Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

2

Electrolytes for lithium ion batteries  

SciTech Connect

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

3

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

4

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

5

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

6

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network (OSTI)

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

7

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network (OSTI)

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

8

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

9

High-discharge-rate lithium ion battery  

DOE Patents (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

10

Anode materials for lithium-ion batteries  

DOE Patents (OSTI)

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

11

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

12

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network (OSTI)

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

13

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents (OSTI)

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

14

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network (OSTI)

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

15

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

16

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates  

Science Journals Connector (OSTI)

Flexible graphene-based lithium ion batteries with ultrafast charge and...and flexible lithium ion battery made from graphene foam, a three-dimensional...and flexible lithium ion battery made from graphene foam, a three-dimensional...

Na Li; Zongping Chen; Wencai Ren; Feng Li; Hui-Ming Cheng

2012-01-01T23:59:59.000Z

17

Stress fields in hollow core–shell spherical electrodes of lithium ion batteries  

Science Journals Connector (OSTI)

...core-shell spherical electrodes of lithium ion batteries Yingjie Liu 1 Pengyu Lv...System, Department of Mechanics and Engineering Science, College of Engineering...structure design of electrodes of lithium ion batteries. lithium ion battery...

2014-01-01T23:59:59.000Z

18

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

19

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

20

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

22

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

23

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

24

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

25

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

26

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

27

Students race lithium ion battery powered cars in Pantex competition |  

NLE Websites -- All DOE Office Websites (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

28

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

29

Thermo-mechanical Behavior of Lithium-ion Battery Electrodes  

E-Print Network (OSTI)

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

An, Kai

2013-11-25T23:59:59.000Z

30

The application of graphene in lithium ion battery electrode materials  

Science Journals Connector (OSTI)

Graphene is composed of a single atomic layer ... concept, structure, properties, preparation methods of graphene and its application in lithium ion batteries. A continuous 3D conductive network formed by graphene

Jiping Zhu; Rui Duan; Sheng Zhang; Nan Jiang; Yangyang Zhang; Jie Zhu

2014-10-01T23:59:59.000Z

31

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

32

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

33

Thermal behaviors of electrolytes in lithium-ion batteries determined by differential scanning calorimeter  

Science Journals Connector (OSTI)

Lithium-ion batteries have been widely used in daily electric ... occurred from time to time. Lithium-ion batteries composed of various electrolytes (containing organic solvents ... to meet safety requirements of...

Yu-Yun Sun; Tsai-Ying Hsieh; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

34

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

35

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

36

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

37

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

38

Costs of lithium-ion batteries for vehicles  

SciTech Connect

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

39

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents (OSTI)

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

40

Intercalation dynamics in lithium-ion batteries  

E-Print Network (OSTI)

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

42

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

43

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

44

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes ... Despite rapidly growing interest in the application of graphene in lithium ion batteries, the interaction of the graphene with lithium ions and electrolyte species during electrochemical cycling is not fully understood. ...

Bin Wang; Xianglong Li; Xianfeng Zhang; Bin Luo; Meihua Jin; Minghui Liang; Shadi A. Dayeh; S. T. Picraux; Linjie Zhi

2013-01-02T23:59:59.000Z

45

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

46

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

47

Towards a lithium-ion fiber battery  

E-Print Network (OSTI)

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

48

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

49

Electronically conductive polymer binder for lithium-ion battery electrode  

DOE Patents (OSTI)

A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

2014-10-07T23:59:59.000Z

50

Redox shuttles for lithium ion batteries  

DOE Patents (OSTI)

Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

2014-11-04T23:59:59.000Z

51

Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes  

Science Journals Connector (OSTI)

...system) and a photograph of the battery used to power a green LED...electrode in a lithium-ion battery using lithium metal foil as...nanowires as a lithium-ion battery cathode was evaluated (Fig...expected to bind favorably to the graphene surface via {pi}-stacking...

Yun Jung Lee; Hyunjung Yi; Woo-Jae Kim; Kisuk Kang; Dong Soo Yun; Michael S. Strano; Gerbrand Ceder; Angela M. Belcher

2009-05-22T23:59:59.000Z

52

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

53

E-Print Network 3.0 - advanced lithium-ion batteries Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

being undertaken at ISEM... .isem.uow.edu.au 12;Project Lithium ion batteries for Electric Vehicles (EVs) Aims To provide novel solutions... to enhance the performance ......

54

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

not contain any proprietary, confidential, or otherwise restricted information Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

55

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC This presentation contains no proprietary information. Project ID: ES166 Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

56

Graphene as a high-capacity anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Graphene was produced via a soft chemistry synthetic route for lithium ion battery applications. The sample was characterized by X ... electron microscopy, respectively. The electrochemical performances of graphene

Hongdong Liu ???; Jiamu Huang ???; Xinlu Li…

2013-04-01T23:59:59.000Z

57

Development of Novel Nanomaterials Based on Silicon and Graphene for Lithium Ion Battery Applications.  

E-Print Network (OSTI)

??Electrochemical energy storage is one of the important strategies to address the strong demand for clean energy. Rechargeable lithium ion batteries (LIBs) are one of… (more)

Hu, Yuhai

2014-01-01T23:59:59.000Z

58

Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions.  

E-Print Network (OSTI)

??Lithium ion (Li-ion) batteries have been gaining recognition as the primary technology for energy storage in motive applications due to their improved specific energy densities,… (more)

Bhatia, Padampat Chander

2013-01-01T23:59:59.000Z

59

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

60

NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES  

SciTech Connect

This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

John Olson, PhD

2004-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network (OSTI)

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

62

Evaluation of thermal hazard for commercial 14500 lithium-ion batteries  

Science Journals Connector (OSTI)

Commercial lithium-ion batteries ranged from different sizes, shapes, capacities, ... In this study, the worst scenarios on thermal runaway of four commercial batteries were conducted and compared. A customized-m...

Tsai-Ying Hsieh; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

63

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

several years SAFT has developed a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on SAFT lithium-ion cells The cells used are lithium-ion SAFT power cells: VL30P which outputs a nominal capacity of 30 Ah

Paris-Sud XI, Université de

64

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

years, Saft has been developing a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on Saft lithium or several cells. II. OVERVIEW OF EXPERIMENT A. Used lithium-ion cells The cells used are lithium-ion Saft

Boyer, Edmond

65

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes ... A new graphene-based hybrid nanostructure is designed for anode materials in lithium-ion batteries. ...

Huawei Song; Hao Cui; Chengxin Wang

2014-07-08T23:59:59.000Z

66

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials ... Collected particles were lithiated, and one promising material was evaluated as the active cathode component in a lithium-ion battery. ...

Gary M. Koenig, Jr.; Ilias Belharouak; Haixai Deng; Yang-Kook Sun; Khalil Amine

2011-03-09T23:59:59.000Z

67

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode ... In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene–nanotube–iron three-dimensional nanostructure as an anode material in lithium-ion batteries. ...

Si-Hwa Lee; Vadahanambi Sridhar; Jung-Hwan Jung; Kaliyappan Karthikeyan; Yun-Sung Lee; Rahul Mukherjee; Nikhil Koratkar; Il-Kwon Oh

2013-04-03T23:59:59.000Z

68

Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes  

E-Print Network (OSTI)

interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasingSolution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel storage capacity (theoretical values of 4200 vs 372 mAh/g for graphite). How- ever, the insertion

Cui, Yi

69

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

70

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network (OSTI)

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

71

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

SciTech Connect

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

72

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

73

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

74

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery  

Science Journals Connector (OSTI)

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery ... Graphene-based electrode materials for rechargeable lithium batteries ...

C. Nethravathi; Catherine R. Rajamathi; Michael Rajamathi; Ujjal K. Gautam; Xi Wang; Dmitri Golberg; Yoshio Bando

2013-03-13T23:59:59.000Z

75

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

76

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

77

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

NLE Websites -- All DOE Office Websites (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

78

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

79

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

80

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

82

Cathode materials for lithium ion batteries prepared by sol-gel methods  

Science Journals Connector (OSTI)

Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources...

H. Liu; Y. P. Wu; E. Rahm; R. Holze; H. Q. Wu

2004-06-01T23:59:59.000Z

83

Graphene-based composites as cathode materials for lithium ion batteries  

Science Journals Connector (OSTI)

Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode ...

Libao Chen; Ming Zhang; Weifeng Wei

2013-01-01T23:59:59.000Z

84

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

85

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network (OSTI)

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

86

Graphene sheets decorated with ZnO nanoparticles as anode materials for lithium ion batteries  

Science Journals Connector (OSTI)

ZnO/graphene composites were synthesized using a facile solution- ... 4 nm were densely and homogeneously deposited on graphene sheets. As the anode material for the lithium ion batteries, the ZnO/graphene compos...

Ling-Li Xu; Shao-Wei Bian; Kang-Lin Song

2014-09-01T23:59:59.000Z

87

Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Composites of Co3O4/graphene nanosheets are prepared and characterized by X- ... behavior as anode materials of lithium-ion rechargeable batteries is investigated by galvanostatic discharge/charge measurements...

Guiling Wang; Jincheng Liu; Sheng Tang…

2011-12-01T23:59:59.000Z

88

TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries  

Science Journals Connector (OSTI)

A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported. The morphology and crystal structure...2/GNS electrode ...

Yi-ping Tang ???; Shi-ming Wang ???; Xiao-xu Tan ???…

2014-05-01T23:59:59.000Z

89

Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance  

Science Journals Connector (OSTI)

Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge ... can be overcome by combination with well-organized graphene

Shuangqiang Chen; Peite Bao; Xiaodan Huang; Bing Sun; Guoxiu Wang

2014-01-01T23:59:59.000Z

90

The effect of graphene nanosheets as an additive for anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

A small amount of graphene nanosheets was added to commercial graphite as an anode active material in lithium ion batteries and its effects were examined through a ... composite electrode containing 1 or 5 wt% graphene

Jae Hun Jeong; Dong-Won Jung; Byung-Sun Kong…

2011-11-01T23:59:59.000Z

91

Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries  

Science Journals Connector (OSTI)

Vent sizing package 2 (VSP2) was used to measure the thermal hazard and runaway characteristics of 18650 lithium-ion batteries, which were manufactured by Sanyo Electric Co ... ., Ltd. Runaway reaction behaviors ...

C.-Y. Jhu; Y.-W. Wang; C.-Y. Wen…

2011-10-01T23:59:59.000Z

92

Power Capability Estimation Accounting for Thermal and Electical Contraints of Lithium-Ion Batteries.  

E-Print Network (OSTI)

??Lithium-ion (Li-ion) batteries have become one of the most critical components in vehicle electrification due to their high specific power and energy density. The performance… (more)

Kim, Youngki

2014-01-01T23:59:59.000Z

93

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.art positive electrode materials for high-energy lithium ionwhen exploring new materials for high-energy lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

94

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

95

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model  

E-Print Network (OSTI)

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical state of charge (SOC). In this paper an averaged electrochemical Lithium-ion battery model suitable-Volmer current and the solid concentration at the interface with the electrolyte and (ii) the battery current

Stefanopoulou, Anna

96

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ... Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. ...

Haijun Yu; Haoshen Zhou

2013-03-28T23:59:59.000Z

97

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties  

Science Journals Connector (OSTI)

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties ... A facile hydrothermal and sol–gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. ... carbon aerogel; oxide; hybrid; mesoporous structure; lithium-ion battery ...

Fengbin Hao; Zhiwei Zhang; Longwei Yin

2013-08-08T23:59:59.000Z

98

Nanostructured Tin-Based Anodes for Lithium Ion Batteries with X-Ray Absorption Fine Structure Studies.  

E-Print Network (OSTI)

??The practical applications of lithium ion batteries are highly dependent on the choice of electrodes, where boosting the materials innovations to design and achieve high… (more)

Wang, Dongniu

2013-01-01T23:59:59.000Z

99

Design and Simulation of Passive Thermal Management System for Lithium-ion Battery Packs on an Unmanned Ground Vehicle.  

E-Print Network (OSTI)

?? The transient thermal response of a 15-cell, 48 volt, lithium-ion battery pack for an unmanned ground vehicle was simulated with ANSYS Fluent. Heat generation… (more)

Parsons, Kevin Kenneth

2012-01-01T23:59:59.000Z

100

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery  

Science Journals Connector (OSTI)

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery ... These results propose that the as-prepared defect free graphene will bring significant advance of composite electrodes for high performance in electrochemical energy systems such as batteries, fuel cells, and capacitors. ...

Kwang Hyun Park; Dongju Lee; Jungmo Kim; Jongchan Song; Yong Min Lee; Hee-Tak Kim; Jung-Ki Park

2014-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

102

Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions  

E-Print Network (OSTI)

-ion battery which has been converted to a one-dimensional 1D model using approxi- mations for solid-state listed elsewhere Electrochem. Solid-State Lett., 10, A225 2007 can be carried out to expedite of charge, state of health, and other parameters of lithium-ion batteries in millisec- onds. Rigorous

Subramanian, Venkat

103

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

SciTech Connect

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

104

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

105

Efficient Lithium-Ion Battery Pack Electro-Thermal Simulation  

Science Journals Connector (OSTI)

A methodology to derive a computational efficient electro-thermal battery pack model is showed. It is taken ... up of three orders of magnitude for the thermal part. The electrical battery model is implemented an...

L. Kostetzer

2014-01-01T23:59:59.000Z

106

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

107

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network (OSTI)

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

108

Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode ... VO2 Nanowires Assembled into Hollow Microspheres for High-Rate and Long-Life Lithium Batteries ...

