Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhuhai Hange Battery Tech Co Ltd Jump to: navigation, search Name Zhuhai Hange Battery Tech Co, Ltd Place China Product ZhuHai City - based maker of Lithium Polymer batteries....

2

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Wisconsin's 5th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

5th congressional district A.O. Smith Johnson Controls Kohl's Magnatek Inc Optima Batteries Oskosh Tech Laboratories Inc WE Energies Retrieved from "http:en.openei.orgw...

4

44 Tech Inc | Open Energy Information  

Open Energy Info (EERE)

Name 44 Tech Inc Place Menlo Park, California Zip 94025 Product California-based battery manufacturer focused on sodium ion battery for grid scale applications. References 44...

5

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

6

Texas Tech University  

E-Print Network (OSTI)

Texas Tech University :: TechAnnounce http Academic Departmental Citing scheduling conflicts with the Texas Oklahoma-Texas Tech football game and international environmental reporters, experts and industry and government leaders to the Hub City. Texas Tech

Rock, Chris

7

Effects of Silicon and Carbon Composition on Carbon Nanotubes in Lithium-Ion Batteries Sadie Roberts, Georgia Institute of Technology Georgia Tech SURF 2011 Fellow  

E-Print Network (OSTI)

Effects of Silicon and Carbon Composition on Carbon Nanotubes in Lithium-Ion Batteries Sadie Graduate Mentor: Kara Evanoff Introduction Lithium-ion (Li-ion) batteries are attractive for many] Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., "High-performance lithium-ion

Li, Mo

8

EcoCAR Challenge Profile: Virginia Tech | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Profile: Virginia Tech Challenge Profile: Virginia Tech EcoCAR Challenge Profile: Virginia Tech Addthis Description Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C.. Speakers Lynn Gantt Duration 1:43 Topic Alternative Fuel Vehicles Fuel Economy Batteries Consumption Credit Energy Department Video LYNN GANTT: My name is Lynn Gantt and I'm the team leader for the Virginia Tech EcoCAR team.

9

Hefei Guoxuan High tech Power Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guoxuan High tech Power Energy Co Ltd Guoxuan High tech Power Energy Co Ltd Jump to: navigation, search Name Hefei Guoxuan High-tech Power Energy Co, Ltd Place China Sector Solar Product Anhui Province - based researcher and manufacturer focused on cathode material production for lithium batteries, production of the batteries themselves and of products such as solar powered lights and e-bikes. References Hefei Guoxuan High-tech Power Energy Co, Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hefei Guoxuan High-tech Power Energy Co, Ltd is a company located in China . References ↑ "Hefei Guoxuan High-tech Power Energy Co, Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hefei_Guoxuan_High_tech_Power_Energy_Co_Ltd&oldid=346428

10

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

11

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

12

Texas Tech University System  

E-Print Network (OSTI)

Texas Tech University System :: Huffaker Named as Texas Tech System General Counsel http://www.texastech.edu/stories/12-03-TTUS-Washington-DC-Trip.php[4/2/2012 8:13:27 AM] Chancellor Hance and leadership from the Texas visited with Texas Tech students and Congressional interns while in Washington, D.C. March 27, 2012 Texas

Rock, Chris

13

Tech News Signup  

home \\ about ipo \\ tech news signup. Meet IPO: Awards: Success Stories: Initiatives: ... LLC, for the Department of Energy's National Nuclear Security Administration

14

Entrepreneurial Programs | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

who provide valuable feedback about potential market applications and collaborators. Tech 2020 Center for Entrepreneurial Growth ORNL and Tech 2020 created the Center for...

15

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

16

Tech Transfer Summit Agenda | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Transfer Summit Agenda Tech Transfer Summit Agenda Tech Transfer Technology Summit Agenda 4.9.12.pdf More Documents & Publications Risk Management II Summit Agenda Special...

17

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

18

NSLS Mechanical Tech  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Tech Mechanical Tech The Mechanical Technician group is supervised by Robert Scheuerer and consists of Mechanical Technicians with fabrication/machining, assembly, installation, and alignment/surveying skills. This group also serves as an interface to Central Fabrication Services when more complex or larger fabrication efforts are needed. The Mechanical Tech group is responsible for fabricating, installing, aligning, and troubleshooting the mechanical hardware used on NSLS and SDL accelerators, front ends, and User beamlines, often starting solely from Mechanical Design group drawings or CAD files. The Mechanical Tech Group is responsible for the fabrication, assembly and installation of components at the NSLS. These components include all mechanical assemblies and RF cavities. Another part of their job is to

19

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

20

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

22

SciTech Connect: The SciTech Connect Transition  

Office of Scientific and Technical Information (OSTI)

The SciTech Connect Transition The SciTech Connect Transition The SciTech Connect Transition Now you can visit one site for all the great science information previously searchable in the Energy Citations Database (ECD) and the Information Bridge (IB). ECD will no longer be available beginning August 28, 2013. IB will no longer be available beginning September 18, 2013. SciTech Connect provides access to all the information available via ECD and IB. The basic search at SciTech Connect employs an innovative semantic search capability to help you retrieve more relevant information. You can sign up for an account at SciTech and take advantage of extensive customization features. Don't forget to update your bookmarks! For more details, read OSTI Launches SciTech Connect, Consolidates Information Bridge and Energy Citations Database.

23

Entertainment Tech & science  

E-Print Network (OSTI)

Health Tech & science Science Space Gadgets Internet Wireless Games Security Innovation Travel Browse Learn more about RSS Technology & science Innovation sponsored by Page 1 of 3Eye spy: Scientists develop simply bend it, those materials are brittle like a ceramic bowl. They break," Huang said in a telephone

Rogers, John A.

24

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

25

Delivery Tech Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Team Tech Team Oak Ridge National Laboratory January, 2005 Team Members * Tony Bouza: DOE * Nick Burkhead: SC * Dan Casey: CVX * Maria Curry- Nkansah: BP* * Jim Kegerreis: XOM * George Parks: COP** * Mark Paster: DOE** * Steve Pawel: ORNL * Jim Simnick: BP * FOG Liaison ** Co-Leads Shawna McQueen (Energetics): Facilitator Mission * Provide a forum for the Partnership to help advance research aimed at developing low cost, safe, and energy efficient hydrogen delivery systems * Catalyze the development of hydrogen delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power Useful Facts * 1 kg H 2 = 1 gallon gasoline * Eff FCV = 2-3 x Eff ICEV = 1.2-1.4 x Eff HEV * Energy Density - 10,000 psi H 2 = 1.3 kWhr/l

26

HVDC Tech Watch - Newsletter  

Science Conference Proceedings (OSTI)

The HVDC Tech Watch newsletter consists of brief articles describing the latest technology developments in the High-Voltage Direct Current (HVDC) and Flexible Alternating Current Transmission Systems (FACTS) areas. It also covers many on-going research projects and the latest developments in these areas. The articles in the current issue include the following:TransBay VSC Cable UpdateEPRI HVDC Reference Book (also known as the Olive ...

2013-01-22T23:59:59.000Z

27

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

28

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

29

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

30

High-Tech Buildings - Market Transformation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Buildings - Market Transformation Project Title High-Tech Buildings - Market Transformation Project Publication Type Report LBNL Report Number LBNL-49112 Year of Publication...

31

Trans Tech Green Power | Open Energy Information  

Open Energy Info (EERE)

Tech Green Power" Retrieved from "http:en.openei.orgwindex.php?titleTransTechGreenPower&oldid352369" Categories: Clean Energy Organizations Companies Organizations...

32

Tech Beat October 20, 2009  

Science Conference Proceedings (OSTI)

... back to top. Synthetic Cells Shed Biological Insights While Delivering Battery Power. ... Image of two artificial cells that can act as a tiny battery. ...

2010-12-28T23:59:59.000Z

33

Clean Tech Now | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a historic shift to a cleaner, more domestic and more secure energy future. That clean technology revolution is here today -- and it is gaining force. Read the report Revolution Now: The Future for Four Clean Energy Technologies Watch a video from Secretary Ernest Moniz and learn more about the

34

SciTech Connect: FAQ  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Frequently Asked Questions What is SciTech Connect? SciTech Connect is a portal to free, publicly-available DOE-sponsored R&D results including technical reports, bibliographic citations, journal articles, conference papers, books, multimedia and data information. SciTech Connect is a consolidation of two core DOE search engines, the Information Bridge and the Energy Citations Database. SciTech Connect incorporates all of the R&D information from these two products into one search interface. SciTech Connect was developed by the U.S. Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) to increase access to science, technology, and engineering research information from DOE and its predecessor agencies.

35

SciTech Connect: FAQ  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Frequently Asked Questions What is SciTech Connect? SciTech Connect is a portal to free, publicly-available DOE-sponsored R&D results including technical reports, bibliographic citations, journal articles, conference papers, books, multimedia and data information. SciTech Connect is a consolidation of two core DOE search engines, the Information Bridge and the Energy Citations Database. SciTech Connect incorporates all of the R&D information from these two products into one search interface. SciTech Connect was developed by the U.S. Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) to increase access to science, technology, and engineering research information from DOE and its predecessor agencies.

36

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

37

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

38

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

39

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals...

40

Comments on ORNL Tech transfer.txt - Notepad | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on ORNL Tech transfer.txt - Notepad Comments on ORNL Tech transfer.txt - Notepad Comments on ORNL Tech transfer.txt - Notepad More Documents & Publications TECHNOLOGY TRANSFER...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

UESC and High Tech Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Energy Management Program UESC and High Tech Facilities Charles Williams, Lawrence Berkeley National Lab 2 | FUPWG April 2012 High Tech Building UESC Partnership Leveraging Technical Potential, Market Opportunity, Program Resources * Energy-intensive facilities with high savings potential * PG&E service territory - high concentration of high-technology buildings * PG&E UESC program, new and growing * DOE FEMP programs for UESC and High-Tech Buildings * LBNL expertise in labs, data centers, clean rooms * LBNL support for UESC program * UESC potential for innovation * Presidential "We Can't Wait $2 Billion challenge to Federal agencies 3 | FUPWG April 2012 UESC project support at LBNLL Training /Education

42

SRNL - Technology Transfer - Tech Briefs  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech home Tech home SRNL home SRS home Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Remote Electrical Throw Device Magnetic Release Coupling InviziMark: Concealed Identification System Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Boron-Structured Nano-Proportional Counters Acoustic Door Latch Detector (Smart Latch(tm)) SoundAnchor(tm) Nondestructive Testing Method Microwave Off-Gas Treatment System IDEAS Program (Individuals Developing Effective Alternative Solutions) Hybrid Microwave Energy Nanoparticle-Enhanced Ionic Liquids (NEILs) Groundwater and Wastewater Remediation Using Agricultural Oils Aerosol-to-Liquid Particle Extraction System (ALPES) Double Coil Condenser Apparatus

43

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

44

Bekk Tech | Open Energy Information  

Open Energy Info (EERE)

80538 Sector Services Product Provides testing and data analysis services to the fuel cell industry. References Bekk Tech1 LinkedIn Connections CrunchBase Profile No CrunchBase...

45

Overview of PhosphorTech  

NLE Websites -- All DOE Office Websites (Extended Search)

(Fax) Ion-assisted Deposition (IAD) of Thin-film Nanostructures Thin-film processing at Georgia Tech: * Process development for wide bandgap TiO 2 and narrow bandgap thin-films *...

46

Ivy Tech Community College | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Ivy Tech receives $4.7 million grant from Department of Energy, April 13, 2010 ... Ivy Tech Community College of Indiana has received a $4.7 million grant from the U.S. Department of Energy for smart grid workforce training programs that will help prepare the next generation of workers in the utility and electrical manufacturing industries. Ivy Tech receives $4.7 million grant from Department of Energy, April 13, 2010 ... Ivy Tech Community College of Indiana has received a $4.7 million grant from the U.S. Department of Energy for smart grid workforce training programs that will help prepare the next generation of workers in the utility and electrical manufacturing industries. Obama Administration Announces Nearly $100 Million for Smart Grid Workforce Training and Development ... Ivy Tech received the 4th largest gift of the 54 grants awarded nationwide. DOE Office of Electricity Delivery & Energy Reliability - Smart Grid Research Ivy Tech Community College Ivy Community College Indiana's largest public post-secondary institution and the nation's largest singly-accredited statewide community college system with more than 150,000 students enrolled annually.

47

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

48

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

49

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

50

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and...

51

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

52

CO2 Tech | Open Energy Information  

Open Energy Info (EERE)

Tech Jump to: navigation, search Name CO2 Tech Place London, United Kingdom Zip SW1V 1BZ Product Consultancy and technology developer that produces and installs equipment for...

53

CleanTech Biofuels | Open Energy Information  

Open Energy Info (EERE)

CleanTech Biofuels Place St. Louis, Missouri Zip 63130 Sector Biofuels Product CleanTech Biofuels holds exclusive licenses to a pair of technologies for converting municipal solid...

54

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

55

Update on the Battery Projects at NREL (Presentation)  

DOE Green Energy (OSTI)

NREL collaborates with industry, universities, and other national laboratories as part of the DOE integrated Energy Storage Program to develop advanced batteries for vehicle applications. Our efforts are focused in the following areas: thermal characterization and analysis, evaluation of thermal abuse tolerance via modeling and experimental analysis, and implications on battery life and cost. Our activities support DOE goals, FreedomCAR targets, the USABC Tech Team, and battery developers. We develop tools to support the industry, both through one-on-one collaborations and by dissemination of information in the form of presentations in conferences and journal publications.

Santhanagopalan, S.; Pesaran, A.

