Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

2

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

3

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

4

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

5

Multi-scale Characterization Studies of Aged Li-ion Battery Materials for Improved Performance.  

E-Print Network [OSTI]

?? Among various electrical energy storage devices the recent advances in Li-ion battery technology has made this technology very promising. Li-ion batteries can be used… (more)

Nagpure, Shrikant C.

2012-01-01T23:59:59.000Z

6

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

7

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

8

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

9

Performance Characterization  

Broader source: Energy.gov [DOE]

Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

10

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

11

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

12

Characterization of Materials for Li-ion Batteries: Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion...

13

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

14

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

15

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

16

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

17

Preparation and performance characterization of polymer Li-ion batteries using gel poly(diacrylate) electrolyte prepared by in situ thermal polymerization  

Science Journals Connector (OSTI)

A gel polymer electrolyte (GPE) was prepared by in-situ thermal polymerization of 1,3-butanediol diacrylate (BDDA...?3 S cm?1 at 20 °C. The MCMB–LiCoO2 type polymer Li-ion batteries (PLIB) prepared using this in-...

L. X. Yuan; J. D. Piao; Y. L. Cao; H. X. Yang…

2005-04-01T23:59:59.000Z

18

Thermal simulation of batteries for improving E-powertrain performance  

Science Journals Connector (OSTI)

The electrical energy is stored, for example, in battery systems with voltages of between 12 V ... a simulation tool, 3D-Electrical / 3D-Thermal Co-Simulation for improving electric powertrain performance.

Dipl.-Ing. Michael Clauss; Jakob Hennig; Dr. Carolus Grünig…

2014-10-01T23:59:59.000Z

19

High Performance Cathodes for Li-Air Batteries  

SciTech Connect (OSTI)

The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

Xing, Yangchuan

2013-08-22T23:59:59.000Z

20

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

SciTech Connect (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effects of electrolyte salts on the performance of Li-O2 batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrolyte salts on the performance of Li-O2 batteries. Effects of electrolyte salts on the performance of Li-O2 batteries. Abstract: It is well known that the stability of...

22

Predicting Battery Pack Thermal and Electrical Performance in a Vehicle Using Realistic Drive Cycle Power Profiles  

Science Journals Connector (OSTI)

The heat generated during battery charge and discharge cycles is a major ... issue, particularly since the performance of a battery depends on its operating temperature. As a consequence, robust thermal managemen...

Allen Curran; Scott Peck

2013-01-01T23:59:59.000Z

23

The Role of FeS in Initial Activation and Performance Degradation of Na-NiCl2 Batteries  

SciTech Connect (OSTI)

The role of iron sulfide (FeS) in initial cell activation and degradation in the Na-NiCl2 battery was investigated in this work. The research focused on identifying the effects of the FeS level on the electrochemical performance and morphological changes in the cathode. The x-ray photoelectron spectroscopy study along with battery tests revealed that FeS plays a critical role in initial battery activation by removing passivation layers on Ni particles. It was also found that the optimum level of FeS in the cathode resulted in minimum Ni particle growth and improved battery cycling performance. The results of electrochemical characterization indicated that sulfur species generated in situ during initial charging, such as polysulfide and sulfur, are responsible for removing the passivation layer. Consequently, the cells containing elemental sulfur in the cathode exhibited similar electrochemical behavior during initial charging compared to that of the cells containing FeS.

Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Engelhard, Mark H.; Lemmon, John P.; Sprenkle, Vincent L.

2014-12-25T23:59:59.000Z

24

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

25

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

26

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

27

Saft America lithium sulfur dioxide battery (p/n 38303301) for flyrt application: Performance discharge test report. Report for August 1991-March 1992  

SciTech Connect (OSTI)

The Battery Technology Group of the Electrochemistry Branch (Code R33) of the Naval Surface Warfare Center, White Oak Detachment, was tasked by the Countermeasures Group of the Naval Research Laboratory to execute a series of performance discharge tests on a Li/SO[sub 2] battery. The battery was designed and assembled by SAFT America (P/N 38303301) to be used for the Flying Radar Target (FLYRT) Demonstration Program. The preliminary battery tests included discharge tests designed to determine the ability of the SAFT America battery to deliver a nominal 600 watts for 10 to 12 minutes within the voltage range of 66 to 100 volts. The battery was tested insulated in some cases to determine the effects of an adiabatic environment on its performance. The battery exceeded the goals set for power and lifetime in all tests. However, events consistently occurred at the end of battery life that raised safety concerns with the present battery design. Data were also analyzed for voltage delay characterization; no serious voltage delay problems were evident.

Banner, J.A.; Davis, P.B.; Peed, E.R.; Winchester, C.S.

1991-08-01T23:59:59.000Z

28

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery  

Science Journals Connector (OSTI)

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery ... These results propose that the as-prepared defect free graphene will bring significant advance of composite electrodes for high performance in electrochemical energy systems such as batteries, fuel cells, and capacitors. ...

Kwang Hyun Park; Dongju Lee; Jungmo Kim; Jongchan Song; Yong Min Lee; Hee-Tak Kim; Jung-Ki Park

2014-07-11T23:59:59.000Z

29

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network [OSTI]

battery life depends on the design of thermal management used as well as the specific battery chemistry of Thermal Management on Battery Life 2012-01-0671 Published 04/16/2012 Tugce Yuksel and Jeremy MichalekABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need

Michalek, Jeremy J.

30

Thermal Management of High-Performance Lithium-Ion Batteries  

Science Journals Connector (OSTI)

The battery power and lifetime depend to a large...cool...) is usually reduced using a high volumetric flow rate. Lathin technology from Behr ensures efficient temperature homogenisation (locally adapted thermal ...

Dr.-Ing. Matthias Stripf; Dr.-Ing. Manuel Wehowski…

2012-01-01T23:59:59.000Z

31

Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module  

Science Journals Connector (OSTI)

Abstract This paper investigates the mechanisms of penetration induced thermal runaway (TR) propagation process within a large format lithium ion battery pack. A 6-battery module is built with 47 thermocouples installed at critical positions to record the temperature profiles. The first battery of the module is penetrated to trigger a TR propagation process. The temperature responses, the voltage responses and the heat transfer through different paths are analyzed and discussed to characterize the underlying physical behavior. The temperature responses show that: 1) Compared with the results of TR tests using accelerating rate calorimetry (ARC) with uniform heating, a lower onset temperature and a shorter TR triggering time are observed in a penetration induced TR propagation test due to side heating. 2) The maximum temperature difference within a battery can be as high as 791.8 °C in a penetration induced TR propagation test. The voltage responses have a 5-stage feature, indicating that the TR happens in sequence for the two pouch cells packed inside a battery. The heat transfer analysis shows that: 1) 12% of the total heat released in TR of a battery is enough to trigger the adjacent battery to TR. 2) The heat transferred through the pole connector is only about 1/10 of that through the battery shell. 3) The fire has little influence on the TR propagation, but may cause significant damage on the accessories located above the battery. The results can enhance our understandings of the mechanisms of TR propagation, and provide important guidelines in pack design for large format lithium ion battery.

Xuning Feng; Jing Sun; Minggao Ouyang; Fang Wang; Xiangming He; Languang Lu; Huei Peng

2015-01-01T23:59:59.000Z

32

Experimental performances of a battery thermal management system using a phase change material  

Science Journals Connector (OSTI)

Abstract Li-ion batteries are leading candidates for mobility because electric vehicles (EV) are an environmentally friendly mean of transport. With age, Li-ion cells show a more resistive behavior leading to extra heat generation. Another kind of problem called thermal runway arises when the cell is too hot, what happens in case of overcharge or short circuit. In order to evaluate the effect of these defects at the whole battery scale, an air-cooled battery module was built and tested, using electrical heaters instead of real cells for safety reasons. A battery thermal management system based on a phase change material is developed in that study. This passive system is coupled with an active liquid cooling system in order to initialize the battery temperature at the melting of the PCM. This initialization, or PCM solidification, can be performed during a charge for example, in other words when the energy from the network is available.

Charles-Victor Hémery; Franck Pra; Jean-François Robin; Philippe Marty

2014-01-01T23:59:59.000Z

33

Abstract--This paper examines the impact of battery sizing on the performance and efficiency of power management  

E-Print Network [OSTI]

Abstract--This paper examines the impact of battery sizing on the performance and efficiency paper examines plug-in hybrid electric vehicles (PHEVs), which typically utilize onboard battery storage and efficiency characteristics of these algorithms are compared for different battery sizes over stochastic

Krstic, Miroslav

34

Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery  

Science Journals Connector (OSTI)

Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery ... Employing electrolytes containing Bi3+, bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). ... Energy storage; redox flow battery; electrode; catalyst; vanadium ...

Bin Li; Meng Gu; Zimin Nie; Yuyan Shao; Qingtao Luo; Xiaoliang Wei; Xiaolin Li; Jie Xiao; Chongmin Wang; Vincent Sprenkle; Wei Wang

2013-02-11T23:59:59.000Z

35

Influences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

The vanadium redox flow battery (VRB) proposed by Skyllas-Kazacos and co-workers1-3 in 1985 has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low cost in energy storage. ... Figure 1 Schematic illustration of a vanadium redox flow battery. ... Vanadium Redox Flow Battery Performance. ...

Xuanli Luo; Zhengzhong Lu; Jingyu Xi; Zenghua Wu; Wentao Zhu; Liquan Chen; Xinping Qiu

2005-10-08T23:59:59.000Z

36

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

37

Al2O3 coating for improving thermal stability performance of manganese spinel battery  

Science Journals Connector (OSTI)

The synthesis of Al2O3-coated and uncoated LiMn2O4 by solid-state method and fabrication of LiMn2O4/graphite battery were described. The structure and morphology of the powders were characterized by X-ray diffrac...

Yun-jian Liu ???; Hua-jun Guo ???…

2011-12-01T23:59:59.000Z

38

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

39

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

40

Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance  

SciTech Connect (OSTI)

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2013-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

42

Performance of Learning Disabled High School Students on the Armed Services Vocational Aptitude Battery  

E-Print Network [OSTI]

This study examined the performance of 24 LD high school students on the Armed Services Vocational Aptitude Battery, A total of 29.2/. of the LD subjects ware found to qualify for enlistment in the Army based on the requirements for high school...

Harnden, G. Mack; Meyen, Edward L.; Alley, Gordon R.; Deshler, Donald D.

1980-01-01T23:59:59.000Z

43

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

44

Performance of a mixing entropy battery alternately flushed with wastewater effluent and  

E-Print Network [OSTI]

Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater. Coastal wastewater treatment plants discharge a continuous stream of low salinity effluent to the ocean cell, the net energy recovery was 0.11 kW h per m3 of wastewater effluent. When twelve cells were

Cui, Yi

45

Effect of polymer electrode morphology on performance of a lithium/polypyrrole battery  

E-Print Network [OSTI]

/discharge experiments. sevu vive. see 1 s m eszse6 ~ ~ I Figure 12 is a schematic of a battery cathode used to make a fibrillar polypyrrole film. A gold-coated Anopore electrode is attached to one side of a Kel-f' plug with silver epoxy before inserting...EFFECT OF POLYMER ELECTRODE MORPHOLOGY ON PERFORMANCE OI' A LITHIUM/POLYPYRROLE BATTERY A Thesis by MARJORIE ANNE NICHOLSON Submitted to the OfIice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Nicholson, Marjorie Anne

1991-01-01T23:59:59.000Z

46

Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint  

SciTech Connect (OSTI)

Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

2014-10-01T23:59:59.000Z

47

Qualitative thermal characterization and cooling of lithium batteries for electric vehicles  

Science Journals Connector (OSTI)

The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

A Mariani; F D'Annibale; G Boccardi; G P Celata; C Menale; R Bubbico; F Vellucci

2014-01-01T23:59:59.000Z

48

BatPaC - Battery Performance and Cost model - About BatPaC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About BatPaC About BatPaC The starting point for this work is based on the decades of battery design work headed by Paul Nelson at Argonne National Laboratory. These design models were based in Microsoft Office Excel® resulting in a flexible and straightforward format. The current effort builds on this previous experience by adding a manufacturing cost calculation as well as increasing the fidelity of the performance calculations all while maintaining efficient calculations (e.g. fractions of a second). The cost of a battery will change depending upon the materials chemistry, battery design, and manufacturing process. Therefore, it is necessary to account for all three areas with a bottom-up cost model. Other bottom-up cost models exist but are not generally available and have not been explicitly detailed in a public document. The motivation for our approach is based on a need for a battery performance and cost model that meets the following requirements:

49

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance  

Science Journals Connector (OSTI)

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance ... A new nanocomposite formulation of the FeS-based anode for lithium-ion batteries is proposed, where FeS nanoparticles wrapped in reduced graphene oxide (RGO) are produced via a facile direct-precipitation approach. ...

Ling Fei; Qianglu Lin; Bin Yuan; Gen Chen; Pu Xie; Yuling Li; Yun Xu; Shuguang Deng; Sergei Smirnov; Hongmei Luo

2013-05-14T23:59:59.000Z

50

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

SciTech Connect (OSTI)

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

51

Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform  

Science Journals Connector (OSTI)

For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical performances. ... Second-Year Undergraduate; Graduate Education/Research; Interdisciplinary/Multidisciplinary; Hands-On Learning/Manipulatives; Electrochemistry; Materials Science; Nanotechnology; Upper-Division Undergraduate; Laboratory Instruction ... International Journal of Pharmaceutical Sciences and Drug Research (2010), 2 (2), 127-133 CODEN: IJPSPP; ISSN:0975-248X. ...

