¬ diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

326

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

piece cost by enabling lower cost automation, shipping, etc. Lower investment (tooling) by commonizing repeating parts Thermal Management Pack Thermal Challenges ...

327

Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel  

E-Print Network [OSTI]

metal hydride and lithium ion batteries. The use of these batteries is increasing as a green, nickel metal hydride and lithium ion batteries. Please contact EHS if you need an accumulation containerRecycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid

328

Battery-Powered Digital CMOS Massoud Pedram  

E-Print Network [OSTI]

(submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

Pedram, Massoud

329

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

, mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

330

High power rechargeable batteries Paul V. Braun  

E-Print Network [OSTI]

High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery electrodes a b s t r a c t Energy and power density are the key figures of merit for most electrochemical

Braun, Paul

331

Waste Toolkit A-Z Battery recycling  

E-Print Network [OSTI]

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

Melham, Tom

332

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect (OSTI)

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

333

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network [OSTI]

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

334

Ris-R-1515(EN) Lifetime Modelling of Lead Acid Batteries  

E-Print Network [OSTI]

Profile 18 3.2 Wind and PV test profiles for lifetime assessment 19 3.2.1 Renewable energy system profiles-01 Sponsorship: Cover : Pages: 82 Tables: 10 References: 18 Abstract: The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries

335

EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

336

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network [OSTI]

efficiency. SECTION: Energy Conversion and Storage; Energy and Charge Transport Silicon is a promising highCrumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao improved performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic

Huang, Jiaxing

337

Molecular Architecture for Polyphosphazene Electrolytes for Seawater Batteries  

SciTech Connect (OSTI)

In this work, a series of polyphosphazenes were designed to function as water resistant, yet ionically conductive membranes for application to lithium/seawater batteries. In membranes of this nature, various molecular architectures are possible and representatives from each possible type were chosen. These polymers were synthesized and their performance as solid polymer electrolytes was evaluated in terms of both lithium ion conductivity and water permeability. The impact that this molecular architecture has on total performance of the membranes for seawater batteries is discussed. Further implications of this molecular architecture on the mechanisms of lithium ion transport through polyphosphazenes are also discussed.

Mason K. Harrup; Mason K. Harrup; Thomas A. Luther; Christopher J. Orme; Eric S. Peterson

2005-08-01T23:59:59.000Z

338

Grid-tied PV battery systems.  

SciTech Connect (OSTI)

Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

2010-09-01T23:59:59.000Z

339

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

340

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network [OSTI]

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J-MH batteries have been extensively studied during calendar storage and cycling [6-8]. In these alloys To improve the performances of Nickel-Metal Hydride batteries, an important step is the understanding

Boyer, Edmond

342

Test Report : GS battery, EPC power HES RESCU.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01T23:59:59.000Z

343

EV Everywhere Batteries Workshop - Next Generation Lithium Ion...  

Energy Savers [EERE]

Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

344

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

345

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

346

Redox shuttle additives for overcharge protection in lithium batteries  

E-Print Network [OSTI]

Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

Richardson, Thomas J.; Ross Jr., P.N.

1999-01-01T23:59:59.000Z

347

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

Liu, Jun

2010-01-01T23:59:59.000Z

348

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

349

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

350

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

351

Optimization of blended battery packs  

E-Print Network [OSTI]

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

352

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect (OSTI)

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

353

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

354

Metal-air battery assessment  

SciTech Connect (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

355

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

356

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

357

Reinventing Batteries for Grid Storage  

SciTech Connect (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2012-01-01T23:59:59.000Z

358

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

359

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

360

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

362

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

363

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

364

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

365

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

366

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

367

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

368

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect (OSTI)

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

369

Effects of Nonaqueous Electrolytes on Primary Li-Air Batteries  

SciTech Connect (OSTI)