Nasir Mahmood; Chenzhen Zhang; Fei Liu; Jinghan Zhu; Yanglong Hou

2013-10-16T23:59:59.000Z

109

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

110

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

111

High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of  

Office of Science (SC) Website

High-Power Electrodes for Lithium-Ion High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement For novel 3-D anodes made of sheets of carbon (graphene) and silicon nanoparticles, transport studies found much shorter lithium diffusion paths throughout the electrode and fast lithiation/delithiation of the nanoparticles. Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and charges/discharges more rapidly while maintaining mechanical stability. Research Details Electrochemical studies: 83% of theoretical capacity (3200 mAh g-1)

112

Better Lithium-Ion Batteries Are On The Way From Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss, +1 510 486 6249, paul_preuss@lbl.gov traditional-new.jpg At left, the traditional approach to composite anodes using silicon (blue spheres) for higher energy capacity has a polymer binder such as PVDF (light brown) plus added particles of carbon to conduct electricity (dark brown spheres). Silicon swells and shrinks while acquiring and releasing lithium ions, and repeated swelling and shrinking eventually break contacts among the conducting carbon particles. At right, the new Berkeley Lab polymer (purple) is itself conductive and continues to bind tightly to the silicon particles despite repeated swelling and shrinking.

113

Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack  

Science Journals Connector (OSTI)

Abstract Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

Kuahai Yu; Xi Yang; Yongzhou Cheng; Changhao Li

2014-01-01T23:59:59.000Z

114

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance  

Science Journals Connector (OSTI)

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance ... A new nanocomposite formulation of the FeS-based anode for lithium-ion batteries is proposed, where FeS nanoparticles wrapped in reduced graphene oxide (RGO) are produced via a facile direct-precipitation approach. ...

Ling Fei; Qianglu Lin; Bin Yuan; Gen Chen; Pu Xie; Yuling Li; Yun Xu; Shuguang Deng; Sergei Smirnov; Hongmei Luo

2013-05-14T23:59:59.000Z

115

EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report  

Energy.gov (U.S. Department of Energy (DOE))

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

116

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network (OSTI)

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

117

Development of Lithium?ion Battery as Energy Storage for Mobile Power Sources Applications  

Science Journals Connector (OSTI)

In view of the need to protect the global environment and save energy there has been strong demand for the development of lithium?ion battery technology as a energy storage system especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium?ion battery development is toward the high power and energy density cheaper in price and high safety standard. In our laboratory the research and development of lithium?ion battery technology was mainly focus to develop high power density performance of cathode material which is focusing to the Li?metal?oxide system LiMO 2 where M=Co Ni Mn and its combination. The nano particle size material which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition we also developed variety of sizes of lithium?ion battery prototype including (i) small size for electronic gadgets such as mobile phone and PDA applications (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC SIRIM Berhad will be discussed in this paper.

Mohd Ali Sulaiman; Hasimah Hasan

2009-01-01T23:59:59.000Z

118

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan The advent of Li-ion batteries has played a central role in the impressive development of portable digital and wireless technology. Such success has triggered further efforts to utilize them as key components in other applications with an even larger impact on society, which include electric vehicles and energy backup for renewable energy sources. However, several challenges need to be met before these expectations can be realized, as Li-ion batteries currently do not meet the power and energy density requirements of these devices. New and better materials for the electrodes

119

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

120

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network (OSTI)

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao Information ABSTRACT: Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol

Huang, Jiaxing

122

Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter  

Science Journals Connector (OSTI)

In this study, the thermal hazard features of various lithium-ion batteries, such as LiCoO2 and LiFePO4..., were assessed properly by calorimetric techniques. Vent sizing package 2 (VSP2), an adiabatic calorimete...

Tien-Yuan Lu; Chung-Cheng Chiang…

2013-12-01T23:59:59.000Z

123

Analysis of Impedance Response in Lithium-ion Battery Electrodes  

E-Print Network (OSTI)

A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture...

Cho, Seongkoo

2013-12-04T23:59:59.000Z

124

Thermal Management of High-Performance Lithium-Ion Batteries  

Science Journals Connector (OSTI)

The battery power and lifetime depend to a large...cool...) is usually reduced using a high volumetric flow rate. Lathin technology from Behr ensures efficient temperature homogenisation (locally adapted thermal ...

Dr.-Ing. Matthias Stripf; Dr.-Ing. Manuel Wehowski…

2012-01-01T23:59:59.000Z

125

Success Stories: Solid Electrolyte Lithium Ion Batteries - Seeo, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Electrolyte May Usher in a New Generation of Solid Electrolyte May Usher in a New Generation of Rechargeable Lithium Batteries For Vehicles With sky rocketing gasoline prices and exploding laptops, there could not have been a better time for a new rechargeable battery breakthrough. Enter Lawrence Berkeley National Laboratory's (LBNL) nanostructured polymer electrolyte (NPE). NPE is a solid electrolyte designed for use in rechargeable lithium batteries. The unique material was developed by LBNL researchers Nitash Balsara, Hany Eitouni, Enrique Gomez, and Mohit Singh and licensed to startup company Seeo Inc. in 2007. With solid financial backing from Khosla Ventures, located in Menlo Park, California, and an impressive scientific team recruited from LBNL, University of California, Berkeley, and the battery industry, Seeo is now

126

Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics  

Science Journals Connector (OSTI)

Abstract A pseudo two-dimensional mathematical model is developed for a lithium ion battery, integrating the elementary reaction based solid-electrolyte interphase (SEI) growth model with multiple transport processes. The model is validated using the experimental data. Simulation results indicate that the operating temperature has great effect on the SEI layer generation and growth. Under different charging–discharging rates, it is found that high charging–discharging rate can intensify the battery capacity fading process. Different cooling conditions are then applied and show that enhanced surface convective cooling condition can effectively slow down the battery capacity fading. After that, the effect of electrolyte salt concentration and exchange current density are studied. It is found that raising the electrolyte salt concentration can improve the diffusion property of lithium ions, and stabilize the battery performance under lithium ion consumption induced resistance rising. It also suggests that improving exchange current density could greatly decrease the lithium ion battery capacity fading.

Yuanyuan Xie; Jianyang Li; Chris Yuan

2014-01-01T23:59:59.000Z

127

Artificial SEI Enables High-Voltage Lithium-ion Batteries | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Functional Materials for Energy Artificial SEI Enables High-Voltage Lithium-ion Batteries September 03, 2013 Efficacy of Lipon coating as an artificial SEI for suppression of electrolyte decomposition on a 5V spinel cathode: coulombic efficiency was measured versus cycle numbers at samples with different coating thickness. An artificial solid electrolyte interphase (SEI) of lithium phosphorus oxynitride (Lipon) enables the use of 5V cathode materials with conventional carbonate electrolytes in lithium-ion batteries. Five volt cathode materials, such as LiNi0.5Mn1.5O4, are desirable to provide higher energy, however conventional carbonate electrolytes decompose above 4.5V compromising the battery performance. This work shows that Lipon coating suppresses the electrolyte decomposition, as measured by the

128

Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery  

Science Journals Connector (OSTI)

The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting \\{GPEs\\} are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge–discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10?3 S cm?1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

Jiansheng Liu; Weishan Li; Xiaoxi Zuo; Shengqi Liu; Zhao Li

2013-01-01T23:59:59.000Z

129

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have of SWNTs on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

130

Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module  

Science Journals Connector (OSTI)

Abstract This paper investigates the mechanisms of penetration induced thermal runaway (TR) propagation process within a large format lithium ion battery pack. A 6-battery module is built with 47 thermocouples installed at critical positions to record the temperature profiles. The first battery of the module is penetrated to trigger a TR propagation process. The temperature responses, the voltage responses and the heat transfer through different paths are analyzed and discussed to characterize the underlying physical behavior. The temperature responses show that: 1) Compared with the results of TR tests using accelerating rate calorimetry (ARC) with uniform heating, a lower onset temperature and a shorter TR triggering time are observed in a penetration induced TR propagation test due to side heating. 2) The maximum temperature difference within a battery can be as high as 791.8 °C in a penetration induced TR propagation test. The voltage responses have a 5-stage feature, indicating that the TR happens in sequence for the two pouch cells packed inside a battery. The heat transfer analysis shows that: 1) 12% of the total heat released in TR of a battery is enough to trigger the adjacent battery to TR. 2) The heat transferred through the pole connector is only about 1/10 of that through the battery shell. 3) The fire has little influence on the TR propagation, but may cause significant damage on the accessories located above the battery. The results can enhance our understandings of the mechanisms of TR propagation, and provide important guidelines in pack design for large format lithium ion battery.

Xuning Feng; Jing Sun; Minggao Ouyang; Fang Wang; Xiangming He; Languang Lu; Huei Peng

2015-01-01T23:59:59.000Z

131

Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Mesoporous metal oxides such as SnO2...exhibit a superior electrochemical performance as anode materials for lithium-ion batteries due to their large surface areas and ... collapse during the charge–discharge pro...

Shuhua Jiang; Wenbo Yue; Ziqi Gao; Yu Ren; Hui Ma…

2013-05-01T23:59:59.000Z

132

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Anatase TiO2...nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized ... as an anode material for the lithium ion battery. The nanosized TiO2 particles wer...

Dan Li; Dongqi Shi; Zongwen Liu; Huakun Liu…

2013-04-01T23:59:59.000Z

133

In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A novel SnO2/graphene composite has been synthesized via an in...2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized ... used as an anode material for lithium ion batteries

Hongdong Liu; Jiamu Huang; Chengjie Xiang…

2013-10-01T23:59:59.000Z

134

Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery  

Science Journals Connector (OSTI)

In this study, PPESK/PVDF/PPESK tri-layer composite separators for lithium-ion batteries were prepared by electrospinning technique. The physical properties, electrochemical performances and thermal properties of...

Chun Lu; Wen Qi; Li Li; Jialong Xu; Ping Chen…

2013-07-01T23:59:59.000Z

135

Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive  

Science Journals Connector (OSTI)

To enhance the thermal stability of graphite electrodes for lithium-ion batteries, 4-isopropyl phenyl diphenyl phosphate (IPPP)...6...in ethylene carbonate and diethyl carbonate (1:1 in weight). The electrochemic...

Qingsong Wang; Jinhua Sun; Chunhua Chen

2009-07-01T23:59:59.000Z

136

Modeling of Transport in Lithium Ion Battery Electrodes  

E-Print Network (OSTI)

, such as batteries and fuel cells, versus other devices like capacitors and internal combustion (IC) engines. The goals for current hybrid and all electric vehicles are also illustrated. Adapted from (2... other devices like capacitors and internal combustion (IC) engines. The goals for current hybrid and all electric vehicles are also illustrated. Adapted from (2). The dashed lines in the above plot indicate discharge rates, where very short...

Martin, Michael

2012-07-16T23:59:59.000Z

137

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion  

Science Journals Connector (OSTI)

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion ... The muons themselves are quasi-static, most probably located in a 4h site between the [Li2N] plane and the Li(1)/Ni layer. ... The initial fall in ? results from an increase in muon hopping as the temperature is raised, while the subsequent rise originates from an increasing proportion of trapped and therefore static muons. ...

Andrew S. Powell; James S. Lord; Duncan H. Gregory; Jeremy J. Titman

2009-10-27T23:59:59.000Z

138

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes  

Science Journals Connector (OSTI)

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes ... By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. ...

Charles Kiseok Song; Brian J. Eckstein; Teck Lip Dexter Tam; Lynn Trahey; Tobin J. Marks

2014-10-20T23:59:59.000Z

139

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

140

Differential thermal voltammetry for tracking of degradation in lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

Billy Wu; Vladimir Yufit; Yu Merla; Ricardo F. Martinez-Botas; Nigel P. Brandon; Gregory J. Offer

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Forming gas treatment of lithium ion battery anode graphite powders  

DOE Patents (OSTI)

The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

2014-09-16T23:59:59.000Z

142

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

143

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Energy.gov (U.S. Department of Energy (DOE))

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

144

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

145

The Self-Improvement of Lithium-Ion Batteries | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture and Viral Disease Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Novel Materials Become Multifunctional at the Ultimate Quantum Limit Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Self-Improvement of Lithium-Ion Batteries NOVEMBER 30, 2012 Bookmark and Share Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure. The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may

146

Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes  

Science Journals Connector (OSTI)

Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 ? mAh ? g ? 1 with a Coulombic efficiency of 84% at a rate of 150 ? mA ? g ? 1 between 2 and 0.02 V and a significantly enhanced cycling performance i.e. a reversible capacity of 1326 ? mAh ? g ? 1 was retained after 40 cycles. These improvements were attributed to the uniform and continuous carbon coatings which increased electronic contact and conduction and buffered large volume changes during lithium ion insertion/extraction.

Rui Huang; Xing Fan; Wanci Shen; Jing Zhu

2009-01-01T23:59:59.000Z

147

Boosting batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

148

Potential use of geothermal energy sources for the production of lithium-ion batteries  

Science Journals Connector (OSTI)

The lithium-ion battery is one of the most promising technologies for energy storage in many recent and emerging applications. However, the cost of lithium-ion batteries limits their penetration in the public market. Energy input is a significant cost driver for lithium batteries due to both the electrical and thermal energy required in the production process. The drying process requires 45–57% of the energy consumption of the production process according to a model presented in this paper. The model is used as a base for quantifying the energy and temperatures at each step, as replacing electric energy with thermal energy is considered. In Iceland, it is possible to use geothermal steam as a thermal resource in the drying process. The most feasible type of dryer and heating method for lithium batteries would be a tray dryer (batch) using a conduction heating method under vacuum operation. Replacing conventional heat sources with heat from geothermal steam in Iceland, we can lower the energy cost to 0.008USD/Ah from 0.13USD/Ah based on average European energy prices. The energy expenditure after 15 years operation could be close to 2% of total expenditure using this renewable resource, down from 12 to 15% in other European countries. According to our profitability model, the internal rate of return of this project will increase from 11% to 23% by replacing the energy source. The impact on carbon emissions amounts to 393.4–215.1 g/Ah lower releases of CO2 per year, which is only 2–5% of carbon emissions related to battery production using traditional energy sources.