Aaron J. Blake; Hong Huang

2014-11-20T23:59:59.000Z

52

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

53

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

binder material for solid-state battery electrodes. The1.10. Proposed new solid-state lithium battery design. The

Patel, Shrayesh

2013-01-01T23:59:59.000Z

54

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

55

Low Temperature Performance Characterization & Modeling | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp04jansen.pdf More Documents & Publications Low Temperature Performance Characterization...

56

Low Temperature Performance Characterization | Department of...  

Broader source: Energy.gov (indexed) [DOE]

"Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08jansen2.pdf More Documents & Publications Low Temperature Performance Characterization &...

57

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

58

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

Graphene-enhanced hybrid phase change materials for thermalphase, capacity and volume change information. 12 .. 12 Table 2 Summary of cathode and anode materialsphase, capacity and volume change information. 12 The last method involved seeking new materials.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

59

Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Mesoporous metal oxides such as SnO2...exhibit a superior electrochemical performance as anode materials for lithium-ion batteries due to their large surface areas and ... collapse during the charge–discharge pro...

Shuhua Jiang; Wenbo Yue; Ziqi Gao; Yu Ren; Hui Ma…

2013-05-01T23:59:59.000Z

60

Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery  

Science Journals Connector (OSTI)

In this study, PPESK/PVDF/PPESK tri-layer composite separators for lithium-ion batteries were prepared by electrospinning technique. The physical properties, electrochemical performances and thermal properties of...

Chun Lu; Wen Qi; Li Li; Jialong Xu; Ping Chen…

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

62

Graphene as a high-capacity anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Graphene was produced via a soft chemistry synthetic route for lithium ion battery applications. The sample was characterized by X ... electron microscopy, respectively. The electrochemical performances of graphene

Hongdong Liu ???; Jiamu Huang ???; Xinlu Li…

2013-04-01T23:59:59.000Z

63

Development of a Reverse Logistics Performance Measurement System for a Battery Manufacturer  

Science Journals Connector (OSTI)

Abstract In this contribution, the case of a leading Lead Acid Battery manufacturer in India is studied with respect to the essential reverse logistics operations of the company, due to the statutory requirements regarding toxic components in the product. The critical parameters are ascertained by a methodology interviews with the company's management and further consolidated using the taxonomy as suggested by the Balanced Scorecard approach. Then, a performance measurement system vis-à-vis the industry benchmark, over a sustained period, is proposed, using Fuzzy Analytical Hierarchical Process.

Milind Bansia; Jayson K. Varkey; Saurabh Agrawal

2014-01-01T23:59:59.000Z

64

Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A sulfur/graphene composite is prepared by loading elemental sulfur into three-dimensional graphene (3D graphene), which is assembled using a metal ions assisted hydrothermal method. When used as cathode materials for lithium–sulfur (Li–S) batteries, the sulfur/graphene composite (S@3D-graphene) with 73 wt % sulfur shows a significantly enhanced cycling performance (>700 mAh g?1 after 100 cycles at 0.1C rate with a Coulombic efficiency > 96%) as well as high rate capability with a capacity up to 500 mAh g?1 at 2C rate (3.35 A g?1). The superior electrochemical performance could be attributed to the highly porous structure of three-dimensional graphene that not only enables stable and continue pathway for rapid electron and ion transportation, but also restrain soluble polysulfides and suppress the “shuttle effect”. Moreover, the robust structure of 3D graphene can keep cathode integrity and accommodate the volume change during high-rate charge/discharge processes, making it a promising candidate as cathode for high performance Li–S batteries.

Chunmei Xu; Yishan Wu; Xuyang Zhao; Xiuli Wang; Gaohui Du; Jun Zhang; Jiangping Tu

2015-01-01T23:59:59.000Z

65

Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Two kinds of graphene–sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ?5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene–sulfur composite (S–G mixture), sulfur shows larger and uneven size (50–200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S–G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium–sulfur (Li–S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g?1 with the sulfur utilization of 83.7% at a current density of 335 mA g?1. The capacity keeps above 720 mAh g?1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the “shuttle effect”, resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li–S batteries.

Jun Zhang; Zimin Dong; Xiuli Wang; Xuyang Zhao; Jiangping Tu; Qingmei Su; Gaohui Du

2014-01-01T23:59:59.000Z

66

Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes  

Science Journals Connector (OSTI)

Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 ? mAh ? g ? 1 with a Coulombic efficiency of 84% at a rate of 150 ? mA ? g ? 1 between 2 and 0.02 V and a significantly enhanced cycling performance i.e. a reversible capacity of 1326 ? mAh ? g ? 1 was retained after 40 cycles. These improvements were attributed to the uniform and continuous carbon coatings which increased electronic contact and conduction and buffered large volume changes during lithium ion insertion/extraction.

Rui Huang; Xing Fan; Wanci Shen; Jing Zhu

2009-01-01T23:59:59.000Z

67

Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications  

E-Print Network [OSTI]

1 Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications D the negative impact of wind power grid integration on the power system stability, which is caused. INTRODUCTION Future wind power plants (WPPs) are intended to function like todays conventional power plants

Teodorescu, Remus

68

Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery  

Science Journals Connector (OSTI)

Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery ... Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. ... Energy storage; redox flow battery; electrode; carbon nanofiber; carbon nanotube; catalyst ...

Minjoon Park; Yang-jae Jung; Jungyun Kim; Ho il Lee; Jeaphil Cho

2013-09-11T23:59:59.000Z

69

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

70

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

71

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

72

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

73

Methods and systems for thermodynamic evaluation of battery state of health  

DOE Patents [OSTI]

Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

2014-12-02T23:59:59.000Z

74

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from ?20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

75

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries  

Science Journals Connector (OSTI)

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries ... (1, 2) Commercial LIBs use graphite as the anode material with a low theoretical specific capacity of 372 mAh g–1, necessitating extensive research to develop substitute anode materials with higher energy/power densities for high performance LIBs to satisfy demanding applications like electric vehicles. ...

Mohammad Akbari Garakani; Sara Abouali; Biao Zhang; Curtis Alton Takagi; Zheng-Long Xu; Jian-qiu Huang; Jiaqiang Huang; Jang-Kyo Kim

2014-10-15T23:59:59.000Z

76

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

77

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery ... Yu, A.; Park, H. W.; Davies, A.; Higgins, D.; Chen, Z.; Xaio, X.Free-Standing Layer-by-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries J. Phys. ...

Fathy M Hassan; Abdel Rahman Elsayed; Victor Chabot; Rasim Batmaz; Xingcheng Xiao; Zhongwei Chen

2014-07-31T23:59:59.000Z

78

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

power required by the electric motor. The characteristics ofthe battery size and the electric motor and engine powers,electric range and electric motor power (mid-size passenger

Burke, Andrew

2009-01-01T23:59:59.000Z

79

Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance  

Science Journals Connector (OSTI)

Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge ... can be overcome by combination with well-organized graphene

Shuangqiang Chen; Peite Bao; Xiaodan Huang; Bing Sun; Guoxiu Wang

2014-01-01T23:59:59.000Z

80

Progress in research on the performance and service life of batteries membrane of new energy automotive  

Science Journals Connector (OSTI)

Batteries membrane materials are widely used in new energy automotives such as hybrid vehicles, fuel cell vehicles, and pure electric vehicles. Membrane consists of two categories: fuel cell membrane (power unit)...

Yong Li; Jian Song; Jie Yang

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

82

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

83

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Broader source: Energy.gov (indexed) [DOE]

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

84

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Broader source: Energy.gov (indexed) [DOE]

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

85

Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A novel graphene-wrapped carbon nanotube/sulfur structure was designed to improve the electrochemical performance of the lithium–sulfur (Li–S) batteries. Owing to the introduction of the reduced graphene oxide (rGO) with the aim to restrain the polysulfide anions diffusion phenomenon, increase the overall electronic conductivity of the electrode and accommodate volume expansion between the delithiated S and lithiated Li2S phases, the resulted graphene-wrapped carbon nanotube/sulfur (S/CNT@rGO) composite makes the cycling performance of the Li–S batteries better than that without rGO. The S/CNT@rGO composite showed an initial discharge capacity of ~1299 mA h g?1 at 0.2 C rate. After 100 cycles of charge/discharge, the S/CNT@rGO composite retained a high specific capacity of ~670 mA h g?1, much higher than that without rGO (graphene-wrapped carbon nanotube/sulfur composite could be a promising cathode material for high-rate performance Li–S batteries.

Yishan Wu; Chunmei Xu; Jinxin Guo; Qingmei Su; Gaohui Du; Jun Zhang

2014-01-01T23:59:59.000Z

86

CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries  

Science Journals Connector (OSTI)

CoFe2O4-graphene nanosheets (CoFe2O4...-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The...?1 even ...

Yinglin Xiao; Xiaomin Li; Jiantao Zai; Kaixue Wang; Yong Gong; Bo Li…

2014-10-01T23:59:59.000Z

87

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

88

Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Cubic spinel Co2SnO4/graphene sheets (Co2SnO4/G) nanocomposites are synthesized by a facile hydrothermal process in alkaline solution, using SnCl4 · 4H2O, CoCl2 · 6H2O and graphene oxide (GO) as the precursor. The structure and morphology of the resulting nanocomposites are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Co2SnO4 nanoparticles are uniformly dispersed among graphene sheets, with a size of 80–150 nm. As anode material for lithium-ion batteries, the galvanostatic charge/discharge and cyclic voltammetry are conducted to indicate the electrochemical performance of Co2SnO4/G nanocomposites. Co2SnO4/G nanocomposites exhibit an improved electrochemical performance compared with pure Co2SnO4 nanoparticles, such as high reversible capacities, good cycling stability and excellent rate performance. The initial charge and discharge capacities are 996.1 mAh g?1 and 1424.8 mAh g?1. After 100 cycles, the reversible charge/discharge capacities still remain 1046/1061.1 mAh g?1 at the current density of 100 mA g?1. Co2SnO4 nanoparticles coated by Graphene sheets with superior electrochemical performance indicate that Co2SnO4/G nanocomposites are promising electrode materials used for high-storage lithium-ion batteries.

Chang Chen; Qiang Ru; Shejun Hu; Bonan An; Xiong Song; Xianhua Hou

2015-01-01T23:59:59.000Z

89

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network [OSTI]

several years SAFT has developed a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on SAFT lithium-ion cells The cells used are lithium-ion SAFT power cells: VL30P which outputs a nominal capacity of 30 Ah

Paris-Sud XI, Université de

90

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network [OSTI]

years, Saft has been developing a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on Saft lithium or several cells. II. OVERVIEW OF EXPERIMENT A. Used lithium-ion cells The cells used are lithium-ion Saft

Boyer, Edmond

91

A battery chemistry-adaptive fuel gauge using probabilistic data association  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of state of charge (SOC) tracking in Li-ion batteries when the battery chemistry is unknown. It is desirable for a battery fuel gauge (BFG) to be able to perform without any offline characterization or calibration on sample batteries. All the existing approaches for battery fuel gauging require at least one set of parameters, a set of open circuit voltage (OCV) parameters, that need to be estimated offline. Further, a BFG with parameters from offline characterization will be accurate only for a “known” battery chemistry. A more desirable BFG is one that is accurate for “any” battery chemistry. In this paper, we show that by storing finite sets of OCV parameters of possible batteries, we can derive a generalized BFG using the probabilistic data association (PDA) algorithm. The PDA algorithm starts by assigning prior model probabilities (typically equal) for all the possible models in the library and recursively updates those probabilities based on the voltage and current measurements. In the event of an unknown battery to be gauged, the PDA algorithm selects the most similar OCV model to the battery from the library. We also demonstrate a strategy to select the minimum sets of OCV parameters representing a large number of Li-ion batteries. The proposed approaches are demonstrated using data from portable Li-ion batteries.

G.V. Avvari; B. Balasingam; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

92

Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane  

SciTech Connect (OSTI)

Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

2013-09-02T23:59:59.000Z

93

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

94

Testing Performance of 10 kW BLDC Motor and LiFePO4 Battery on ITB-1 Electric Car Prototype  

Science Journals Connector (OSTI)

Abstract The growing development of Electric vehicle industry due to more greener transportation needs, encouraging ITB as a research based educational institution to give their effort and participation in developing electric city car prototype, especially for Indonesia used. Two fundamental components in the electric car are the electric motor and its energy storage system. The motor used in this ITB-1electric car is brushless dc (BLDC) motor type. A controller will be used to convert the dc source into ac for BLDC motor power source. How far an electric car can reach their destination depends on how much energy that is stored in the batteries. This electrical energy storage will affect performance of the electric car. Therefore we have to protect the battery from anything that can make the battery's life shorter. Voltage is one of the parameters that must be controlled by the battery management system, so that the battery can be protected effectively. In this paper, a10 kW BLDC motor and its energy storagei.e LiFePO4 battery types, will be evaluated based on their performance result from the tests.

Agus Purwadi; Jimmy Dozeno; Nana Heryana

2013-01-01T23:59:59.000Z

95

Performance characterization of integral imaging systems based on human vision  

Science Journals Connector (OSTI)

The perceptual contrast threshold (PCT) surface is proposed for characterizing the systematic performance of integral imaging (InI) systems. The method to determine the PCT surface...