2010-10-01T23:59:59.000Z

56

Texas Tech University Department of Chemical Engineering  

E-Print Network (OSTI)

Texas Tech University Department of Chemical Engineering Lubbock, TX 79409-3121 Application degree at Texas Tech University ____________________________________ Che E specialties and skills to which I am applying at Texas Tech University as a part of the application. If my application

Zhang, Yuanlin

57

Texas Tech University's New Petroleum Engineering Building  

E-Print Network (OSTI)

Texas Tech University's New Petroleum Engineering Building: A New Era in Petroleum Engineering Production and Operations Education Summer 2012 Engineering Our Future Texas Tech University - Edward E. Whitacre Jr. College of Engineering Texas Tech Makes Progress to Tier One Five Distinguished Engineers

Zhang, Yuanlin

58

UndergraduateEducation2011 MICHIGAN TECH  

E-Print Network (OSTI)

in the field, in the lab, and around the globe. At Michigan Tech, these experiences are not the exceptionUndergraduateEducation2011 MICHIGAN TECH E N G I N E E R I N G Beyond the Classroom DESIGN INTERNATIONAL RESEARCH #12;Michigan Tech has a distinguished record of delivering high-quality undergraduate

59

Virginia Tech | OpenEI  

Open Energy Info (EERE)

Virginia Tech Virginia Tech Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

60

Dome Tech | Open Energy Information  

Open Energy Info (EERE)

Dome Tech Dome Tech Jump to: navigation, search Name Dome-Tech Place Edison, New Jersey Zip 8837 Sector Services Product Edison-based provider of services in engineering, energy consulting, & project development with the intention of optimising building performance. Coordinates 40.556614°, -82.866255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.556614,"lon":-82.866255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

62

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

63

SeaTech Energy | Open Energy Information  

Open Energy Info (EERE)

SeaTech Energy SeaTech Energy Jump to: navigation, search Name SeaTech Energy Place Florida Zip 33701 Sector Hydro Product Florida-based developer and distributor of hydro-electric turbines. References SeaTech Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SeaTech Energy is a company located in Florida . References ↑ "SeaTech Energy" Retrieved from "http://en.openei.org/w/index.php?title=SeaTech_Energy&oldid=350710" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

64

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

65

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

TECH AREA GALLERY (LARGE) TECH AREA GALLERY (LARGE) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo gallery with smaller versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

66

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

67

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

68

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

69

2004 Georgia Tech Fact Book Georgia Tech is an equal employment/education opportunity institution.  

E-Print Network (OSTI)

Accreditation Board Royal Society of Chartered Surveyors · Georgia Tech operates on the semester system Systems in the College of Computing ranked 8th . Georgia Tech's undergraduate program received a ranking.................................................................................................................. University System of Georgia

Li, Mo

70

2007 Georgia Tech Fact Book Georgia Tech is an equal employment/education opportunity institution.  

E-Print Network (OSTI)

Institution of Chartered Surveyors · Georgia Tech operates on the semester system. · Georgia Tech offers.................................................................................................................. University System of Georgia................................................................................................................................ Table 2.2 University System Office Administrative Staff

Li, Mo

71

2005 Georgia Tech Fact Book Georgia Tech is an equal employment/education opportunity institution.  

E-Print Network (OSTI)

operates on the semester system. · Georgia Tech offers educational opportunities from over 30 schools . Computer Systems in the College of Computing ranked 8th . Georgia Tech's undergraduate program received.................................................................................................................. University System of Georgia

Li, Mo

72

Dome-Tech and Merck Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Dome-Tech, Inc. Merck & Co., Inc. Dome-Tech, Inc. Merck & Co., Inc. 510 Thornall Street One Merck Drive Edison, New Jersey 08837 Whitehouse Station, New Jersey 08889 Business: Energy Engineering Consulting Business: Pharmaceutical Manufacturing Ed Liberty Rob Colucci Vice President, Energy Advisors Senior Director, Energy and Sustainability Phone: 732-590-0122 ext. 165 Phone: 908-423-4971 Email: e_liberty@dome-tech.com Email: robert_colucci@merck.com Dome-Tech installs 1.6 MW DC solar power tracking system at Merck to reduce CO 2 emissions Project Scope Dome-Tech installed a 1.6 megawatt solar photovoltaic (PV) system at Merck's corporate headquarters in New Jersey - with no capital investment by Merck. Project Summary Dome-Tech worked with SunPower to install 7,000 solar panels on 7 acres of land at Merck's

73

California Clean Tech Open | Open Energy Information  

Open Energy Info (EERE)

Open Open Jump to: navigation, search Name California Clean Tech Open Place Palo Alto, California Zip 95306 Product Non-profit group that provides resources, education and support for clean tech entrepreneurs. Activities include the Annual Business Plan Competition, Mentoring, Sustainability Workshops, a series of Public Symposia and Resource Directory. References California Clean Tech Open[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. California Clean Tech Open is a company located in Palo Alto, California . References ↑ "California Clean Tech Open" Retrieved from "http://en.openei.org/w/index.php?title=California_Clean_Tech_Open&oldid=343151

74

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

Tech Center Tech Center Jump to: navigation, search Name High Plains Tech Center Facility High Plains Tech Center Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133°, -99.4282195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.40645133,"lon":-99.4282195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

76

Overview of PhosphorTech  

NLE Websites -- All DOE Office Websites (Extended Search)

3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144 www.phosphortech.com - (770) 745-5693 (phone) - (770) 828-0672 (Fax) High Efficiency Solar-based Catalytic Structure for CO 2 Reforming DOE NETL# DE-FE0004224 By: Dr. Hisham Menkara Principal Investigator PhosphorTech Corporation Kennesaw, Georgia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for Carbon Capture and Storage August 20-22, 2013 PhosphorTech Corporation - 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144 www.phosphortech.com - (770) 745-5693 (phone) - (770) 828-0672 (Fax) Outline * Benefits to the Program * Project Goals and Objectives * Technical Status

77

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

78

Tech Unplugged | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

battery, which is magnetically coupled to the secondary circuit through an air-core transformer. The charge has 91 percent efficiency over a 125 to 200mm air gap and is relatively...

79

NIST Tech Beat for October 13, 2011  

Science Conference Proceedings (OSTI)

... beads start out suspended in salt water above ... You beat heat by switching things quickly, so ... Data Set Details Federal Tech Transfer Efforts Since ...

2011-12-05T23:59:59.000Z

80

NIST Tech Beat for July 19, 2011  

Science Conference Proceedings (OSTI)

NIST Home > Public and Business Affairs Office > Tech ... The adjusted values reflect some significant scientific ... in a fundamental constant value is a ...

2011-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Solar Decathlon: Virginia Tech: Perfecting Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Where Are the Houses Now? Auburn Carnegie Mellon Colorado Crowder Delaware Maryland Puerto Rico Rolla Texas Texas A&M Tuskegee UNC Charlotte Virginia Virginia Tech Quick...

82

Search all issues of NIST Tech Beat  

Science Conference Proceedings (OSTI)

Search Tech Beat Archives. ... To search the NIST Web site go to http://www.nist.gov. Send questions or comments regarding ...

83

Tech Transfer Event to Showcase NIST Microfluidics ...  

Science Conference Proceedings (OSTI)

From NIST Tech Beat: September 13, 2007. ... cooperation with the MIT Enterprise Forum and TEDCO, will host a technology transfer workshop on ...

2013-07-08T23:59:59.000Z

84

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

85

NIST Tech Beat for March 20, 2012  

Science Conference Proceedings (OSTI)

... electrolyte to break down and the battery to quickly ... solid-state 3D Li-ion batteries, Nano Letters ... as components shrink to the atomic scale, rendering ...

2012-03-20T23:59:59.000Z

86

NIST Tech Beat -August 30, 2004  

Science Conference Proceedings (OSTI)

... 100 times smaller than any other atomic clockhas ... precise timekeeping in portable, battery-powered devices ... to be operated on batteries) and are ...

87

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

88

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

89

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

90

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

91

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

92

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

93

MINES ParisTech | Open Energy Information  

Open Energy Info (EERE)

MINES ParisTech MINES ParisTech Jump to: navigation, search Logo: MINES ParisTech Name MINES ParisTech Address 1 Rue Claude Daunesse Place 06904 Sophia Antipolis, France Sector Education Product String representation "ParisTech is a ... iness schools)." is too long. Coordinates 43.615149095322°, 7.0526915788651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615149095322,"lon":7.0526915788651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Haskel/BuTech/PPI  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Presentation For Argonne National Laboratory Haskel/BuTech/PPI Products * 100,000psi Liquid Pumps * 37,000psi Gas Boosters * 15,000psi Diaphragm Comp * 4,500psi Air Amplifiers * 150,000psi Valves, Fittings, and Tubing * 15,000psi Sub-Sea Valves (1" orifice) * Air Pilot Switches & Relief Valves Valves, Fittings & Tubing Pumps, Boosters, & Diaphragm Compressors & Systems Hydraulic Gas Booster Challenges * Global Material Regulations - KHK Japan recommends A286 & 316 SS with high nickel content - Europe recommends 316SS - North America does not appear to regulate * Global Certifications - CE & ATEX * Low Inlet vs. High Outlet (Suction vs Discharge) - Multiple compression stages - Elevated temperatures

95

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

96

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

97

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

98

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

99

Texas Tech University Knowledge Representation Group Modular Action Language ALM  

E-Print Network (OSTI)

1 Texas Tech University Knowledge Representation Group Modular Action Language ALM Michael Gelfond and Daniela Inclezan Computer Science Department Texas Tech University February 11, 2010 #12;2 Texas Tech for specifying such diagrams. #12;3 Texas Tech University Knowledge Representation Group Action Languages and ASP

Zhang, Yuanlin

100

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

SMALL) SMALL) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for a photo gallery with larger versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

102

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

103

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

104

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

105

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

106

Codes and Standards Tech Team (CSTT) Purpose & Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Fuel Partnership FreedomCAR and Fuel Partnership Codes and Standards Tech Team (CSTT) Overview & Introduction CSTT Purpose & Operation C&S Roadmap & Fuel Purity Brad Smith, Shell Hydrogen - CSTT co-lead April 26, 2004 Members FreedomCAR and Fuel Partnership ChevronTexaco EXONMobil ConocoPhillips w/ National Labs Organization Executive Steering Group OEM & Energy R&D VPs DOE-EE Asst Sec Fuel Cell & Vehicle Tech Teams OEM Tech Experts DOE Tech Experts Fuel Operations Group Energy Directors DOE Program Managers Fuel Tech Teams Energy Tech Experts DOE Tech Experts FreedomCAR Operations Group OEM Directors DOE Program Managers Hydrogen Storage Tech Team OEM & Energy & DOE Tech Experts Codes & Standards Tech Team OEM & Energy & DOE

107

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

108

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

109

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

110

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

111

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

112

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

113

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

114

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 May 2001 Lattice Description for NLC Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory Abstract: We present a lattice design for the NLC Main Damping Rings at 120 Hz repe tition rate. A total wiggler length of a little over 46 m is needed to achieve the damping time required for extracted, normalized, vertical emittance below 0.02 mm mrad. The dynamic aperture (using a linear model for the wiggler) is in excess of 15 times the injected beam size. The principal lattice parameters and characteristics are presented in this note; we also outline results of studies of alignment and field quality tolerances. CBP Tech Note-227 LCC-0061 Lattice Description for NLC Main Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory

115

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

NLC Home Page NLC Technical SLAC The LCC Tech Note series was started in July 1998 to document the JLC/NLC collaborative design effort. The notes are numbered sequentially and may also be given a SLAC, FNAL, LBNL, LLNL and/or KEK publication number. The LCC notes will be distributed through the Web in electronic form as PDF files -- the authors are responsible for keeping the original documents. Other document series are the NLC Notes that were started for the SLAC ZDR, the KEK ATF Notes, and at some future time there should be a series of Technical (NLD) Notes to document work on detector studies for the next-generation linear collider. LCC-0001 "Memorandum of Understanding between KEK and SLAC," 2/98. LCC-0002 "Transparencies and Summaries from the 1st ISG meeting: January 1998," G. Loew, ed., 2/98.

116

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0038 29/04/00 CBP Tech Note - 234 Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence Berkeley National Laboratory M. C. Ross Stanford Linear Accelerator Center Stanford, CA Abstract: The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been

117

IdaTech plc | Open Energy Information  

Open Energy Info (EERE)

IdaTech plc IdaTech plc Jump to: navigation, search Name IdaTech plc Place Bend, Oregon Zip 97701 Product IdaTech is a developer of fuel processors and integrated proton exchange membrane (PEM) fuel cell systems. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

AHL-TECH | Open Energy Information  

Open Energy Info (EERE)

AHL-TECH AHL-TECH Jump to: navigation, search Name AHL-TECH Address PO Box 428638 Place Cincinnati, Ohio Zip 45242-8638 Sector Biofuels Product Manufacturing; Research and development; Other:Efficient Utilization Phone number 513-575-5626 Website http://www.AHL-TECH.com Coordinates 39.2364358°, -84.3647199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2364358,"lon":-84.3647199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

BekkTech LLC | Open Energy Information  

Open Energy Info (EERE)

BekkTech LLC BekkTech LLC Jump to: navigation, search Logo: BekkTech LLC Name BekkTech LLC Address 2367 West 8th Street Place Loveland, Colorado Zip 80537 Sector Hydrogen Product Fuel cell component testing Website http://www.bekktech.com/ Coordinates 40.403719°, -105.109978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.403719,"lon":-105.109978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Clean Tech Institute | Open Energy Information  

Open Energy Info (EERE)

Tech Institute Tech Institute Jump to: navigation, search Logo: Clean Tech Institute Name Clean Tech Institute Address 1290 Parkmoor Avenue Place San Jose, California Zip 95126 Sector Services Product Research, Workforce Training, Consulting Services Number of employees 11-50 Phone number 408-280-6242 Website http://www.cleantechinstitute. Coordinates 37.316134°, -121.909763° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.316134,"lon":-121.909763,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Tech and Industrial Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Tech and Industrial Systems Group High Tech and Industrial Systems Group Some of the largest energy users in today's economy are high tech buildings and industrial systems. They operate up to 24 hours per day with energy intensities much greater than typical commercial or residential buildings, and they are essential to the national economy. High-tech buildings, such as laboratories, cleanrooms, data centers, and hospitals, are characterized by large base-loads, continuous operation, and high energy-use intensities. These buildings crosscut many industries and institutions. Group activities and products include: benchmarking surveys and metrics, case study reports, technology development, technology demonstrations, assessment and profiling tools, best practice guides, workshops, training guides, and development of other strategies.

122

LappinTech LLC | Open Energy Information  

Open Energy Info (EERE)

LappinTech LLC LappinTech LLC Jump to: navigation, search Logo: LappinTech LLC Name LappinTech LLC Place Douglas, Wyoming Zip 82633 Product Stuffing Box Rubbers Year founded 2002 Number of employees 1-10 Phone number 307-358-5192 Website http://www.lappintech.com/ Coordinates 42.7596897°, -105.3822069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7596897,"lon":-105.3822069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

HiTech Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place Uherske Hradiste, Czech Republic Zip 686 01 Sector Solar Product HiTech Solar is a PV equiptment distributor and solar project developer. They are a division of...

124

New Web Service Tracks Foreign Tech Regulations  

Science Conference Proceedings (OSTI)

New Web Service Tracks Foreign Tech Regulations. ... To learn moreand to sign upgo to the Notify US Web site at www.nist.gov/notifyus.

2013-03-21T23:59:59.000Z

125

Clean Tech LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Clean-Tech LLC Place Los Angeles, California Zip 90045 Product California-based company with subsidiaries seeking to make EVs and Lithium...

126

SLAC National Accelerator Laboratory - Bringing Telescope Tech...  

NLE Websites -- All DOE Office Websites (Extended Search)

Telescope Tech to X-ray Lasers By Glenn Roberts Jr July 10, 2012 Technology that helps ground-based telescopes cut through the haze of Earth's atmosphere to get a clearer view of...

127

Louisiana Tech University EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

/or Residential Life, whichever appropriate, after a disaster. #12;Emergency Response Plan for Students 4 CriticalLouisiana Tech University Part III EMERGENCY RESPONSE PLAN FOR STUDENTS JANUARY, 2013 #12;Emergency Response Plan for Students 2 SECTION I. INTRODUCTION

Selmic, Sandra

128

LANL | Technology Transfer | Tech Mat Fund  

Who can apply to the Tech Mat Program? All LANL researcherstechnical staff members and post-docs, U.S. citizens and foreign nationalswho have obtained ...

129

Invention to License: The Tech Transfer Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Invention to License: The Tech Transfer Process Speaker(s): Michael Mueller Robin C. Chiang Date: November 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar HostPoint of...