Gudrun Saevarsdottir; Pai-chun Tao; Hlynur Stefansson; William Harvey

2014-01-01T23:59:59.000Z

149

VSe2/graphene nanocomposites as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Unprecedented VSe2/graphene nanocomposites are synthesized through a hydrothermal route. A large number of hexagonal \\{VSe2\\} sheets anchored on the graphene sheets can be observed. The thicknesses and lengths of \\{VSe2\\} sheets are controlled by graphene sheets. VSe2/graphene nanocomposite prepared with 15 mg graphite oxide (VSe2/G-15) exhibits the best electrochemical lithium storage properties such as charge/discharge capacities, cycle stability and rate capability when used as an anode material for lithium-ion batteries.

Yaping Wang; Binbin Qian; Huanhuan Li; Liang Liu; Long Chen; Haobin Jiang

2015-01-01T23:59:59.000Z

150

Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG) on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

Gouri Radhakrishnan; Brendan Foran; Michael V. Quinzio; Miles J. Brodie

2013-01-01T23:59:59.000Z

151

Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes  

Science Journals Connector (OSTI)

Abstract In this report, we introduce electrospun silicon nanoparticle and carbon nanotube loaded carbon nanofibers (SCNFs) as anode materials in lithium-ion batteries (LIBs). The one-dimensional structure of electrospun nanofibers provides porosity for the anode material. Carbon nanotubes (CNTs) in the electrospun fibers reduce the volume expansion of silicon nanoparticles (SiNPs) and improve mechanical stability of the electrode. Both \\{CNTs\\} and carbon nanofibers enhance electronic conduction by connecting SiNPs in \\{SCNFs\\} for electrode reactions. These contribute to improved electrochemical performance of SCNF anode-based \\{LIBs\\} resulting in the enhancement of capacity and cycling ability.

Nguyen Trung Hieu; Jungdon Suk; Dong Wook Kim; Ok Hee Chung; Jun Seo Park; Yongku Kang

2014-01-01T23:59:59.000Z

152

Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery ... graphene nanoscroll; graphene; Fe3O4; one-dimensional wrapping; lithium-ion batteries ...

Jinping Zhao; Bingjun Yang; Zongmin Zheng; Juan Yang; Zhi Yang; Peng Zhang; Wencai Ren; Xingbin Yan

2014-05-14T23:59:59.000Z

153

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery ... Yu, A.; Park, H. W.; Davies, A.; Higgins, D.; Chen, Z.; Xaio, X.Free-Standing Layer-by-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries J. Phys. ...

Fathy M Hassan; Abdel Rahman Elsayed; Victor Chabot; Rasim Batmaz; Xingcheng Xiao; Zhongwei Chen

2014-07-31T23:59:59.000Z

154

Novel thermal management system design methodology for power lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Battery packs conformed by large format lithium-ion cells are increasingly being adopted in hybrid and pure electric vehicles in order to use the energy more efficiently and for a better environmental performance. Safety and cycle life are two of the main concerns regarding this technology, which are closely related to the cell's operating behavior and temperature asymmetries in the system. Therefore, the temperature of the cells in battery packs needs to be controlled by thermal management systems (TMSs). In the present paper an improved design methodology for developing \\{TMSs\\} is proposed. This methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack product design methodology in order to improve the overall safety and performance. The methodology is validated by comparing simulation results with laboratory measurements on a single module of the battery pack designed at IK4-IKERLAN for a traction application. The maximum difference between model predictions and experimental temperature data is 2 °C. The models developed have shown potential for use in battery thermal management studies for EV/HEV applications since they allow for scalability with accuracy and reasonable simulation time.

Nerea Nieto; Luis Díaz; Jon Gastelurrutia; Francisco Blanco; Juan Carlos Ramos; Alejandro Rivas

2014-01-01T23:59:59.000Z

155

Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600 °C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g?1 before modification to 160.8 mAh g?1 after modification for the first discharge at the rate of 2 C. After 200 charge–discharge cycles, when discharge rate was increased from 2 C to 5 C to 10 C, modified battery capacity was reduced from 152.4 mAh g?1 to 127.9 mAh g?1 to 106 mAh g?1. When the ratio was reduced from 10 C to 5 C to 2 C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning.

Lei Qiu; Ziqiang Shao; Mingshan Yang; Wenjun Wang; Feijun Wang; Long Xie; Shaoyi Lv; Yunhua Zhang

2013-01-01T23:59:59.000Z

156

Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared \\{CAs\\} could stay at about 470 mA h g?1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g?1). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m2 g?1, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions.

Xiaoqing Yang; Hong Huang; Guoqing Zhang; Xinxi Li; Dingcai Wu; Ruowen Fu

2015-01-01T23:59:59.000Z

157

The Effect of Temperature on Capacity and Power in Cycled Lithium Ion Batteries  

SciTech Connect

The Idaho National Laboratory (INL) tested six Saft America HP-12 (Generation 2000), 12-Ah lithium ion cells to evaluate cycle life performance as a power assist vehicle battery. The cells were tested to investigate the effects of temperature on capacity and power fade. Test results showed that five of the six cells were able to meet the Power Assist Power and Energy Goals at the beginning of test and after 300,000 cycles using a Battery Size Factor of 44.3 cells. The initial Static Capacity tests showed that the capacities of the cells were stable for three discharges and had an average of 16.4 Ah. All the cells met the Self-Discharge goal, but failed to meet the Cold Cranking goal. As is typical for lithium ion cells, both power and capacity were diminished during the low-temperature Thermal Performance test and increased during the high-temperature Thermal Performance test. Capacity faded as expected over the course of 300,000 life cycles and showed a weak inverse relationship to increasing temperature. Power fade was mostly a result of cycling while temperature had a minor effect compared to cycle life testing. Consequently, temperature had very little effect on capacity and power fade for the proprietary G4 chemistry.

Jeffrey R. Belt

2005-03-01T23:59:59.000Z

158

Numerical investigation of thermal behaviors in lithium-ion battery stack discharge  

Science Journals Connector (OSTI)

Abstract Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors.

Rui Liu; Jixin Chen; Jingzhi Xun; Kui Jiao; Qing Du

2014-01-01T23:59:59.000Z

159

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

160

Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode  

Science Journals Connector (OSTI)

Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode ... Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. ... Ferrocene dissolved in the fuel served as the source for iron catalyst particles. ...

Kara Evanoff; Jim Benson; Mark Schauer; Igor Kovalenko; David Lashmore; W. Jud Ready; Gleb Yushin

2012-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

162

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced  

E-Print Network (OSTI)

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced one-step route was developed to synthesize crystalline CuGeO3 nanowire/graphene composites (CGCs). Crystalline CuGeO3 nanowires were tightly covered and anchored by graphene sheets, forming a layered structure

Lin, Zhiqun

163

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network (OSTI)

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

164

Understanding the Degredation of Silicion Electrodes for Lithium Ion Batteries Using Acoustic Emission  

SciTech Connect

Silicon is a promising anode material for lithium ion battery application due to its high specific capacity, low cost, and abundance. However, when silicon is lithiated at room temperature it can undergo a volume expansion in excess of 280% which leads to extensive fracturing. This is thought to be a primary cause of the rapid decay in cell capacity routinely observed. Acoustic emission (AE) was employed to monitor activity in composite silicon electrodes while cycling in lithium ion half-cells using a constant current-constant voltage procedure. The major source of AE was identified as the brittle fracture of silicon particles resulting from the alloying reaction that gives rise to LixSi phases. The largest number of emissions occurred on the first lithiation corresponding to surface fracture of the silicon particles, followed by distinct emission bursts on subsequent charge and discharge steps. Furthermore, a difference in the average parameters describing emission during charge and discharge steps was observed. Potential diagnostic and materials development applications of the presented AE techniques are discussed.

Rhodes, Kevin J [ORNL; Dudney, Nancy J [ORNL; Lara-Curzio, Edgar [ORNL; Daniel, Claus [ORNL

2010-01-01T23:59:59.000Z

165

Thermally stable hyperbranched polyether-based polymer electrolyte for lithium-ion batteries  

Science Journals Connector (OSTI)

A thermally stable polymer matrix, comprising hyperbranched polyether PHEMO (poly(3-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}methyl-3'-methyloxetane)) and PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)), has been successfully prepared for applications in lithium-ion batteries. This type of polymer electrolyte has been made by adding different amounts of lithium bis(oxalate)borate (LiBOB) to the polymer matrix. Its thermal and structural properties were measured using differential scanning calorimetry and x-ray diffraction. Experimental results show that the polymer electrolyte system possesses good thermal stability, with a decomposition temperature above 420?°C. The ionic conductivity of the polymer electrolyte system is dependent on the lithium salt content, reaching a maximum of 1.1 ? 10?5?S?cm?1 at 30?°C and 2.3 ? 10?4?S?cm?1 at 80?°C when doped with 10?wt% LiBOB.

Feng Wu; Ting Feng; Chuan Wu; Ying Bai; Lin Ye; Junzheng Chen

2010-01-01T23:59:59.000Z

166

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

167

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven  

E-Print Network (OSTI)

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using Abstract-- This paper presents a numerical calculation of the evolution of the spatially-resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid con- centration is driven

Stefanopoulou, Anna

168

Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop  

Science Journals Connector (OSTI)

Abstract Lithium-ion batteries (LIBs) are replacing the Nickel–Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of \\{LIBs\\} in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in \\{LIBs\\} during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1–3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.

W. Walker; H. Ardebili

2014-01-01T23:59:59.000Z

169

Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

High-rate anode materials for lithium-ion batteries are desirable for applications that require high ... demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100–200 nm,...

Zhiyong Wang; Hao Zhang; Nan Li; Zujin Shi; Zhennan Gu; Gaoping Cao

2010-10-01T23:59:59.000Z

170

A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery  

Science Journals Connector (OSTI)

Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. ...

Lingmin Yao; Xianhua Hou; Shejun Hu; Qiang Ru…

2013-07-01T23:59:59.000Z

171

An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

Rui Zhao; Junjie Gu; Jie Liu

2015-01-01T23:59:59.000Z

172

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

173

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

4) Lithium Battery Cathode. Electrochemical and Solid-StateBattery Electrodes Utilizing Fibrous Conductive Additives. Electrochemical and Solid-Statesolid state, these effects can become limiting in some systems. 1.3 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

174

Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries  

SciTech Connect

Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

2014-03-15T23:59:59.000Z

175

Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

176

Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

177

Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications  

Science Journals Connector (OSTI)

Abstract A graphene/silicon nanocomposite has been synthesized, characterized and tested as anode active material for lithium-ion batteries. A morphologically stable composite has been obtained by dispersing silicon nanoparticles in graphene oxide, previously functionalized with low-molecular weight polyacrylic acid, in eco-friendly, low-cost solvent such as ethylene glycol. The use of functionalized graphene oxide as substrate for the dispersion avoids the aggregation of silicon particles during the synthesis and decreases the detrimental effect of graphene layers re-stacking. Microwave irradiation of the suspension, inducing reduction of graphene oxide, and the following thermal annealing of the solid powder obtained by filtration, yield a graphene/silicon composite material with optimized morphology and properties. Composite anodes, prepared with high-molecular weight polyacrylic acid as green binder, exhibited high and stable reversible capacity values, of the order of 1000 mAh g?1, when cycled using vinylene carbonate as electrolyte additive. After 100 cycles at a current of 500 mA g?1, the anode showed a discharge capacity retention of about 80%. The mechanism of reversible lithium uptake is described in terms of Li–Si alloying/dealloying reaction. Comparison of the impedance responses of cells tested in electrolytes with or without vinylene carbonate confirms the beneficial effects of the additive in stabilizing the composite anode.

F. Maroni; R. Raccichini; A. Birrozzi; G. Carbonari; R. Tossici; F. Croce; R. Marassi; F. Nobili

2014-01-01T23:59:59.000Z

178

Hard Carbon Wrapped in Graphene Networks as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Abstract Hard carbon enveloped with graphene networks was fabricated by a facile and scalable method. In the constructed architecture, hard carbon offers large lithium storage and flexible graphene layers can provide a highly conductive matrix for enabling good contact between particles and facilitate the diffusion and transport of electrons and ions. As a consequence, the hybrid anode exhibits enhanced reversible capacity (500 mAh g?1 at current density of 20 mA g?1), rate capability (400 mAh g?1 at 0.2 C, 290 mAh g?1 at 1 C, 250 mAh g?1 at 2 C, and 200 mAh g?1 at 5 C, 1C = 400 mA g?1) and cycle performance. We believe that the outstanding synergetic effect between the graphene networks and the hard carbon structures induces the superior lithium storage performance of the overall electrode by maximally utilizing the electrochemically active graphene and hard carbon particles. As far as we know, the hard carbon/graphene hybrids were firstly fabricated as anode in lithium-ion batteries.

Xiang Zhang; Changling Fan; Lingfang Li; Weihua Zhang; Wei Zeng; Xing He; Shaochang Han

2014-01-01T23:59:59.000Z

179

Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

Yong Seok Choi; Dal Mo Kang

2014-01-01T23:59:59.000Z

180

Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies  

Science Journals Connector (OSTI)

Abstract Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.

Tao Wang; K.J. Tseng; Jiyun Zhao; Zhongbao Wei

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

182

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network (OSTI)

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

183

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network (OSTI)

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

184

Thermal analyses of LiCoO2 lithium-ion battery during oven tests  

Science Journals Connector (OSTI)

A three dimensional thermal abuse model for graphite/LiPF6/LiCoO2 batteries is established particularly for oven tests. To ... of heat release condition and oven temperature on battery thermal behaviors, we perfo...