The effects of nonaqueous electrolytes on the performance of primary Li-air batteries operated in dry air environment have been investigated. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between Li anode and water during the discharge process. The polarity of aprotic solvents outweighs the viscosity, ion conductivity and oxygen solubility on the performance of Li-air batteries once these latter properties attain certain reasonable level, because the solvent polarity significantly affects the number of tri-phase regions formed by oxygen, electrolyte, and active carbons (with catalyst) in the air electrode. The most feasible electrolyte formulation is the system of LiTFSI in PC/EC mixtures, whose performance is relatively insensitive to PC/EC ratio and salt concentration. The quantity of such electrolyte added to a Li-air cell has notably effects on the discharge performance of the Li-air battery as well, and a maximum in capacity is observed as a function of electrolyte amount. The coordination effect from the additives or co-solvents [tris(pentafluorophenyl)borane and crown ethers in this study] also greatly affects the discharge performance of a Li-air battery.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-06-14T23:59:59.000Z

370

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

SciTech Connect (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

371

Model based control of a coke battery  

SciTech Connect (OSTI)

This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

1997-12-31T23:59:59.000Z

372

Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980  

SciTech Connect (OSTI)

Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

Not Available

1981-03-01T23:59:59.000Z

373

Department of Mechanical and Nuclear Engineering Spring 2011 Shell 1 -Battery Electric Vehicle Chassis and Body Design  

E-Print Network [OSTI]

, Texas. The team performed better than our projected performance. The Battery Electric Vehicle achievedPENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Shell 1 - Battery Electric Vehicle Chassis and Body Design Overview The team faced the challenging task of redesigning a previous

Demirel, Melik C.

374

SYNTHESIS, CHARACTERIZATION AND PERFORMANCE TESTING OF PT- BASED ELECTROCATALYSTS FOR LOW TEMPERATURE PEM FUEL CELLS.  

E-Print Network [OSTI]

??The oxygen reduction reaction (ORR) activity on the cathode plays a significant role in deciding the overall performance of proton exchange membrane (PEM) fuel cells.… (more)

Gong, Yanming

2008-01-01T23:59:59.000Z

375

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

376

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

377

Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries  

SciTech Connect (OSTI)

e investigated the long-term cycling performance of large format 20Ah LiFePO4/graphite batteries when they are cycled in various state-of-charge (SOC) ranges. It is found that batteries cycled in the medium SOC range (ca. 20~80% SOC) exhibit superior cycling stability than batteries cycled at both ends (0-20% or 80-100%) of the SOC even though the capcity utilized in the medium SOC range is three times as large as those cycled at both ends of the SOC. Several non-destructive techniques, including a voltage interruption approach, model-based parameter identification, electrode impedance spectra analysis, ?Q/?V analysis, and entropy change test, were used to investigate the performance of LiFePO4/graphite batteries within different SOC ranges. The results reveal that batteries at the ends of SOC exhibit much higher polarization impedance than those at the medium SOC range. These results can be attributed to the significant structural change of cathode and anode materials as revealed by the large entropy change within these ranges. The direct correlation between the polarization impedance and the cycle life of the batteries provides an effective methodology for battery management systems to control and prolong the cycle life of LiFePO4/graphite and other batteries.

Jiang, Jiuchun; Shi, Wei; Zheng, Jianming; Zuo, Pengjian; Xiao, Jie; Chen, Xilin; Xu, Wu; Zhang, Jiguang

2014-06-01T23:59:59.000Z

378

Optimal management of batteries in electric systems  

DOE Patents [OSTI]

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

379

Characterizing Test Methods and Emissions Reduction Performance of In-Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterizationDiesel Retrofit Technologies

380

Characterizing the In-Use Emissions Performance of Novel PM and NOx Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterizationDiesel Retrofit

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2013-01-01T23:59:59.000Z

382

Battery energy storage market feasibility study -- Expanded report  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

1997-09-01T23:59:59.000Z

383

Stability of polymer binders in Li-O2 batteries  

SciTech Connect (OSTI)

A number of polymers with various chemical structures were studied as binders for air electrodes in Li-O2 batteries. The nature of the polymer significantly affects the binding properties in the carbon electrodes thus altering the discharge performance of Li-O2 batteries. Stability of polymers to the aggressive reduced oxygen species generated during discharge was tested by ball milling them with KO2 and Li2O2, respectively. Most of the polymers decomposed under these conditions and mechanisms of the decompositions are proposed for some of the polymers. Polyethylene was found to have excellent stability and is suggested as robust binder for air electrodes in Li-O2 batteries.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Li, Xiaohong S.; Zhang, Jiguang