130

Energy Positioning Statement Texas Tech University  

E-Print Network (OSTI)

Energy Positioning Statement Texas Tech University Whitacre College of Engineering The Whitacre sufficient and sustainable energy sources to power its future. The college is committed to conducting cutting edge research and providing educational programs related to traditional and unconventional energy

Zhang, Yuanlin

131

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

132

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

133

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

134

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

135

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

136

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

137

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

138

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

139

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

140

Hi Tech Agro Projects Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Tech Agro Projects Pvt Ltd Tech Agro Projects Pvt Ltd Jump to: navigation, search Name Hi-Tech Agro Projects Pvt Ltd Place New Delhi, Delhi (NCT), India Zip 110021 Sector Biomass Product M/s Hi-Tech Agro Projects Pvt. Ltd is a major supplier of densification equipment in India. They are interested in establishing the commercial viability of pelletised fuels from agricultural waste and other combustible biomass. References Hi-Tech Agro Projects Pvt Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hi-Tech Agro Projects Pvt Ltd is a company located in New Delhi, Delhi (NCT), India . References ↑ "Hi-Tech Agro Projects Pvt Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hi_Tech_Agro_Projects_Pvt_Ltd&oldid=346518"

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Grant Lights Up Indiana Tech Athletic Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Lights Up Indiana Tech Athletic Center Grant Lights Up Indiana Tech Athletic Center Grant Lights Up Indiana Tech Athletic Center July 20, 2010 - 2:46pm Addthis Lighting units in the Schaefer Center's Kline Court, where Indiana Tech’s basketball and volleyball teams compete, will be retrofitted with LEDs. | Photo courtesy of Indiana Tech Lighting units in the Schaefer Center's Kline Court, where Indiana Tech's basketball and volleyball teams compete, will be retrofitted with LEDs. | Photo courtesy of Indiana Tech The Indiana Institute of Technology, otherwise known as Indiana Tech, is committed to developing a fully sustainable campus. Now, a $47,000 Energy Efficiency and Conservation Block Grant (EECBG) is moving the Fort Wayne, Ind. university one step closer to its goal. Ninety-six lighting units in the Schaefer Center, the school's main

142

Ethos and exigence: white papers in high-tech industries.  

E-Print Network (OSTI)

??In recent years, many high-tech firms have used documents called white papers to describe the products and services they offer, and white papers on high-tech (more)

Willerton, David Russell

2005-01-01T23:59:59.000Z

143

Ethos and exigence: White papers in high-tech industries.  

E-Print Network (OSTI)

??In recent years, many high-tech firms have used documents called white papers to describe the products and services they offer, and white papers on high-tech (more)

Willerton, David Russell

2005-01-01T23:59:59.000Z

144

Shenzhen Sunny Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Province, China Sector Solar Product A solar hi-tech company that concentrates on R&D, manufacture, and sale of mobile solar power supply . References Shenzhen Sunny Tech Co...

145

Launch of SciTech Connect, Consolidates Information Bridge and...  

Office of Scientific and Technical Information (OSTI)

SciTech Connect, a new portal to free, publicly available DOE research and development (R&D) results. SciTech Connect incorporates the contents of two of the most popular core DOE...

146

Automated electricity demand response - Tech Close-Up  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated electricity demand response - Tech Close-Up Click here to view this video Date: August 27, 2013 Presenter(s): Many, including EETD's Mary Ann Piette. A Tech Close-Up news...

147

Solar EnerTech Corporation | Open Energy Information  

Open Energy Info (EERE)

Solar EnerTech Corporation Jump to: navigation, search Name Solar EnerTech Corporation Place Menlo Park, California Zip CA 94025 Sector Solar Product Solar cell manufacturer with...

148

Microsoft Word - Poster Abstract_2010_NexTech.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Status of SOFC Stack Technology at NexTech Materials NexTech Materials is developing planar SOFC stack technology based on its enabling FlexCell design. The FlexCell is an...

149

Dome-Tech & Schering-Plough Teaming Profile | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Profile cover page of document Dome-Tech's retro-commissioning and recalibration program led to Schering-Plough realizing annual savings of 450,000. Dome-Tech & Schering-Plough...

150

Aero-Tech: Order (2010-CE-1012) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 8, 2010 DOE issued an Order and closed this case against Aero-Tech Light Bulb Co., without civil penalty, after DOE found that Aero-Tech manufactured andor...

151

GreenTech Research LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GreenTech Research LLC Jump to: navigation, search Name GreenTech Research LLC Place New York, New York Zip NY 10019...

152

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

153

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

154

Texas Tech University Knowledge Representation Group Reasoning about agents intentions  

E-Print Network (OSTI)

1 Texas Tech University Knowledge Representation Group Reasoning about agents intentions Justin Blount and Michael Gelfond October 17, 2011 #12;2 Texas Tech University Knowledge Representation Group) and a rational agents response to the failure of a plan to achieve its goal. #12;3 Texas Tech University

Zhang, Yuanlin

155

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

156

Alltronic Tech Investment Corporation | Open Energy Information  

Open Energy Info (EERE)

Alltronic Tech Investment Corporation Alltronic Tech Investment Corporation Jump to: navigation, search Name Alltronic Tech Investment Corporation Place Shenyang, Liaoning Province, China Zip 110179 Sector Wind energy Product Wind and CDM project developers in China Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Arizona Solar Tech | Open Energy Information  

Open Energy Info (EERE)

Tech Tech Jump to: navigation, search Name Arizona Solar Tech Place Phoenix, Arizona Zip 85040 Sector Solar, Vehicles Product Designs and installs solar PV systems for vehicles, domestic and light industrial applications. Coordinates 33.44826°, -112.075774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.44826,"lon":-112.075774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

SCR Tech LLC | Open Energy Information  

Open Energy Info (EERE)

SCR Tech LLC SCR Tech LLC Jump to: navigation, search Name SCR-Tech LLC Place Charlotte, North Carolina Zip 28214 Sector Services Product US-based provider of catalyst regeneration technologies and management services for SCR systems. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

EnviroTech Financial | Open Energy Information  

Open Energy Info (EERE)

EnviroTech Financial EnviroTech Financial Jump to: navigation, search Name EnviroTech Financial Place Orange, California Zip 92868-5905 Product Provides both domestic and international financing on equipment. Coordinates 38.244903°, -78.11186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.244903,"lon":-78.11186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Hyper Tech Research Inc | Open Energy Information  

Open Energy Info (EERE)

Tech Research Inc Tech Research Inc Jump to: navigation, search Name Hyper Tech Research Inc. Place Columbus, Ohio Zip 43212 Product Maker of superconductors, superconducting wires, electromagnetic coils for medical and energy products. Coordinates 39.96196°, -83.002984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.96196,"lon":-83.002984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EERE Tech Portal | Open Energy Information  

Open Energy Info (EERE)

Tech Portal Tech Portal Jump to: navigation, search About Eere.gif The EERE Tech Portal Energy Innovation Portal is a one-stop resource for Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) technologies. This application enables users to locate technologies developed with DOE funding and available for licensing. These technologies can be viewed as marketing summaries, which provide business friendly descriptions of the technology, or the patent itself. When you find a technology you are interested in, simply fill out the contact form to get directly in touch with the licensing representative from each laboratory. Features EERE Commercialization Office Visual Patent Search Early Stage R & D Webinar Series Startup America RSS Feed Subscribe to Email Updates

162

Karpatok Tech SL | Open Energy Information  

Open Energy Info (EERE)

Karpatok Tech SL Karpatok Tech SL Jump to: navigation, search Name Karpatok Tech SL. Place Segovia, Spain Zip 40100 Sector Solar Product Segovia - based solar project developer. Coordinates 40.94821°, -4.116359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.94821,"lon":-4.116359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Awards recognize outstanding LANL Tech Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Outstanding Tech Transfer awards Outstanding Tech Transfer awards Awards recognize outstanding LANL Tech Transfer Awards were given for distinguished accomplishments in patenting, copyright, licensing, programmatic impact, and regional impact during fiscal year 2009. August 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

164

NorTech | Open Energy Information  

Open Energy Info (EERE)

NorTech NorTech Jump to: navigation, search Name NorTech Address 737 Bolivar Rd, Suite 1000 Place Cleveland, Ohio Zip 44115 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Services, Solar, Wind energy Product Other:Economic Development Phone number 216-363-6883 Website http://www.nortech.org Coordinates 41.4974566°, -81.6857522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4974566,"lon":-81.6857522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

ClimateTechWiki | Open Energy Information  

Open Energy Info (EERE)

ClimateTechWiki ClimateTechWiki Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ClimateTechWiki - a clean technology platform Agency/Company /Organization: United Nations Development Programme, Energy Research Centre of the Netherlands, Joint Implementation Network (JIN), United Nations Environment Programme, UNEP-Risoe Centre, United Nations Framework Convention on Climate Change, Renewable Energy and Energy Efficiency Partnership, Netherlands Government Partner: Energy Research Centre of the Netherlands (ECN) Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, Solar, Transportation, Water Power, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes, Evaluate Effectiveness and Revise as Needed

166

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

167

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

168

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

169

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

170

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

171

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

172

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

173

Aluminum ION Battery  

Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

174

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

175

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

176

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

177

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

178

NIST Tech Beat - December 7, 2006  

Science Conference Proceedings (OSTI)

... can be operated with low power, such as from a battery, and yet ... The NIST team noted that coupling between cantilever motion and atomic spins is ...

179

NIST Tech Beat - May 24, 2007  

Science Conference Proceedings (OSTI)

... Preparing and probing atomic number states with an ... to transition to the commercial market should call ... camera for endoscopes to batteries for an ...

180

NIST Tech Beat for June 25, 2013  

Science Conference Proceedings (OSTI)

... as diverse as protein preservation, batteries and polymer ... United States to get to market first in ... are synchronized to NIST's atomic clock ensemble ...

2013-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SciTech Connect: "smart grid"  

Office of Scientific and Technical Information (OSTI)

Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving Citation Details In-Document...

182

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

183

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

184

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

185

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

186

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

187

2008 Georgia Tech Fact Book Georgia Tech is an equal employment/education opportunity institution.  

E-Print Network (OSTI)

Board Royal Institution of Chartered Surveyors · Georgia Tech operates on the semester system. · Georgia.................................................................................................................. University System of Georgia................................................................................................................................ Table 2.2 University System Office Administrative Staff

Li, Mo

188

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

189

Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information  

Open Energy Info (EERE)

Broadwind Energy Formerly Tower Tech Holdings Broadwind Energy Formerly Tower Tech Holdings Jump to: navigation, search Name Broadwind Energy (Formerly Tower Tech Holdings) Place Manitowoc, Wisconsin Zip 54221-1957 Sector Wind energy Product US-based manufacturer of wind turbine towers, turbine assemblies such as nacelles, and monopiles. References Broadwind Energy (Formerly Tower Tech Holdings)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Broadwind Energy (Formerly Tower Tech Holdings) is a company located in Manitowoc, Wisconsin . References ↑ "Broadwind Energy (Formerly Tower Tech Holdings)" Retrieved from "http://en.openei.org/w/index.php?title=Broadwind_Energy_Formerly_Tower_Tech_Holdings&oldid=343059"

190

CS Wind Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

CS Wind Tech Co Ltd CS Wind Tech Co Ltd Jump to: navigation, search Name CS Wind Tech Co Ltd Place Lianyungang, China Zip 222049 Sector Wind energy Product China-based wind turbine tower maker, a subsidiary of Korea's CS Corporation. References CS Wind Tech Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CS Wind Tech Co Ltd is a company located in Lianyungang, China . References ↑ "CS Wind Tech Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CS_Wind_Tech_Co_Ltd&oldid=343989" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

191

PlasmaTech Caribbean Corporation PCC | Open Energy Information  

Open Energy Info (EERE)

PlasmaTech Caribbean Corporation PCC PlasmaTech Caribbean Corporation PCC Jump to: navigation, search Name PlasmaTech Caribbean Corporation (PCC) Place San Juan, Puerto Rico Zip 00920-2727 Sector Solar Product Project developer focussing on plasma gasification, anaerobic digestion, solar integrated technologies and recycling in the Caribbean. References PlasmaTech Caribbean Corporation (PCC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PlasmaTech Caribbean Corporation (PCC) is a company located in San Juan, Puerto Rico . References ↑ "PlasmaTech Caribbean Corporation (PCC)" Retrieved from "http://en.openei.org/w/index.php?title=PlasmaTech_Caribbean_Corporation_PCC&oldid=349789"

192

ReflecTech, Inc | Open Energy Information  

Open Energy Info (EERE)

ReflecTech, Inc ReflecTech, Inc Jump to: navigation, search Logo: ReflecTech, Inc Name ReflecTech, Inc Address 18200 West Highway 72 Place Arvada, Colorado Zip 80007 Sector Solar Product Highly reflective, glass-free, polymer-based film for concentrating sunlight in solar energy arrays Website http://www.reflectechsolar.com Coordinates 39.862192°, -105.205798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.862192,"lon":-105.205798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

EnerTech Capital | Open Energy Information  

Open Energy Info (EERE)

EnerTech Capital EnerTech Capital Jump to: navigation, search Logo: EnerTech Capital Name EnerTech Capital Address 625 W. Ridge Pike, Building D, Suite 105 Place Conshohocken, Pennsylvania Zip 19428 Region Northeast - NY NJ CT PA Area Product Venture capital Year founded 1996 Phone number (484) 539-1860 Website http://www.enertechcapital.com Coordinates 40.098246°, -75.3000871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.098246,"lon":-75.3000871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Tech Job Connection Connecting employers and potential  

E-Print Network (OSTI)

professional, etc. · be seeking a non-Hanford job · be seeking work at a firm within a 50-mile radius of PNNL, such as an executive, manager, engineer, technician, etc. · not primarily be a Hanford contractor · be located within level of growth and profitability. How does the Tech Job Connection work? Employers and individuals

195

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

196

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

197

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

198

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

199

Microsoft PowerPoint - PaulGottliebTechTransfer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement Directors Procurement Directors Conference Paul Gottlieb Assistant General Counsel for Tech. Transfer & IP 202-586-3439 (fax 2805) Paul.Gottlieb@HQ.DOE.GOV * Lab Tech Transfer EPact 2001 * Other Transaction: Range Fuels * EM awards * BioEnergy Research Centers Laboratory Tech Transfer: Recent Developments: EPACT Sec. 1001 - Secretary to appoint TT Coordinator - Establish Tech Transfer Working group of labs - Tech Commercialization Fund: 0.9 % of applied energy R&D budget to be used to provide matching funds with private partners to promote promising technologies for commercial purposes - Annual Tech Transfer Execution Plan Appointment of the Coordinator * Dr. Raymond L. Orbach, Under Secretary for Science, appointed June 28, 2007 - (c) DUTIES OF THE COORDINATOR.-The Coordinator shall oversee-

200

Virginia Tech Wins EcoCAR Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Tech Wins EcoCAR Competition Virginia Tech Wins EcoCAR Competition Virginia Tech Wins EcoCAR Competition June 17, 2011 - 12:00am Addthis Washington, D.C. - On Thursday evening a team of students from Virginia Tech University learned they received top honors when they were named the overall winners of EcoCAR: The NeXt Challenge after designing and building an extended-range electric vehicle (EREV) using E85 (ethanol). Virginia Tech competed against 15 other universities to take home the top prize of the three-year competition sponsored by the Department of Energy and General Motors. This unique competition helps train students and engineers to become the next generation of workers the U.S. needs to lead the global auto industry. "The ingenuity and dedication shown by the students of Virginia Tech in

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

University of Maryland Wins Max Tech and Beyond Competition for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Maryland Wins Max Tech and Beyond Competition for University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer September 10, 2013 - 12:00pm Addthis The Energy Department announced today that the University of Maryland won the second annual Max Tech and Beyond design competition for ultra-low energy use appliances and equipment for the second year in a row. The team developed a heat pump clothes dryer that is nearly 59% more efficient than a traditional electric dryer. The Max Tech and Beyond competition challenges university teams to go beyond the current "max tech," or maximum technology performance levels, by exploring new design concepts that could become the next generation of