Peng Peng; Yiqiong Sun; Fangming Jiang

2014-10-01T23:59:59.000Z

185

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One and their drawbacks Porous electrode models of Li-ion batteries often use approximations to eliminate the time and disadvantages when used in Li-ion battery models. For instance, the Duhamel's superposition method is the robust

Subramanian, Venkat

186

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone  

SciTech Connect

Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

2013-09-15T23:59:59.000Z

187

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

188

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

189

High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Due to well-known Jahn–Teller distortion in spinel LiMn1.5Ni0.5O4, it can only be reversibly electrochemically cycled between 3 and 4.8 V with a limited reversible capacity of ?147 mAh g?1. This study intends to embed the layer-structured Li2MnO3 nanodomains into LiMn1.5Ni0.5O4 spinel matrix so that the Jahn–Teller distortion can be suppressed even when the average Mn oxidation state is below +3.5. A series of xLi2MnO3·(1 ? x)LiMn1.5Ni0.5O4 where x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 are synthesized by co-precipitation method. The composites with intermediate values of x = 0.1, 0.2, 0.3, 0.4 and 0.5 exhibit both spinel and layered structural domains in the particles and show greatly improved cycle stability than that of the pure spinel. Among them, 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 delivers the highest and almost constant capacity after a few conditional cycles and shows superior cycle stability. Ex-situ X-ray diffraction results indicate that no Jahn–Teller distortion occurs during the cycling of the 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 composite. Additionally, 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 possesses a high energy density of ?700 Wh kg?1, showing great promise for advanced high energy density lithium-ion batteries.

Jia Lu; Ya-Lin Chang; Bohang Song; Hui Xia; Jer-Ren Yang; Kim Seng Lee; Li Lu

2014-01-01T23:59:59.000Z

190

Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries  

SciTech Connect

Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

2013-10-15T23:59:59.000Z

191

Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting  

Science Journals Connector (OSTI)

Abstract Phenyl acetate (PA) is more stable and much cheaper than vinylene carbonate (VC), a commercial electrolyte additive for graphite anode of lithium ion battery, but its performance needs to be improved. In this paper, we report a new additive, 4-fluorophenyl acetate (4-FPA), which results from the fluorine-substituting of PA. The properties of the formed solid electrolyte interphase (SEI) by 4-FPA are investigated comparatively with PA by molecular energy level calculation, cyclic voltammetry, charge–discharge test, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. It is found that the SEI formed by 4-FPA is more protective than PA, resulting in the improved cyclic stability of lithium ion battery: the capacity retention of LiFePO4/graphite cell after 90 cycles is 92% for 4-FPA but only 84% for PA. The fluorine in 4-FPA makes it more reducible than PA and the fluorine-containing reduction products of 4-FPA are incorporated into the SEI, which contributes to the improved performance.

Bin Li; Yaqiong Wang; Haibin Lin; Xianshu Wang; Mengqing Xu; Yating Wang; Lidan Xing; Weishan Li

2014-01-01T23:59:59.000Z

192

Effects of a graphene nanosheet conductive additive on the high-capacity lithium-excess manganese–nickel oxide cathodes of lithium-ion batteries  

Science Journals Connector (OSTI)

This study examines the effects of a graphene nanosheet (GNS) conductive additive on the...?3) lithium-ion battery cathode containing 92 wt% Li1.1(Mn0.6Ni0.4)0.9O2...microspheres (approximately 6 ?m in diameter)....

Wen-Chin Chen; Cheng-Yu Hsieh; Yu-Ting Weng…

2014-11-01T23:59:59.000Z

193

[11] Cui L, Hu L, Choi JW, Cui Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.  

E-Print Network (OSTI)

for anodes of lithium ion batteries. ACS Nano 2010;4:3671­8. [12] Krivchenko VA, Pilevsky AA, Rakhimov AT online 6 October 2011 A B S T R A C T Chemically modified graphenes (CMGs) are promising candidates 2011 Elsevier Ltd. All rights reserved. Graphene has excellent mechanical, electrical, thermal

194

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network (OSTI)

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr distribution of lithium results in stresses that may cause the particle to fracture. The distributions of the particle, below which fracture is averted. © 2010 American Institute of Physics. doi:10.1063/1.3492617 I

195

Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes  

Science Journals Connector (OSTI)

A facile direct hybridization route to prepare SnO2/graphene nanocomposites for Li-ion battery anode application is demonstrated. Uniform distribution of...2 nanoparticles on graphene layers was enabled by a one-...

Dong Ok Shin; Hun Park; Young-Gi Lee; Kwang Man Kim…

2014-06-01T23:59:59.000Z

196

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

SciTech Connect

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

Wilcox, James D.

2008-12-18T23:59:59.000Z

197

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

198

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

199

Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3–5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (?1300 mAh g?1 after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g?1 at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of self-assembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.

Kowsalya Palanisamy; Yunok Kim; Hansu Kim; Ji Man Kim; Won-Sub Yoon

2015-01-01T23:59:59.000Z

200

Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract MnO and nitrogen-doped carbon (N-C) nanocomposites have been successfully synthesized by a facile thermal-decomposing method using the mixture of glycine and manganese acetate as precursor. As anode material for lithium-ion batteries (LIBs), electrochemical results show that the as-prepared MnO/N-C achieves a reversible capacity of 473 mAh g?1 after 50 cycles at a current density of 100 mA g?1 and the capacities of 631.4, 547.7, 443.1, 294.7, and 161.8 mAh g?1 at the current densities of 100, 200, 400, 800, and 1600 mA g?1, respectively. The superior cycling and rate performances is attributed to the nanocomposite structure, in which nanosized MnO particles shorten the diffusion path of lithium ions and the N-doped carbon cushions the volume change and improves the electronic conductivity of electrode.

Song Qiu; Xinzhen Wang; Guixia Lu; Jiurong Liu; Cuizhu He

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Lithium-ion battery (LIB) technology is currently the most important and promising energy storage technology that has captured the portable electronic market, invaded the power tool equipment market, and penetrated the electric vehicle market. The ever-growing demand for its energy capacity necessitates the understanding of (de)lithiation mechanism on a nanoscale, and thus the development of platforms enabling in-situ electrochemical TEM characterization. Sealed liquid cell (SLC) device has been widely recognized as the most desirable platform, since it allows the introduction of commercial volatile electrolytes into TEM. However, a comprehensive review summarizing the current development of \\{SLCs\\} for in-situ TEM LIB research is missing and in urgent need for its benign development. This review article aims to fill this gap.

Fan Wu; Nan Yao

2015-01-01T23:59:59.000Z

202

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

203

Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries  

Science Journals Connector (OSTI)

Abstract The gram-scale synthesis of graphene based mesoporous SnO2 composite (G-M-SnO2) has been successfully realized based on kirkendall effect. When used as anode for lithium ion batteries, it delivers a high reversible capacity of 1354 mAhg?1 after 50 cycles at 100 mAg?1 and excellent rate capability of 664 mAhg?1 at 2 Ag?1. The outstanding lithium storage performance mainly results from the synergistic effect of the ultrasmall SnO2 and conductive graphene nanoparticles, which not only enhanced the conductivity of the whole electrode but also provide buffer matrix for the expansion of SnO2 nanoparticles during charge-discharge process. Furthermore, the ultra-small size of SnO2 shortens the diffusion length of Li+/e? in SnO2.

Xiaowu Liu; Xiongwu Zhong; Zhenzhong Yang; Fusen Pan; Lin Gu; Yan Yu

2015-01-01T23:59:59.000Z

204

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

205

Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A tin oxide-titanium oxide/graphene (SnO2-TiO2.../G) ternary nanocomposite as high-performance anode for Li-ion batteries was prepared via a simple reflux method. ... The graphite oxide (GO) was reduced to graphene

Shan-Shan Chen; Xue Qin

2014-10-01T23:59:59.000Z

206

Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries  

Science Journals Connector (OSTI)

We systematically investigated thermal effects of organic electrolytes/organic solvents with...0.5CoO2) of Li-ion battery under rupture conditions by using oxygen bomb...3O4, CoO, and LiCoO2 were the main solid p...

Qian Huang; Manming Yan; Zhiyu Jiang

2008-06-01T23:59:59.000Z

207

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

208

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

209

Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.  

SciTech Connect

We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

2011-04-12T23:59:59.000Z

210

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

211

Argonne Transportation Technology R&D Center - Lithium-ion Batteries,  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Autonomie Batteries Downloadable Dynamometer Database Engines Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Photo of battery developers that links to story Press Coverage What's New Multimedia Logo of the Wharton School of Business Dec. 13. Knowledge@Wharton. Green SPorts and Transportation: The Elephant in the Room Logo of Crain's Chicago Business Dec. 10. Crain's Chicago Business. Argonne chemist Pete Chupas named one of Crain's 2013 "40 under 40" Logo of the Sioux City Journal Dec. 2. Sioux City Journal. Ethanol Supporters Say the Numbers Support Their Industry

212

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)  

SciTech Connect

In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

Lee, K. J.; Kim, G. H.; Smith, K.

2010-10-14T23:59:59.000Z

213

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

214

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

SciTech Connect

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

215

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

216

Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract In this work, pure LVP nanoparticles and an LVP/graphene nanocomposite are successfully synthesized by a simple and cost effective polyol based solvothermal method, which can be easily scaled up. The synthesized nanocomposite contained small (30–60 nm) LVP nanoparticles completely and uniformly anchored on reduced graphene nanosheets. As a cathode for lithium ion batteries, the nanocomposite electrode delivered high reversible lithium storage capacity (189.8 mA h g?1 at 0.1 C), superior cycling stability (111.8 mA h g?1 at 0.1 C, 112.6 mA h g?1 at 5 C, and 103.4 mA h g?1 at 10 C after 80 cycles) and better C-rate capability (90.8 mA h g?1 at 10 C), whereas the pure LVP nanoparticles electrode delivered much less capacity at all investigated current rates. The enhanced electrochemical performance of the nanocomposite electrode can be attributed to the synergistic interaction between the uniformly dispersed LVP nanoparticles and the graphene nanosheets, which offers a large number of accessible active sites for the fast diffusion of Li ions, low internal resistance, high conductivity and more importantly, accommodates the large volume expansion/contraction during cycling.

Alok Kumar Rai; Trang Vu Thi; Jihyeon Gim; Sungjin Kim; Jaekook Kim

2015-01-01T23:59:59.000Z

217

Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Graphene-based nanocomposites have been synthesized and tested as electrode materials for high power lithium-ion batteries. In the synthesis of such nanocomposites, graphene is generally introduced by either thermally or chemically reduced graphite oxide (GO), which has poorer electric conductivity and crystallinity than mechanically exfoliated graphene. Here, we prepare few-layer graphene sheet (FLGS) with high electric conductivity, by sonicating expanded graphite in DMF solvent, and develop a simple one-pot hydrothermal method to fabricate monodispersed and ultrasmall Co3O4 nanocubes (about 4 nm in size) on the FLGS. This composite, consisting of homogeneously assembled and high crystalline Co3O4 nanocubes on the FLGS, has shown higher capacity and much better cycling stability than counterparts synthesized using GO as a precursor. The products in different synthesis stages have been characterized by TEM, FTIR and XPS to investigate the nanocube growth mechanism. We find that Co(OH)2 initially grew homogeneously on the graphene surface, then gradually oxidized to form Co3O4 nanoparticle seeds, and finally converted to Co3O4 nanocubes with caboxylated anion as surfactant. This work explores the mechanism of nanocrystal growth and its impact on electrochemical properties to provide further insights into the development of nanostructured electrode materials for high power energy storage.

Junming Xu; Jinsong Wu; Langli Luo; Xinqi Chen; Huibin Qin; Vinayak Dravid; Shaobo Mi; Chunlin Jia

2015-01-01T23:59:59.000Z

218

Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract The lithium storage performance of silicon (Si) is improved substantially by forming composite of nano-Si particles embedded homogeneously in graphene nanosheets (GNs) using a simple discharge plasma assisted milling (P-milling) method. The synergistic effect of the rapid heating of the plasma and the mechanical ball mill grinding with nano-Si as nanomiller converted the graphite powder to \\{GNs\\} with the integration of nano-Si particles in the in-situ formed GNs. This composite structure inhibits the agglomeration of nano-Si and improves electronic conductivity. The cycling stability and rate capability are enhanced, with a stable reversible capacity of 976 mAhg?1 at 50 mAg?1 for the P-milled 20 h nano-Si/GNs composite. A full cell containing a commercial LiMn2O4 cathode is assembled and demonstrated a satisfying utilization of the P-milled nano-Si/GNs composite anode with stable working potential. This composite shows promise for application in lithium ion batteries.

Wei Sun; Renzong Hu; Hui Liu; Meiqin Zeng; Lichun Yang; Haihui Wang; Min Zhu

2014-01-01T23:59:59.000Z

219

Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Molybdenum nitride and nitrogen-doped graphene nanosheets (MoN/GNS) hybrid materials are synthesized by a simple hydrothermal method combined with a heat treatment at 800 °C under an ammonia atmosphere. It is found by scanning and transmission electron microscopy that MoN nanoparticles ranging from 20 to 40 nm in diameter are homogeneously anchored to GNS. The electrochemical performance of MoN/GNS as a possible anode material for Li-ion batteries is investigated. Galvanostatic charge/discharge experiments reveal that the hybrid materials exhibit an enhanced lithium storage capacity and excellent rate capacity as a result of its efficient electronic and ionic mixed conducting network. The electrochemical results demonstrate that the weight ratio of GNS and MoN had significant effect on the electrochemical performance.