2013-06-24T23:59:59.000Z

384

Battery Technology Life Verification Test Manual Revision 1  

SciTech Connect (OSTI)

The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

Jon P. Christophersen

2012-12-01T23:59:59.000Z

385

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect (OSTI)

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

386

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network [OSTI]

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

387

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

388

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

389

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

390

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

391

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

392

Michael Thackery on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Michael Thackery

2010-01-08T23:59:59.000Z

393

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

394

Battery evaluation methods and results for stationary applications  

SciTech Connect (OSTI)

Evaluation of flooded lead-acid, Valve Regulated Lead-Acid (VRLA), and advanced batteries is being performed in the power sources testing labs at Sandia National Laboratories (SNL). These independent, objective tests using computer-controlled testers capable of simulating application-specific test regimes provide critical data for the assessment of the status of these technologies. Several different charge/discharge cycling regimes are performed. Constant current and constant power discharge tests are conducted to verify capacity and measure degradation. A utility test is imposed on some units which consists of partial depths of discharge (pulsed constant power) cycles simulating a frequency regulation operating mode, with a periodic complete discharge simulating a spinning reserve test. This test profile was developed and scaled based on operating information from the Puerto Rico Electric Power Authority (PREPA) 20 MW battery energy storage system. Another test conducted at SNL is a photovoltaic battery life cycle test, which is a partial depth of discharge test (constant current) with infrequent complete recharges that simulates the operation of renewable energy systems. This test profile provides renewable system designers with critical battery performance data representative of field conditions. This paper will describe the results of these tests to date, and include analysis and conclusions.

Butler, P.C.; Crow, J.T.

1997-09-01T23:59:59.000Z

395

Novel forms of carbon as potential anodes for lithium batteries  

SciTech Connect (OSTI)

The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

Winans, R.E.; Carrado, K.A.

1994-06-01T23:59:59.000Z

396

Electrochemically controlled charging circuit for storage batteries  

DOE Patents [OSTI]

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

397

Battery Thermal Modeling and Testing (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

398

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

399

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

400

Reservoir characterization and performance predictions for the E.N. Woods lease  

SciTech Connect (OSTI)

The task of this work was to evaluate the past performance of the E.N. WOODS Unit and to forecast its future economic performance by taking into consideration the geology, petrophysics and production history of the reservoir. The Decline Curve Analysis feature of the Appraisal of Petroleum Properties including Taxation Systems (EDAPT) software along with the Production Management Systems (PMS) software were used to evaluate the original volume of hydrocarbon in place and estimate the reserve. The Black Oil Simulator (BOAST II) was then used to model the waterflooding operation and estimate the incremental oil production attributable to the water injection. BOAST II was also used to predict future performance of the reservoir.

Aka-Milan, Francis A.

2000-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

402

Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel  

SciTech Connect (OSTI)

In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

Wang, Weimin; Katipamula, Srinivas

2013-09-30T23:59:59.000Z

403

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

404

Iron-sulfide redox flow batteries  

DOE Patents [OSTI]

Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

2013-12-17T23:59:59.000Z

405

Nanocomposite protective coatings for battery anodes  

DOE Patents [OSTI]

Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

Lemmon, John P; Xiao, Jie; Liu, Jun

2014-01-21T23:59:59.000Z

406

Propagation testing multi-cell batteries.  

SciTech Connect (OSTI)

Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

2014-10-01T23:59:59.000Z

407

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

408

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

409

Michael Thackeray on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Thackeray, Michael

2013-04-19T23:59:59.000Z

410

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

411

Molecular Structures of Polymer/Sulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life  

SciTech Connect (OSTI)

Vulcanizedpolyaniline/sulfur (SPANI/S) nanostructures were investigated for Li-S battery applications, but the detailed molecular structures of such composites have not been fully illustrated. In this paper, we synthesize SPANI/S composites with different S content in a nanorod configuration. FTIR, Raman, XPS, XRD, SEM and elemental analysis methods are used to characterize the molecular structure of the materials. We provide clear evidence that a portion of S was grafted on PANI during heating and connected the PANI chains with disulfide bonds to form a crosslinked network and the rest of S was encapsulated within it.. Polysulfides and elementary sulfur nanoparticles are physically trapped inside the polymer network and are not chemically bound to the polymer. The performance of the composites is further improved by reducing the particle size. Even after 500 cycles a capacity retention rate of 68.8% is observed in the SPANI/S composite with 55% S content.

Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H.; Saraf, Laxmikant V.; Nie, Zimin; Exarhos, Gregory J.; Liu, Jun

2013-04-26T23:59:59.000Z

412

Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.  

SciTech Connect (OSTI)

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

2005-11-01T23:59:59.000Z

413

Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit.  

E-Print Network [OSTI]

existing over a regional area have long been known to dominate all aspects of performance in the Spraberry Trend Area. Two stages of depletion have taken place over 46 years of production: Primary production under solution gas drive and secondary recovery...

Hernandez Hernandez, Erwin Enrique

2005-08-29T23:59:59.000Z

414

Characterizations of MCP performance in the hard x-ray range (6–25 keV)  

SciTech Connect (OSTI)

MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ?10 ?m in diameter pores, ?12 ?m center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

Wu, Ming, E-mail: minwu@sandia.gov; Rochau, Greg [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moy, Ken [Special Technology Laboratories, NSTec, Santa Barbara, California 93111-2335 (United States); Kruschwitz, Craig [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

2014-11-15T23:59:59.000Z

415

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

416

International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety  

SciTech Connect (OSTI)

The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

Not Listed

2011-12-01T23:59:59.000Z

417

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407  

SciTech Connect (OSTI)

Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

Smith, K.

2012-01-01T23:59:59.000Z

418

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

419

Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment  

SciTech Connect (OSTI)

This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

1994-07-01T23:59:59.000Z

420

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report  

SciTech Connect (OSTI)

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

Eidler, Phillip

1999-07-01T23:59:59.000Z

422

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect (OSTI)

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

423

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

424

A Desalination Battery Mauro Pasta,  

E-Print Network [OSTI]

is promising when compared to reverse osmosis ( 0.2 Wh l-1 ), the most efficient technique presently available. KEYWORDS: Seawater desalination, mixing entropy battery, reverse osmosis, ion selectivity Increasing of desalination technologies have been developed over the years.2,4-10 Reverse osmosis requires a large electrical

Cui, Yi

425

Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport  

SciTech Connect (OSTI)

The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

2013-07-01T23:59:59.000Z

426

Method and apparatus for characterizing and enhancing the functional performance of machine tools  

DOE Patents [OSTI]

Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

2013-04-30T23:59:59.000Z

427

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

428

Evaluation of an 96v Exide XPV23-3 battery pack at temperature extremes. Final report  

SciTech Connect (OSTI)

Tests with a 96V Exide XPV23-3 battery were conducted to measure the effects of temperature extremes on the performance of EV batteries. The test objectives were to assess the nature and extent of problems encountered at various operating temperatures and to provide the engineering data base for the elimination of the problems.

Nowak, D.

1983-04-01T23:59:59.000Z

429

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network [OSTI]

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries to an effective thermal management system and to maintain safety, performance, and longevity of these Li-Ion. Dyche Anderson Abstract-- Temperature monitoring is a critical issue for lithium ion batteries. Since

Stefanopoulou, Anna

430

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network [OSTI]

on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium carbon in the EDLC to act as conductors. An EDLC containing no SWNT was the control. Activated carbon secondary batteries ·High voltage (3.6 V) ·No memory effect ·lightweight EDLCs ·High power density ·High

431

Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

1996-12-01T23:59:59.000Z

432

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

433

Method of preparing a battery paste containing fibrous polyfluoroethylene for use in the plates of a lead-acid storage battery  

SciTech Connect (OSTI)

A method of preparing a battery paste for a lead-acid storage battery comprising: (A) mixing a water dispersion of polyfluoroethylene with lead material, (B) adding an aqueous solution of sulfuric acid to the lead material-dispersion mix and mixing to form a paste having fibrillation developed therein, (C) controlling the amount of fibrillation developed in the paste, and (D) controlling the paste density for use in a battery plate. The method provides an improved paste which permits substantial reduction in plate weights and density and loss of active material in the grid structure due to plate shedding over a conventional lead-acid paste. The saving in active material ranges from 10 to 30% over a conventional lead-acid paste without reduction in battery performance.