202

DOE Solar Decathlon: News Blog » Virginia Tech  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Tech Virginia Tech Below you will find Solar Decathlon news from the Virginia Tech archive, sorted by date. Virginia Tech Retains Solar Decathlon Europe Lead Monday, June 21, 2010 As of 7 p.m. Monday, Virginia Tech remains in first place overall at Solar Decathlon Europe because of its third-place finish in the Industrialization and Market Viability contest. The Industrialization and Market Viability announcement was made at 5 p.m. today. The Virginia Tech decathletes were extremely happy to again place in the top three in a major contest. Photo of Universidad CEU Cardenal Herrera team members raising their arms in victory. The Universidad CEU Cardenal Herrera team celebrates its first-place win. The winner of the Industrialization and Market Viability contest was the

203

DOE Solar Decathlon: News Blog » Virginia Tech  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Tech Virginia Tech Below you will find Solar Decathlon news from the Virginia Tech archive, sorted by date. Congratulations to Virginia Tech and Solar Decathlon Europe Sunday, June 27, 2010 Virginia Tech took top honors to a standing ovation at the Solar Decathlon Europe awards ceremony today in Madrid, Spain. The decathletes were ecstatic to finally win after participating in four Solar Decathlons. And this was the closest margin of victory in a Solar Decathlon. Virginia Tech won by less than a point! Rank Team Score 1 Virginia Polytechnic Institute & State University 811.83 2 University of Applied Sciences Rosenheim 810.96 3 Stuttgart University of Applied Sciences 807.49 4 Ecole National Supérieure d'architecture de Grenoble 793.84 5 Aalto University, Finland 777.01

204

Virginia Tech Shines Light on Home Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Tech Shines Light on Home Efficiency Virginia Tech Shines Light on Home Efficiency Virginia Tech Shines Light on Home Efficiency July 9, 2010 - 10:54am Addthis Virginia Tech's solar-powered Lumenhaus was designed for maximum efficiency as well as comfort. | Photo courtesy of Lumenhaus Virginia Tech's solar-powered Lumenhaus was designed for maximum efficiency as well as comfort. | Photo courtesy of Lumenhaus Collegiate teams from around the world came to Madrid this month to present their solar-powered houses in the first biennial Solar Decathlon Europe, a competition modeled after the Energy Department's Solar Decathlon in Washington, D.C. As one of just two teams representing the United States, Virginia Tech earned enough points with its Lumenhaus to win the overall competition. "We competed against high quality teams with significant support from their

205

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

206

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

207

Clean Tech Trade Alliance | Open Energy Information  

Open Energy Info (EERE)

Alliance Alliance Jump to: navigation, search Logo: Clean Tech Trade Alliance Name Clean Tech Trade Alliance Address 2817 Wheaton Way Place Bremerton, Washington Zip 98310 Region Pacific Northwest Area Website http://www.cleantechtradeallia Notes Internationally focused hybrid trade alliance that will create a successful, Clean Technology business cluster Coordinates 47.589024°, -122.630351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.589024,"lon":-122.630351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

CleanTech Boston | Open Energy Information  

Open Energy Info (EERE)

Boston Boston Jump to: navigation, search Logo: CleanTech Boston Name CleanTech Boston Place Boston, Massachusetts Region Greater Boston Area Number of employees 1-10 Year founded 2009 Website http://cleantechboston.com Notes Aggregating all of the Boston area networking events on one calendar. Coordinates 42.3584308°, -71.0597732° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3584308,"lon":-71.0597732,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Georgia Tech spiral concentrator: an innovative design  

Science Conference Proceedings (OSTI)

A new, low cost, high performance solar energy concentrator has been developed at Georgia Tech. It is based on Fresnel reflector principles, and is formed by slightly winding a flat spiral of reflective material and securing it to a planar frame. Special focal distributions are easily designed into the concentrator. A wide variety of applications exist for this new device, ranging from generation of industrial process heat to solar cooking.

Steenblik, R.A.; Bomar, S.H. Jr.

1981-01-01T23:59:59.000Z

210

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

211

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

212

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

213

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

214

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

215

LouisianaTechUniversity P.O.Box3155  

E-Print Network (OSTI)

LouisianaTechUniversity P.O.Box3155 RustonLA71272-0001 BOUndPRinTedmATTeRPResORTed U.s.POsTAgePAid RUsTOn,LOUisiAnA71270 PeRmiTnO.104 LouisianaTechuniversiTy2007-2008caTaLog Louisiana Tech universiTy 2007-2008 caTaLog #12;Directory Whom to Contact at Louisiana Tech for Information About: Admissions

Selmic, Sandra

216

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

217

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

218

Texas Tech Honored for Commitment to Texas Tech honored by Minority Access Inc. during its ninth National Role Models Conference in  

E-Print Network (OSTI)

Texas Tech Honored for Commitment to Diversity Texas Tech honored by Minority Access Inc. during its ninth National Role Models Conference in Arlington, Va. Written by Sally Logue Post Texas Tech Inc. organization during its ninth National Role Models Conference in Arlington, Va. "Texas Tech

Rock, Chris

219

Tech Transfer at the National Labs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

save energy and money.

Wed, 24 Jul 2013 21:55:00 +0000 Rebecca Matulka 712696 at http:energy.gov R&D 100: Battery Technology Goes Viral http:energy.gov...

220

Argonne TDC: SourceTech - Argonne National Laboratory  

SourceTech Medical (STM, Carol Stream, Ill.), a start-up company established in April 1998, approached Argonne National Laboratory for help in developing a new method ...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molecule Nanoweaver Creates High-Tech Medical Patches and Multilayered...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecule Nanoweaver Creates High-Tech Medical Patches and Multilayered Capsules Technology available for licensing: Molecule Nanoweaver, a unique tool that can be used as both a...

222

Statistically Speaking - What's in SciTech Connect? | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Mathematics and Computing National Defense Physics Power Generation and Distribution Renewable Energy SciTech Connect contains close to 2.5 million Scientific and Technical...

223

Green Tech Solar Inc GTS | Open Energy Information  

Open Energy Info (EERE)

British Columbia-based firm involved in the development of utility-scale solar and bio energy projects in the southwestern United States. References Green Tech Solar Inc...

224

Experts To Examine Virtual Enterprise Uses of Info Tech  

Science Conference Proceedings (OSTI)

Experts To Examine Virtual Enterprise Uses of Info Tech. ... tools and technology can be used in consort ... its 5.7 working group on the use of computer ...

2012-12-17T23:59:59.000Z

225

CarboTech Engineering GmbH | Open Energy Information  

Open Energy Info (EERE)

Engineering GmbH" Retrieved from "http:en.openei.orgwindex.php?titleCarboTechEngineeringGmbH&oldid343260" Categories: Clean Energy Organizations Companies...

226

The highest-tech ball peen hammer - Industrial Partnerships Office  

March 20, 2009 The highest-tech ball peen hammer For decades, the metals and fabrication industries have relied on shot peening as an efficient way to improve

227

Baoding High Tech Industry Development Zone | Open Energy Information  

Open Energy Info (EERE)

Zone" Retrieved from "http:en.openei.orgwindex.php?titleBaodingHighTechIndustryDevelopmentZone&oldid342524" Categories: Clean Energy Organizations Companies...

228

Pages that link to "Baoding High Tech Industry Development Zone...  

Open Energy Info (EERE)

Zone. Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereBaodingHighTechIndustryDevelopmentZone" Special pages About us Disclaimers Energy blogs Developer...

229

DOE Solar Decathlon: News Blog Blog Archive Virginia Tech...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lumenhaus has performed almost perfectly so far. Photo of Lumenhaus with people milling about its decks and walkways. Solar Decathlon Europe visitors explore Virginia Tech's...

230

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

231

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

232

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

233

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

234

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

235

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

236

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since...

237

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

238

U.S. Energy Department Streamlines Access to High-Tech User Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamlines Access to High-Tech User Facilities at DOE National Laboratories U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National...

239

Search Tip: Finding DOE-sponsored STI in SciTech Connect | OSTI...  

Office of Scientific and Technical Information (OSTI)

Mathematics and Computing National Defense Physics Power Generation and Distribution Renewable Energy SciTech Connect While SciTech Connect provides comprehensive coverage of DOE...

240

What is the Difference between Science Accelerator and SciTech...  

Office of Scientific and Technical Information (OSTI)

Accelerator. Using a new search interface, SciTech Connect consolidates and replaces Energy Citations Database and Information Bridge. The Basic Search in SciTech Connect...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Article on the Grid Tech Team's Strategic Plan for Grid Modernization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now Available Article on the Grid Tech Team's Strategic...

242

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

243

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

244

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

245

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

246

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

247

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

248

DOE Solar Decathlon: Virginia Tech: Trotting the Globe  

NLE Websites -- All DOE Office Websites (Extended Search)

Lumenhaus at dawn surrounded by skyscrapers in New York City's Times Square. Lumenhaus at dawn surrounded by skyscrapers in New York City's Times Square. Enlarge image The Virginia Tech team displays its house in Times Square in New York, New York, on Jan. 28, 2010. (Credit: Kelly Shimoda/U.S. Department of Energy Solar Decathlon) Who: Virginia Tech What: Lumenhaus Where: Virginia Tech Outer Drillfield Blacksburg, Virginia 24060 Public tours: The house is open Mondays and Fridays from 3 p.m. to 8 p.m. and Sundays from 1 p.m. to 5 p.m. through Oct. 24, 2010, while the house is in Blacksburg, Virginia. Nov. 15-18, 2010, Lumenhaus is open to Greenbuild 2010 conference attendees in Chicago. Solar Decathlon 2009 Virginia Tech: Trotting the Globe If a house could be a hitchhiker, Virginia Tech's Lumenhaus would surely be among the most fascinating. The project-originally designed for the U.S.

249

Linear Collider Collaboration Tech Notes LCC-0108  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 TESLA 2002-10 CBP Tech Note-268 November 2002 Comparison of Emittance Tuning Simulations in the NLC and TESLA Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Vertical emittance is a critical issue for future linear collider damping rings. Both NLC and TESLA specify vertical emittance of the order of a few picometers, below values currently achieved in any storage ring. Simulations show that algorithms based on correcting the closed orbit and the vertical dispersion can be effective in reducing the vertical emittance to the required levels, in the presence of a limited subset of

250

High Energy Physics Research at Louisiana Tech  

SciTech Connect

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

251

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

252

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

253

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

254

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

255

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

256

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

257

Texas Tech University Knowledge Representation Lab Reasoning about the Intentions of Agents  

E-Print Network (OSTI)

Texas Tech University Knowledge Representation Lab Reasoning about the Intentions of Agents Justin Blount Texas Tech University April 6, 2012 #12;Texas Tech University Knowledge Representation Lab A Quote another, and here again we may choose as we will. #12;Texas Tech University Knowledge Representation Lab

Zhang, Yuanlin

258

Texas Tech, Society of Environmental Journalists Announce Date Changes for 22 Annual Meeting  

E-Print Network (OSTI)

Texas Tech, Society of Environmental Journalists Announce Date Changes for 22 Annual Meeting :: Texas Tech News http://today.ttu.edu/2012/02/texas-tech-society-of-environmental-journalists-announce-date-changes-for-22-annual-meeting/[2/28/2012 9:29:57 AM] February 27, 2012 Texas Tech, Society of Environmental

Rock, Chris

259

Texas Tech on iTunes U Policy Guidelines DISCLAIMER AND ATTESTATION  

E-Print Network (OSTI)

Texas Tech on iTunes U Policy Guidelines DISCLAIMER AND ATTESTATION: Statements and opinions reflected in the content within Texas Tech on iTunes U are those of the copyright owner (audio and/or video file,) and not necessarily those of Texas Tech University. All content submitted to Texas Tech on i

Rock, Chris

260

Texas Tech University Upward Bound Programs WAIVER OF LIABILITY AND HOLD HARMLESS AGREEMENT  

E-Print Network (OSTI)

Texas Tech University Upward Bound Programs WAIVER OF LIABILITY AND HOLD HARMLESS AGREEMENT's participation in Texas Tech University Upward Bound Programs, I hereby RELEASE, WAIVE, DISCHARGE, and HOLD HARMLESS Tech University Upward Bound Programs, Texas Tech University, the Board of Regents, the State

Zhang, Yuanlin

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

262

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

263

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

264

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

265

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

266

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

267

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

268

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

269

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

270

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

271

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

272

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

273

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

274

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

275

UndergraduateEducation2010 MICHIGAN TECH  

E-Print Network (OSTI)

for 1,140+ mpg UNDERGRADUATE RESEARCH Auger North Studying the universe's highest energy particles charging station to do just that. The charging station consists of a source of renewable energy, a battery bank to balance the demand, inverters, a ve

276

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

277

Linear Collider Collaboration Tech Notes LCC-0080 CBP Tech Note-244  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 CBP Tech Note-244 May 2002 Estimates of Collective Effects in the NLC Main Damping Rings A. Wolski and S. de Santis Lawrence Berkeley National Laboratory Berkeley, California Abstract: Damping Ring performance depends on the ability to store the design beam current, and extract the beam with the specified low transverse emittance. Given the high bunch charge and moderate energy, a variety of collective effects could play a significant role, in either limiting the bunch current, or increasing the emittance. Here, we estimate the consequences of various effects, based on current theories and understanding. LCC-0080 CBP Tech Note-244 Estimates of Collective Effects in the NLC Main Damping Rings A. Wolski and S. de Santis Lawrence Berkeley National Laboratory

278

LBNL-PG&E High Tech Building Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.femp.energy.gov/training Federal Energy Management Program Labs, Data Centers, and High Tech Facilities Dale Sartor, Lawrence Berkeley National Laboratory 2 | FUPWG April 2012 High Tech Buildings are Energy Hogs Comparative Energy Costs High-Tech Facilities vs. Standard Buildings Annual Energy Costs ($/square foot) 3 | FEMP First Thursday Seminars femp.energy.gov/training FEMP First Thursday Seminars Energy Efficiency in Data Centers 4 | FUPWG April 2012 High voltage distribution High efficiency UPS systems Efficient redundancy strategies Use of DC power Better air management Move to liquid cooling Optimized chilled-water plants Use of free cooling Heat recovery Server innovation Virtualization High efficiency power supplies

279

Battery disconnect sensing circuit for battery charging systems  

SciTech Connect

This patent describes a battery disconnect sensing circuit for battery charging systems which have a pair of cables adapted to be connected to a battery to charge it. The sensing circuit contains a first R-C circuit adapted to connect across the cables and a second R-C circuit adapted to connect across the cables. The time constant of the first R-C circuit is substantially greater than that of the second R-C circuit. Also means connected to the RC circuits produced a momentary control signal in response to disconnection of the cables from a battery being charged. Included in a battery charging system is a source of charging current whose voltage output is controlled at a predetermined value when connected to a battery. It increases to a higher value when disconnected from the battery. Controller means connected with the source activate the battery charging system automatically in response to electrical connection of the battery. The improvement consists of: means for momentarily effecting reversal of the higher voltage value, and battery disconnect sensing means connected the charging source and to the controller means for sensing the reversed higher voltage upon disconnection of the battery charger system from the battery and for responding by automatically deactivating the battery charging system.

Dattilo, D.P.

1986-01-28T23:59:59.000Z

280

Means for controlling battery chargers  

SciTech Connect

A battery charger control device is described that senses the placement of a battery across control terminals and utilizes the voltage thereof to place into conduction a transistor which actuates a relay which turns on a battery charger, which thereafter, monitors the the charge condition of the battery as determined by the voltage supplied to a voltage following circuit from the control terminals, and which actuates an electronic switch after the elapse of a predetermined period of time after the battery has attained a fully charged condition as determined by the voltage of the battery as presented to the voltage following circuit.