Botao Zhang; Guanglei Cui; Kejun Zhang; Lixue Zhang; Pengxian Han; Shanmu Dong

2014-01-01T23:59:59.000Z

220

Thermal Stability Enhancement of Polyethylene Separators by Gamma-ray Irradiation for Lithium Ion Batteries  

Science Journals Connector (OSTI)

The thermal stability of polyethylene (PE) separators irradiated by 50, 100, and 150 kGy dose gamma-rays is investigated when they are exposed to high-temperature environments. The gamma-ray irradiated separators have much lower Gurley numbers and higher ionic conductivity than a non-irradiated separator after storage at 100 and 120 °C. These results indicate that the thermal stability of PE separators can be drastically improved by gamma-ray irradiation. Even after storage at 120 °C for 1 h, the gamma-ray irradiated separator is maintaining its own structure. A cell assembled with a gamma-ray irradiated separator exhibits better rate-capability and cyclic performance than a pristine PE separator. The positive effects of gamma-ray irradiation are examined in detail with the purpose of improving battery performance.

Ki Jae Kim; Min-Sik Park; Hansu Kim; Young-Jun Kim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents (OSTI)

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

222

Long-life and high-rate LiVPO4F/C nanocrystals modified with graphene as cathode material for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Graphene modified LiVPO4F/C nanocomposite has been firstly investigated as cathode material for lithium-ion batteries. The LiVPO4F/C nanocrystals embedded on reduced graphene oxide sheets are synthesized via a sol–gel method. The obtained sample of graphene modified LiVPO4F/C is studied comparatively with LiVPO4F/C by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra and various electrochemical tests. The results reveal that the modification of LiVPO4F/C nanocrystals with graphene can form an effective conducting network, which can greatly improve the electronic conductivity and lithium ion transport. Thus, the as-synthesized nanocomposite exhibits excellent high-rate capability and cycling stability. In the voltage range of 3.0–4.5 V, the graphene modified LiVPO4F/C delivers a reversible discharge capacity of 151.6 (nearly to its theoretical capability of 156 mAhg? 1) and 147.8 mAhg? 1 at 0.1 and 0.5 C, respectively. It also achieves an improved cyclability with capacity retention ratio of 91.4% after 300 cycles at a higher rate of 10 C. Therefore, it is of great potential use as a cathode material in rechargeable lithium-ion batteries for hybrid-electric vehicles and electric vehicles.

Yongli Wang; Haixiang Zhao; Yongfeng Ji; Lihua Wang; Zhen Wei

2014-01-01T23:59:59.000Z

223

Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries  

SciTech Connect

A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

2014-11-01T23:59:59.000Z

224

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

225

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network (OSTI)

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

226

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Energy.gov (U.S. Department of Energy (DOE))

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

227

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

228

Life Cycle Environmental Impact of High-Capacity Lithium Ion Battery with Silicon Nanowires Anode for Electric Vehicles  

Science Journals Connector (OSTI)

The grid electricity used in this analysis is average U.S. electricity mix with 89.56% of nonrenewable energies. ... The results demonstrate that the major opportunity for reducing the life cycle impacts of the battery pack is to use clean energy supply for battery operation, such as solar and wind electricity, which could reduce these environmental impacts significantly. ... All the above analyses including the life cycle inventory analysis, impact analysis, uncertainty, and sensitivity analysis together confirm that the LIB pack using SiNW anode from metal-assisted chemical etching could have environmental impacts comparable with those of conventional battery pack, while significantly increasing the battery energy storage and extending the driving range of EVs in the future. ...

Bingbing Li; Xianfeng Gao; Jianyang Li; Chris Yuan

2014-01-31T23:59:59.000Z

229

A Facile synthesis of flower-like Co{sub 3}O{sub 4} porous spheres for the lithium-ion battery electrode  

SciTech Connect

The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.

Zheng Jun; Liu Jing; Lv Dongping; Kuang Qin [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Jiang Zhiyuan, E-mail: zyjiang@xmu.edu.c [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Xie Zhaoxiong; Huang Rongbin; Zheng Lansun [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

2010-03-15T23:59:59.000Z

230

A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract A new SnO2-Fe2O3/SWCNTs (single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach. SnO2 and Fe2O3 nanoparticles (NPs) were homogeneously located on the surface of SWCNTs, as confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX). Due to the synergistic effect of different components, the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g?1 which could be maintained after 50 cycles at 200 mA·g?1. Even at a high rate of 2000 mA·g?1, the capacity was still remained at 656 mAh·g?1.

Wangliang Wu; Yi Zhao; Jiaxin Li; Chuxin Wu; Lunhui Guan

2014-01-01T23:59:59.000Z

231

Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review  

Science Journals Connector (OSTI)

Abstract Sn-based materials have attracted much attention as anodes in lithium ion batteries (LIBs) due to their low cost, high theoretical capacities, and high energy density. However, their practical applications are limited by the poor cyclability originating from the huge volume changes. Graphene nanosheets (GNSs), a novel two-dimensional carbon sheet with one atom thickness and one of the thinnest materials, significantly address the challenges of Sn-based anodes as excellent buffering materials, showing great research interests in LIBs. In this review, various nanocomposites of GNSs/Sn-based anodes are summarized in detail, including binary and ternary composites. The significant impact of 2D \\{GNSs\\} on the volume change of Sn-based anodes during cycling is discussed, along with with their preparation methods, properties and enhanced LIB performance.

Yang Zhao; Xifei Li; Bo Yan; Dejun Li; Stephen Lawes; Xueliang Sun

2015-01-01T23:59:59.000Z

232

Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries  

SciTech Connect

LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup ?1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

?ahan, Halil, E-mail: halil@erciyes.edu.tr; Dokan, Fatma K?l?c, E-mail: halil@erciyes.edu.tr; Ayd?n, Abdülhamit, E-mail: halil@erciyes.edu.tr; Özdemir, Burcu, E-mail: halil@erciyes.edu.tr; Özdemir, Nazl?, E-mail: halil@erciyes.edu.tr; Patat, ?aban, E-mail: halil@erciyes.edu.tr [Department of Chemistry, Science Faculty, Erciyes University, Kayseri, 38039 (Turkey)

2013-12-16T23:59:59.000Z

233

Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Cubic spinel Co2SnO4/graphene sheets (Co2SnO4/G) nanocomposites are synthesized by a facile hydrothermal process in alkaline solution, using SnCl4 · 4H2O, CoCl2 · 6H2O and graphene oxide (GO) as the precursor. The structure and morphology of the resulting nanocomposites are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Co2SnO4 nanoparticles are uniformly dispersed among graphene sheets, with a size of 80–150 nm. As anode material for lithium-ion batteries, the galvanostatic charge/discharge and cyclic voltammetry are conducted to indicate the electrochemical performance of Co2SnO4/G nanocomposites. Co2SnO4/G nanocomposites exhibit an improved electrochemical performance compared with pure Co2SnO4 nanoparticles, such as high reversible capacities, good cycling stability and excellent rate performance. The initial charge and discharge capacities are 996.1 mAh g?1 and 1424.8 mAh g?1. After 100 cycles, the reversible charge/discharge capacities still remain 1046/1061.1 mAh g?1 at the current density of 100 mA g?1. Co2SnO4 nanoparticles coated by Graphene sheets with superior electrochemical performance indicate that Co2SnO4/G nanocomposites are promising electrode materials used for high-storage lithium-ion batteries.

Chang Chen; Qiang Ru; Shejun Hu; Bonan An; Xiong Song; Xianhua Hou

2015-01-01T23:59:59.000Z

234

A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered  

Science Journals Connector (OSTI)

Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of ... results show that the combination of lead-acid batteries or lithium-ion batteries

Chung-Hsing Chao; Jenn-Jong Shieh

2013-01-01T23:59:59.000Z

235

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

236

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

237

Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials  

Science Journals Connector (OSTI)

Abstract Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC–MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC–MS. Acid–base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

Patricia Handel; Gisela Fauler; Katja Kapper; Martin Schmuck; Christoph Stangl; Roland Fischer; Frank Uhlig; Stefan Koller

2014-01-01T23:59:59.000Z

238

Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries  

Science Journals Connector (OSTI)

ABSTRACT This paper describes a method for the preparation of composite cathodes for lithium ion-batteries by using poly vinyl acetate (PVAc) as a binder. \\{PVAc\\} is a non-fluorinated water dispersible polymer commonly used in a large number of industrial applications. The main advantages for using of this polymer are related to its low cost and negligible toxicity. Furthermore, since the \\{PVAc\\} is water processable, its use allows to replace the organic solvent, employed to dissolve the fluorinated polymer normally used as a binder in lithium battery technology, with water. In such a way it is possible to decrease the hazardousness of the preparation process as well as the production costs of the electrodes. In the paper the preparation, characterization and electrochemical performance of a LiFePO4 electrode based on \\{PVAc\\} as the binder is described. Furthermore, to assess the effect of the \\{PVAc\\} binder on the electrode properties, its performance is compared to that of a conventional electrode employing PVdF-HFP as a binder.

Pier Paolo Prosini; Maria Carewska; Cinzia Cento; Amedeo Masci

2014-01-01T23:59:59.000Z

239

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents (OSTI)

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

240

Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries  

Science Journals Connector (OSTI)

Abstract We facilely fabricate hierarchical 3D microspheres consisting of 2D V2O5 (vanadium pentoxide) nanosheets by a low temperature hydrothermal method and use it to structure hierarchical 3D micro-/nano-LIBs (lithium ion batteries) cathode. This is a template-free and facile method easy for scale-up production of hierarchical 3D micro-/nano-structured V2O5 spheres beneficial for high performance \\{LIBs\\} applications. Such a facile method resulted hierarchical 3D micro-/nano-V2O5 possess many unique features good for LIBs: (1) 2D V2O5 nanosheets facilitate the Li+ diffusions and electron transports; (2) hierarchical 3D micro-/nano-cathode structure built up by V2O5 nanosheet spheres will lead to the close and sufficient contact between electrolytes and activate materials and at the same time will create buffer volume to accommodate the volume change during discharging/charging process; and (3) micro-scale V2O5 spheres are easy to result in high cell packing density beneficial for high power battery. As revealed by the experimental results, the micro-/nano-V2O5 electrode demonstrates high initial discharge and charge capacities with no irreversible loss, high rate capacities at different currents and long-lasting lifespan. The high-energy and high-power performances of the micro-/nano-V2O5 electrode is ascribed to the unique hierarchical micro-/nano-structure merits of V2O5 spheres as abovementioned. In view of the advantages of facile fabrication method and unique features of 3D micro-/nano-V2O5 spheres for high power and high energy LIB battery, it is of great significance to beneficially broaden the applications of high-energy and high-power \\{LIBs\\} with creating novel hierarchical micro-/nano-structured V2O5 cathode materials.

Hongwei Bai; Zhaoyang Liu; Darren Delai Sun; Siew Hwa Chan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

242

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

243

LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition  

Science Journals Connector (OSTI)

In this study, graphene was added to LiFePO4 via a hydrothermal method to improve the lithium-ion-diffusion ability of LiFePO4. The influence of graphene addition on LiFePO4 was studied by X-ray diffraction (XRD)...

Van Hiep Nguyen; Hal-Bon Gu

2014-10-01T23:59:59.000Z

244

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

245

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

246

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

247

Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery  

SciTech Connect

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: > Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. > Accommodate volume changes of Si NPs during Li ion charge/discharge. > Sizes of microcapsules were controlled by experimental parameters. > Lithium storage capacity and coulombic efficiency were demonstrated. > Use of sol-gel procedure as intermediate reaction.

Bae, Joonwon, E-mail: joonwonbae@gmail.com [Samsung Advanced Institute of Technology, Yong-In City 446-712, Gyeong-Gi Province (Korea, Republic of)

2011-07-15T23:59:59.000Z

248

One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries  

SciTech Connect

Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

2013-10-15T23:59:59.000Z

249

Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries  

SciTech Connect

Graphical abstract: Display Omitted Highlights: ? P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ? The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ? The composite PGE shows ionic conductivity of 5.5 mS cm{sup ?1} at room temperature. ? Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup ?1}. ? The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) without compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.

Shubha, Nageswaran [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Prasanth, Raghavan [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore) [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore); Hoon, Hng Huey [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Srinivasan, Madhavi, E-mail: madhavi@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore) [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore)

2013-02-15T23:59:59.000Z

250

Dense CoO/graphene stacks via self-assembly for improved reversibility as high performance anode in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Here, we propose a novel strategy to prepare dense stacks composed of alternating CoO and graphene layers for an anode in lithium ion batteries (LIBs), which contributes to enhanced stability and relatively large reversible capacity. This is accomplished by spontaneously pre-aligning negatively charged CoO-anchored graphene oxide (CG) and positively charged amine-functionalized graphene (GN) in an acidic medium, followed by thermal reduction. The performance of this product is contrasted with that of CG prepared under the identical conditions without the addition of GN, in which CoO nanoparticles are sandwiched between relatively loose and randomly oriented graphene stacks. For example, the composite delivers a capacity greater than 800 mAh g?1 with a fading rate of 0.04 mAh g?1 cycle?1 during 1000 charge/discharge (C/D) cycles at 1.0 A g?1, in contrast to ca. 400 mAh g?1 and 0.24 mAh g?1 cycle?1 for thermally reduced CG without the addition of GN. The origin of the superior electrochemical performance in the dense stacks is ascribed to the enhanced reversibility of a conversion reaction, which in turn contributes to a persistent formation/dissolution of gel-like polymer films (i.e., stable pseudo-capacitance). Experimental evidences that substantiate the aforementioned behaviors (improved reversibility for both processes) are presented.