Duddy, J.C.; Malaspina, F.P.; Martini, W.J.

1982-02-16T23:59:59.000Z

434

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)  

SciTech Connect (OSTI)

A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

Not Available

2011-02-01T23:59:59.000Z

435

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

436

Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

2001-12-01T23:59:59.000Z

437

Method and apparatus for characterizing and enhancing the dynamic performance of machine tools  

DOE Patents [OSTI]

Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

Barkman, William E; Babelay, Jr., Edwin F

2013-12-17T23:59:59.000Z

438

Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

2011-11-02T23:59:59.000Z

439

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

440

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Investigations into Performance and Lifetime Enhancements of OPV Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-263  

SciTech Connect (OSTI)

To evaluate Plextronics new additives and derivatives in lithium-ion Battery Applications, Plextronics will provide to NREL, a starting point, including materials and initial data for proof of concept. The central focus of this project is to acertain the nature of the efficacy of the Plextronics additives through physical and electrical characterization, including evaluations of new derivatives, system evaluations on batteries made with Plexcore and to study long term cycling performance differences. The initial focus is to establish Plexcore mode of action to support the commercialization of the first commercial evaluations of Plexcore in Sept. 2013.

Ginley, D.

2014-06-01T23:59:59.000Z

442

Characterization of high-power lithium-ion cells-performance and diagnostic analysis  

SciTech Connect (OSTI)

Lithium-ion cells, with graphite anodes and LiNi0.8Co0.15Al0.05O2 cathodes, were cycled for up to 1000 cycles over different ranges of SOC and temperatures. The decline in cell performance increases with the span of SOC and temperature during cycling. Capacity fade was caused by a combination of the loss of cycleable Li and degradation of the cathode. The room temperature anodes showed SEI compositions and degrees of graphite disorder that correlated with the extent of the Li consumption, which was linear in cell test time. TEM of the cathodes showed evidence of crystalline defects, though no major new phases were identified, consistent with XRD. No evidence of polymeric deposits on the cathode particles (FTIR) was detected although both Raman and TEM showed evidence of P-containing deposits from electrolyte salt degradation. Raman microscopy showed differences in relative carbon contents of the cycled cathodes, which is blamed for part of the cathode degradation.

Striebel, K.A.; Shim, J.; Kostecki, R.; Richardson, T.J.; Ross, P.N.; Song, X.; Zhuang, G.V.

2003-11-25T23:59:59.000Z

443

DMAPS: a fully depleted monolithic active pixel sensor - analog performance characterization  

E-Print Network [OSTI]

Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s based on silicon substrates with a thin epitaxial layer (thickness of 10-15 $\\mu$m) in which charge is collected on an electrode, albeit by disordered and slow diffusion rather than by drift in a directed electric field. As a consequence, the signal is small ($\\approx$ 1000 e$^-$) and the radiation tolerance is much below the LHC requirements by factors of 100 to 1000. In this paper we present the development of a fully Depleted Monolithic Active Pixel Sensors (DMAPS) based on a high resistivity substrate allowing the creation of a fully depleted detection volume. This concept overcomes the inherent limitations of charge collection by diffusion in the standard MAPS designs. We present results from a test chip EPCB01 designed in a commercial 150 nm CMOS technology. The technology provides a thin (50 $\\mu$m) high resistivity n-type silicon substrate as well as an additional deep p-well which allows to integrate full CMOS circuitry inside the pixel. Different matrix types with several variants of collection electrodes have been implemented. Measurements of the analog performance of this first implementation of DMAPS pixels will be presented.

Miroslav Havránek; Tomasz Hemperek; Hans Krüger; Yunan Fu; Leonard Germic; Tetsuichi Kishishita; Theresa Obermann; Norbert Wermes

2014-07-02T23:59:59.000Z

444

UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE  

SciTech Connect (OSTI)

Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of measurement conditions.