Ballman, G.C.

1980-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

282

Systems approach to rechargeable batteries  

SciTech Connect

When selecting a rechargeable battery for an application, consideration must be given to the total system. Electrical load requirements, mechanical restrictions, environmental conditions, battery life, and charging must be considered to assure satisfactory battery performance. Meeting the electrical requirements involves selecting a battery that will deliver adequate voltage, run time and power. The mechanical aspects are largely a matter of resolving volume and weight. The charger must be capable of returning the battery to full charge in an allotted time. But of greater importance, the charge control method should be chosen carefully to maximize the operational life of the battery. 4 refs.

Mullersman, F.H.

1980-09-01T23:59:59.000Z

283

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

284

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

285

Renewable Energy Tech School | Open Energy Information  

Open Energy Info (EERE)

School School Jump to: navigation, search Name Renewable Energy Tech School Place Windsor, Colorado Region Rockies Area Number of employees 1-10 Year founded 2009 Phone number 970 218 5155 Coordinates 40.4774818°, -104.9013617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4774818,"lon":-104.9013617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Linear Collider Collaboration Tech Notes LCC-0109  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 TESLA 2002-11 CBP Tech Note-269 November 2002 Alignment Stability Models for Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Linear collider damping rings are highly sensitive to magnet alignment. Emittance tuning simulations for current designs of damping rings for TESLA and NLC have given encouraging results, but depend on invasive measurements of dispersion. The frequency with which such measurements must be made is therefore an operational issue, and depends on the time stability of the alignment. In this note, we consider three effects that lead to misalignment and the need to retune the damping ring: (1)

287

Virginia Tech Electric Service | Open Energy Information  

Open Energy Info (EERE)

Electric Service Electric Service Jump to: navigation, search Name Virginia Tech Electric Service Place Virginia Utility Id 19882 Utility Location Yes Ownership S NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Industrial Medium General Commercial Residential Residential Sanctuary Commercial Small General Commercial Average Rates Residential: $0.0971/kWh Commercial: $0.0832/kWh Industrial: $0.0765/kWh The following table contains monthly sales and revenue data for Virginia

288

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

289

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

290

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

291

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

292

Circulating current battery heater  

SciTech Connect

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

293

Hi-Tech Fisheries Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hi-Tech Fisheries Aquaculture Low Temperature Geothermal Facility Hi-Tech Fisheries Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Aquaculture Low Temperature Geothermal Facility Facility Hi-Tech Fisheries Sector Geothermal energy Type Aquaculture Location Bluffdale, Utah Coordinates 40.4896711°, -111.9388244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

294

Max Tech and Beyond Design Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Tech and Beyond Design Competition Max Tech and Beyond Design Competition Max Tech and Beyond Design Competition The Max Tech and Beyond Design Competition is an annual competition run by the Department of Energy (DOE) and the Lawrence Berkeley National Laboratory (LBNL) that encourages students to tackle challenges in designing energy efficient appliances and test performance to evaluate reductions in energy consumption. The competition challenges 10 - 20 collegiate teams nationwide to design and test appliance innovations with the potential to significantly reduce energy consumption while providing a level of service comparable to or better than current best-on-market products. The winner of the competition will be the team that best demonstrates energy savings potential for viable future products.

295

Mentoring and Educating to Increase Diversity in Science, Tech, Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentoring and Educating to Increase Diversity in Science, Tech, Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math October 12, 2011 - 9:19am Addthis Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Bill Valdez Bill Valdez Principal Deputy Director "The next two decades of global diversity and inclusion will present unprecedented opportunities and challenges," began the description of one of yesterday's panels at the 2011 National Diversity Women's Business Leadership Conference. Yesterday I had the opportunity to present on that panel, joined by thought leaders in diversity such as Rosalyn Taylor O'Neale, VP and Chief Diversity & Inclusion Officer at Campbell Soup Company and Dr. Johnnetta Cole, the

296

Kent SeaTech Corporation Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

SeaTech Corporation Aquaculture Low Temperature Geothermal Facility SeaTech Corporation Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kent SeaTech Corporation Aquaculture Low Temperature Geothermal Facility Facility Kent SeaTech Corporation Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692°, -116.0772244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

297

Flinthills Tech College Wind Project | Open Energy Information  

Open Energy Info (EERE)

Flinthills Tech College Wind Project Flinthills Tech College Wind Project Jump to: navigation, search Name Flinthills Tech College Wind Project Facility Flinthills Tech College Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.419289°, -96.223602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.419289,"lon":-96.223602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Comments on ORNL Tech transfer.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL Tech transfer.txt ORNL Tech transfer.txt From: Doug Lawyer [dlawyer@knoxvillechamber.com] Sent: Wednesday, January 21, 2009 4:40 PM To: GC-62 Cc: Rhonda Rice Subject: Comments on ORNL Tech transfer Attachments: image001.jpg I understand that DOE is accepting comments on technology transfer initiatives in your federal national labs. Here's some thoughts on tech transfer at ORNL: * One of the key economic development strategies of Knox County, Tennessee, which sits in a region we call The Innovation Valley, involves Technology transfer from Oak Ridge National Laboratory. It is a focus of our daily economic development efforts through a program we call Technology Mining and Matching. We have a strong connection with ORNL and its partnerships division. * During the eight years that UT-Battelle LLC has managed ORNL, we

299

Spotsylvania Career and Tech Center Wind Project | Open Energy Information  

Open Energy Info (EERE)

Career and Tech Center Wind Project Career and Tech Center Wind Project Jump to: navigation, search Name Spotsylvania Career and Tech Center Wind Project Facility Spotsylvania Career and Tech Center Sector Wind energy Facility Type Community Wind Location VA Coordinates 38.230911°, -77.556313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.230911,"lon":-77.556313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Property:Incentive/TechMin | Open Energy Information  

Open Energy Info (EERE)

TechMin TechMin Jump to: navigation, search Property Name Incentive/TechMin Property Type Text Description Technology Minimum. Pages using the property "Incentive/TechMin" Showing 25 pages using this property. (previous 25) (next 25) A Alternative Energy Portfolio Standard + Renewables: 12.5% by 2024 (includes solar-electric minimum) Solar-Electric: 0.5% by 2024 Alternative Energy Portfolio Standard (Pennsylvania) + Tier I: ~8% by compliance year 2020-2021 (includes PV minimum) Tier II: 10% by compliance year 2020-2021 PV: 0.5% by compliance year 2020-2021 Alternative and Renewable Energy Portfolio Standard (West Virginia) + At least 90% must come from eligible resources other than natural gas C City of Austin - Renewables Portfolio Standard (Texas) + 200 MW from solar by 2020

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mentoring and Educating to Increase Diversity in Science, Tech, Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentoring and Educating to Increase Diversity in Science, Tech, Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math October 12, 2011 - 9:19am Addthis Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Bill Valdez Bill Valdez Principal Deputy Director "The next two decades of global diversity and inclusion will present unprecedented opportunities and challenges," began the description of one of yesterday's panels at the 2011 National Diversity Women's Business Leadership Conference. Yesterday I had the opportunity to present on that panel, joined by thought leaders in diversity such as Rosalyn Taylor O'Neale, VP and Chief Diversity & Inclusion Officer at Campbell Soup Company and Dr. Johnnetta Cole, the

302

Comments on ORNL Tech transfer.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL Tech transfer.txt ORNL Tech transfer.txt From: Doug Lawyer [dlawyer@knoxvillechamber.com] Sent: Wednesday, January 21, 2009 4:40 PM To: GC-62 Cc: Rhonda Rice Subject: Comments on ORNL Tech transfer Attachments: image001.jpg I understand that DOE is accepting comments on technology transfer initiatives in your federal national labs. Here's some thoughts on tech transfer at ORNL: * One of the key economic development strategies of Knox County, Tennessee, which sits in a region we call The Innovation Valley, involves Technology transfer from Oak Ridge National Laboratory. It is a focus of our daily economic development efforts through a program we call Technology Mining and Matching. We have a strong connection with ORNL and its partnerships division. * During the eight years that UT-Battelle LLC has managed ORNL, we

303

PQ TechWatch: Understanding and Managing Residential Power Quality  

Science Conference Proceedings (OSTI)

This PQ TechWatch examines the changing face of the appliances providing the largest share of the power consumption in residential sites, and then it looks on the horizon at new additions to the residential load profile.

2009-12-11T23:59:59.000Z

304

V2TechIndia - Bangalore - Corporate Office | Facebook  

U.S. Energy Information Administration (EIA)

V2TechIndia, Bangalore. 299 likes 1 talking about this 32 were here. Our Mission is simple: to meet and exceed your web development needs through a functional ...

305

HyTech - The Hydrogen Technology Laboratory at Savannah River  

DOE Green Energy (OSTI)

SRS recently announced the formation of the Hydrogen Technology Laboratory (HyTech) to work with industry and government in developing technologies based on the site`s four decades of experience with tritium and other forms of H. HyTech will continue to sustain the site`s ongoing role in H technology applications for defense programs. In addition, the laboratory will work with the chemical, transportation, power, medical, and other industries to develop and test related technologies. HyTech, which is located in the Savannah River Technology Center, will make use of its facilities and staff, as well as the infrastructure within the site`s Tritium Facilities. More than 80 SRS scientists, engineers, and technical professionals with backgrounds in chemistry, engineering, materials science, metallurgy, physics, and computer science will work with the laboratory. This paper describes some of HyTech`s current initiatives in the area of H storage, transportation, and energy applications.

Motyka, T.; Knight, J.R.; Heung, L.K.; Lee, M.W.

1995-12-31T23:59:59.000Z

306

Argonne, Virginia Tech Win Storage Challenge Competition | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 26, 2007 Tweet EmailPrint BLACKSBURG, Va., Nov. 26 -- A team of researchers led by Pavan Balaji of Argonne National Laboratory and Wu Feng of Virginia Tech won an...

307

Stream Fund High Tech Group Corp Ltd | Open Energy Information  

Open Energy Info (EERE)

Group Corp Ltd Place Hong Kong Product Hong Kong-based investment company engaged in thin-film PV products and automobiles. References Stream Fund High-Tech Group Corp Ltd1...

308

Cal Tech's Program in Meteorology: 19331948  

Science Conference Proceedings (OSTI)

The California Institute of Technology (Cal Tech) established a course of study in meteorology in 1933. It was intimately tied to the upsurge of activity in commercial and military aviation that occurred in the period between the world wars. The ...

J. M. Lewis

1994-01-01T23:59:59.000Z

309

Tech Transfer at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to get lab tech to small business owners and entrepreneurs. August 16, 2013 Multi-Mode Passive Detection System R&D 100: Lab Researchers Contribute to Public Safety Scientists at...

310

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

311

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

312

Battery conditioning system having communication with battery parameter memory means in conjunction with battery conditioning  

SciTech Connect

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a non-portable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. 27 figs.

Koenck, S.E.

1994-01-11T23:59:59.000Z

313

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

314

Safe battery solvents  

SciTech Connect

An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

315

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling...

316

Battery Cahrging at the EVRS  

NLE Websites -- All DOE Office Websites (Extended Search)

ETA-NTP008 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric Transportation Applications Prepared by: Date:...

317

Paintable Battery Neelam Singh1  

E-Print Network (OSTI)

Paintable Battery Neelam Singh1 , Charudatta Galande1 , Andrea Miranda1 , Akshay Mathkar1 , Wei Gao Belgium. If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary

Ajayan, Pulickel M.

318

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

319

Battery switch for downhole tools  

Science Conference Proceedings (OSTI)

An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

Boling, Brian E. (Sugar Land, TX)

2010-02-23T23:59:59.000Z

320

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

322

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

323

Cleaning the Buildings of High Tech Companies in Silicon Valley: The Case of Mexican Janitors in Sonix  

E-Print Network (OSTI)

the Buildings of High Tech Companies in Silicon Valley: Thethe Buildings of High-Tech Companies in Silicon Valley: Theof the numerous high-tech companies that are concentrated in

Zlolniski, Christin

2000-01-01T23:59:59.000Z

324

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than todays lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

325

Current balancing for battery strings  

SciTech Connect

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

326

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

327

Zinc alkaline secondary battery  

SciTech Connect

A zinc alkaline secondary battery with improved service life in which a multi-layer separator is interposed between the negative and positive electrodes and the quantity of the alkaline electrolyte in the layer of the separator adjacent to the negative electrode is less than that of the electrolyte in the layer of the separator adjacent to the positive electrode.

Furukawa, N.; Nishizawa, N.

1983-03-29T23:59:59.000Z

328

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

329

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

330

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

331

Clean Tech San Diego | Open Energy Information  

Open Energy Info (EERE)

San Diego San Diego Jump to: navigation, search Name Clean Tech San Diego Address 4510 Executive Drive Place San Diego, California Zip 92121 Region Southern CA Area Notes Non-profit membership organization formed to accelerate San Diego as a world leader in the clean technology economy Website http://www.cleantechsandiego.o Coordinates 32.875965°, -117.21085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.875965,"lon":-117.21085,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

CleanTech Boulder | Open Energy Information  

Open Energy Info (EERE)

Boulder Boulder Jump to: navigation, search Name CleanTech Boulder Address 2440 Pearl Street Place Boulder, Colorado Zip 80303 Region Rockies Area Number of employees 1-10 Year founded 2008 Phone number 303-442-1044 xt 122 Website http://www.boulderchamber.com/ Notes A Boulder Chamber-led industry cluster focused on clean technology-oriented businesses Coordinates 40.02095°, -105.263474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.02095,"lon":-105.263474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Clean Tech Los Angeles | Open Energy Information  

Open Energy Info (EERE)

Los Angeles Los Angeles Jump to: navigation, search Name Clean Tech Los Angeles Place Los Angeles, California Zip 90017 Region Southern CA Area Notes Collaboration between CRA/LA, Caltech, DWP, JPL, Mayor's Office, Port UCLA, and USC to establish Los Angeles as the global leader in research, commercialization, and deployment of clean technologies Website http://cleantechlosangeles.org Coordinates 34.0543797°, -118.2672801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0543797,"lon":-118.2672801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Arashi Hi Tech Bio Power Pvt Ltd AHBPPL | Open Energy Information  

Open Energy Info (EERE)

Arashi Hi Tech Bio Power Pvt Ltd AHBPPL Jump to: navigation, search Name Arashi Hi-Tech Bio-Power Pvt. Ltd. (AHBPPL) Place Tamil Nadu, India Sector Biomass Product Tamil Nadu-based...

335

MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...  

Open Energy Info (EERE)

Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

336

Microsoft PowerPoint - CellTechSECA2010V1.ppt [Read-Only] [Compatibili...  

NLE Websites -- All DOE Office Websites (Extended Search)

presenter, CellTech Power Thomas Tao, presenter, CellTech Power 3 Generations of LTA-SOFC Development 2002 2006 2004 1998 2000 Gen 1: Gen 2: Gen 3 0: 2008 G 3 1 2009 - 2010 G 3...

337

VIRGINIA TECH WILL BE A LEADER IN CAMPUS SUSTAINABILITY We define sustainability as the  

E-Print Network (OSTI)

, Spain. Hybrid Electric Vehicle Team won the international EcoCar Challenge in 2011. Gold award of future generations. History of Sustainability at Virginia Tech Virginia Tech is committed to being

Virginia Tech

338

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

339

Kent SeaTech Increases Fish Farm Yield and Recycles Water ...  

Science Conference Proceedings (OSTI)

Kent SeaTech Increases Fish Farm Yield and Recycles Water for Neighboring Agricultural Irrigation. Partnering Organization ...