Wang, Xiaorui; He, Liyong; Bu, Qingfeng

2009-01-01T23:59:59.000Z

96

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

97

Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting  

Science Journals Connector (OSTI)

Abstract Phenyl acetate (PA) is more stable and much cheaper than vinylene carbonate (VC), a commercial electrolyte additive for graphite anode of lithium ion battery, but its performance needs to be improved. In this paper, we report a new additive, 4-fluorophenyl acetate (4-FPA), which results from the fluorine-substituting of PA. The properties of the formed solid electrolyte interphase (SEI) by 4-FPA are investigated comparatively with PA by molecular energy level calculation, cyclic voltammetry, charge–discharge test, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. It is found that the SEI formed by 4-FPA is more protective than PA, resulting in the improved cyclic stability of lithium ion battery: the capacity retention of LiFePO4/graphite cell after 90 cycles is 92% for 4-FPA but only 84% for PA. The fluorine in 4-FPA makes it more reducible than PA and the fluorine-containing reduction products of 4-FPA are incorporated into the SEI, which contributes to the improved performance.

Bin Li; Yaqiong Wang; Haibin Lin; Xianshu Wang; Mengqing Xu; Yating Wang; Lidan Xing; Weishan Li

2014-01-01T23:59:59.000Z

98

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

99

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001 1385 Improving Battery Performance by Using Traffic  

E-Print Network [OSTI]

battery management techniques that exploit the charge recovery effect inherent to many secondary storage efficient protocols. The goal is to increase the amount of energy that can be drained from a battery, the soIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001 1385 Improving Battery

100

Characterizing the performance and energy attributes of scientific simulations  

Science Journals Connector (OSTI)

We characterize the performance and energy attributes of scientific applications based on nonlinear partial differential equations (PDEs). where the dominant cost is that of sparse linear system solution. We obtain performance and energy metrics using ...

Sayaka Akioka; Konrad Malkowski; Padma Raghavan; Mary Jane Irwin; Lois Curfman McInnes; Boyana Norris

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

102

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

103

First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries  

SciTech Connect (OSTI)

The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

2013-07-16T23:59:59.000Z

104

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

105

NREL: Measurements and Characterization - Device Performance Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Device Performance Measurement Device Performance Measurement The National Renewable Energy Laboratory is the premier U.S. Department of Energy (DOE) research laboratory for testing performance of commercial, developmental, and research photovoltaic (PV) devices. Our Device Performance group is one of only two laboratories in the world to hold an International Organization for Standardization (ISO) 17025 accreditation for primary reference cell and secondary module calibration, in addition to accreditation for secondary reference cell calibration under American Society for Testing Materials (ASTM), and International Electrotechnical Commission (IEC) standards. One of only four laboratories in the world certified in accordance with the IEC standard for calibrating terrestrial primary reference PV cells, we

106

Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery  

E-Print Network [OSTI]

: Metal-air battery, Lithium anode, Li2O - Al2O3 - TiO2 - P2O5 system, LiPON, Solid electrolyte 1. Introduction Metal-air batteries are based on the use of a metal negative electrode in combination-sur-Loing, France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin

Paris-Sud XI, Université de

107

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

108

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network [OSTI]

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

109

Measurements and Characterization: Cell and Module Performance (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization -- Cell and Module Performance. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

Not Available

2011-02-01T23:59:59.000Z

110

Performance characterization of a packed bed electro-filter  

E-Print Network [OSTI]

PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

Narayanan, Ajay

2012-06-07T23:59:59.000Z

111

BOOK CHAPTERS 1. B.Y. Liaw, M. Dubarry, "A roadmap to understand battery performance in electric and hybrid  

E-Print Network [OSTI]

and hybrid vehicle operation," in Electric and Hybrid Vehicles. Power Sources, Models, Sustainability and life prediction," in Industrial Applications of Batteries: From Electric Vehicles to Satellites, M, Estimation and Control of Hybrid Electrical Vehicles Batteries", in the Proceedings of the IEEE International

112

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

113

Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries  

Science Journals Connector (OSTI)

Reduced graphene oxide/porous Si composite was fabricated through ... subsequent dispersing porous Si in the suspension of graphene oxide followed by reduced process. The electrochemical performance of the obtain...

Hua-Chao Tao; Xue-Lin Yang; Lu-Lu Zhang; Shi-Bing Ni

2014-08-01T23:59:59.000Z

114

GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance  

Science Journals Connector (OSTI)

Thermal stability, flammability, and electrochemical performances of...4] have been examined in comparison with contemporary (EC/EMC, 1:3 vol.%, 1 M LiPF6...) electrolyte by DSC, accelerating rate calorimetry (AR...

Dmitry Belov; Deng-Tswen Shieh

2012-02-01T23:59:59.000Z

115

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

116

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

117

Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance  

Science Journals Connector (OSTI)

Abstract In the past four years major improvement of the lithium sulfur battery technology has been reported. Novel carbon cathode materials offer high sulfur loading, sulfur utilization and cycle stability. An often neglected aspect is that sulfur loading and amount of electrolyte strongly impact the performance. In this paper, we demonstrate how the amount of electrolyte, sulfur loading, lithium excess and cycling rate influences the cycle stability and sulfur utilization. We chose vertically aligned carbon nanotubes (VA-CNT) as model system with a constant areal loading of carbon. For a high reproducibility, decreased weight of current collector and good mechanical adhesion of the VA-CNTs we present a layer transfer technique that enables a light-weight sulfur cathode. The sulfur loading of the cathode was adjusted from 20 to 80 wt.-%. Keeping the total amount of electrolyte constant and varying the C-rate, we are able to demonstrate that the capacity degradation is reduced for high rates, high amount of electrolyte and low sulfur loading. In addition idle periods in the cycling regiment and lower rates result in an increased degradation. We attribute this to the redox-reaction between reactive lithium and polysulfides that correlates with the cycling time, rather than cycle number.

Jan Brückner; Sören Thieme; Hannah Tamara Grossmann; Susanne Dörfler; Holger Althues; Stefan Kaskel

2014-01-01T23:59:59.000Z

118

Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3–5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (?1300 mAh g?1 after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g?1 at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of self-assembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.

Kowsalya Palanisamy; Yunok Kim; Hansu Kim; Ji Man Kim; Won-Sub Yoon

2015-01-01T23:59:59.000Z

119

Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract In this work, pure LVP nanoparticles and an LVP/graphene nanocomposite are successfully synthesized by a simple and cost effective polyol based solvothermal method, which can be easily scaled up. The synthesized nanocomposite contained small (30–60 nm) LVP nanoparticles completely and uniformly anchored on reduced graphene nanosheets. As a cathode for lithium ion batteries, the nanocomposite electrode delivered high reversible lithium storage capacity (189.8 mA h g?1 at 0.1 C), superior cycling stability (111.8 mA h g?1 at 0.1 C, 112.6 mA h g?1 at 5 C, and 103.4 mA h g?1 at 10 C after 80 cycles) and better C-rate capability (90.8 mA h g?1 at 10 C), whereas the pure LVP nanoparticles electrode delivered much less capacity at all investigated current rates. The enhanced electrochemical performance of the nanocomposite electrode can be attributed to the synergistic interaction between the uniformly dispersed LVP nanoparticles and the graphene nanosheets, which offers a large number of accessible active sites for the fast diffusion of Li ions, low internal resistance, high conductivity and more importantly, accommodates the large volume expansion/contraction during cycling.

Alok Kumar Rai; Trang Vu Thi; Jihyeon Gim; Sungjin Kim; Jaekook Kim

2015-01-01T23:59:59.000Z

120

Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries  

Science Journals Connector (OSTI)

Conductive polymer coatings can boost the power storage capacity of lithium-sulfur batteries. We report here on the design and ... polyaniline (PANI)-modified cetyltrimethylammonium bromide (CTAB)-graphene oxide ...

Yongcai Qiu; Wanfei Li; Guizhu Li; Yuan Hou; Lisha Zhou; Hongfei Li…

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

122

Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.  

SciTech Connect (OSTI)

High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell's pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

Lu, W.; Jansen, A.; Dees, D.; Henriksen, G.; Chemical Sciences and Engineering Division

2010-08-01T23:59:59.000Z

123

Metrics to Characterize Airport Operational Performance Using Surface Surveillance Data  

E-Print Network [OSTI]

Tower BOS Boston General Edward Lawrence Logan International Airport EDCT Expected Departure Clearance International Airport, and are therefore evaluated and discussed using this airport as an example. These metricsMetrics to Characterize Airport Operational Performance Using Surface Surveillance Data Harshad

Gummadi, Ramakrishna

124

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

125

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

126

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

127

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect (OSTI)

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in ·capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the· lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information· about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

128

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect (OSTI)

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

129

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

130

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

131

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

132

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

133

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

134

Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance  

SciTech Connect (OSTI)

Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

Bi, Zhonghe [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

135

Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries  

Science Journals Connector (OSTI)

Abstract Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO2/rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh gSnO2?1 at 50 mA g?1. At 1600 mA g?1 (2.4C), it can still yield a charge capacity of 200 mAh gSnO2?1. After 100 cycles at 100 mA g?1, the hybrid can retain a high charge capacity of 369 mAh gSnO2?1. X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO2/rGO.

Yandong Zhang; Jian Xie; Shichao Zhang; Peiyi Zhu; Gaoshao Cao; Xinbing Zhao

2015-01-01T23:59:59.000Z

136

Characterization and modification of particulate properties to enhance filtration performance  

SciTech Connect (OSTI)

The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

1990-06-01T23:59:59.000Z

137

Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint  

SciTech Connect (OSTI)

Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-11-01T23:59:59.000Z

138

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

139

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

140

PERFORMANCE ASSESSMENT OF THE CASE WESTERN RESERVE UNIVERSITYWIND TURBINE AND CHARACTERIZATION OF WIND AVAILABILITY.  

E-Print Network [OSTI]

??To better understand the behavior of wind turbines placed in an urban environment, a study was performed to characterize the wind availability and performance of… (more)

Wo, Chung

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

142

Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries  

SciTech Connect (OSTI)

LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup ?1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

?ahan, Halil, E-mail: halil@erciyes.edu.tr; Dokan, Fatma K?l?c, E-mail: halil@erciyes.edu.tr; Ayd?n, Abdülhamit, E-mail: halil@erciyes.edu.tr; Özdemir, Burcu, E-mail: halil@erciyes.edu.tr; Özdemir, Nazl?, E-mail: halil@erciyes.edu.tr; Patat, ?aban, E-mail: halil@erciyes.edu.tr [Department of Chemistry, Science Faculty, Erciyes University, Kayseri, 38039 (Turkey)

2013-12-16T23:59:59.000Z

143

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

144

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

145

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

146

2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)  

ScienceCinema (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

None Available

2012-03-21T23:59:59.000Z

147

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

148

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

149

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

150

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award  

Broader source: Energy.gov [DOE]

EERE-supported graphene nanostructures increases capacity of batteries, improves performance and convenience of electric vehicles.

151

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

152

Failure Analysis of Power Battery Under High Environment Temperatures in Impact Test  

Science Journals Connector (OSTI)

The impact tests of the power battery were performed at 40 and 65 °C ... circuit, the heat can accumulate inside the battery, and those accumulated heat can lead to thermal runaway and even battery burning and ex...

Hongwei Wang; Haiqing Xiao; Yanling Fu…

2013-01-01T23:59:59.000Z

153

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

154

A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract A new SnO2-Fe2O3/SWCNTs (single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach. SnO2 and Fe2O3 nanoparticles (NPs) were homogeneously located on the surface of SWCNTs, as confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX). Due to the synergistic effect of different components, the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g?1 which could be maintained after 50 cycles at 200 mA·g?1. Even at a high rate of 2000 mA·g?1, the capacity was still remained at 656 mAh·g?1.

Wangliang Wu; Yi Zhao; Jiaxin Li; Chuxin Wu; Lunhui Guan

2014-01-01T23:59:59.000Z

155

Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode  

Science Journals Connector (OSTI)

Abstract A novel anode material for lithium-ion batteries, graphene-wrapped Si nanoparticles (NPs) embedded in carbon composite nanofibers (CCNFs) with G/Si, is fabricated by electrospinning and subsequent thermal treatment. In \\{CCNFs\\} with G/Si, Si \\{NPs\\} are distributed and preserved inside the CNF surface because the graphene wrapping the Si \\{NPs\\} help prevent agglomeration and ensure a good dispersion of Si \\{NPs\\} inside the CNF matrix. 20-GSP prepared from a weight ratio of 20 wt% of G/Si to polyacrylonitrile exhibits stable capacity retention and a reversible capacity of above 600 mAh g?1 up to 100 cycles. The high cycling performance and superior reversible capacity of the 20-GSP anode can be attributed to the one-dimensional nanofibrous structure with non-agglomerated Si \\{NPs\\} in the CNF matrix, which promotes charge transfer, maintains a stable electrical contact, and buffers the Si volume expansion.

So Yeun Kim; Kap Seung Yang; Bo-Hye Kim

2015-01-01T23:59:59.000Z

156

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

157

BOUT++: Performance Characterization and Recent Advances in Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BOUT++: BOUT++: Performance Characterization and Recent Advances in Design Sean Farley, 1,2 Ben Dudson, 3 Praveen Narayanan, 4 Lois Curfman McInnes, 1 Maxim Umansky, 5 Xueqiao Xu, 5 Satish Balay, 1 John Cary, 6 Alice Koniges, 4 Carol Woodward, 5 Hong Zhang 1 Edge Localized Modes ￿ Fast (∼ 100µs) eruption from the edge of tokamak plasmas ￿ If uncontrolled in ITER, these would release ∼ 20 MJ ￿ World-wide effort to understand and control these events The BOUT++ Simulation Code ￿ Based on BOUT written by X. Xu, et. al. from LLNL [1] ￿ New 3D simulation code developed at York with LLNL and ANL ￿ Simulates plasma fluid equations in curvilinear coordinate systems ￿ Runs on workstations, clusters, large-scale machines, e.g., Cray XE6 ELM Equations ρ 0 dω dt = B 2 0 b · ∇ ￿ J || B 0 ￿ + 2b 0 × κ 0 · ∇p ∂A || ∂t = -∇ || φ dp dt = - 1 B 0 b 0 × ∇φ · ∇p 0 ω = 1 B 0 ∇ 2 ⊥ φ J || = J ||0 - 1 µ

158

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

159

Advanced cell technology for high performance Li-A1/FeS{sub 2} secondary batteries.  