S.J. Richard Prabakar; R. Suresh Babu; Minhak Oh; Myoung Soo Lah; Su Cheol Han; Jaehyang Jeong; Myoungho Pyo

2014-01-01T23:59:59.000Z

251

A rapid microwave heating route to synthesize graphene modified LiFePO4/C nanocomposite for rechargeable lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract A simple and rapid method for synthesizing graphene modified LiFePO4/C nanocomposite has been developed for the first time by using a microwave heating. The obtained sample is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transform infrared spectroscopy (FTIR) and various electrochemical testing techniques. XRD results indicate that the nanosized olivine LiFePO4/(C+graphene) is successfully synthesized. The size of as-synthesized nanoparticles can be controlled below 200 nm with good reproducibility through this route. TEM image shows that the LiFePO4/C nanoparticles are embedded in graphene sheets. The electrochemical performance results reveal that the modification of LiFePO4/C with graphene could construct an effective conducting network, which significantly enhance the properties of LiFePO4/C based composite, including high discharge capacity, stable cycle performance, good rate capability and small charge-transfer resistance. The excellent performance shows that the graphene modified LiFePO4/C synthesized via microwave heating is a promising cathode material for rechargeable lithium-ion batteries.

Zhaozhi Wang; Haifu Guo; Peng Yan

2014-01-01T23:59:59.000Z

252

Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance  

Science Journals Connector (OSTI)

Abstract The SnO2/carbon nanotubes encapsulated in graphene sheets (CSGN) composites are synthesized via a sonochemical method which is straightforward, low-cost and operable under ambient conditions. The open spaces formed by carbon nanotubes and graphene offering the accommodation of volume change and the access of an easy electrolyte-wetting, and the improved electrical conductivity by the presence of graphene and carbon nanotubes, lead to the superior cycling performance. As a result, the CSGN with SnO2 content of 61.4 wt% exhibits a reversible specific capacity of 842.9 mAh g?1 at the first cycle and retains 793.8 mAh g?1 after 50 cycles at a current density of 125 mA g?1, indicating a high capacity retention rate of 94%. The cycling performance is attributed to the unique structure of CSGN and enhanced electrical conductivity, which may make much sense to the structure designing of other electrode materials for lithium ion batteries.

Bin Huang; Juan Yang; Youlan Zou; Lulu Ma; Xiangyang Zhou

2014-01-01T23:59:59.000Z

253

Effects of carbon-chain length of trifluoroacetate co-solvents for lithium-ion battery electrolytes using at low temperature  

Science Journals Connector (OSTI)

Abstract Trifluoroacetate is suitable as a co-solvent of rechargeable lithium-ion battery electrolyte for low temperature use. In this work, the following four trifluoroacetate solvents have been studied: (1) methyl trifluoroacetate (MTFA), (2) ethyl trifluoroacetate (ETFA), (3) n-butyl trifluoroacetate (NBTFA), (4) n-hexyl trifluoroacetate (NHTFA). Our efforts focus on the effect of carbon-chain length in trifluorinated acetate's molecular structure. These solvents have been incorporated into multi-component carbonate-based electrolytes and evaluated in lithium–graphite cells. FTIR spectrum has been used to analyze the dissociation of LiPF6 in a single co-solvent. The migration abilities of solvated Li+ have been characterized by ionic conductivities and viscosities. It could be concluded that the trifluoroacetate with long carbon-chain has a weak ability to dissociate LiPF6 salt into free ions, and simultaneously decreases mobility of solvated Li+ in the modified electrolyte. The charge–discharge test has shown a larger capacity shrink of lithium de-intercalation at low temperature and higher polarization potential on graphite electrode. As a low-temperature co-solvent, the carbon-chain length of alcohol group in trifluoroacetate structure should be selected as short as possible.

Wei Lu; Kai Xie; Yi Pan; Zhong-xue Chen; Chun-man Zheng

2013-01-01T23:59:59.000Z

254

In situ deposition method preparation of Li4Ti5O12–SnO2 composite materials for lithium ion batteries  

Science Journals Connector (OSTI)

A Li4Ti5O12–SnO2 composite anode material for lithium-ion batteries has been prepared by loading various amounts of nano-SnO2 on Li4Ti5O12 to obtain composite materials with improved electrochemical performance relative to Li4Ti5O12 and SnO2. The composite materials were characterized by XRD, IR and SEM. The results indicated that SnO2 particles have encapsulated on the surface of the Li4Ti5O12 uniformly and tightly. The influence of SnO2 proportion on the electrochemical properties of Li4Ti5O12–SnO2 composite material was investigated and discussed. The results showed that Li4Ti5O12–SnO2 (5%) has the best cycling behavior among all the samples. At a current rate of 0.5 mA cm?2, the material delivered a discharge capacity of 189 mAh g?1 after 42 cycles. Electrochemical results indicated that the Li4Ti5O12–SnO2 composites increased the reversible capacity of Li4Ti5O12 and cycling reliability of the SnO2 anode material. It suggests the existence of synergistic interaction between Li4Ti5O12 and SnO2 and that the capacity of the composite is not a simple weighted sum of the capacities of the individual components.

Yan-Jing Hao; Qiong-Yu Lai; Yuan-Duan Chen; Ji-Zheng Lu; Xiao-Yang Ji

2008-01-01T23:59:59.000Z

255

Novel Cell Design for Combined In Situ Acoustic Emission and X-ray Diffraction of Cycling Lithium Ion Batteries  

SciTech Connect

An in situ acoustic emission (AE) and X-ray diffraction (XRD) cell for use in the study of battery electrode materials has been devised and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk which acts as both an X-ray window and a current collector. In this manner the use of beryllium and its associated cost and hazard is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles which were previously studied by the AE technique were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

Rhodes, Kevin J [ORNL; Kirkham, Melanie J [ORNL; Meisner, Roberta Ann [ORNL; Parish, Chad M [ORNL; Dudney, Nancy J [ORNL; Daniel, Claus [ORNL

2011-01-01T23:59:59.000Z

256

The development of low cost LiFePO4-based high power lithium-ion batteries  

SciTech Connect

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

257

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

258

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

259

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

260

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

262

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

263

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

264

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

of the Layered, “Li-Excess” Lithium-Ion Battery Electrodeof the Layered, "Li-Excess" Lithium-Ion Battery ElectrodeCATION MIGRATION IN LITHIUM EXCESS NICKEL MANGANESE OXIDES

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

265

Self-supported poly(methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery  

Science Journals Connector (OSTI)

Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate–acrylonitrile–vinyl acetate) (P(MMA–AN–VAc)). The copolymer P(MMA–AN–VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond CC in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 °C, its thermal stability is as high as 310 °C, and its mechanical strength is improved compared with P(MMA–AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li+) and its conductivity is 3.48 × 10?3 S cm?1 at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel–Tamman–Fulcher (VTF) equation.

Y.H. Liao; D.Y. Zhou; M.M. Rao; W.S. Li; Z.P. Cai; Y. Liang; C.L. Tan

2009-01-01T23:59:59.000Z

266

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

267

Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 Positive Electrode Materials for Lithium-Ion Batteries  

E-Print Network (OSTI)

Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 Positive Electrode Materials for Lithium-Ion Batteries : Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 materials (0 x 0.12) were prepared at 1000°C for 12 h in air transition metal ions induced for charge compensation an increase in the average transition metal oxidation

Boyer, Edmond

268

Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery.  

E-Print Network (OSTI)

??In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery… (more)

Kim, Baejung

2013-01-01T23:59:59.000Z

269

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

270

A review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Electrochemical phenomenon associated with systems from electrochemical energy (Batteries, Fuel cells and capacitors) to electro deposition are multistep and multi-phenomena processes and hence can be very tediou...

Vinten D. Diwakar; S. Harinipriya…

2010-01-01T23:59:59.000Z

271

Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1–2x–yTiy)O2 for Lithium Ion Batteries  

Science Journals Connector (OSTI)

In the fields of photovoltaics, fuel cells, and batteries, significant improvements have been achieved through combined experimental and computational material design from the atomic to continuum scale. ... Furthermore, we find that Ti substitution suppresses the formation of a secondary rock salt phase, which has recently been shown to increase the overall battery impedance, leading to capacity fading when cycling to voltages above 4.5 V at constant C rates. ...

Isaac M. Markus; Feng Lin; Kinson C. Kam; Mark Asta; Marca M. Doeff

2014-10-09T23:59:59.000Z

272

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

273

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

274

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

275

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes  

E-Print Network (OSTI)

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes Huigang Zhang Supporting Information ABSTRACT: Silicon-based lithium ion battery anodes are attracting significant during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix

Braun, Paul

276

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network (OSTI)

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

277

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network (OSTI)

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

278

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

279

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

280

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: News Feature - NREL Battery Testing Capabilities Get a...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery module consisting of 12 cylindrical lithium ion cells. The unit was tested for Saft America as part of a DOEFreedomCAR project. Credit: Pat Corkery The battery research...

282

Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation  

SciTech Connect

Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The core–shell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: • Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. • The unit-cell parameters from experimental studies are reproduced by the core–shell model. • Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. • It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

Lee, Sanghun, E-mail: sh0129.lee@samsung.com; Park, Sung Soo, E-mail: sung.s.park@samsung.com

2013-08-15T23:59:59.000Z

283

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network (OSTI)

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

284

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

Lithium Ion Batteries", Materials Science and Engineering R,Ion Batteries", as it appears in Materials Science and EngineeringIon Batteries", as it appears in Materials Science and Engineering

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

285

Vehicle Technologies Office: Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

286

Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator  

E-Print Network (OSTI)

December 2012 Keywords: Li-ion battery separator Polyvinyl alcohol Carbon micro-nanofibers Suspension acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro of the polyvinyl alcohol gel formation, and the mixing of hydro- phobic reagents along with polyethylene glycol

Singh, Jayant K.

287

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

288

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

289

E-Print Network 3.0 - advanced automotive battery Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

OPERATIONS 12.0 billion yen investment to mass produce advanced lithium-ion batteries... Energy Utilization 12;HISTORY OF NISSAN'S EV 15 years of experience in lithium-ion...

290

Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery  

Science Journals Connector (OSTI)

...LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries . J Mater Chem 21...rate lithium-ion batteries . Electrochem Commun...2011 ) Reduced graphene oxide supported...Liu ZP ( 2011 ) Graphene modified LiFePO4...power lithium ion batteries . J Mater Chem 21...

Soo Yeon Lim; Heejin Kim; Jaehoon Chung; Ji Hoon Lee; Byung Gon Kim; Jeon-Jin Choi; Kyung Yoon Chung; Woosuk Cho; Seung-Joo Kim; William A. Goddard III; Yousung Jung; Jang Wook Choi

2014-01-01T23:59:59.000Z

291

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

292

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

293

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network (OSTI)

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

Cui, Yi

294

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

295

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

SciTech Connect

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

296

JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

297

Sandia National Laboratories: lithium-ion-based solid electrolyte...  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium-ion-based solid electrolyte battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March...

298

Nano-sized Li-Fe composite oxide prepared by a self-catalytic reverse atom transfer radical polymerization approach as an anode material for lithium-ion batteries  

SciTech Connect

A novel Self-catalytic Reverse Atom Transfer Radical Polymerization (RATRP) approach that can provide the radical initiator and the catalyst by the system itself is used to synthesize a nano-sized Li-Fe composite oxide powder in large scale. Its crystalline structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The results reveal that the composite is composed of nano-sized LiFeO{sub 2} and Fe{sub 3}O{sub 4}. Its electrochemical properties are evaluated by charge/discharge measurements. The results show that the Li-Fe composite oxide is an excellent anode material for lithium-ion batteries with good cycling performance (1249 mAh g{sup -1} at 100th cycle) and outstanding rate capability (967 mAh g{sup -1} at 5 C). Such a self-catalytic RATRP approach provides a way to synthesize nano-sized iron oxide-based anode materials industrially with preferable electrochemical performance and can also be applied in other polymer-related area.

Yue, G.Q.; Liu, C.; Wang, D.Z. [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)] [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wang, Y.; Yuan, Q.F.; Xu, R.; Zhao, F.G. [Amperex Technology Ltd, Guanggong Dongguan 523080 (China)] [Amperex Technology Ltd, Guanggong Dongguan 523080 (China); Chen, C.H., E-mail: cchchen@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)

2010-09-15T23:59:59.000Z

299

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

300

Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Li[Li1/6Ni1/4Mn7/12]O2?xFx (x = 0, 0.025, 0.05, 0.075, 0.1) as the cathode materials for rechargeable lithium batteries have been synthesized via the co-precipitation method followed by a high-temperature solid-state reaction. Field emission scanning electron microscopy images exhibit that fluorine substitution catalyzes the growth of the primary particles. Although the initial discharge capacity decreases as the fluorine content increasing, the fluorine substituted materials present significant improvement in the cycling performance. Among the synthesized materials, Li[Li1/6Ni1/4Mn7/12]O1.95F0.05 exhibits excellent high temperature (50 °C) cycling performance with a capacity retention of 93.7% after 30 cycles while the bare Li[Li1/6Ni1/4Mn7/12]O2 cathode exhibited only 73.7%.

Hongxiao Li; Li-Zhen Fan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Models for Battery Reliability and Lifetime  

SciTech Connect

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

302

The Breakthrough Behind the Chevy Volt Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Breakthrough Behind the Chevy Volt Battery The Breakthrough Behind the Chevy Volt Battery Stories of Discovery & Innovation The Breakthrough Behind the Chevy Volt Battery Enlarge Photo Image courtesy of General Motors The 2011 Chevrolet Volt's 16 kWh battery can be recharged using a 120V or 240V outlet. The car's lithium-ion battery is based on technology developed at Argonne National Laboratory. Enlarge Photo Illustration courtesy Argonne National Laboratory This illustration shows the inner workings of a lithium-ion battery. When delivering energy to a device, the lithium ion moves from the anode to the cathode. The ion moves in reverse when recharging. Compared to other rechargeable 03.28.11 The Breakthrough Behind the Chevy Volt Battery A revolutionary breakthrough cathode for lithium-ion batteries-the kind in your

303

Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application  

Science Journals Connector (OSTI)

Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ...