2011-10-19T23:59:59.000Z

340

US advanced battery consortium in-vehicle battery testing procedure  

DOE Green Energy (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The environmentally safe battery  

SciTech Connect

There are three aspects to an environmentally safe battery. The first deals with the manufacturing process, the second with the use of environmentally friendly materials, and the third with the disposal and/or recycling of spent units. In this paper, several ongoing programs at Sandia National Laboratories that relate to the environmentally conscious manufacturing of batteries, are discussed. The solvent substitution/elimination program is a two-pronged effort, aimed at identifying new solvents which are compatible with the environment, while at the same time developing dry process cleaning technology. The joining program is evaluating new solvents for flux removal as well as the development of fluxless soldering processes. In the area of welding, new cleaning processes are under study. Chemical microsensors are under development that are capable of identifying and quantifying single chemical species. These sensors have been used to monitor and improve processes using toxic/hazardous solvents. 1 ref., 1 fig.

Levy, S.C.; Brown, N.E.

1991-01-01T23:59:59.000Z

342

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics  

E-Print Network (OSTI)

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

Pedram, Massoud

343

Smart battery controller for lithium/sulfur dioxide batteries  

Science Conference Proceedings (OSTI)

Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

Atwater, T.; Bard, A.; Testa, B.; Shader, W.

1992-08-01T23:59:59.000Z

344

Texas Tech University Knowledge Representation Group Issues in Reasoning about Interaction Networks in Cells  

E-Print Network (OSTI)

1 Texas Tech University Knowledge Representation Group Issues in Reasoning about Interaction Proceedings of AAAI'05 November 3, 2010 #12;2 Texas Tech University Knowledge Representation Group;3 Texas Tech University Knowledge Representation Group Previous Paper · They used an action language

Zhang, Yuanlin

345

Texas Tech at TMEA 2013 Clinicians: Janice Killian & John Wayman, Young Harris College  

E-Print Network (OSTI)

Texas Tech at TMEA 2013 ,k9ki9o Clinicians: Janice Killian & John Wayman, Young Harris College Wood The Yin and Yang of Teaching Music Thurs. Feb 14 th 11:00 am ­ Noon / CC 212 Texas Tech Consortium Thurs. Feb 14 th 5:00-6:00 pm / CC 212 Concert: Texas Tech University Symphonic Wind Ensemble Conductor

Rock, Chris

346

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

347

The Max Tech and Beyond Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Max Tech and Beyond Competition The Max Tech and Beyond Competition The Max Tech and Beyond Competition Addthis 1 of 5 Team Cal Poly Solar is working to significantly reduce the cost and construction time on their solar concentrator for cooking. Image: Lawrence Berkeley National Laboratory 2 of 5 Professor Dale Dolan's students from California Polytechnic State University San Luis Obispo Electrical Engineering department testing the placement of their Hybrid Solar Photovoltaic Panel for Pool Heating. Image: Lawrence Berkeley National Laboratory 3 of 5 Students from the University of Maryland working hard to make a residential air condition unit more efficient. Image: Lawrence Berkeley National Laboratory 4 of 5 Team Ohio State's vapor compression hybrid air/water conditioning system for residential housing.

348

Property:Incentive/TechDsc | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Property Edit with form History Facebook icon Twitter icon » Property:Incentive/TechDsc Jump to: navigation, search Property Name Incentive/TechDsc Property Type Page Description Eligible Technologies. Subproperties This property has the following 1 subproperty: I Filter:Incentives by Eligible Technologies Pages using the property "Incentive/TechDsc" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Fuel Cells + 3 30% Business Tax Credit for Solar (Vermont) + Photovoltaics +, Solar Space Heat +, Solar Thermal Electric +, ...

349

Tibet Huaguan Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tibet Huaguan Tech Co Ltd Tibet Huaguan Tech Co Ltd Jump to: navigation, search Name Tibet Huaguan Tech Co Ltd Place Chengdu, Sichuan Province, China Zip 610000 Sector Solar Product Chengdu-based manufacturer of solar products. Coordinates 30.67°, 104.071022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.67,"lon":104.071022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

New England Tech Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

New England Tech Wind Turbine New England Tech Wind Turbine Facility New England Tech Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner New England Institute of Technology Energy Purchaser New England Institute of Technology Location Warwick RI Coordinates 41.732743°, -71.451466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.732743,"lon":-71.451466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Enursun Power Tech Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Enursun Power Tech Pvt Ltd Enursun Power Tech Pvt Ltd Jump to: navigation, search Name Enursun Power Tech Pvt. Ltd. Place Mumbai, Maharashtra, India Zip 400021 Sector Solar Product Mumbai-based solar project developer. Coordinates 19.076191°, 72.875877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.076191,"lon":72.875877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Mfg & Tech Services | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mfg & Tech Services Mfg & Tech Services Mfg & Tech Services Y-12 possesses unique manufacturing and technical service resources. Y-12 serves the nation's national security mission as an enduring national asset, providing leadership in manufacturing and technical services for NNSA's nuclear security enterprise, other government agencies, and U.S. industry. National security challenges are met by leveraging Y-12's capabilities, subject matter expertise, and industrial and academic partnerships that have been developed as an NSE asset in alignment with our M&TS core competency. Y-12 possesses unique manufacturing and technical service resources that: Solve high-risk challenges and eliminate the most difficult manufacturability and development obstacles; Protect classified and proprietary materials, components and

353

Business, Government and Tech Leaders Give the Full Perspective |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business, Government and Tech Leaders Give the Full Perspective Business, Government and Tech Leaders Give the Full Perspective Business, Government and Tech Leaders Give the Full Perspective February 24, 2012 - 4:45pm Addthis Secretary of Energy Steven Chu speaking at the 2011 ARPA-E Energy Innovation Summit. | Energy Department file photo. Secretary of Energy Steven Chu speaking at the 2011 ARPA-E Energy Innovation Summit. | Energy Department file photo. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs Check out the full conference program for more on the 2012 ARPA-E Energy Innovation Summit. When the third annual ARPA-E Energy Innovation Summit convenes in Washington, DC, next week, key innovators from across the country and around the world will meet to share ideas for solving our greatest energy

354

Tech Transfer Awards 2012 | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships / Technologies / Tech Transfer Awards 2012 Partnerships / Technologies / Tech Transfer Awards 2012 Tech Transfer Awards 2012 Posted: February 20, 2013 - 10:28am Y-12 proudly celebrated our inventors and their bright ideas at this year's Technology Transfer Awards Ceremony. Let the accolades begin! Y-12 recently honored 74 individuals for 68 fiscal year 2012 invention disclosures and Idea-EZ forms, 12 inventors for 11 new patents and 6 first-time patent awardees at a Technology Transfer Awards Ceremony, held in Oak Ridge. "Y-12 excels at tackling tough technical problems and developing practical solutions. The real message is that Y-12's efforts in technology transfer demonstrate the creativity of our folks and stimulate innovation within the plant," said Van Mauney, vice president for Program

355

CERTIFICATION DOCKET FOR AL-TECH SPECIALTY STEEL CORPORATION  

Office of Legacy Management (LM)

NY. NY. 0 -02-3 CERTIFICATION DOCKET FOR AL-TECH SPECIALTY STEEL CORPORATION (THE F01umz ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND OFFSITE PROPERTY IN DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects CONTENTS Introduction to the Certification Docket for the Al-Tech Specialty Steel Corporation, (the Former Allegheny-Ludlum Steel Corporation) Watervliet, New York, and Offsite Property in Dunkirk, New York Exhibit I: Exhibit II: Purpose Docket Contents Summary of Activities at the Al-Tech Specialty Steel Corporation, (the Former Allegheny-Ludlum Steel Corporation) Watervliet, New York, and Offsite Property in Dunkirk, New York

356

Powering Curiosity: Lab Tech Goes to Mars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Curiosity: Lab Tech Goes to Mars Curiosity: Lab Tech Goes to Mars Powering Curiosity: Lab Tech Goes to Mars August 6, 2012 - 9:14am Addthis One of the first images taken by NASA's Curiosity rover was taken on the left-rear side of the rover looking directly into the sun. | Photo courtesy of NASA/JPL-Caltech. One of the first images taken by NASA's Curiosity rover was taken on the left-rear side of the rover looking directly into the sun. | Photo courtesy of NASA/JPL-Caltech. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What does this project do? Curiosity will perform 10 experiments over two years to determine whether Mars supports life or has in the past. This morning at 1:31 EDT the Mars rover Curiosity touched down on the Red Planet after a daredevil descent to begin its mission exploring a vast

357

Students' Clean Tech Projects: Driving Commercial Success | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students' Clean Tech Projects: Driving Commercial Success Students' Clean Tech Projects: Driving Commercial Success Students' Clean Tech Projects: Driving Commercial Success October 6, 2011 - 3:20pm Addthis UCSD Ph.D. candidate (structural engineering) and von Liebig Fellow Arun Manohar demonstrates unique Enhanced Infrared Thermography algorithm to identify structural defects in composite wind turbine plates. | Image Courtesy of the San Diego Renewable Energy Fellowship. UCSD Ph.D. candidate (structural engineering) and von Liebig Fellow Arun Manohar demonstrates unique Enhanced Infrared Thermography algorithm to identify structural defects in composite wind turbine plates. | Image Courtesy of the San Diego Renewable Energy Fellowship. Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy

358

PNNL: EDO - Tri-Cities Tech Business Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-Cities Tech Business Update Tri-Cities Tech Business Update This monthly e-mailed update contains news, opportunities, upcoming events, and other information about Mid-Columbia tech businesses and the organizations that support them. Browse the archives for back issues. Printer Friendly Version January 2014 Issue Startups Move Ahead Businesses that were launched at the first-ever Tri-Cities Startup Weekend in September are moving ahead. more... Books by Local Authors Two recent books by Tri-Cities authors provide insights about technology marketing and economic development, respectively. more... Port of Pasco Appointments Gary Ballew joined the Port of Pasco as the director of economic development and marketing on December 16. more... Tri-City Chamber Appointment The Tri-City Regional Chamber of Commerce has hired Austin Neilson as its

359

Renewable Energy Innovations Garner Tech Transfer Awards | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Innovations Garner Tech Transfer Awards Renewable Energy Innovations Garner Tech Transfer Awards Renewable Energy Innovations Garner Tech Transfer Awards May 23, 2012 - 10:11am Addthis Among the Energy Department teams that won awards at the Federal Laboratory Consortium for Technology Transfer was the team above from Pacific Northwest National Lab. They received the Interagency Partnership Award at an awards banquet in Pittsburgh on May 3. The award recognizes employees from at least two different federal agencies or laboratories who have “collaboratively accomplished outstanding work in transferring technology." | Photo courtesy of the Federal Lab Consortium. Among the Energy Department teams that won awards at the Federal Laboratory Consortium for Technology Transfer was the team above from Pacific

360

From Innovation to Commercialization: Tech Transfer at the National Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Innovation to Commercialization: Tech Transfer at the National From Innovation to Commercialization: Tech Transfer at the National Labs From Innovation to Commercialization: Tech Transfer at the National Labs August 26, 2013 - 5:28pm Addthis Argonne National Lab scientists Jeff Elam (left) and Anil Mane’s work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new technology earned one of the 36 R&D 100 awards from R&D Magazine that the National Labs took home in 2013. | Image courtesy of Argonne National Laboratory. Argonne National Lab scientists Jeff Elam (left) and Anil Mane's work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CellTech Power Inc | Open Energy Information  

Open Energy Info (EERE)

CellTech Power Inc CellTech Power Inc Jump to: navigation, search Name CellTech Power Inc Address 131 Flanders Road Place Westborough, Massachusetts Zip 01581 Sector Hydrogen Product Fuel cell developer Website http://www.celltechpower.com/ Coordinates 42.2758109°, -71.5801323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2758109,"lon":-71.5801323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Report: Tech Review Takes Snapshot of Energy Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Tech Review Takes Snapshot of Energy Research Report: Tech Review Takes Snapshot of Energy Research Report: Tech Review Takes Snapshot of Energy Research July 26, 2012 - 2:50pm Addthis The Quadrennial Technology Review contains the seventeen Technology Assessments (TAs) meant to be accessible summaries of the techno-economic aspects and R&D opportunities in the most important energy technologies or systems. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the QTR? The Quadrennial Technology Review offers high-level views of the technical status and potential of various energy technologies. With 17 National Labs, hundreds of funded projects at research facilities, and thousands of the world's top scientists, the Energy Department is driving a significant amount of the research and development taking place

363

Silicon Valley Clean Tech Alliance | Open Energy Information  

Open Energy Info (EERE)

Clean Tech Alliance Clean Tech Alliance Jump to: navigation, search Name Silicon Valley Clean Tech Alliance Address Box 1855 Place Cupertino, California Zip 95015 Region Bay Area Website http://www.svcleantech.org/ Coordinates 37.3233°, -122.0311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3233,"lon":-122.0311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Environ Energy Tech Service Ltd | Open Energy Information  

Open Energy Info (EERE)

Environ Energy Tech Service Ltd Environ Energy Tech Service Ltd Jump to: navigation, search Name Environ Energy-Tech Service Ltd Place Kolkatta, West Bengal, India Zip 700 063 Sector Solar Product Solar photovoltaic solutions provider. Coordinates 22.54994°, 88.371582° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.54994,"lon":88.371582,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Businesses Key in Hydropower Tech Advancement Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business that handles hydroelectric power generation and power and communication line construction. The company, which has eight employees currently, has been awarded funding for two projects. Near Space Systems, a Colorado Springs-based company, is a service-disabled veteran-owned business with a manufacturing focus that's

366

BATTERY INDUSTRIAL, LEAD ACID TYPE  

Science Conference Proceedings (OSTI)

... between the cell cover and the cell container, and all openings on the top of the battery other than the filling vents shall be gas tight and effectively ...

367

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 3800 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

368

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 7249 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

369

Argonne TTRDC - Experts - Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Technologies Experts Click on a highlighted name to see a full rsum. Jeff...

370

Battery Testing in the US  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-China EV and Battery Workshop Joint Vehicle Demonstrations and Standards Development August 24, 2012 Session Chairmen: Keith Hardy, Argonne National Laboratory Li Jianqiu,...

371

New Life for EV Batteries  

Science Conference Proceedings (OSTI)

Apr 15, 2013 ... Five used Chevrolet Volt batteries are at the heart of the Oak Ridge National Laboratory's (ORNL) effort to determine the feasibility of a...

372

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

373

Flow Batteries: A Historical Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Marvin Warshay *1976 Shunt Current Model, Paul Prokopius *1976 Interfaced an RFB with solar cells *1977 Electrode-Membrane-Flow Battery Testing *Largest polarization @ negative...

374

Nanofilm Coatings Improve Battery Performance  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The ...

375

Attempting clairvoyance with battery performance  

E-Print Network (OSTI)

The light-weight, long-lasting, high-performance attributes of cellular phones and laptop computers, among other equally impressive portable devices currently in the marketplace, are responsible for igniting the overwhelming growth of the battery-powered electronics industry. The demand for smaller and longer lasting solutions, in fact, is only increasing, and key to this success is the battery, which can range from single-use alkaline and zinc-air to rechargeable nickel-cadmium, nickel-metal hydride, lithium-ion, and lithium-polymer technologies. Unfortunately, however, advancements in circuit and system integration have outpaced energy and power density improvements in the battery. Consequently, as batteries conform to the size constraints of portable applications, capacity and output power are necessarily compromised. Degradation in battery performance over time not only affects functionality but also operational life, proving inadequate the traditional assumption that the battery is an ideal voltage source. Including the effects of the battery on state-of-theart systems during the design phase is therefore of increasing importance for optimal life and performance. The problem is securing a suitable Cadence-compatible model. Battery Models State-of-the-art electrical models for batteries are either Thevenin-, impedance-, or runtime-based. Thevenin- and impedance-based models, shown in Figures 1(a)-(b), assume both open-circuit voltage and capacity or state-of-charge (SOC) are constant and approximate loading and ac/transient effects with an impedance network of passive devices for

A. Rincn-mora; Min Chen

2005-01-01T23:59:59.000Z

376

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

The LiNiOiCarbon Lithium-Ion Battery," S. S. lonics, 69,238-the mid-1980's, the lithium-ion battery based on a carboncommercialization of the lithium-ion battery, several other

Doyle, C.M.