SciTech Connect (OSTI)

In early 1993. Argonne National Laboratory (ANL) initiated a major R and D effort to develop bipolar Li-Al/LiCl-LiBr-KBr/FeS{sub 2} batteries for electric vehicles, targeting the USABC Long-Term Goals. Significant advancements were achieved in the areas of (i) chemical purity, (ii) electrode and electrolyte additives, and (iii) peripheral seals. It was determined that key chemical constituents contained undesirable impurities. ANL developed new chemical processes for preparing Li{sub 2}S, FeS, and CoS{sub 2} that were >98.5% pure. We evaluated a large variety of electrode and electrolyte additives for reducing cell area specific impedance (ASI). Candidate positive electrode additives offered increased electronic conductivity, enhanced reaction kinetics, and/or improved porous electrode morphology. CoS{sub 2}, CuFeS{sub 2}, MgO, and graphite (fibers) were identified as the most beneficial impedance-reducing positive electrode additives. Although electronically conductive carbon and graphite additives produced measurable ASI reductions in the negative electrode, they degraded its structural integrity and were deemed impractical. Lil and LiF were identified as beneficial electrolyte additives, that enhance positive electrode kinetics. ANL refined its baseline metal/ceramic peripheral seal and increased its strength by a factor of three (achieving a safety factor >10). In parallel, ANL developed a high-strength advanced metal/ceramic seal that offers appreciable cost reductions.

Henriksen, G. L.

1998-07-10T23:59:59.000Z

160

Evaluation and Characterization of Lightweight Materials: Success...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Materials Characterization Capabilities...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

162

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

163

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

164

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

165

Synthesis, Characterization, Properties, and Tribological Performance of 2D Nanomaterials  

E-Print Network [OSTI]

of lubricants using novel nanostructured particles. Experimental approaches include synthesis, characterization, and tribological and rheological investigation of nanoparticles, yttrium oxide (Y_(2)O_(3)), ?-zirconium phosphate (ZrP), and boron (B...

He, Xingliang

2014-04-25T23:59:59.000Z

166

Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Li[Li1/6Ni1/4Mn7/12]O2?xFx (x = 0, 0.025, 0.05, 0.075, 0.1) as the cathode materials for rechargeable lithium batteries have been synthesized via the co-precipitation method followed by a high-temperature solid-state reaction. Field emission scanning electron microscopy images exhibit that fluorine substitution catalyzes the growth of the primary particles. Although the initial discharge capacity decreases as the fluorine content increasing, the fluorine substituted materials present significant improvement in the cycling performance. Among the synthesized materials, Li[Li1/6Ni1/4Mn7/12]O1.95F0.05 exhibits excellent high temperature (50 °C) cycling performance with a capacity retention of 93.7% after 30 cycles while the bare Li[Li1/6Ni1/4Mn7/12]O2 cathode exhibited only 73.7%.

Hongxiao Li; Li-Zhen Fan

2013-01-01T23:59:59.000Z

167

Dense CoO/graphene stacks via self-assembly for improved reversibility as high performance anode in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Here, we propose a novel strategy to prepare dense stacks composed of alternating CoO and graphene layers for an anode in lithium ion batteries (LIBs), which contributes to enhanced stability and relatively large reversible capacity. This is accomplished by spontaneously pre-aligning negatively charged CoO-anchored graphene oxide (CG) and positively charged amine-functionalized graphene (GN) in an acidic medium, followed by thermal reduction. The performance of this product is contrasted with that of CG prepared under the identical conditions without the addition of GN, in which CoO nanoparticles are sandwiched between relatively loose and randomly oriented graphene stacks. For example, the composite delivers a capacity greater than 800 mAh g?1 with a fading rate of 0.04 mAh g?1 cycle?1 during 1000 charge/discharge (C/D) cycles at 1.0 A g?1, in contrast to ca. 400 mAh g?1 and 0.24 mAh g?1 cycle?1 for thermally reduced CG without the addition of GN. The origin of the superior electrochemical performance in the dense stacks is ascribed to the enhanced reversibility of a conversion reaction, which in turn contributes to a persistent formation/dissolution of gel-like polymer films (i.e., stable pseudo-capacitance). Experimental evidences that substantiate the aforementioned behaviors (improved reversibility for both processes) are presented.

S.J. Richard Prabakar; R. Suresh Babu; Minhak Oh; Myoung Soo Lah; Su Cheol Han; Jaehyang Jeong; Myoungho Pyo

2014-01-01T23:59:59.000Z

168

Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance  

Science Journals Connector (OSTI)

Abstract The SnO2/carbon nanotubes encapsulated in graphene sheets (CSGN) composites are synthesized via a sonochemical method which is straightforward, low-cost and operable under ambient conditions. The open spaces formed by carbon nanotubes and graphene offering the accommodation of volume change and the access of an easy electrolyte-wetting, and the improved electrical conductivity by the presence of graphene and carbon nanotubes, lead to the superior cycling performance. As a result, the CSGN with SnO2 content of 61.4 wt% exhibits a reversible specific capacity of 842.9 mAh g?1 at the first cycle and retains 793.8 mAh g?1 after 50 cycles at a current density of 125 mA g?1, indicating a high capacity retention rate of 94%. The cycling performance is attributed to the unique structure of CSGN and enhanced electrical conductivity, which may make much sense to the structure designing of other electrode materials for lithium ion batteries.

Bin Huang; Juan Yang; Youlan Zou; Lulu Ma; Xiangyang Zhou

2014-01-01T23:59:59.000Z

169

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network [OSTI]

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

170

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

171

Studies on Hazard Characterization for Performance-based Structural Design  

E-Print Network [OSTI]

size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a...

Wang, Yue

2010-07-14T23:59:59.000Z

172

Thorough Characterization of Sputtered CuO Thin Films Used as Conversion Material Electrodes for Lithium Batteries  

Science Journals Connector (OSTI)

CuO is often considered as a p-type semiconductor and, due to its properties, is useful for many applications such as transistors,(1) light emitting diodes(2) or for solar cells and electrochromic devices. ... The influence of various parameters such as oxygen flow rate, substrate temperature, substrate-target distance, total pressure and target orientation (horizontal or tilted) was investigated with the aim to tailor the film properties giving the best electrochemical performances. ... Depth-profiling XPS analyses showed that the reduction processes spread from the thin film surface to the current collector, but that the oxidation starts at the surface of the current collector. ...

Brigitte Pecquenard; Frédéric Le Cras; Delphine Poinot; Olivier Sicardy; Jean-Pierre Manaud

2014-02-12T23:59:59.000Z

173

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

174

A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery  

Science Journals Connector (OSTI)

Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. ...

Lingmin Yao; Xianhua Hou; Shejun Hu; Qiang Ru…

2013-07-01T23:59:59.000Z

175

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network [OSTI]

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

176

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

177

Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

vanadium redox flow battery; anion exchange membrane; ion exchange capacity; cycling performance; power density ... All electrochemical measurements were conducted using a fully automated redox flow battery testing system (Scribner 857 Redox Flow Cell System). ... Characteristics of a new all-vanadium redox flow battery ...

Dongyang Chen; Michael A. Hickner; Ertan Agar; E. Caglan Kumbur

2013-06-25T23:59:59.000Z

178

Thermal Modeling and Effects of Electrode Configuration on Thermal Behaviour of a LiFePO4 Battery  

Science Journals Connector (OSTI)

Li-ion battery has great application prospects on electric vehicles ... etc. For the performance of Li-ion battery is closely related to its operating temperature, the battery thermal management technique is cons...

Cheng Ruan; Kun Diao; Huajie Chen; Yan Zhou…

2013-01-01T23:59:59.000Z

179

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

180

Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600 °C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g?1 before modification to 160.8 mAh g?1 after modification for the first discharge at the rate of 2 C. After 200 charge–discharge cycles, when discharge rate was increased from 2 C to 5 C to 10 C, modified battery capacity was reduced from 152.4 mAh g?1 to 127.9 mAh g?1 to 106 mAh g?1. When the ratio was reduced from 10 C to 5 C to 2 C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning.

Lei Qiu; Ziqiang Shao; Mingshan Yang; Wenjun Wang; Feijun Wang; Long Xie; Shaoyi Lv; Yunhua Zhang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MODA A Framework for Memory Centric Performance Characterization  

SciTech Connect (OSTI)

In the age of massive parallelism, the focus of performance analysis has switched from the processor and related structures to the memory and I/O resources. Adapting to this new reality, a performance analysis tool has to provide a way to analyze resource usage to pinpoint existing and potential problems in a given application. This paper provides an overview of the Memory Observant Data Analysis (MODA) tool, a memory-centric tool first implemented on the Cray XMT supercomputer. Throughout the paper, MODA's capabilities have been showcased with experiments done on matrix multiply and Graph-500 application codes.

Shrestha, Sunil; Su, Chun-Yi; White, Amanda M.; Manzano Franco, Joseph B.; Marquez, Andres; Feo, John T.

2012-06-29T23:59:59.000Z

182

Tracking performance characterization and improvement of a piezoactuated micropositioning system based on an empirical index  

Science Journals Connector (OSTI)

Motion tracking is an important problem in micropositioning systems dedicated to ultra-precision robotic micromanipulation. This paper investigates the periodic motion tracking performance of a micropositioning system based on an empirical tracking performance ... Keywords: Micromanipulator, Motion control, Performance characterization, Piezoelectric actuation, Robust control, System identification

Qingsong Xu; Yangmin Li

2010-12-01T23:59:59.000Z

183

Redox flow batteries based on supporting solutions containing chloride  

DOE Patents [OSTI]

Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-01-14T23:59:59.000Z

184

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network [OSTI]

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

185

Performance characterization of different configurations of gas turbine engines  

Science Journals Connector (OSTI)

Abstract This paper investigates the performance of different configurations of gas turbine engines. A full numerical model for the engine is built. This model takes into account the variations in specific heat and the effects of turbine cooling flow. Also, the model considers the efficiencies of all component, effectiveness of heat exchangers and the pressure drop in relevant components. The model is employed to compare the engine performances in cases of employing intercooler, recuperation and reheat on a single spool gas turbine engine. A comparison is made between single-spool engine and two-spool engine with free power turbine. Also, the performance of the engine with inter-stage turbine burner is investigated and compared with engine employing the nominal reheat concept. The engine employing inter-stage turbine burners produces superior improvements in both net work and efficiency over all other configurations. The effects of ignoring the variations on specific heat of gases and turbine cooling flow on engine performance are estimated. Ignoring the variation in specific heat can cause up to 30% difference in net specific work. The optimum locations of the intercooler and the reheat combustor are determined using the numerical model of the engine. The maximum net specific work is obtained if the reheat combustor is placed at 40% of the expansion section. On the other hand, to get maximum efficiency the reheat combustor has to be placed at nearly 10%-20% of the expansion section. The optimum location of the intercooler is almost at 50% of the compression section for both maximum net specific work and efficiency.

Tarek Nada

2014-01-01T23:59:59.000Z

186

Characterization and estimation of permeability correlation structure from performance data  

SciTech Connect (OSTI)

In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

1997-08-01T23:59:59.000Z

187

High-discharge-rate lithium ion battery  

DOE Patents [OSTI]

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

188

Development of an improved sodium exposure test cell experiment for characterization of AMTEC electrode performance  

E-Print Network [OSTI]

An investigation into sources of inconsistencies in sodium exposure test cell (SETC) measurements, used to characterize AMTEC electrode performance, was conducted. Development of modifications to the SETC setup and operation was also accomplished...

Fiebig, Bradley Nelson

2012-06-07T23:59:59.000Z

189

Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials  

Science Journals Connector (OSTI)

Using a first-principles method we show that graphene based materials, functionalized with hydroxyl groups, constitute a class of multifunctional, lightweight, and nontoxic organic materials with functional properties such as ferroelectricity, multiferroicity, and can be used as proton battery cathode materials. For example, the polarizations of semihydroxylized graphane and graphone, as well as fully hydroxylized graphane, are much higher than any organic ferroelectric materials known to date. Further, hydroxylized graphene nanoribbons with proton vacancies at the end can have much larger dipole moments. They may also be applied as high-capacity cathode materials with a specific capacity that is six times larger than lead-acid batteries and five times that of lithium-ion batteries.

Menghao Wu; J. D. Burton; Evgeny Y. Tsymbal; Xiao Cheng Zeng; Puru Jena

2013-02-19T23:59:59.000Z

190

On-line characterization of slurry for monitoring headbox performance  

SciTech Connect (OSTI)

We are developing an intelligent, vision-based apparatus for the paper industry, who has had a long-standing need to better understand and to robustly control its papermaking process up-stream, specifically, in the forming section. This unique apparatus is a state-of-the-art vision system that automatically measures and interprets the pertinent paper web parameters at the wet end. Unlike the currently available sensing systems that are intended to operate down-stream, our vision system provides the capability of generating timely measurements of the important web parameters at the crucial stage of paper formation. Having the capability can create both short- term and long-term changes in the paper industry ad can dramatically impact product quality and production yield. In the short term, the ability to characterize the web at the wet end will provide the machine operators with the necessary feedback they need to make definitive adjustments to the headbox design and control as their researchers use this same capability to better understand and quantify the headbox flow dynamics.