Arava Leela Mohana Reddy; Anchal Srivastava; Sanketh R. Gowda; Hemtej Gullapalli; Madan Dubey; Pulickel M. Ajayan

2010-10-08T23:59:59.000Z

304

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries  

E-Print Network (OSTI)

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

Oh, Dahyun

305

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

306

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

307

EMSL - batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

308

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study  

SciTech Connect

High voltage cathode materials Li-excess layered oxide compounds Li[Ni{sub x}Li{sub 1/3-2x/3}Mn{sub 2/3-x/3}]O{sub 2} (0 < x < 1/2) are investigated in a joint study combining both computational and experimental methods. The bulk and surface structures of pristine and cycled samples of Li[Ni{sub 1/5}Li{sub 1/5}Mn{sub 3/5}]O{sub 2} are characterized by synchrotron X-Ray diffraction together with aberration corrected Scanning Transmission Electron Microscopy (a-S/TEM). Electron Energy Loss Spectroscopy (EELS) is carried out to investigate the surface changes of the samples before/after electrochemical cycling. Combining first principles computational investigation with our experimental observations, a detailed lithium de-intercalation mechanism is proposed for this family of Li-excess layered oxides. The most striking characteristics in these high voltage high energy density cathode materials are (1) formation of tetrahedral lithium ions at voltage less than 4.45 V and (2) the transition metal (TM) ions migration leading to phase transformation on the surface of the materials. We show clear evidence of a new spinel-like solid phase formed on the surface of the electrode materials after high-voltage cycling. It is proposed that such surface phase transformation is one of the factors contributing to the first cycle irreversible capacity and the main reason for the intrinsic poor rate capability of these materials.

Xu, Bo; Fell, Christopher R.; Chi, Miaofang; Meng, Ying Shirley (ORNL); (Florida); (UCSD)

2011-09-06T23:59:59.000Z

309

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

310

KAir Battery  

Energy.gov (U.S. Department of Energy (DOE))

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

311

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

312

Atomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability  

E-Print Network (OSTI)

- tages of using Li-ion batteries as alternative of fossil fuel for hybrid vehicle power source lie.1116/1.3664115] I. INTRODUCTION Lithium-ion batteries become the focus of rechargeable batteries in the new decade in hybrid vehicles requires high discharge capacity which current lithium-ion batteries do not have

Cao, Guozhong

313

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

314

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

315

TransForum - Special Issue: Batteries - August 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

316

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

317

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

318

Dow Kokam Lithium Ion Battery Production Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

319

Dow Kokam Lithium Ion Battery Production Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

320

Lithium-Ion Battery Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lithium-Ion Battery Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

322

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

even with excess negative capacity, lithium can deposit ifdeposits lithium and reaches cutoff sooner. electrode excessexcess by 10%, an extension of about 0.4 mm is sufficient to prevent the onset of lithium

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

323

Nanocomposite Materials for Lithium-Ion Batteries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

against oil price volatility. However, cost, energy storage limitations, and other factors have prevented extensive adoption of PHEVs and HEVs to date. Nanotechnologies offer a...

324

Lithium-Ion Battery Recycling Issues  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

325

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

2.8 V vs. lithium suggests Tafel kinetics, but the bend in? a gives the slope of the Tafel region, k eff affects itsincreases, the slope of the Tafel region remains constant,

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

326

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

attic with colleagues Paul Albertus, Penny Gunterman, Ryanalso owe a great deal to Paul Albertus, whose level-headed,

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

327

Battery Factory Bringing Jobs to Jacksonville | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Factory Bringing Jobs to Jacksonville Factory Bringing Jobs to Jacksonville Battery Factory Bringing Jobs to Jacksonville April 30, 2010 - 2:10pm Addthis A rendering of Saft’s lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft A rendering of Saft's lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy The Saft lithium-ion battery plant under construction in Jacksonville, Fla., is expected to pump hundreds of high-paying jobs into the city's economy while boosting its green credentials. Construction on the factory is expected to wrap up in 2012 and cost $191 million. Saft was awarded $95.5 million in Recovery Act funds and $20.2 million in financial incentives from Jacksonville and the state.

328

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

329

An electrical network model for computing current distribution in a spirally wound lithium ion cell  

E-Print Network (OSTI)

Lithium ion batteries are the most viable option for electric vehicles but they still have significant limitations. Safety of these batteries is one of the concerns that need to be addressed when they are used in mainstream ...

Patnaik, Somani

2012-01-01T23:59:59.000Z

330

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

331

Using Transient Electrical Measurements for Real-Time Monitoring of Battery State-of-Charge  

E-Print Network (OSTI)

system. I. INTRODUCTION Future energy-storage systems are likely to use lithium- ion batteries because regulate efficiency and power availability in battery-based systems, it is important to have a robust realUsing Transient Electrical Measurements for Real-Time Monitoring of Battery State

Nasipuri, Asis

332

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network (OSTI)

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

333

Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries  

Science Journals Connector (OSTI)

Urea act as an oxidising fuel. ... vehicles (EV) or for large-scale batteries for electricity power storage, has made lithium ion rechargeable battery development into a growth area which has gained high momentum for its research activities. ...

M. V. Reddy; Gundlapalli Prithvi; Kian Ping Loh; B. V. R. Chowdari

2013-12-10T23:59:59.000Z

334

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

335

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

336

National Labs Leading Charge on Building Better Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labs Leading Charge on Building Better Batteries Labs Leading Charge on Building Better Batteries National Labs Leading Charge on Building Better Batteries September 26, 2011 - 12:36pm Addthis Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as PVDF, pictured above at left in brown) in the traditional method. Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as

337

45nm direct battery DC-DC converter for mobile applications  

E-Print Network (OSTI)

Portable devices use Lithium-ion batteries as the energy source due to their high energy density, long cycle life and low memory effects. With the aggressive downscaling of CMOS, it is becoming increasingly difficult to ...

Bandyopadhyay, Saurav

2010-01-01T23:59:59.000Z

338

Development of High Capacity Anode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon...

339

Mössbauer Spectroscopy and New Composite Electrodes for Li-ion batteries  

Science Journals Connector (OSTI)

Lithium-ion batteries have become one of the most promising power sources for portable equipment because of their high specific energy and working voltage. Many studies have been devoted to negative electrodes...

Pierre-Emmanuel Lippens; Jean-Claude Jumas

2008-01-01T23:59:59.000Z

340

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

(1) A194-A200 (2014). (1,716 KB) Technology Marketing Summary Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a...

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

342

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

343

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

344

Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

345

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure  

E-Print Network (OSTI)

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure Min Intercalation Electrochemistry Capacitance Lithium Ion batteries A B S T R A C T We demonstrate TiO2@graphitic on the electrode surface and enhanced lithium ion intercalation, leading to lower charge transfer resistance

Cao, Guozhong

346

Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems  

Science Journals Connector (OSTI)

Abstract Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E0 = ?3.045 V), provides very high energy and power densities in batteries. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) have conquered the markets for portable consumer electronics and, recently, for electric vehicles. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. As lithium metal reacts violently with water and can thus cause ignition, modern lithium-ion batteries use carbon negative electrodes and lithium metal oxide positive electrodes. Rechargeable lithium-ion batteries should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This chapter covers all aspects of lithium battery chemistry that are pertinent to electrochemical energy storage for renewable sources and grid balancing.

Peter Kurzweil

2015-01-01T23:59:59.000Z

347

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

ORNL, Industry to Collaborate in Advanced Battery Research | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry to Collaborate in Advanced Battery Research Industry to Collaborate in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new collaborations totaling $6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production. After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control, and processing scale-up. An independent council comprising ORNL and DOE representatives

350

On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium Concentration in Operational Cells  

E-Print Network (OSTI)

. INTRODUCTION Accurate estimates of Lithium Ion Battery State of Charge (SOC) are critical for constraining and solid phase lithium distributions across the electrode may better utilize the battery's stored energyOn the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium

Stefanopoulou, Anna

351

A lumped-parameter electro-thermal model for cylindrical batteries Xinfan Lin a,*, Hector E. Perez a  

E-Print Network (OSTI)

A lumped-parameter electro-thermal model for cylindrical batteries Xinfan Lin a,*, Hector E. Perez i g h t s An electro-thermal model capturing battery SOC, voltage, skin and core temperature: Lithium ion batteries Electro-thermal model Parameterization Core temperature State of charge a b s t r

Stefanopoulou, Anna

352

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network (OSTI)

only the surface temperature of the battery can be measured, a thermal model is needed to estimate identification scheme is designed for a cylindrical lithium ion battery thermal model, by which the parameters-line parameterization methodology and the closed loop architecture. A linear battery thermal model is explored first

Stefanopoulou, Anna

353

Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries  

E-Print Network (OSTI)

in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle applications. One way to improve the energy density of a battery is to use high specific capacity materials, e

Boyer, Edmond

354

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use  

E-Print Network (OSTI)

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed). In this paper, we use an electrochemistry-based lithium ion (Li-ion) battery model developed in (Daigle, Moffett Field, CA 94035 matthew.j.daigle@nasa.gov ABSTRACT Tracking the variation in battery dynamics

Daigle, Matthew

355

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

356

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

357

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

358

10 Questions for a Batteries Expert: Daniel Abraham | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham August 11, 2011 - 3:56pm Addthis Dan Abraham | Image Courtesy of Argonne National Laboratory Dan Abraham | Image Courtesy of Argonne National Laboratory Angela Hardin Media Specialist at Argonne National Laboratory "Almost every cell phone contains a lithium-ion battery; they are also in our cameras, camcorders, and computers. Our goal is to get the batteries into our cars - into the next generation of plug-in hybrid and electric vehicles." Dan Abraham, Batteries Expert Ed. note: This is a cross-post from Argonne National Laboratory. In the latest 10 Questions, Daniel Abraham, a leading scientist at Argonne National Laboratory, shares his work on lithium-ion batteries and why he

359

Production of battery grade materials via an oxalate method  

DOE Patents (OSTI)

An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.

Belharouak, Ilias; Amine, Khalil

2014-04-29T23:59:59.000Z

360

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Resynthesis of LiCo1?xMnxO2 as a cathode material for lithium secondary batteries  

Science Journals Connector (OSTI)

A recycling process involving chemical, mechanical, and electrochemical steps has been applied to recover cobalt from spent lithium ion batteries and resynthesize cathode active materials. LiCo1?xMnxO2...powders ...

Soo-Kyung Kim; Dong-Hyo Yang; Jeong-Soo Sohn…

2012-04-01T23:59:59.000Z

362

PARAMETERIZATION AND VALIDATION OF AN INTEGRATED ELECTRO-THERMAL CYLINDRICAL LFP BATTERY MODEL  

E-Print Network (OSTI)

with a two-state thermal model to form an electro-thermal model for cylindrical lithium ion batteries- eters. A two-state thermal model is used to approximate the core and surface temperatures of the battery to lithium diffusion in the solid phase and in the electrolyte [13]. These circuit elements depend on state

Stefanopoulou, Anna

363

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

364

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

365

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

366

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

367

Composite Battery Boost | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Like Properties of Soft Nanoparticle Suspensions Water-Like Properties of Soft Nanoparticle Suspensions Real-Time Capture of Intermediates in Enzymatic Reactions A New Multilayer-Based Grating for Hard X-ray Grating Interferometry The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Composite Battery Boost December 2, 2013 Bookmark and Share Normalized XANES spectra of Li/Se cell during cycling. Black line is the battery voltage profile. New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to

368

Argonne TTRDC - TransForum v10n1 - Taking PHEVs Farther on a Single Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Every six months, we're reminded to change the batteries in our household appliances: smoke alarms, flashlights and radios. But what if you had to change the battery in your plugin hybrid electric vehicle (PHEV) just as often? Fortunately, researchers at Argonne may have found a way to exponentially increase the calendar and cycle lifetimes of lithium-ion batteries. Electric double-layer capacitors- typically referred to as ultracapacitors-have an energy density thousands of times greater than conventional capacitors and a power density hundreds of times greater than

369

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Battery Plant in Michigan, Announces Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were

370

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells  

Science Journals Connector (OSTI)

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells ... In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. ... In situ NMR studies on fuel cells (FCs) have focused on probing the chemical reactions at the electrodes and the fate of fuels such as methanol during FC operation. ...

Frédéric Blanc; Michal Leskes; Clare P. Grey

2013-06-21T23:59:59.000Z

371

Electrochemical and Structural Study of the Layered, 'Li-Excess' Lithium-Ion Battery Electrode Material Li[Li[subscript 1/9]Ni[subscript 1/3]Mn[subscript 5/9  

SciTech Connect

The overcapacity mechanism and high voltage process of the Li-excess electrode material Li[Li{sub 1/9}Ni{sub 1/3}Mn{sub 5/9}]O{sub 2} are studied by solid-state NMR, X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy, combined with galvanostatic and potentiostatic intermittent titration electrochemical measurements. The cycling performance is improved noticeably when the material is cycled between potential windows of 5.3-2.5 V compared to 4.6-2.5 V. Diffraction data show that structural changes occur at high voltages, the solid-state NMR data of the same samples indicating that the high voltage processes above 4.4 V are associated with Li removal from the structure, in addition to electrolyte decomposition. The NMR spectra of the discharged samples show that cation rearrangements in the transition metal layers have occurred. The XAS spectra confirm that the Mn oxidation state remains unchanged at 4+, whereas Ni{sup 2+} is oxidized to Ni{sup 4+} on charging to 4.4 V, returning to Ni{sup 2+} on discharge, independent of the final charge voltage. A significant change of the shape of the Ni edge is observed in the 4.6-5.3 V potential range on charge, which is ascribed to a change in the Ni local environment. No O{sub 2} evolution was detected based on ex situ analysis of the gases evolved in the batteries, the TEM data showing that thick passivating films form on the electrodes. The results suggest that at least some of the oxygen loss from these lithium-excess materials occurs via a mechanism involving electrolyte decomposition.