2010-01-01T23:59:59.000Z

377

AGM Batteries Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place United Kingdom Product Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References AGM Batteries Ltd1 LinkedIn Connections CrunchBase Profile...

378

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

to increase the battery's capacity (j n u J per unit volume.to estimate the battery capacity by relating the dischargealso the specific capacity of current battery systems. It is

Doyle, C.M.

2010-01-01T23:59:59.000Z

379

Linear Collider Collaboration Tech Notes LCC-0113 CBP Tech Note-276  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 CBP Tech Note-276 February 2003 The NLC Main Damping Ring Lattice Mark Woodley 1 and Andrzej Wolski 2 1 Stanford Linear Accelerator Center Stanford University Menlo Park, CA 04025 2 Lawrence Berkeley National Laboratory University of California Berkeley, CA Abstract: Studies of the NLC Main Damping Ring lattice since April 2001 have indicated that there are a number of collective effects that potentially limit operational performance. One possible way to reduce the impact of these effects is to raise the momentum compaction of the lattice, which requires a significant redesign. In this note, we present a lattice that has a momentum compaction four times larger than the previous design. We discuss the linear and nonlinear dynamical properties of the lattice, and

380

Linear Collider Collaboration Tech Notes LCC-0130 CBP Tech Note-302  

NLE Websites -- All DOE Office Websites (Extended Search)

30 30 CBP Tech Note-302 March 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Research and Development Issues for NLC Damping Rings 2003-2004 A. Wolski Lawrence Berkeley National Laboratory

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Linear Collider Collaboration Tech Notes LCC-0150 CBP Tech Note-321  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 CBP Tech Note-321 June 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Research and Development Issues for NLC Damping Rings 2004-2005 A. Wolski June 2004

382

Linear Collider Collaboration Tech Notes LCC-0155 CBP Tech Note-326  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 CBP Tech Note-326 July 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Spin-Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

383

Linear Collider Collaboration Tech Notes LCC-0062 CBP-tech Note228  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CBP-tech Note228 May 2001 Symplectic Integrators for Nonlinear Wiggler Fields Andrzej Wolski Lawrence Berkeley National Laboratory Abstract: To achieve fast damping, the NLC Main Damping Ring uses a wiggler with high field strength, 2.15 T, and over 45 m in length. An ideal wiggler with infinitely wide pole pieces may be treated as a linear eleme nt, and has no impact on the dynamic aperture. However, the integrated nonlinear components from a real wiggler with integrated field over 100 T 2 m can be significant, and the choice of methods for studying the effects in such cases is limited at present. We present two possibilities for symplectic tracking through a wiggler taking full account of the nonlinear components of the field, compare the results with

384

Linear Collider Collaboration Tech Notes LCC-0147 CBP Tech Note-319  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 CBP Tech Note-319 June 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Intrabeam Scattering in the NLC Main Damping Rings A. Wolski June 2004 Lawrence Berkeley National Laboratory

385

Method for charging a storage battery  

SciTech Connect

A method is disclosed for charging a lead-acid storage battery, the method comprising the steps of charging the battery at an initially high rate during an initial stage of the charging cycle, monitoring the internal battery voltage, charging the battery at a lower, finishing rate after a preselected battery voltage has been monitored, and periodically interrupting the finishing charge until the battery is recharged.

Fallon, W.H.; Kirby, D.W.; Neukirch, E.O.; Schober, W.R.

1983-07-19T23:59:59.000Z

386

Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

Pemsler, P.

1981-02-01T23:59:59.000Z

387

Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...  

Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at ...

388

Battery Life Predictor Model - Energy Innovation Portal  

Energy Analysis Battery Life Predictor Model ... Technology Marketing Summary Batteries are one of the leading cost drivers of any electric vehicle ...

389

Energy - Green battery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy - Green battery By substituting lignin for highly engineered, expensive graphite to make battery electrodes, researchers have developed a process that requires fewer steps...

390

Advanced battery modeling using neural networks.  

E-Print Network (OSTI)

??Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the (more)

Arikara, Muralidharan Pushpakam

2012-01-01T23:59:59.000Z

391

Battery-Size Regenerative Fuel Cells  

ORNL 2010-G01073/jcn UT-B ID 201002378 Battery-Size Regenerative Fuel Cells Technology Summary A battery-size regenerative fuel cell with energy ...

392

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for...

393

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Kayo Battery Industries Group Jump to: navigation, search Name Kayo Battery Industries Group Place...

394

Better Batteries with a Conducting Polymer Binder  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries with a Conducting Polymer Binder Conductive polymer binder for Lithium ion battery June 2013 Berkeley Lab scientists have invented a new material for use in...

395

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Ford Electric Battery Group Jump to: navigation, search Name Ford Electric Battery Group Place Dearborn, MI Information About Partnership with NREL Partnership with NREL Yes...

396

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon American Battery Charging Inc Jump to: navigation, search Name American Battery Charging Inc Place...

397

Battery Wireless Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Battery Wireless Solutions Inc Jump to: navigation, search Name Battery & Wireless Solutions...

398

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvancedLightSource Home Science Highlights Industry @ ALS Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23...

399

China BAK Battery Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon China BAK Battery Inc Jump to: navigation, search Name China BAK Battery Inc Place Shenzhen, Guangdong...

400

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Advanced Battery Factory Jump to: navigation, search Name Advanced Battery Factory Place Shen Zhen...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

402

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Ovonic Battery Company Inc Jump to: navigation, search Name Ovonic Battery Company Inc Place...

403

Carbon Micro Battery LLC | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Carbon Micro Battery LLC Jump to: navigation, search Name Carbon Micro Battery, LLC Place California...

404

Beijing Tianruichi Battery TRC | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Beijing Tianruichi Battery TRC Jump to: navigation, search Name Beijing Tianruichi Battery (TRC) Place China...

405

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and...

406

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

407

Nanofilm Coatings Improve Battery Performance - Energy Innovation ...  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The lithium-ion battery is an ...

408

Five rules for longer battery life  

SciTech Connect

The fundamentals of proper lead-acid battery care are given, including five basic maintenance rules, and the reasoning behind them, for longer battery life.

1971-09-01T23:59:59.000Z

409

Working Toward a Tech Sector that Reflects America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America February 1, 2013 - 1:51pm Addthis Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Valerie Jarrett Senior Advisor to President Barack Obama Editor's Note: This blog was orginially published on whitehouse.gov Yesterday, I had the pleasure of speaking at the Technology Inclusion Summit, hosted by Chief Technology Officer Todd Park, the Office of Science and Technology Policy, and the Level Playing Field Institute. It was an amazing gathering of private and public partners who are united in their

410

Working Toward a Tech Sector that Reflects America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America February 1, 2013 - 1:51pm Addthis Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Valerie Jarrett Senior Advisor to President Barack Obama Editor's Note: This blog was orginially published on whitehouse.gov Yesterday, I had the pleasure of speaking at the Technology Inclusion Summit, hosted by Chief Technology Officer Todd Park, the Office of Science and Technology Policy, and the Level Playing Field Institute. It was an amazing gathering of private and public partners who are united in their

411

Property:TechProbSolutions | Open Energy Information  

Open Energy Info (EERE)

TechProbSolutions TechProbSolutions Jump to: navigation, search Property Name TechProbSolutions Property Type Text Subproperties This property has the following 4 subproperties: B Beowawe Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area R Raft River Geothermal Area Pages using the property "TechProbSolutions" Showing 2 pages using this property. R Roosevelt Hot Springs Geothermal Area + The 1.6 MW biphase turbine-generator set was only run for less than a year starting in 1981. As a result of this test, a flash-steam plant was favored over the biphase unit for the permanent installation. The main reason for not selecting the biphase unit, even though it could produce 25% more power as compared to the flash steam type, was reportedly due to the complicated mechanical operation of the plant and the related high maintenance that it required. Some silica scaling from the approximately 230 ppm was originally experienced from the brine, thus acid injection was started to control the scaling.

412

TESLA 2002-10 CBP Tech Note-268  

E-Print Network (OSTI)

LCC-0108 TESLA 2002-10 CBP Tech Note-268 Comparison of Emittance Tuning Simulations in the NLC and TESLA Damping Rings A. Wolski LBNL W. Decking DESY November 11th , 2002 Abstract Vertical emittance is a critical issue for future linear collider damping rings. Both NLC and TESLA specify vertical emittance

413

TEXAS TECH UNIVERSITY Lubbock, TX 79409-1108  

E-Print Network (OSTI)

TEXAS TECH UNIVERSITY Box 41108 Lubbock, TX 79409-1108 Name (as shown on your income tax return by the appropriate ownership type that applies to you or your business. I L *Texas Limited Partnership: SSN & Social Security Number (SSN) T *Texas Corporation Owners Name

Westfall, Peter H.

414

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

415

The INEL battery data base  

SciTech Connect

The Department of Energy (DOE) has established a Battery Data Base for electric vehicle applications at the Idaho National Engineering Laboratory (INEL). The objectives of the Data Base are to collect, store, and make available to the electric vehicle community battery data from the INEL. Argonne National Laboratory, Sandia National Laboratory, and DOE battery contractors in forms appropriate for evaluating the batteries in electric vehicles. The Data Base currently includes data from over 500 test on 15 batteries of 5 different types. The data (over 120 MB) is stored on a 760 MB harddisk attached to a MicroVax 2. PC-based software to access the data has been developed on the IBM PS/2 using dBASE 4. The initial version of the Data Base to be distributed on a single floppy disk is nearly complete. The first release will include the physical characteristics of the batteries, summary tables showing the test results for each cycle of the battery test programs, and some constant power discharge data for the batteries. Later versions of the Data Base will include second-by-second peak power and SFUDS data, which will require several floppy of Bernoulli disks to store the data. 2 refs., 4 figs.

Burke, A.F.; Hardin, J.E.; Kiser, D.M.

1990-01-01T23:59:59.000Z

416

Nanofilm Coatings Improve Battery Performance  

demand for electric vehicles within the next five years. The lithium-ion battery is an attractive candidate for use in such vehicles because of its light weight and high energy density. At present, however, lithium-ion batteries are not ...

417

Principles of an Atomtronic Battery  

E-Print Network (OSTI)

An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

Alex A. Zozulya; Dana Z. Anderson

2013-08-06T23:59:59.000Z

418

Lithium batteries for pulse power  

DOE Green Energy (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

419

Battery system with temperature sensors  

SciTech Connect

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

420

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ATOMIC BATTERY AND TEST INSTRUMENT  

SciTech Connect

A portable nuclear battery is designed which can be adjusted to vary the output. The battery comprises a Sr/sup 90/ peactivated phosphor light source and photocells housed in a shielding structure. The output may be varied by rotating elements between the light source and the photocells. (D.L.C.)

Viszlocky, N.

1962-09-11T23:59:59.000Z

422

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-12-31T23:59:59.000Z

423

A Desalination Battery Mauro Pasta,  

E-Print Network (OSTI)

A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

Cui, Yi

424

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

425

Recombinant electric storage battery  

SciTech Connect

This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

Flicker, R.P.; Fenstermacher, S.

1989-10-10T23:59:59.000Z

426

Battery conditioning system having communication with battery parameter memory means in conJunction with battery conditioning  

SciTech Connect

This patent describes a battery conditioning system. It comprises: rechargeable battery means for supplying operating current during a number of hours of portable operation so as to become progressively discharged as a result, memory and communications means for operative association with the rechargeable battery means and receiving power from the rechargeable battery means during portable operation, and battery conditioning system means for coupling with the rechargeable batter means and with the memory and communications means, for conditioning of the battery means after a period of portable operation and for the transmission of data concerning the rechargeable battery means.

Koenck, S.E.

1989-12-05T23:59:59.000Z

427

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

428

Charging system for nickel-zing batteries  

SciTech Connect

A source of constant current or constant power supplies charging current to a nickel-zinc battery to produce a generally S-shaped battery voltage waveform. To improve battery life, charging is terminated at the inflection point where the slope of the battery voltage changes from increasing to decreasing.

Jones, R. A.; Reoch, W. D.

1985-03-05T23:59:59.000Z

429

Overview of the Batteries for Advanced Transportation  

E-Print Network (OSTI)

cobaltate batteries have been in commercial use since 1991. A new lithium-ion battery with different cathodeMn2O4 cathode in lithium ion batteries by using surface modification. Since one of the main reasons cathode material for rechargeable lithium ion batteries because of its high voltage, low cost, and safety

Knowles, David William

430

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

431

Battery-Powered Digital CMOS Massoud Pedram  

E-Print Network (OSTI)

1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

Pedram, Massoud

432

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

433

Method and apparatus for rapid battery charging  

SciTech Connect

A method and apparatus for charging electrical storage batteries having a known nominal amperage are described. The method consists in discharging the battery to a predetermined value and then charging the battery with a charging current initially several times greater than the nominal battery amperage. The charging current decreases exponentially from the initial charging current to a charging current much less than the nominal battery amperage when the battery is fully charged. The apparatus uses the discharge rate of an RC circuit to control the charging current applied to the battery. 3 figures, 1 table.

Samsioe, P.E.

1979-12-18T23:59:59.000Z

434

Extended shelf-life battery  

SciTech Connect

A lead-acid battery having extended shelf-life is described comprising: a battery housing containing positive and negative lead-acid electrode elements and separators; sulfuric acid electrolyte contained within the housing in a quantity sufficient to maintain the electrode elements in a damp, but not flooded, condition; a desiccant within the housing located out of contact with the elements and in a position to absorb water vapor present in the housing the desiccant being located in container at least a portion of water is permeable to water vapor; the electrode positive and negative materials being formed - that a charge exists on the battery and so that self-discharge reactions will occur within the housing producing water vapor; the electrolyte having a specific gravity ranging from about 1.015 to about 1.320 and the quantity of the desiccant being sufficient to absorb the water vapor created during the self-discharge reactions to maintain the specific gravity of the electrolyte within the range. A method for extending the storage life of a lead-acid battery comprising the steps of: preparing a formed, lead-acid battery including electrode elements and a flooding quantity of sulfuric acid electrolyte; removing from the battery a substantial quantity of the electrolyte to leave damp elements; placing in the battery a quantity of desiccant in a container, at least a portion of which is permeable to water vapor, the container being in a position to absorb water vapor generated in the battery during self-discharge and at a location out of contact with the electrode elements; and controlling the specific gravity of the electrolyte remaining in the battery after the removal step within a range of about 1.015 and 1.320 during discharge reactions by absorbing water vapor produced thereby in the desiccant.

Bullock, N.K.; Symumski, J.S.