Sari-Sarraf, H.; Goddard, J.S. Jr.; Turner, J.C.; Hunt, M.A.; Abidi, B.R.

1998-11-01T23:59:59.000Z

191

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

192

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

193

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

194

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

195

Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that...

196

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network [OSTI]

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

197

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

198

Li-Ion and Other Advanced Battery Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

199

Surface Modification of LiNi0.5Mn0.3Co0.2O2 Cathode for Improved Battery Performance  

E-Print Network [OSTI]

This thesis details electrical and physical measurements of pulsed laser deposition-applied thin film coatings of Alumina, Ceria, and Yttria-stabilized Zirconia (YSZ) on a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode in a Lithium ion battery. Typical NMC...

Lynch, Thomas

2012-10-19T23:59:59.000Z

200

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

lithium battery cathode. Electrochemical and Solid Statebattery performance of LiMn2O4 cathode. Solid State Ionics,

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

202

Conflicting Roles Of Nickel In Controlling Cathode Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries....

203

Conductive Rigid Skeleton Supported Silicon as High-Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes....

204

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect (OSTI)

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

205

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

206

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

207

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

208

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

209

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

210

Performance Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a long-term solution for producing electrical power for the world, and the large thermonuclear international device (ITER) being constructed will produce net energy and a path...

211

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

212

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

213

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect (OSTI)

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

214

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

215

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 28 April 2005 - 15 September 2008  

SciTech Connect (OSTI)

This report focuses on (1) characterizing nc-Si:H from United Solar; (2) studying Si,Ge:H alloys deposited by HWCVD; and (3) characterizing CIGS films and relating to cell performance parameters.

Cohen, J. D.

2009-12-01T23:59:59.000Z

216

Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries  

E-Print Network [OSTI]

of the Li-ion batteries through developing electrode materials [1e5], reducing size [6] and optimizing shape,13], as one of the main factors limiting Li-ion battery performance, has not been resolved. Fundamental the ulti- mate performance and stability. Theoretical work of Li-ion batteries has focused on macroscopic

Liu, Fuqiang

217

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

218

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

219

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

220

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

222

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network [OSTI]

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

223

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

224

Journal of Chromatography A, 1154 (2007) 444453 Characterization and performance of injection molded  

E-Print Network [OSTI]

Journal of Chromatography A, 1154 (2007) 444­453 Characterization and performance of injection March 2007; accepted 30 March 2007 Available online 6 April 2007 Abstract Injection molded poly thermal/electrical properties as indicated by measurement of the current versus applied voltage (I

Cincinnati, University of

225

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

227

Anode performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anode performance New hybrid anode design to improve long-term performance of batteries PNNL researchers have developed a hybrid anode made of graphite and lithium that...

228

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

229

Development of High Capacity Anode for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

230

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

231

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

232

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

233

Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches  

Science Journals Connector (OSTI)

Abstract In this paper, different optimal hybrid techniques have been proposed for management of a hybrid power generation system including photovoltaic (PV), fuel cell and battery. The main power of the hybrid system comes from the photovoltaic panels, while the fuel cell and batteries are used as back up units. In order to achieve maximum power point tracking for the photovoltaic system, both fuzzy logic controller and perturb and observation methods are examined and their performances have been investigated via simulations. Next, the performance of the hybrid system has been improved via employing a family of well-known optimization approaches for load sharing among the available resources. Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization (PSO), Quantum behaved Particle Swarm Optimization (QPSO), Ant Colony Optimization (ACO), and Cuckoo Optimization Algorithm (COA) are used to manage the load sharing to achieve optimal performance while the system constraints are met. The optimal performance has been characterized via the control strategy performance measure being the ratio of the amount of hydrogen production with respect to the hydrogen consumption. In order to verify the system performance, simulation studies have been carried out using practical load demand data and real weather data (solar irradiance and air temperature). Different combination of maximum power point tracking methods with various optimization algorithms have been compared with each other. The results show that the combination of fuzzy logic controller with QPSO has the best performance among the considered combinations. In this situation, when the solar irradiation is noticeably high, the required load is supplied mainly by PV array, while the battery is charged, simultaneously. In the other times, the load is mainly fed by the battery and fuel cell while the performance constraints of battery is met and the daily performance measure is optimized.

Nooshin Bigdeli

2015-01-01T23:59:59.000Z

234

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

235

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

236

High-Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

Materials Laboratory (HTML) User Program Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Materials for Li-ion...

237

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network [OSTI]

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

238

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

239

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect (OSTI)

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

240

Energy Storage in Lead-Acid Batteries: The Faraday Way to Sustainability [and Discussion  

Science Journals Connector (OSTI)

...research-article Energy Storage in Lead-Acid Batteries: The Faraday Way...examines how lead-acid batteries might assist the transition...emphasis is placed on the advances in materials and cell...that are required for battery performance to meet...

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

242

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network [OSTI]

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

243

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

244

Synthesis and electrochemical performance of LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as gradient cathode material for lithium batteries  

SciTech Connect (OSTI)

Highlights: ? The gradient precursors Ni{sub 0.7}Co{sub 0.15}Mn{sub 0.15}(OH){sub 2} is prepared by hydroxide co-precipitating. ? The cathode materials is synthesized by mixing the precursor with 5% excess LiOH·H{sub 2}O. ? The XRD results show that cathode materials present layered ?-NaFeO{sub 2} typical crystal. ? Material sintered at 850 °C shows the best performance, with high-capacity and recyclability. -- Abstract: LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as a cathode material for lithium batteries was synthesized by mixing hydroxide co-precipitated precursors with 5% excess LiOH·H{sub 2}O. Its structural and electrochemical properties were investigated using X-ray diffractometry, scanning electron microscopy, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. The results indicated that well-ordering layered LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} cathode materials were successfully prepared in air at 750, 800, and 850°C with ?-NaFeO{sub 2} typical crystal. The results of charge–discharge test demonstrated that the gradient cathode material sintered at 850 °C exhibited the best electrochemical performance with the initial discharge capacity of 164 mA h g{sup ?1} at 0.2 C and lower electrochemical impedance. Nickel has low price. LiNiO{sub 2} cathode materials have high specific capacity, their theoretical capacity is 274 mA h g{sup ?1} and with low self-discharge rate. So the Ni, Co, Mn ternary layer-structural compounds with high Ni content are showing to be promising cathode materials for lithium batteries. The techniques and research results in this paper are utilizable for the study of this kind of lithium battery materials.

Zhang, Lipeng; Dong, Tao [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Yu, Xianjin, E-mail: hgxyzlp@sdut.edu.cn [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Dong, Yunhui; Zhao, Zengdian; Li, Heng [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

2012-11-15T23:59:59.000Z

245

Characterization of lithium electrode surface in lithium secondary batteries by in situ Raman spectroscopic methods. Final report, 1 September 1989-31 December 1992  

SciTech Connect (OSTI)

Surface layers on lithium electrodes formed in several solvents including dimethyl carbonate (DMC), diethyl carbonate (DEC), polyethylene glycol 400 dimethyl ether (PEG400DME), and propylene carbonate (PC) have been studied by Raman spectroscopy. Both DMC and DEC were used singly, and also mixed with either methyl acetate or methyl formate. The Raman spectra showed that passive films formed on the Li surface in different solvents may have different chemical structures, which changed during the charging and discharging processes. A solid film of fullerene C6O, which could be used as a cathode in Li rechargeable batteries, was examined in the PEG400DME solution by both electrochemical and Raman spectroscopy. Cyclic voltammograms (CVs) showed five redox peaks which suggested the formation of C6O(-), C6O(2-), C6O(3-), C6O(4-), and C6O(5-). Raman spectra obtained from thin C6O film indicated that the thin fulleride film dissolved in the PEG400DME/LiClO(4) solution at negative potentials.... Lithium electrode, Fullerenes, Electrochemistry, Raman spectroscopy.

Tachikawa, H.

1993-03-24T23:59:59.000Z

246

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Broader source: Energy.gov (indexed) [DOE]

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

247

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

248

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

249

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

250

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

251

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

252

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

253

Multilateral characterization for industrial Ziegler–Natta catalysts toward elucidation of structure–performance relationship  

Science Journals Connector (OSTI)

Abstract High-performance Ziegler–Natta catalysts with ill-defined structural hierarchy were studied over multi-length scales. In this study, multilateral characterization was performed to address quantitative structure–performance relationships in ethylene/1-hexene copolymerization with Mg(OEt)2-based Ziegler–Natta catalysts. Macroscopic characteristics of the catalysts (e.g., particle size and meso- and macropore volumes) were greatly affected by structures of Mg(OEt)2 precursor particles, while microscopic characteristics (e.g., micropore volume and chemical composition) were hardly influenced. Ethylene/1-hexene copolymerization results suggested the significance of monomer diffusion: The activity was enhanced for smaller catalyst particles, while the 1-hexene incorporation was improved with larger meso- and macropore volumes.

Toshiaki Taniike; Toshiki Funako; Minoru Terano

2014-01-01T23:59:59.000Z

254

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 | Tags: Materials Science, Science Gateways Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize next-generation battery performance. This collaboration-dubbed the Joint Center for Energy Storage Research (JCESR)-will receive $120 million over five years to establish a new Batteries and Energy Storage Hub led by Argonne National Laboratory (ANL)

255

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

256

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

257

NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES  

SciTech Connect (OSTI)

This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

John Olson, PhD

2004-07-21T23:59:59.000Z

258

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

259

Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

2000-05-18T23:59:59.000Z

260

Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination  

SciTech Connect (OSTI)

Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

2013-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

262

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) | Department  

Broader source: Energy.gov (indexed) [DOE]

Carbon-Enhanced Lead-Acid Batteries (October 2012) Carbon-Enhanced Lead-Acid Batteries (October 2012) Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) DOE's Energy Storage Program is funding research and testing to improve the performance and reduce the cost of lead-acid batteries. Research to understand and quantify the mechanisms responsible for the beneficial effect of carbon additions will help demonstrate the near-term feasibility of grid-scale energy storage with lead-acid batteries, and may also benefit other battery chemistries. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) More Documents & Publications Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2

263

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

batteries are currently used in a variety of applications, ranging from automotive batteries are currently used in a variety of applications, ranging from automotive starting batteries to storage for renewable energy sources. Lead-acid batteries form deposits on the negative electrodes that hinder their performance, which is a major hurdle to the wider use of lead-acid batteries for grid-scale energy storage. The formation of deposits is exacerbated under the operating conditions required by many large-scale energy storage systems, which cycle at a high electrical current while remaining in a partially charged state (high-rate, partial state of charge operation, or HRPSoC). In 1997, researchers made two important advancements to lead-acid batteries. First, the Japan Storage Battery Company showed that adding carbon to the battery dramatically

264

Update on the Battery Projects at NREL (Presentation)  

SciTech Connect (OSTI)

NREL collaborates with industry, universities, and other national laboratories as part of the DOE integrated Energy Storage Program to develop advanced batteries for vehicle applications. Our efforts are focused in the following areas: thermal characterization and analysis, evaluation of thermal abuse tolerance via modeling and experimental analysis, and implications on battery life and cost. Our activities support DOE goals, FreedomCAR targets, the USABC Tech Team, and battery developers. We develop tools to support the industry, both through one-on-one collaborations and by dissemination of information in the form of presentations in conferences and journal publications.

Santhanagopalan, S.; Pesaran, A.

2010-10-01T23:59:59.000Z

265

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

266

Design and Simulation of Air Cooled Battery Thermal Management System Using Thermoelectric for a Hybrid Electric Bus  

Science Journals Connector (OSTI)

Dynamic and electric parameters of HEVs and EVs such as acceleration, regenerative braking and battery charging/discharging depend on the battery system performance. Excessive or uneven temperature rise in a modu...

Vahid Esfahanian; Saber Ahmadi Renani…

2013-01-01T23:59:59.000Z

267

Batteries - Beyond Lithium Ion Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

268

Iron-air battery development program  

SciTech Connect (OSTI)

The progress and status of the research and development program on the iron-air advanced technology battery system at the Westinghouse Electric Corporation during the period June 1978-December 1979 are described. This advanced battery system is being developed for electric vehicle propulsion applications. Testing and evaluation of 100 cm/sup 2/ size cells was undertaken while individual iron and air electrode programs continued. Progress is reported in a number of these study areas. Results of the improvements made in the utilization of the iron electrode active material coupled with manufacturing and processing studies related to improved air electrodes continue to indicate that a fully developed iron-air battery system will be capable of fulfilling the performance requirements for commuter electric vehicles.

Buzzelli, E.S.; Liu, C.T.; Bryant, W.A.