Jon P. Christophersen; John L. Morrison; William H. Morrison

2014-03-01T23:59:59.000Z

445

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

446

AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT  

SciTech Connect (OSTI)

The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

2010-11-01T23:59:59.000Z

447

Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979  

SciTech Connect (OSTI)

This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

Not Available

1980-06-01T23:59:59.000Z

448

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect (OSTI)

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

449

The Cosmic Battery in Astrophysical Accretion Disks  

E-Print Network [OSTI]

The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

Contopoulos, Ioannis; Katsanikas, Matthaios

2015-01-01T23:59:59.000Z

450

Battery energy storage market feasibility study  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

1997-07-01T23:59:59.000Z

451

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network [OSTI]

to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specificationsLITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

452

Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives  

SciTech Connect (OSTI)

The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a ?"-Al2O3 solid electrolyte at elevated temperatures (typically 300~350°C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

2010-05-01T23:59:59.000Z

453

The ANL electric vehicle battery R D program for DOE-EHP  

SciTech Connect (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

Not Available

1990-01-01T23:59:59.000Z

454

Recombination device for storage batteries  

DOE Patents [OSTI]

A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, H.; Ledjeff, K.

1984-01-01T23:59:59.000Z

455

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

456

Recombination device for storage batteries  

DOE Patents [OSTI]

A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

1985-01-01T23:59:59.000Z

457

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

458

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

459

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

460

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Household batteries: Evaluation of collection methods  

SciTech Connect (OSTI)

While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

Seeberger, D.A.

1992-01-01T23:59:59.000Z

462

Household batteries: Evaluation of collection methods  

SciTech Connect (OSTI)

While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

Seeberger, D.A.

1992-12-31T23:59:59.000Z

463

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

464

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

465

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

SciTech Connect (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

466

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

467

Abuse Testing of High Power Batteries  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary or confidential information Abuse Testing of High Power Batteries Sandia National Laboratories Overview * Start Date: Oct. 2007 * End date: Sept. 2014...

468

SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES  

Broader source: Energy.gov (indexed) [DOE]

Austin SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES PI: John B. Goodenough Presented by: Long Wang Texas Materials Institute The University of Texas at Austin DOE Vehicle...

469

Abuse Testing of High Power Batteries  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories Abuse Testing of High Power Batteries Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United...

470

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

471

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

472

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

473

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network [OSTI]

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

474

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

475

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

476

Model Reformulation and Design of Lithium-ion Batteries  

E-Print Network [OSTI]

987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

Subramanian, Venkat

477

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

478

A Bayesian nonparametric approach to modeling battery health  

E-Print Network [OSTI]

The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

Doshi-Velez, Finale

479

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

480

Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)  

SciTech Connect (OSTI)

This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.  

SciTech Connect (OSTI)

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

482

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

483

Low Temperature Performance Characterization  

Broader source: Energy.gov (indexed) [DOE]

0.0036 0.0038 0.004 0.0042 Inverse Temperature, 1K Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww) (BID 1935), 4.1V, 3 Sep. Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww)...

484

Battery, heal thyself: Inventing self-repairing batteries | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover:Battery Boost

485

Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)  

SciTech Connect (OSTI)

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Kim, G. H.; Smith, K.

2010-11-01T23:59:59.000Z

486

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

487

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

488

The development of a computerized battery simulator optimized for use in the ELPH 2.0 simulation environment  

E-Print Network [OSTI]

is an interactive computer simulation environment that has been developed for the prediction and evaluation of performance of electric vehicles (EVs) and hybrid electric vehicles (HEVs). A battery simulator was developed that conforms to the ELPH computing...

Moore, Stephen W

1996-01-01T23:59:59.000Z

489

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

490

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

491

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Office of Environmental Management (EM)

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

492

Linking Ion Solvation and Lithium Battery Electrolyte Properties...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen...

493

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

494

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

495

Diagnostic Studies on Lithium Battery Cells and Cell Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

496

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Computing Center (NERSC) are working to achieve this goal. New Anode Boots Capacity of Lithium-Ion Batteries Lithium-ion batteries are everywhere- in smart...

497

alkaline storage battery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

498

alkaline storage batteries: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...