Jiang, Meng; Key, Baris; Meng, Ying S.; Grey, Clare P.; (SBU); (Florida)

2009-09-15T23:59:59.000Z

372

Battery Jobs Coming to Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Coming to Michigan Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will help implement the company's strategy for the construction of lithium-ion battery manufacturing facilities in the U.S., with the first location being constructed in Livonia, Mich. This is the first step in the company's overarching goal of creating a complete battery manufacturing industry in

373

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect

Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

2014-01-15T23:59:59.000Z

374

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

375

EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand fourth manufacturing facility Company has seen 55 percent increased in full-time salaried staffing "We really do like Indiana as an operating environment because it's pro business," says Jeff Seidel. And for Mt. Comfort, Ind., that's good news. Seidel is the CFO of Ener1, the parent company of EnerDel, which makes

376

Materials as a Key to Electro-Mobility with Rechargeable LI Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials as a Key to Electro-Mobility with Rechargeable LI Batteries Materials as a Key to Electro-Mobility with Rechargeable LI Batteries Speaker(s): Martin Winter Date: February 11, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Kostecki The lithium ion technology is playing a key role in the electrification of the propulsion system in hybrid electric vehicles (HEVs) and in pure electric vehicles (EVs). The chemist and materials scientists faces this challenge, which derives from the demands for large-scale energy storage and conversion devices for electric propulsion purposes, by development and application of innovative battery components and concepts. The lithium ion battery has been introduced into the market by 1990/1991 and only by the mid 1990ies significant numbers of batteries have been produced. Within a

377

Batteries Breakout Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

378

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

379

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

380

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

382

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

383

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes  

Science Journals Connector (OSTI)

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes ... The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. ...

Zhe-Fei Li; Hangyu Zhang; Qi Liu; Yadong Liu; Lia Stanciu; Jian Xie

2014-04-04T23:59:59.000Z

384

Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries  

E-Print Network (OSTI)

). More envi- ronmentally benign and sustainable energy-storage systems are desired for future power for high-energy lithium battery applications. 1. Introduction Energy storage and conversion have sources.1­6 Lithium-ion batteries are considered to be the most promising energy-storage systems

Cao, Guozhong

385

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries  

E-Print Network (OSTI)

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun materials as cathode in lithium ion batteries because of its intrinsic low-cost, environmental friendliness that enhances the contact between active material grains and electrolyte. In particular, LiMn2O4 nanorods

Cui, Yi

386

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

387

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

388

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

389

Synthesis of lithium intercalation materials for rechargeable battery  

Science Journals Connector (OSTI)

Lithium-based oxides (LiMOx, where M=Ni, Co, Mn) are attractive for electrode materials, because they are capable of reversibly intercalating lithium ions for rechargeable battery without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalation oxides, using acetates or oxides as precursors for lithium, manganese, nickel, and cobalt, respectively with proper organic solvents. The evolution of crystal structure of these materials was analyzed by X-ray diffraction. Further analysis of LiMn2O4 samples were carried out using impedance spectroscopy and Raman spectroscopy. These studies indicate that this synthetic route, without using expensive alkoxides of sol–gel process, produces high-quality lithium-based oxides useful for cathode in lithium-ion rechargeable battery.

S. Nieto-Ramos; M.S. Tomar

2001-01-01T23:59:59.000Z

390

Design and simulation of lithium rechargeable batteries  

SciTech Connect

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

391

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

392

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

395

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

396

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

397

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

398

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

399

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

400

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

402

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

403

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

404

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

405

Temperature maintained battery system  

SciTech Connect

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

406

AbstractFirst-principles models that incorporate all of the key physics that affect the internal states of a lithium-ion  

E-Print Network (OSTI)

effect, and relatively long battery life [2-4]. Capacity fade, underutilization, and thermal runaway states of a lithium-ion battery are in the form of coupled nonlinear PDEs. While these models are very the internal states of battery with a full simulation running in milliseconds without compromising on accuracy

Subramanian, Venkat

407

Studies on Capacity Fade of Spinel based Li-Ion Batteries  

E-Print Network (OSTI)

Engineering University of South Carolina #12;Physical Characteristics of Cellbatt Lithium Ion Battery Engineering University of South Carolina #12;Change in discharge capacity for Li-ion cells charged for Electrochemical Engineering University of South Carolina #12;Experimental Full Cell studies on CellBatt® Li-ion

Popov, Branko N.

408

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

409

Nickel coated aluminum battery cell tabs  

DOE Patents (OSTI)

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

410

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

411

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

Graphene-enhanced hybrid phase change materials for thermalphase, capacity and volume change information. 12 .. 12 Table 2 Summary of cathode and anode materialsphase, capacity and volume change information. 12 The last method involved seeking new materials.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

412

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

413

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.75V(LNMO) 5.30V(LNMO) Similar surface species are observed on Pt to metal oxide, polyethylene carbonate and lithium fluorophosphates The metal oxide does not appear to catalyze...

414

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

415

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

416

Development of graphene composite materials for lithium ion batteries.  

E-Print Network (OSTI)

??Global warming caused by the excessive use of fossil fuels has become a severe problem in the modern world. Increasing energy demand worldwide and mandates… (more)

Zhong, Chao

2013-01-01T23:59:59.000Z

417

Graphene composites as anode materials in lithium-ion batteries  

Science Journals Connector (OSTI)

Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant e...

M. Mazar Atabaki; R. Kovacevic

2013-03-01T23:59:59.000Z

418

Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

419

Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

420

Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

422

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

goals. * Develop understanding of the mechanism of improved capacity retention for Si nano- particle electrodes in the presence of electrolyte additives FEC andor VC. * Conduct...

423

Expanding U.S.-based Lithium-ion Battery Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

424

Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability  

Science Journals Connector (OSTI)

Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability ... Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries ...

Jingshan Luo; Jilei Liu; Zhiyuan Zeng; Chi Fan Ng; Lingjie Ma; Hua Zhang; Jianyi Lin; Zexiang Shen; Hong Jin Fan

2013-11-12T23:59:59.000Z

425

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

426

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

427

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

428

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

429

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

430

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

431

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network (OSTI)

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

432

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies  

SciTech Connect

To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized ? electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-? type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

Vijayakumar, M.; Hu, Jian Z.

2013-10-15T23:59:59.000Z

433

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

434

Current balancing for battery strings  

DOE Patents (OSTI)

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

435

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

436

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

437

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

438

ABAA - 6th International Conference on Advanced Lithium Batteries for  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals Goals Environmental pollution and the looming energy crisis have been attracting significant concerns worldwide. Much of the criticism has been directed to the consumption of fossil fuels and the greenhouse gases emitted by automobiles, which consume almost 45% of all fossil fuels produced. The huge amount of carbon dioxide emitted by automobiles is also highly blamed for global warming. Recently, there has been a worldwide active effort to develop hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) to effectively reduce the consumption of fossil fuels in the transportation sector. Among the available battery technologies, lithium-ion batteries have the highest capacity density and energy density, and are promising candidates for energy storage devices for HEV and PHEV with improved energy efficiency. However, the key technological barriers that hinder commercial use of lithium-ion batteries for HEV and PHEV are their high cost, not enough calendar and cycle life, limited low temperature performance during cold cranking, and intrinsic abuse tolerance.

439

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

440

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.20.10] -- Turning Trash Bags into Battery Anodes and 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be used as components for lithium-ion batteries. We have about three pounds of bacteria living in our gut -- most of which is helpful for our immune system development and metabolism. Scientists at Ames Laboratory are making batteries that are "greener" and more cost-efficient by using rare earth elements -- neodymium

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

442

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

443

Batteries, mobile phones & small electrical devices  

E-Print Network (OSTI)

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

444

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

445

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

446

An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

447

Vent construction for batteries  

SciTech Connect

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

448

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

449

United States Advanced Battery Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

450

Advanced battery modeling using neural networks  

E-Print Network (OSTI)

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

451

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

452

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

453

Sandia National Laboratories: Evaluating Powerful Batteries for...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

454

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

455

Batteries lose in game of thorns | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

456

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

457

Hierarchically Structured Materials for Lithium Batteries. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

458

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

459

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

460

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

462

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

463

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

464

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

465

Coordination Chemistry in magnesium battery electrolytes: how...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

466

Upgrading the Vanadium Redox Battery | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

467

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

468

Redox Flow Batteries, a Review  

SciTech Connect

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

469

Lithium batteries for pulse power  

SciTech Connect

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

470

Battery system with temperature sensors  

DOE Patents (OSTI)

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

471

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

472

Synthetic process for preparation of high surface area electroactive compounds for battery applications  

DOE Patents (OSTI)

A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.

Evenson, Carl; Mackay, Richard

2013-07-23T23:59:59.000Z

473

Microsoft Word - Vehicle Battery Final EA_Toda 3-19-10.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for Toda America, Incorporated Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Battle Creek, MI March 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment and Finding of No Significant Impact DOE/EA-1714 Toda America, Incorporated, Battle Creek, MI March 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Toda America, Incorporated (Toda) to partially fund the construction of a manufacturing plant to produce oxide materials for cathodes for lithium-ion batteries. The plant would be constructed within an existing industrial park in Battle Creek,

474

Understanding Nature's Choreography in Batteries | U.S. DOE Office of  

Office of Science (SC) Website

Understanding Nature's Choreography in Batteries Understanding Nature's Choreography in Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Understanding Nature's Choreography in Batteries Charge-discharge chemistry for lithium ion batteries elucidated by theoretical calculations. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Sandia National Laboratories (Left) An electrolyte molecule (ethylene carbonate: C3H4O3) weakly binds

475

5th International Conference on Polymer Batteries and Fuel Cells - PBFC-5 -  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Conference Goals Organizers Sponsors Speakers Program Posters Registration Hotels Breakfast/Dinner Options Maps and Transportation to Argonne Bus Schedule Contact Us Chicago skyline Battery research Argonne APS 5th INTERNATIONAL CONFERENCE ON POLYMER BATTERIES AND FUEL CELLS (PBFC-5) PBFC 2011 August 1 - 5, 2011 Advanced Photon Source, Argonne National Laboratory Argonne, Illinois USA About the Conference It is a great pleasure for the organizing committee of the 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5, PBFC-2011) to invite all who are interested in materials for and systems based on lithium polymer, lithium-ion, metal-air, and flow batteries, and proton-exchange membrane and alkaline-exchange membrane fuel cells to attend PBFC-5. Read more.

476

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

477

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

478

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

479

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

480

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "batteries lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

482

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

483

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

484

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

485

Developing Next-Gen Batteries With Help From NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

486

Making Li-air batteries rechargeable: material challenges. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

487

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

488

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

489

EV Everywhere Battery Workshop Introduction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

490

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

491

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

492

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

493

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

494

Batteries using molten salt electrolyte  

DOE Patents (OSTI)

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

495

Thermal Batteries for Electric Vehicles  

SciTech Connect

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

496

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

497

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100-2009-00153p1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Anodes for Lithium-Ion Nanostructured Anodes for Lithium-Ion Batteries at a glance  patent pending  increase energy density  longer cyclic life  replaces graphite anodes  simple and lower cost manufacturing Current carbon-based anodes are fabricated through a series of processes of mixing carbon, binder and conductive additives in organic solution, pasting the slurry on current collector and baking to remove solvent. It involves intensive labor, fire safety and environment emission control resulting in high cost. Background Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries that are reported to increase the energy density four-fold. It is

498

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

499

Surface Modification of LiNi0.5Mn0.3Co0.2O2 Cathode for Improved Battery Performance  

E-Print Network (OSTI)

This thesis details electrical and physical measurements of pulsed laser deposition-applied thin film coatings of Alumina, Ceria, and Yttria-stabilized Zirconia (YSZ) on a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode in a Lithium ion battery. Typical NMC...

Lynch, Thomas

2012-10-19T23:59:59.000Z

500

Energy efficiency of Li-ion battery packs re-used in stationary power applications  

Science Journals Connector (OSTI)

Abstract The effects of capacity fade, energy efficiency fade, failure rate, and charge/discharge profile are investigated for lithium-ion (Li-ion) batteries based on first use in electric vehicles (EVs) and second-use in energy storage systems (ESS). The research supports the feasibility of re-purposing used Li-ion batteries from \\{EVs\\} for use in ESS. Based on data extrapolation from previous studies with a low number of charge/discharge cycles, it is estimated that the EV battery loses 20% of its capacity during its first use in the vehicle and a further 15% after its second use in the ESS over 10 years. As energy efficiency decreases with increased charge/discharge cycles, a capacity fade model is used to approximate the effect of the relationship between cycles and capacity fade over the life of the battery. The performance of the battery in its second use is represented using a model of degradation modes, assuming a 0.01% cell failure rate and a non-symmetric charge/discharge profile. Finally, an accurate modeling of battery performance is used to examine energy savings and greenhouse gas (GHG) emission reduction benefits from using a Li-ion battery first in an EV and then in an ESS connected to the Ontario electrical grid.

Leila Ahmadi; Michael Fowler; Steven B. Young; Roydon A. Fraser; Ben Gaffney; Sean B. Walker

2014-01-01T23:59:59.000Z