1980-05-01T23:59:59.000Z

269

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

270

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

271

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

272

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

273

ILZRO-sponsored field data collection and analysis to determine relationships between service conditions and reliability of VRLA batteries in stationary applications  

SciTech Connect (OSTI)

Although valve-regulated lead-acid (VRLA) batteries have served in stationary applications for more than a decade, proprietary concerns of battery manufacturers and users and varying approaches to record-keeping have made the data available on performance and life relatively sparse and inconsistent. Such incomplete data are particularly detrimental to understanding the cause or causes of premature capacity loss (PCL) reported in VRLA batteries after as little as two years of service. The International Lead Zinc Research Organization (ILZRO), in cooperation with Sandia National Laboratories, has initiated a multi-phase project to characterize relationships between batteries, service conditions, and failure modes; establish the degree of correlation between specific operating procedures and PCL; identify operating procedures that mitigate PCL; identify best-fits between the operating requirements of specific applications and the capabilities of specific VRLA technologies; and recommend combinations of battery design, manufacturing processes, and operating conditions that enhance VRLA performance and reliability. This paper, prepared before preliminary conclusions were possible, presents the surveys distributed to manufacturers and end-users; discusses the analytic approach; presents an overview of the responses to the surveys and trends that emerge in the early analysis of the data; and previews the functionality of the database being constructed. The presentation of this paper will include preliminary results and information regarding the follow-on workshop for the study.

Taylor, P.A. [Energetics Inc., Columbia, MD (United States); Moseley, P.T. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States)

1998-09-01T23:59:59.000Z

274

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

275

Numerical Simulation of the Thermal Management for Traction Batteries  

Science Journals Connector (OSTI)

The electrification of vehicle powertrains is a rapidly developing technology. Especially for the development of the used high-voltage batteries, an elaborated thermal management is needed to secure their perform...

Xiao Hu

2012-02-01T23:59:59.000Z

276

On the road performance simulation of hydrogen and hybrid cars  

Science Journals Connector (OSTI)

An assessment is made of on-the-road performance, for a pure hydrogen fuel cell car, a pure battery operated car, and a hydrogen fuel cell-battery hybrid car. The tool used for this study is the modular software-package ADVISOR [Markel T, et al. ADVISOR. J Power Sources 2002; 110:255–66], which is well tested and offers a range of simple, parametrized sub-models or more detailed physical models for the fuel cell stack, the batteries, the electric motor, the exhaust control, the transmission and entire power train including controls and control strategies. The basis configurations of the cars modelled is characterized by high energy efficiency, before adding a fuel cell and electric motor also of high conversion efficiencies. Preceding the presentation of results, the best way to characterize energy efficiency is discussed.

Bent Sørensen

2007-01-01T23:59:59.000Z

277

Phenotypic Characterization of Feed Efficiency and Feeding Behavior Traits in Performance Tested Bulls Fed a Corn Silage-Based Diet  

E-Print Network [OSTI]

Objectives of this study were to characterize feed efficiency traits and examine phenotypic relationships with feeding behavior traits in bulls. Performance, feed intake and feeding behavior traits were measured in bulls (n = 5,165) representing 2...

Moreno Rajo, Jose Gilberto

2013-01-14T23:59:59.000Z

278

Fact Sheet: Sodium-Beta Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sodium-Beta Batteries Sodium-Beta Batteries Improving the performance and reducing the cost of sodium-beta batteries for large-scale energy storage Sodium-beta batteries (Na-beta batteries or NBBs) use a solid beta-alumina (ß˝-Al 2 O 3 ) electrolyte membrane that selectively allows sodium ion transport between a positive electrode (e.g., a metal halide) and a negative sodium electrode. NBBs typically operate at temperatures near 350˚C. They are increasingly used in renewable storage and utility applications due to their high round-trip efficiency, high energy densities, and energy storage capacities ranging from a few kilowatt-hours to multiple megawatt-hours. In fact, U.S. utilities

279

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Broader source: Energy.gov (indexed) [DOE]

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

280

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Novel green illumination energy for LED with ocean battery materials  

Science Journals Connector (OSTI)

This paper launches novel materials of LED with ocean battery. Ocean battery employs sea water existing by the nature as energy materials to drive LED lamp lighting. The analysing methods are thermal-, electric- and illumination-performance experiments to discuss the novel green illumination techniques. Ocean battery and LED are all DC components, there is no energy loss of current converter between them, and the ocean battery has more electricity in LED illumination. Vapour chamber (VC) and aluminium (AL) materials are assigned to be the LED PCBs. Results show that the effective thermal conductivity of the VCPCB is many times higher than that of the ALPCB, proving that it can effectively reduce the temperature of the LED and obtain more uniform luminance. And the output voltage and LED lighting start unstable resulting from the air bubble of ocean battery slight vibration.

Jung-Chang Wang

2012-01-01T23:59:59.000Z

282

ESS 2012 Peer Review - Flow Battery Modeling - Mario Martinez, SNL  

Broader source: Energy.gov (indexed) [DOE]

Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Flow Battery Modeling Energy Storage Systems Peer Review September 26-28, 2012 MJ Martinez (PI), J Clausen, SM Davison, HK Moffat Flow Battery Modeling Schematic of a Flow Battery PURPOSE: The flow battery modeling task seeks to improve fundamental understanding and enable high-performing, low-cost designs of flow batteries through

283

Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage.

None

1997-05-01T23:59:59.000Z

284

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

285

E-Print Network 3.0 - advanced lithium-ion batteries Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being undertaken at ISEM... .isem.uow.edu.au 12;Project Lithium ion batteries for Electric Vehicles (EVs) Aims To provide novel solutions... to enhance the performance ......

286

Relation between crystal structures, electronic structures, and electrode performances of LiMn2?xMxO4 (M = Ni, Zn) as a cathode active material for 4V secondary Li batteries  

Science Journals Connector (OSTI)

We investigated the relation between the electrode performance and electronic states of LiMn2?xMxO4 (M=Ni, Zn) as cathode active materials for the 4V class of lithium secondary batteries. The cycle performance is improved by substitution of Mn with Ni or Zn. We obtained the electron density distribution by XRD using the MEM/Rietveld method. Moreover, we investigated the electronic states of LiMn1.75M0.25O4 (M=Mn, Ni, Zn) using first-principles calculation by the DV-X? method. The net charges of each atom, and the bond overlap populations of Li?O, Mn?O, Ni?O and Zn?O were calculated. From the results, Li has a high ionicity and the covalent bonding of the Mn?O of LiMn1.75M0.25O4 (M=Ni, Zn) is stronger than that of LiMn2O4. As a result of the DOS, the oxygen 2p orbital and Mn 3d orbital provides the overlap and the overlap of LiMn1.75M0.25O4 is greater than that of LiMn2O4.

Yuka Ito; Yasushi Idemoto; Yuka Tsunoda; Nobuyuki Koura

2003-01-01T23:59:59.000Z

287

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

288

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

289

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

290

Synthesis, characterization and performance of a polycarboxylate superplasticizer with amide structure  

Science Journals Connector (OSTI)

Abstract The amide-structural polycarboxylate superplasticizers (amide-PCEs) were synthesized by amidation reaction between polyacrylic acid (PAA) and amino-terminated methoxy polyethylene glycol (amino-PEG) under different conditions, and the effects of amide-PCE's synthesis on amidation rate and flow performance of cement paste were investigated. Fourier Transform Infrared Spectroscopy (FTIR), 1H Nuclear Magnetic Resonance (1H NMR), and molecular-weight measurements were used for structural characterization, and the results confirmed ideal amide structure and sufficient amidation reaction. Amide-PCE with the carboxyl–amino ratio of 4:1 exhibited the lowest surface tension, highest adsorption percentage, and the best paste fluidity results. Based on the above results, the dispersion and adsorption mechanisms of amide-PCE in cement–water system were discussed. The application performances in concrete showed that amide-PCE had similar slump to that of conventional PCE, but also had better air-entraining ability, bubble retention and concrete frost-resistance than those of conventional PCE. Depending on this amide structure and good performances, amide-PCE shows broad application prospects.

Xiao Liu; Ziming Wang; Jie Zhu; Yunsheng Zheng; Suping Cui; Mingzhang Lan; Huiqun Li

2014-01-01T23:59:59.000Z

291

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

292

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

293

Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint  

SciTech Connect (OSTI)

Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

2014-08-01T23:59:59.000Z

294

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

295

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

296

Electric Automobile Ni-MH Battery Investigation in Diverse Situations  

Science Journals Connector (OSTI)

Abstract The electronic differential system ensures the robust control of the vehicle comportment on the road. This paper focuses Ni-MH Battery controlled by Buck Boost DC-DC converter power supply for EV. Sliding mode control based on space vector modulation (SVM-SMC) is proposed to achieve the tow rear driving wheel control. The performances of the proposed strategy controller give a satisfactory simulation results. The proposed control law increases the utility EV autonomous under several speed variations. Moreover, the future industrial's vehicle must take into considerations the battery material choice into design steps. The battery material model choice is a crucial item, and thanks to an increasing emphasis on vehicle range and performance, the Ni-MH battery could become a viable candidate that's our proposal battery model in the present work, in this way the present paper show a novel strategy of electric automobile (EA) power electronics studies when the current battery take into account the impact of the sliding mode control based onspace vector machine technique in the several speed variations using the primitive battery SOC of 60% state.

Brahim Mebarki; Belkacem Draoui; Lakhdar Rahmani; Boumediène Allaoua

2013-01-01T23:59:59.000Z

297

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

298

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

299

Graphene-based battery electrodes having continuous flow paths  

SciTech Connect (OSTI)

Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

2014-05-24T23:59:59.000Z

300

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network [OSTI]

into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have of SWNTs on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Influence of Solvent on Polymer Prequaternization toward Anion-Conductive Membrane Fabrication for All-Vanadium Flow Battery  

Science Journals Connector (OSTI)

Influence of Solvent on Polymer Prequaternization toward Anion-Conductive Membrane Fabrication for All-Vanadium Flow Battery ... The all-vanadium redox flow battery (VFB) can potentially circumvent the mismatch between the generation and end use of renewable but unsteady energies such as photovoltaics and wind turbines. ... 2.3 All-Vanadium Redox Flow Battery (VFB) Performance ...

Fengxiang Zhang; Huamin Zhang; Chao Qu

2012-07-09T23:59:59.000Z

302

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network [OSTI]

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

303

Energy-E cient Design of Battery-Powered Embedded Systems Tajana Simunicy Luca Benini Giovanni De Micheliy  

E-Print Network [OSTI]

Quality portable design demands high performance with low thermal dissipation and long battery lifeEnergy-E cient Design of Battery-Powered Embedded Systems Tajana Simunicy Luca Benini Giovanni De Bologna, ITALY 40136 Abstract Energy-e cient design of battery-powered embedded sys- tems demands

Simunic, Tajana

304

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

305

Fact Sheet: Sodium-Beta Batteries (October 2012) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Beta Batteries (October 2012) Beta Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and simplify manufacturing. This project will demonstrate a planar prototype that operates at <300 degrees Celsius and will scale up the storage capacity to 5 kW, improving on the performance levels being pursued in related battery research projects. Fact Sheet: Sodium-Beta Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review and Update Meeting Advanced Materials and Devices for Stationary Electrical Energy Storage

306

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

307

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

308

Characterization and performance evaluation of a new passive neutron albedo reactivity counter for safeguards measurements  

Science Journals Connector (OSTI)

Abstract A prototype 3He-based Passive Neutron Albedo Reactivity (PNAR) counter was developed and tested at Los Alamos National Laboratory (LANL) in collaboration with the Korea Atomic Energy Research Institute (KAERI) to measure the fissile content in electrochemical recycling (ER) product materials. The counter consists of 16 3He cylindrical gas-filled proportional counters at 4 atm of pressure embedded in high-density polyethylene. In this work, experimental measurements were performed at LANL to characterize the performance of the PNAR counter using surrogate materials for the uranium metal ingot. The purpose of these experiments was to: 1) measure the operating and calibration parameters of the PNAR counter (e.g. efficiency profiles, coincidence gate fractions, die-away time) and 2) evaluate the accuracy and sensitivity of the PNAR method and the time correlated induced fission (TCIF) method for quantifying the 235U mass in PWR fresh LEU fuel rods and Materials Testing Reactor (MTR) HEU fuel plates. A small 244Cm reference source (13,373 n/s) was placed in the center of the fuel rods and fuel plates to simulate spontaneous fission from sub-ppm (parts per million) levels of Cm contamination in the U ingot. In order to compare the relative accuracy of the PNAR and TCIF methods for quantifying 235U mass, calibration curves were generated for the net doubles rate and the doubles Cd ratio using the Deming software. The results from this experiment will be used to obtain a better understanding of the sensitivity of the PNAR and TCIF methods for samples with low neutron multiplication. Furthermore, this experimental measurement data will also help inform safeguards research and development (R&D) efforts on the viability of nondestructive assay (NDA) techniques and detector designs for quantifying fissile content in ER product materials. Future work will include performing measurements with the PNAR counter on small samples of U/TRU materials.

Adrienne M. LaFleur; Seong-Kyu Ahn; Howard O. Menlove; Michael C. Browne; Ho-Dong Kim

2014-01-01T23:59:59.000Z

309

Dynamic Thermal Management in Mobile Devices Considering the Thermal Coupling between Battery and  

E-Print Network [OSTI]

1 Dynamic Thermal Management in Mobile Devices Considering the Thermal Coupling between Battery work that quantitatively characterizes the thermal coupling between the battery and AP and presents.shin@polito.it Abstract--The thermal management is a crucial design problem for mobile devices because it greatly affects

Pedram, Massoud

310

Materials Characterization Capabilities at the HTML: Surface...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and HTML User Program Success Stories Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Nanostructure, Chemistry and...

311

Characterization of New Cathode Materials using Synchrotron-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques and the Studies of Li-Air Batteries Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries 2009 DOE...