1993-06-15T23:59:59.000Z

435

Method and apparatus for battery charging  

SciTech Connect

This patent describes a method of charging a battery and terminating the charging thereof upon determination of the existence of a prescribed condition comprising the steps of: applying charging current to the battery; measuring the battery voltage soon after the charging current is applied; determining, on the basis of the battery voltage measurement, the knee voltage of the charging characteristic of the particular battery being charged; calculating a battery voltage limit beyond which no further charging current is to be applied, the voltage limit being the point at which the instantaneous battery voltage is a pre-determined value greater than the knee voltage of the battery's charging characteristic; continued measuring of the battery voltage as the charging current is applied; and terminating the application of charging current when the battery voltage limit is reached.

Westhaver, L.A.; Ruksznis, R.E.

1987-01-27T23:59:59.000Z

436

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

437

Anti-stratification battery separator  

Science Conference Proceedings (OSTI)

This patent describes a separator for an electric storage battery comprising a thin microporous sheet for suppressing dendrite growth between adjacent plates of the battery. The sheet has top, bottom and lateral edges defining the principal face of the separator and ribs formed on the surface of the face. The improvement described here comprises: the ribs each (1) having a concave shape, (2) being superposed one over another and (3) extending laterally across the face substantially from one the lateral edge to the other the lateral edge for reducing the accumulation of highly concentrated electrolyte at the bottom of the battery during recharge.

Stahura, D.W.; Smith, V.V. Jr.

1986-10-28T23:59:59.000Z

438

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

439

Solid polymer battery electrolyte and reactive metal-water battery  

SciTech Connect

In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

440

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NUCLEAR BATTERY POWERED TIMERS  

SciTech Connect

During the period from May 1957 to July 1958, four nuclear batiery powered timers were fabricated and tested from two basic designs in the time ranges of onesecond, three-second, annd half-hour intervals. The timers were temperature-tested over a range of -65 to +165 F with accuracics over this temperature range from plus or minus 10 perceat to plus or minus 15 percent. Each unit has a volume of 10 cubic inches, and the timer can be initiated either by an explosive squib or a pull-out wire. At the end of the timing interval, the timer has ann output of 30,000 ergs. The cost of the program was ,000. From the results of this development program, it appears quite feasible to build operable nuclear battery powered timers on a production basis. (auth)

DesJardin, R.L.

1958-09-19T23:59:59.000Z

442

Battery monitoring and charger control system  

SciTech Connect

A battery cell controlled charging system, consisting of a display unit, battery cell probes, a battery charger and circuitry for controlling the charger, monitors the specific gravity, electrolyte level and temperature control of each cell in a multi-cell lead-acid battery and uses the information to automatically charge the battery when a cell or cells become out of specification while restricting overcharging which is damaging to cells.

Barry, G.H.; Dahl, E.A.

1983-06-14T23:59:59.000Z

443

Method and apparatus for providing sterile charged batteries  

SciTech Connect

A method is described of providing sterile, charged batteries for use in a sterile field comprising the steps of: sterilizing at least one battery and a battery charger, the battery and battery charger being adapted to withstand exposure to the environment present during such sterilizating step; transferring the battery and the battery charger in a sterile state to the sterile field; and charging the battery to a desired voltage with the battery charger in the sterile field.

Pascaloff, J.H.

1987-02-03T23:59:59.000Z

444

Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application.  

E-Print Network (OSTI)

??New battery technologies have been emerging into todays market and frequenting headlines; however, the lead-acid battery overwhelmingly remains the most common automotive battery. Because of (more)

Picciano, Nicholas I.

2009-01-01T23:59:59.000Z

445

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

446

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

Pollard, Richard

2012-01-01T23:59:59.000Z

447

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

448

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

449

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

could double Chevy Volt battery capacity. http://could-double-chevy-volt-battery-capacity/chevy-volt3-4/; Volts Battery Capacity Could Double. http://

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

450

Aero-Tech: Proposed Penalty (2010-CE-1012) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aero-Tech: Proposed Penalty (2010-CE-1012) Aero-Tech: Proposed Penalty (2010-CE-1012) Aero-Tech: Proposed Penalty (2010-CE-1012) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Aero-Tech Light Bulb Co. failed to certify a variety of incandescent reflector lamps as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Aero-Tech: Proposed Penalty (2010-CE-1012) More Documents & Publications Aero-Tech: Order (2010-CE-1012) Westland Sales: Proposed Penalty (2010-CE-03/0411)

451

Launch of SciTech Connect Consolidates Information Bridge and Energy  

Office of Scientific and Technical Information (OSTI)

Launch of SciTech Connect Consolidates Information Bridge and Energy Launch of SciTech Connect Consolidates Information Bridge and Energy Citations Database March 4, 2013 Launch of SciTech Connect Consolidates Information Bridge and Energy Citations Database The Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) has launched SciTech Connect, a new portal to free, publicly available DOE research and development (R&D) results. SciTech Connect incorporates the contents of two of the most popular core DOE collections and employs an innovative semantic search tool enabling scientists, researchers and the scientifically-attentive public to retrieve more relevant information. OSTI plans to gradually phase out its current DOE Information Bridge and Energy Citations Database products and replace them with the improved search interface of SciTech Connect.

452

#CleanTechNow: Your Best Clean Energy Photos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos September 27, 2013 - 12:45pm Addthis Marissa Newhall Marissa Newhall Managing Editor, Energy.gov Learn More: Follow @energy on Instagram to check out more great photos and videos about energy technology. Read an Energy Department report about the recent advances of wind, solar panels, electric vehicles and LED lighting in the consumer marketplace. Check out Secretary Moniz's blog post about the importance of smart policies and investments in clean energy technology. #CleanTechNow: Your Best Clean Energy Photos When it comes to clean energy, the future is already here -- and during our #CleanTechNow feature, you showed us how it's already playing a role in your daily lives. Below, check out highlights from #CleanTechNow and our

453

OSTI Launches SciTech Connect, Consolidates Information Bridge and Energy  

Office of Scientific and Technical Information (OSTI)

OSTI Launches SciTech Connect, Consolidates Information Bridge and Energy OSTI Launches SciTech Connect, Consolidates Information Bridge and Energy Citations Database SciTech Connect Fact Card (303-KB PDF) The Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) has launched SciTech Connect, a new portal to free, publicly available DOE research and development (R&D) results. SciTech Connect incorporates the contents of two of the most popular core DOE collections and employs an innovative semantic search tool enabling scientists, researchers and the scientifically- attentive public to retrieve more relevant information. OSTI plans to gradually phase out its current DOE Information Bridge and Energy Citations products and replace them with the improved search interface of SciTech Connect. OSTI developed the new resource to help increase access to science,

454

CleanTech Partners Inc | Open Energy Information  

Open Energy Info (EERE)

CleanTech Partners Inc CleanTech Partners Inc Address 8309 Greenway Boulevard, Suite 220 Place Middleton, Wisconsin Zip 53562 Product Investment fund for developing energy efficiency technologies in Wisconsin Phone number (608) 203-0110 Website http://www.cleantechpartners.o Coordinates 43.0899969°, -89.5274228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0899969,"lon":-89.5274228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

In Carbonate Aquifers: Rock and Brine Alterations during Super-Critical CO In Carbonate Aquifers: Rock and Brine Alterations during Super-Critical CO 2 Injection in San Andres Formation, West Texas Gloria S. Garcia-Orrego,KinderMorgan CO 2 Company LP. Waylon House,Texas Tech University;Necip Guven, Texas Tech University, LorneA. Davis, texas Lutheran Univesity Abstract The injection of CO 2 into a formation changes the physics and chemistry of both the solid matrix and the fluids contained in the formation. The laboratory study reported here investigated how the chemical composition of the natural formation brine and different minerals present in the carbonate formations altered upon CO 2 injection under supercritical conditions. The study focused on the alteration of the petrophysical properties of the carbonate reservoir rocks resulting from this interaction

456

Category:Tech Potential Properties | Open Energy Information  

Open Energy Info (EERE)

Properties Properties Jump to: navigation, search This is the Tech Potential Properties category. Pages in category "Tech Potential Properties" The following 30 pages are in this category, out of 30 total. P Property:PotentialBiopowerGaseousCapacity Property:PotentialBiopowerGaseousGeneration Property:PotentialBiopowerGaseousMass Property:PotentialBiopowerSolidCapacity Property:PotentialBiopowerSolidGeneration Property:PotentialBiopowerSolidMass Property:PotentialCSPArea Property:PotentialCSPCapacity Property:PotentialCSPGeneration Property:PotentialEGSGeothermalCapacity P cont. Property:PotentialEGSGeothermalGeneration Property:PotentialGeothermalHydrothermalCapacity Property:PotentialGeothermalHydrothermalGeneration Property:PotentialHydropowerCapacity Property:PotentialHydropowerGeneration

457

The search for better batteries  

Science Conference Proceedings (OSTI)

To handle small, power-hungry electronic systems, manufacturers of rechargeable batteries are exploring at least five technologies: nickel-cadmium, nickel-metal hydride, lithium-ion, lithium-solid polymer electrolyte, and zinc-air. The author describes ...

M. J. Riezenman

1995-05-01T23:59:59.000Z

458

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

459

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

460

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

462

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

463

Texas Tech University Energy Savings Program October 2010 Update  

E-Print Network (OSTI)

Savings Electricity 49.11 48.27 Down 1.7% $ 91,300. Natural Gas 17.26 16.01 Down 7.2% $ 34,540. Steam 54, gasoline and natural gas. As a result of that order, Texas Tech University established the following goals Plant #1 is down 20% (from total plant use), due in large part to the Chilled Water Pump VFD Retrofit

Gelfond, Michael

464

FredL. Eiselel CeorgaTechResearchns|rute  

E-Print Network (OSTI)

!anining ihe stateofthis science{ll. The list ofreactionsknown ro be rDportani in the artuos!herc has groi .' .; ',. !i i {\\1 \\r r*$fh.\\ul FredL. Eiselel CeorgaTechResearchns|rute ee.rga nsrtuleolTe.hnooo! A1.1racA 30:!2 John D. Bradshaw S.i.olorEadhardArmosphericScences.r.J: .ejiuleojTechnooov- rlra GA

Short, Daniel

465

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

466

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

467

Metal-air battery assessment  

DOE Green Energy (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

468

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

469

Alkali metal/sulfur battery  

SciTech Connect

Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

Anand, Joginder N. (Clayton, CA)

1978-01-01T23:59:59.000Z

470

Lithium battery safety and reliability  

DOE Green Energy (OSTI)

Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

Levy, S.C.

1991-01-01T23:59:59.000Z

471

Liquid Tin Anode Direct Coal Fuel Cell - CellTech Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Tin Anode Direct Coal Liquid Tin Anode Direct Coal Fuel Cell-CellTech Power Background Direct carbon solid oxide fuel cells (SOFCs) offer a theoretical efficiency advantage over traditional SOFCs operating on gasified carbon (syngas). CellTech Power LLC (CellTech) has been developing a liquid tin anode (LTA) SOFC that can directly convert carbonaceous fuels including coal into electricity without gasification. One of the most significant impediments

472

TurboTech Precision Engineering Private Limited | Open Energy Information  

Open Energy Info (EERE)

TurboTech Precision Engineering Private Limited TurboTech Precision Engineering Private Limited Jump to: navigation, search Name TurboTech Precision Engineering Private Limited Place Bangalore, India Zip 560 044 Sector Efficiency Product Designs and manufactures of high-efficiency steam turbines in the 50-250kW range. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

WKN Windkraft Nord AG WKN Offshore Tech | Open Energy Information  

Open Energy Info (EERE)

AG WKN Offshore Tech AG WKN Offshore Tech Jump to: navigation, search Name WKN Windkraft Nord AG (WKN Offshore Tech) Place Husum, Germany Zip 25813 Sector Wind energy Product Wind project developer. The majority of their wind farms are marketed as closed end funds though some have been sold to private investors such as DIFKO Vind. Coordinates 45.799479°, -121.486901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.799479,"lon":-121.486901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

475

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

476

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

DOE Green Energy (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

477

Rechargeable Battery Circuit Modeling and Analysis of the Battery Characteristic in Charging and Discharging Processes.  

E-Print Network (OSTI)

??In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit (more)

Kong, Dexinghui

2012-01-01T23:59:59.000Z

478

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

479

Georgia Tech is an equal employment/education opportunity institution. Office of Institutional Research and Planning  

E-Print Network (OSTI)

Accreditation Board Royal Institution of Chartered Surveyors · Georgia Tech operates on the semester system.................................................................................................................. University System of Georgia................................................................................................................................ Table 2.2 University System Office Administrative Staff

Li, Mo

480

Pages that link to "CarboTech Engineering GmbH" | Open Energy...  

Open Energy Info (EERE)

GmbH. Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereCarboTechEngineeringGmbH" Special pages About us Disclaimers Energy blogs Developer services...

Note: This page contains sample records for the topic "batteries oskosh tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

482

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

483

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

484

Texas Tech University Energy Savings Program October 2013 Update Page 1 of 4 Texas Tech University Energy Savings Program  

E-Print Network (OSTI)

line since they would be realized as a reduction of natural gas use. In FY13, free cogeneration steam previous year Estimated Savings Electricity 58.45 56.96 Down 2.5% $237,214 Natural Gas 81.73 72.90 Down 10 Total 17.3747 16.9404 16.9290 Down 2.6% 3. Fleet Fuel Management Plan (Vehicles) Texas Tech has reduced

Zhuang, Yu

485

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

486

B#: A battery emulator and power-profiling instrument  

E-Print Network (OSTI)

simulator for lithium-ion battery cells, to model the emu-Current (A) er than the lithium-ion batterys cutoff voltageresponse time of lithium-ion battery to changes in current

Park, C S; Liu, J F; Chou, P H

2005-01-01T23:59:59.000Z

487

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the batterys total energy capacity is usedknownelectricity from a battery which(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

488

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

489

Texas Tech Toxicology Report to Appear Tuesday on `Good Morning America' http://www.newswise.com/articles/texas-tech-toxicology-report-to-appear-tuesday-on-good-morning-america[4/20/2011 8:15:25 AM  

E-Print Network (OSTI)

Texas Tech Toxicology Report to Appear Tuesday on `Good Morning America' http://www.newswise.com/articles/texas-tech-toxicology-report-to-appear-tuesday-on-good-morning-america[4/20/2011 8:15:25 AM] Share America, Oil Spill, Texas Tech University, Deepwater Horizon Oil Spill Contact Information Available

Rock, Chris

490

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network (OSTI)

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

491

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery")  

E-Print Network (OSTI)

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery") ACCORDING TO FLORIDA LAW: Sexual Battery/ Rape is the:"Oral, anal or vaginal penetration by, or union with a sexual organ is not required to physically fight back. Florida Sexual Battery Statutes: www.leg.state.fl.us/Statutes (Chapter

Meyers, Steven D.

492

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

493

Argonne Software Licensing: Battery Production for ...  

Battery Production for Manufacturing (BatPro) BatPro is a software package that permits you to input any of the hundreds of parameters used anywhere in a battery ...

494

Battery compatibility with photovoltaic charge controllers  

SciTech Connect

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

495

BLE: Battery Life Estimator | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Estimator (BLE) software is a state-of-the-art tool kit for fitting battery aging data and for battery life estimation. It was designed to make life-cycle estimates...

496

2003www.irp.gatech.edu 2003 Georgia Tech Fact Book  

E-Print Network (OSTI)

Accrediting Board Planning Accreditation Board · Georgia Tech operates on the semester system. · Georgia Tech in the College of Computing ranked 12th. The Computer Systems program in the College of Computing ranked 8th Georgia Department of Transportation General Motors Harris Corporation IBM Lockheed Martin Radiant Systems

Li, Mo

497

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

498

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

499

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

500

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...