312

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

313

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

314

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

315

Issue and challenges facing rechargeable thin film lithium batteries  

Science Journals Connector (OSTI)

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5–6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

Arun Patil; Vaishali Patil; Dong Wook Shin; Ji-Won Choi; Dong-Soo Paik; Seok-Jin Yoon

2008-01-01T23:59:59.000Z

316

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

317

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

318

In-service performance and behavior characterization of the hybrid composite bridge system - a case study  

E-Print Network [OSTI]

The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values. The testing program also included internal and external measurement systems to help characterize the load sharing behavior of the HCB on an element level. The main load carrying elements are the deck in compression and the steel ties in tension, and the FRP shell did not act compositely with the internal components.

John M. Civitillo; Devin K. Harris; Amir Gheitasi; Mark Saliba; Bernard L. Kassner

2014-09-08T23:59:59.000Z

319

Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries  

SciTech Connect (OSTI)

Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, by weight) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, by weight) under a current density of 0.075 mA cm-2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, by volume) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that the decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.

Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2010-01-01T23:59:59.000Z

320

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

322

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

323

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

324

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

325

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network [OSTI]

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

326

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Overcharge Protection for the New Generation of Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overcharge Protection for the New Generation of Lithium Batteries Overcharge Protection for the New Generation of Lithium Batteries Speaker(s): Thomas Richardson Date: January 18, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney Lithium batteries supplied with cellular telephones and other personal electronic devices provide unprecedented power and capacities in very small formats. They are able to deliver such high performance because they incorporate highly reactive materials in both the positive and negative electrodes, resulting in individual cell potentials of nearly 4 V. Exposure to high temperatures or abusive treatment including overcharging can cause catastrophic failure of these batteries, resulting in gas venting, fire, or even explosion. Mechanical and electronic safety devices are employed to

328

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells  

Science Journals Connector (OSTI)

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells ... In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. ... In situ NMR studies on fuel cells (FCs) have focused on probing the chemical reactions at the electrodes and the fate of fuels such as methanol during FC operation. ...

Frédéric Blanc; Michal Leskes; Clare P. Grey

2013-06-21T23:59:59.000Z

329

Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery  

Science Journals Connector (OSTI)

Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery ... A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). ... Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. ...

Bin Li; Meng Gu; Zimin Nie; Xiaoliang Wei; Chongmin Wang; Vincent Sprenkle; Wei Wang

2013-11-26T23:59:59.000Z

330

Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4  

E-Print Network [OSTI]

correlate well with the better cycling performance of Al-doped LiMn2O4 in our Li-ion battery tests: LiAl0Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4 Yuan Yang, Chong Xie nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials

Cui, Yi

331

Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Composites of Co3O4/graphene nanosheets are prepared and characterized by X- ... behavior as anode materials of lithium-ion rechargeable batteries is investigated by galvanostatic discharge/charge measurements...

Guiling Wang; Jincheng Liu; Sheng Tang…

2011-12-01T23:59:59.000Z

332

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

333

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

334

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

335

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

336

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

337

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

338

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

339

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

340

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

342

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

343

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

344

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

345

Thermal evaluation and performance of high-power Lithium-ion cells  

SciTech Connect (OSTI)

Under the sponsorship of the US Advanced Battery Consortium (USABC) and the Partnership for a New Generation of Vehicles (PNGV), Saft has developed high-power lithium-ion (Li-Ion) batteries for hybrid electric vehicles (HEVs). These high-power Li-Ion batteries are being evaluated for the US Department of Energy's (DOE) Hybrid Vehicle Propulsion Program. As part of this program, the National Renewable Energy Laboratory (NREL) characterized the thermal performance of the Saft (6-Ah) Li-Ion cells. The characterization included (1) obtaining thermal images of cells under a specified cycle, (2) measuring heat generation from the cells at various temperatures and under various charge/discharge profiles, and (3) determining the cells' capabilities for following a simulated power profile (driving cycle) at various initial states of charge and temperatures.

Keyser, M.; Pesaran, A.; Oweis, S.; Chagnon, G.; Ashtiani, C.

2000-01-25T23:59:59.000Z

346

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

347

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

348

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

349

Fe-V redox flow batteries  

DOE Patents [OSTI]

A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-07-08T23:59:59.000Z

350

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

351

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

352

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

353

Performance and Degradation Modeling of Batteries  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

354

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

a reliable and highly efficient thermal management system Objective Simple Structure and Manufacturing Positive terminal Negative terminal Lead film (insulation tape) Stack and...

355

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

124B Employees - 210,000 LG Group at a Glance ABSEP NCCPolyolefin PVCRubber Acrylate LCD Polarizer LCD Glass OLED Materials Color Filter...

356

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

357

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Broader source: Energy.gov (indexed) [DOE]

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

358

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

359

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

360

Shortcut computation for the thermal management of a large air-cooled battery pack  

Science Journals Connector (OSTI)

Abstract Thermal management is crucial to maintain the performance of large battery packs in electric vehicles. To this end, we present herein a shortcut computational method to rapidly estimate the flow and temperature profiles in a parallel airflow-cooled large battery pack with wedge-shaped plenums for airflow distribution. The method couples a flow resistance network model with a transient heat transfer model to calculate the temperature distribution in a battery pack as influenced by the airflows within and among battery modules in the pack. The effects of the plate angle of the plenums, the minimal plenum width and the battery unit spacing on the airflow and temperature distributions are presented. Additionally, an example of collective parameter adjustment for acceptable temperature uniformity of a battery pack subjected to total volume constraint is given.

Zhongming Liu; Yuxin Wang; Jun Zhang; Zhibin Liu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Capacity Pouch-Type Li-air Batteries  

SciTech Connect (OSTI)

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2¬ diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

362

SAND94-2862C PERFORMANCE CHARACTERIZATION OF THE NASA STANDARD...  

Office of Scientific and Technical Information (OSTI)

applications, including the Space Shuttle. This effort w a s directed towards providing test results to characterize the output of this device for its use in a safe and a r m...

363

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid-Scale Energy Storage - Sri Narayan, USC  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet Propulsion Laboratory, California Institute of Technology ARPA-E GRIDS Program Advantages of the Iron-Air Battery * Extremely Low Cost Materials * Environmentally friendly * Abundant raw materials all over the world * High Theoretical Specific Energy, 764 Wh/kg * Iron electrode is robust to cycling Desired Characteristic State-of-Art Performance Target Round trip energy efficiency 50% 80% Cycle life, cycles 1000-2000 5000 Year Key Milestones & Deliverables Year 1 *Complete design of iron electrode *Demonstrate feasibility bi-functional air electrode materials Year 2 *Complete selection of additives and catalysts *Complete characterization of CO

364

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect (OSTI)

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

365

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

366

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

367

Thermal analysis of nickel/metal (Ni/MH) hydride battery during charge cycle  

Science Journals Connector (OSTI)

A three-dimensional mathematical model containing temporal and spatial coordinates is presented for analyzing the thermal behavior and obtaining the internal temperature profile of cylindrical Ni/MH battery. This model is performed to investigate the ... Keywords: Ni/MH battery, charge, heat transfer coefficient, thermal analysis

Nabi Jahantigh; Ebrahim Afsharia

2008-02-01T23:59:59.000Z

368

Laboratory testing of Saft SEH-5-200 6 volt traction battery  

SciTech Connect (OSTI)

The purpose of this report is to describe the testing performed on the Saft SEH-5-200 flooded nickel cadmium traction battery by the INEL Electric Vehicle Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. 17 figs., 3 tabs.

Hardin, J.E.

1989-12-01T23:59:59.000Z

369

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

370

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

371

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

372

Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Characterization of the Rust Fungus, Puccinia emaculata, and Evaluation of Genetic Variability for Rust Resistance in Switchgrass Populations Srinivasa Rao Uppalapati & Desalegn D. Serba & Yasuhiro Ishiga & Les J. Szabo & Shipra Mittal & Hem S. Bhandari & Joseph H. Bouton & Kirankumar S. Mysore & Malay C. Saha # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Several fungal pathogens have been identified on ornamental and native stands of switchgrass (Panicum virga- tum L.). Diseases of switchgrass, particularly rust, have been largely neglected and are likely to become the major limiting factor to biomass yield and quality, especially when monocul- tured over a large acreage. Based on teliospore morphology and internal transcribed spacer-based diagnostic primers, the rust pathogen collected

373

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

374

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

375

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

376

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

377

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

378

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

379

Characterization of the HVAC performance with defroster grillers and instrument panel registers  

Science Journals Connector (OSTI)

Improving HVAC performance is of paramount importance to sustain ... was between 15 to 25 degrees with a standard distance ratio of one. During the cooling...

M. F. Kader; Y. M. Youn; Y. D. Jun…

2009-06-01T23:59:59.000Z

380

SYNTHESIS, CHARACTERIZATION AND PERFORMANCE TESTING OF PT- BASED ELECTROCATALYSTS FOR LOW TEMPERATURE PEM FUEL CELLS.  

E-Print Network [OSTI]

??The oxygen reduction reaction (ORR) activity on the cathode plays a significant role in deciding the overall performance of proton exchange membrane (PEM) fuel cells.… (more)

Gong, Yanming

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

382

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

383

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

384

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect (OSTI)

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

385

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

386

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

387

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

388

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

389

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect (OSTI)

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

390

Effects of Nonaqueous Electrolytes on Primary Li-Air Batteries  

SciTech Connect (OSTI)

The effects of nonaqueous electrolytes on the performance of primary Li-air batteries operated in dry air environment have been investigated. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between Li anode and water during the discharge process. The polarity of aprotic solvents outweighs the viscosity, ion conductivity and oxygen solubility on the performance of Li-air batteries once these latter properties attain certain reasonable level, because the solvent polarity significantly affects the number of tri-phase regions formed by oxygen, electrolyte, and active carbons (with catalyst) in the air electrode. The most feasible electrolyte formulation is the system of LiTFSI in PC/EC mixtures, whose performance is relatively insensitive to PC/EC ratio and salt concentration. The quantity of such electrolyte added to a Li-air cell has notably effects on the discharge performance of the Li-air battery as well, and a maximum in capacity is observed as a function of electrolyte amount. The coordination effect from the additives or co-solvents [tris(pentafluorophenyl)borane and crown ethers in this study] also greatly affects the discharge performance of a Li-air battery.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-06-14T23:59:59.000Z

391

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

392

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

393

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

394

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

395

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

396

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

397

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

398

Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries  

SciTech Connect (OSTI)

e investigated the long-term cycling performance of large format 20Ah LiFePO4/graphite batteries when they are cycled in various state-of-charge (SOC) ranges. It is found that batteries cycled in the medium SOC range (ca. 20~80% SOC) exhibit superior cycling stability than batteries cycled at both ends (0-20% or 80-100%) of the SOC even though the capcity utilized in the medium SOC range is three times as large as those cycled at both ends of the SOC. Several non-destructive techniques, including a voltage interruption approach, model-based parameter identification, electrode impedance spectra analysis, ?Q/?V analysis, and entropy change test, were used to investigate the performance of LiFePO4/graphite batteries within different SOC ranges. The results reveal that batteries at the ends of SOC exhibit much higher polarization impedance than those at the medium SOC range. These results can be attributed to the significant structural change of cathode and anode materials as revealed by the large entropy change within these ranges. The direct correlation between the polarization impedance and the cycle life of the batteries provides an effective methodology for battery management systems to control and prolong the cycle life of LiFePO4/graphite and other batteries.

Jiang, Jiuchun; Shi, Wei; Zheng, Jianming; Zuo, Pengjian; Xiao, Jie; Chen, Xilin; Xu, Wu; Zhang, Jiguang

2014-06-01T23:59:59.000Z

399

Reservoir characterization and performance predictions for the E.N. Woods lease  

SciTech Connect (OSTI)

The task of this work was to evaluate the past performance of the E.N. WOODS Unit and to forecast its future economic performance by taking into consideration the geology, petrophysics and production history of the reservoir. The Decline Curve Analysis feature of the Appraisal of Petroleum Properties including Taxation Systems (EDAPT) software along with the Production Management Systems (PMS) software were used to evaluate the original volume of hydrocarbon in place and estimate the reserve. The Black Oil Simulator (BOAST II) was then used to model the waterflooding operation and estimate the incremental oil production attributable to the water injection. BOAST II was also used to predict future performance of the reservoir.

Aka-Milan, Francis A.

2000-07-07T23:59:59.000Z

400

Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel  

SciTech Connect (OSTI)

In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

Wang, Weimin; Katipamula, Srinivas

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

402

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

403

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

404

Stability of polymer binders in Li-O2 batteries  

SciTech Connect (OSTI)

A number of polymers with various chemical structures were studied as binders for air electrodes in Li-O2 batteries. The nature of the polymer significantly affects the binding properties in the carbon electrodes thus altering the discharge performance of Li-O2 batteries. Stability of polymers to the aggressive reduced oxygen species generated during discharge was tested by ball milling them with KO2 and Li2O2, respectively. Most of the polymers decomposed under these conditions and mechanisms of the decompositions are proposed for some of the polymers. Polyethylene was found to have excellent stability and is suggested as robust binder for air electrodes in Li-O2 batteries.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Li, Xiaohong S.; Zhang, Jiguang

2013-06-24T23:59:59.000Z

405

Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit.  

E-Print Network [OSTI]

existing over a regional area have long been known to dominate all aspects of performance in the Spraberry Trend Area. Two stages of depletion have taken place over 46 years of production: Primary production under solution gas drive and secondary recovery...

Hernandez Hernandez, Erwin Enrique

2005-08-29T23:59:59.000Z

406

In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A novel SnO2/graphene composite has been synthesized via an in...2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized ... used as an anode material for lithium ion batteries

Hongdong Liu; Jiamu Huang; Chengjie Xiang…

2013-10-01T23:59:59.000Z

407

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect (OSTI)

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

408

Cathode materials for lithium ion batteries prepared by sol-gel methods  

Science Journals Connector (OSTI)

Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources...

H. Liu; Y. P. Wu; E. Rahm; R. Holze; H. Q. Wu

2004-06-01T23:59:59.000Z

409

Graphene-based composites as cathode materials for lithium ion batteries  

Science Journals Connector (OSTI)

Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode ...

Libao Chen; Ming Zhang; Weifeng Wei

2013-01-01T23:59:59.000Z

410

SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries  

Science Journals Connector (OSTI)

The development of materials with unique nanostructures is an effective strategy for the improvement of sodium storage in sodium ion batteries to achieve stable cycling performance and good ... , SnSbcore/carbon-...

Li Li; Kuok Hau Seng; Dan Li; Yongyao Xia; Hua Kun Liu; Zaiping Guo

2014-10-01T23:59:59.000Z

411

Power Capability Estimation Accounting for Thermal and Electical Contraints of Lithium-Ion Batteries.  

E-Print Network [OSTI]

??Lithium-ion (Li-ion) batteries have become one of the most critical components in vehicle electrification due to their high specific power and energy density. The performance… (more)

Kim, Youngki

2014-01-01T23:59:59.000Z

412

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

413

International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety  

SciTech Connect (OSTI)

The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

Not Listed

2011-12-01T23:59:59.000Z

414

New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery  

Science Journals Connector (OSTI)

We do a new Li-ion battery evaluation research on the effects of cell resistance and polarization on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evaluated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge-discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included DC-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter ?. The relationship between R, ?, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.

Zhe Lv; Xun Guo; Xin-ping Qiu

2012-01-01T23:59:59.000Z

415

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Broader source: Energy.gov (indexed) [DOE]

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

416

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

417

HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies Hewlett-Packard Company (HP) appreciates the opportunity to comment on the new DOE rulemaking for Battery Chargers and External Power Supplies. Thank you for taking the time to speak with us. HP believes that existing voluntary Market Access Requirements, such as EPEAT and ENERGY STAR, are the most effective mechanism for improving energy efficiency of IT products, but we understand the approach of regulating mandatory minimum efficiencies to address poor performing products. HP_Ex_Parte_Memo.pdf More Documents & Publications HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

418

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

419

ORNL, Industry to Collaborate in Advanced Battery Research | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry to Collaborate in Advanced Battery Research Industry to Collaborate in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new collaborations totaling $6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production. After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control, and processing scale-up. An independent council comprising ORNL and DOE representatives

420

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment  

SciTech Connect (OSTI)

This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

1994-07-01T23:59:59.000Z

422

Battery evaluation methods and results for stationary applications  

SciTech Connect (OSTI)

Evaluation of flooded lead-acid, Valve Regulated Lead-Acid (VRLA), and advanced batteries is being performed in the power sources testing labs at Sandia National Laboratories (SNL). These independent, objective tests using computer-controlled testers capable of simulating application-specific test regimes provide critical data for the assessment of the status of these technologies. Several different charge/discharge cycling regimes are performed. Constant current and constant power discharge tests are conducted to verify capacity and measure degradation. A utility test is imposed on some units which consists of partial depths of discharge (pulsed constant power) cycles simulating a frequency regulation operating mode, with a periodic complete discharge simulating a spinning reserve test. This test profile was developed and scaled based on operating information from the Puerto Rico Electric Power Authority (PREPA) 20 MW battery energy storage system. Another test conducted at SNL is a photovoltaic battery life cycle test, which is a partial depth of discharge test (constant current) with infrequent complete recharges that simulates the operation of renewable energy systems. This test profile provides renewable system designers with critical battery performance data representative of field conditions. This paper will describe the results of these tests to date, and include analysis and conclusions.

Butler, P.C.; Crow, J.T.

1997-09-01T23:59:59.000Z

423

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

424

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

425

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

426

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

427

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

428

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

429

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

430

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

431

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

432

Novel forms of carbon as potential anodes for lithium batteries  

SciTech Connect (OSTI)

The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

Winans, R.E.; Carrado, K.A.

1994-06-01T23:59:59.000Z

433

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

434

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

435

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

436

Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector  

SciTech Connect (OSTI)

To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

Martha, Surendra K [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL; Dudney, Nancy J [ORNL

2011-01-01T23:59:59.000Z

437

Method and apparatus for characterizing and enhancing the functional performance of machine tools  

DOE Patents [OSTI]

Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

2013-04-30T23:59:59.000Z

438

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Title Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Publication Type Journal Article Year of Publication 2011 Authors Xun, Shidi, Xiangyun Song, Michael E. Grass, Daniel K. Roseguo, Z. Liu, Vincent S. Battaglia, and Gao Li Journal Electrochemical Solid-State Letters Volume 14 Start Page A61 Issue 5 Pagination A61-A63 Date Published 02/2001 Keywords Electrochemistry, elemental semiconductors, etching, lithium, nanoparticles, secondary cells, silicon, thermal analysis, transmission electron microscopy, X-ray photoelectron spectra Abstract This study characterizes the native oxide layer of Si nanoparticles and evaluates its effect on their performance for Li-ion batteries. x-ray photoelectron spectroscopy and transmission electron microscopy were applied to identify the chemical state and morphology of the native oxide layer. Elemental and thermogravimetric analysis were used to estimate the oxide content for the Si samples. Hydrofluoric acid was used to reduce the oxide layer. A correlation between etching time and oxide content was established. The initial electrochemical performances indicate that the reversible capacity of etched Si nanoparticles was enhanced significantly compared with that of the as-received Si sample.

439

Nanocomposite protective coatings for battery anodes  

DOE Patents [OSTI]

Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

Lemmon, John P; Xiao, Jie; Liu, Jun

2014-01-21T23:59:59.000Z

440

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

442

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

443

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

444

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

445

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

446

Design and simulation of lithium rechargeable batteries  

SciTech Connect (OSTI)

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

447

In-service performance and behavior characterization of the hybrid composite bridge system - a case study  

E-Print Network [OSTI]

The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values....

Civitillo, John M; Gheitasi, Amir; Saliba, Mark; Kassner, Bernard L

2014-01-01T23:59:59.000Z

448

Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint  

SciTech Connect (OSTI)

As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

Guthrey, H.; Gorman, B.; Al-Jassim, M.

2011-07-01T23:59:59.000Z

449

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect (OSTI)

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

450

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report  

SciTech Connect (OSTI)

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

Eidler, Phillip

1999-07-01T23:59:59.000Z

451

Characterization of high-power lithium-ion cells-performance and diagnostic analysis  

SciTech Connect (OSTI)

Lithium-ion cells, with graphite anodes and LiNi0.8Co0.15Al0.05O2 cathodes, were cycled for up to 1000 cycles over different ranges of SOC and temperatures. The decline in cell performance increases with the span of SOC and temperature during cycling. Capacity fade was caused by a combination of the loss of cycleable Li and degradation of the cathode. The room temperature anodes showed SEI compositions and degrees of graphite disorder that correlated with the extent of the Li consumption, which was linear in cell test time. TEM of the cathodes showed evidence of crystalline defects, though no major new phases were identified, consistent with XRD. No evidence of polymeric deposits on the cathode particles (FTIR) was detected although both Raman and TEM showed evidence of P-containing deposits from electrolyte salt degradation. Raman microscopy showed differences in relative carbon contents of the cycled cathodes, which is blamed for part of the cathode degradation.

Striebel, K.A.; Shim, J.; Kostecki, R.; Richardson, T.J.; Ross, P.N.; Song, X.; Zhuang, G.V.

2003-11-25T23:59:59.000Z

452

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

453

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

454

Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam  

Science Journals Connector (OSTI)

Abstract To enhance the heat transfer of phase change material in battery thermal management system for electric vehicle, a battery thermal management system by using paraffin/copper foam was designed and experimentally investigated in this paper. The thermal performances of the system such as temperature reduction and distribution are discussed in detail. The results showed that the local temperature difference in both a single cell and battery module were increased with the increase of discharge current, and obvious fluctuations of local temperature difference can be observed when the electric vehicle is in road operating state. When the battery is discharging at constant current, the maximum temperature and local temperature difference of the battery module with paraffin/copper foam was lower than 45 °C and 5 °C, respectively. After the battery thermal management system was assembled in electric vehicle, the maximum temperature and local temperature difference in road operating state was lower than 40 °C and 3 °C, respectively. The experimental results demonstrated that paraffin/copper foam coupled battery thermal management presented an excellent cooling performance.

Zhonghao Rao; Yutao Huo; Xinjian Liu; Guoqing Zhang

2014-01-01T23:59:59.000Z

455

Energy efficiency of Li-ion battery packs re-used in stationary power applications  

Science Journals Connector (OSTI)

Abstract The effects of capacity fade, energy efficiency fade, failure rate, and charge/discharge profile are investigated for lithium-ion (Li-ion) batteries based on first use in electric vehicles (EVs) and second-use in energy storage systems (ESS). The research supports the feasibility of re-purposing used Li-ion batteries from \\{EVs\\} for use in ESS. Based on data extrapolation from previous studies with a low number of charge/discharge cycles, it is estimated that the EV battery loses 20% of its capacity during its first use in the vehicle and a further 15% after its second use in the ESS over 10 years. As energy efficiency decreases with increased charge/discharge cycles, a capacity fade model is used to approximate the effect of the relationship between cycles and capacity fade over the life of the battery. The performance of the battery in its second use is represented using a model of degradation modes, assuming a 0.01% cell failure rate and a non-symmetric charge/discharge profile. Finally, an accurate modeling of battery performance is used to examine energy savings and greenhouse gas (GHG) emission reduction benefits from using a Li-ion battery first in an EV and then in an ESS connected to the Ontario electrical grid.

Leila Ahmadi; Michael Fowler; Steven B. Young; Roydon A. Fraser; Ben Gaffney; Sean B. Walker

2014-01-01T23:59:59.000Z

456

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

457

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

458

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

459

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

460

Investigations into Performance and Lifetime Enhancements of OPV Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-263  

SciTech Connect (OSTI)

To evaluate Plextronics new additives and derivatives in lithium-ion Battery Applications, Plextronics will provide to NREL, a starting point, including materials and initial data for proof of concept. The central focus of this project is to acertain the nature of the efficacy of the Plextronics additives through physical and electrical characterization, including evaluations of new derivatives, system evaluations on batteries made with Plexcore and to study long term cycling performance differences. The initial focus is to establish Plexcore mode of action to support the commercialization of the first commercial evaluations of Plexcore in Sept. 2013.

Ginley, D.

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

462

UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE  

SciTech Connect (OSTI)

Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of measurement conditions.

Jon P. Christophersen; John L. Morrison; William H. Morrison

2014-03-01T23:59:59.000Z

463

Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions  

Science Journals Connector (OSTI)

Abstract In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.

L. Olivieri; E. Caamaño-Martin; F .Olivieri; J. Neila

2014-01-01T23:59:59.000Z

464

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

465

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

466

Fluoride based cathodes and electrolytes for high energy thermal batteries  

SciTech Connect (OSTI)

A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

Briscoe, J.D.

1998-07-01T23:59:59.000Z

467

Recycling of Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

468

The Cosmic Battery in Astrophysical Accretion Disks  

E-Print Network [OSTI]

The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

Contopoulos, Ioannis; Katsanikas, Matthaios

2015-01-01T23:59:59.000Z

469

Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives  

SciTech Connect (OSTI)

The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a ?"-Al2O3 solid electrolyte at elevated temperatures (typically 300~350°C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

2010-05-01T23:59:59.000Z

470

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

472

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

473

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

474

Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.  

SciTech Connect (OSTI)

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

475

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

476

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

477

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

478

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

479

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

480

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

Note: This page contains sample records for the topic "batteries performance characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

482

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network [OSTI]

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

483

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

484

Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation  

Science Journals Connector (OSTI)

Abstract On the one hand, huge amount of Flue Gas Desulfurization (FGD) residues, produced during scrubbing flue gas, is discarded as solid waste. Such solid waste would cause serious environmental problems. One the other hand, high quality aggregates, such as limestone and basalt, are running out due to the rapid development of highway construction. Ungraded aggregates such as gneiss are therefore considered in China to replace the high quality aggregates. The application of FGD residues as a filler in gneiss based asphalt mixture has benefits both in environmental and economic sides. The main objective of this research was to visualize the raw materials characterization and evaluate the effect of FGD residues on the performance of gneiss based asphalt mixture. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope (SEM), Differential Scanning Calorimetric & Thermal gravimetric (DSC–TG) were used to investigate the features of raw materials. The performance of gneiss based asphalt mixture including high-temperature deformation resistance, low-temperature crack resistance and moisture-induced damage resistance were evaluated. Dynamic creep test, three-point bending test, Retained Marshall Stability (RMS), Tensile Strength Ratio (TSR), Indirect Tensile (IDT) strength and Resilient Modulus (MR) test were conducted and analyzed. Dissipated Creep Strain Energy to fracture (DCSEf) ratio, fracture energy and model analysis were also used to evaluate moisture resistance, crack resistance and deformation resistance of asphalt mixture respectively. Research results indicate that FGD residues can partly improve the moisture resistance and crack resistance of gneiss asphalt mixture, while it might worse the high-temperature deformation resistance.

Zongwu Chen; Shaopeng Wu; Fuzhou Li; Juyong Chen; Zhehuan Qin; Ling Pang

2014-01-01T23:59:59.000Z

485

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

486

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

487

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

488

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

489

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

490

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

491

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

492

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

493