Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

2

Battery-Size Regenerative Fuel Cells  

ORNL 2010-G01073/jcn UT-B ID 201002378 Battery-Size Regenerative Fuel Cells Technology Summary A battery-size regenerative fuel cell with energy ...

3

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City...

4

Batteries and fuel cells working group report  

DOE Green Energy (OSTI)

Electrochemical energy systems are dominated by interfacial phenomena. Catalysis, corrosion, electrical and ionic contact, and wetting behavior are critical to the performance of fuel cells and batteries. Accordingly, development of processing techniques to control these surface properties is important to successful commercialization of advanced batteries and fuel cells. Many of the surface processing issues are specific to a particular electrochemical system. Therefore, the working group focused on systems that are of specific interest to DOE/Conservation and Renewable Energy. These systems addressed were: Polymer Electrolyte Membrane (PEM) Fuel Cells, Direct Methanol Oxidation (DMO) Fuel Cells, and Lithium/Polymer Batteries. The approach used by the working group for each of these systems was to follow the current path through the system and to identify the principal interfaces. The function of each interface was specified together with its desired properties. The degree to which surface properties limit performance in present systems was rated. Finally, the surface processing needs associated with the performance limiting interfaces were identified. This report summarizes this information.

Eberhardt, J. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Office of Advanced Transportation Materials; Landgrebe, A. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Electric and Hybrid Propulsion Systems; Lemons, R.; Wilson, M. [Los Alamos National Lab., NM (United States); MacAurther, D. [CHEMAC International Corp., (United States); Savenell, R. [Case Western Reserve Univ., Cleveland, OH (United States); Swathirajan, S. [General Motors Research Labs., Warren, MI (United States); Wilson, D. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

5

Batteries and fuel cells working group report  

DOE Green Energy (OSTI)

Electrochemical energy systems are dominated by interfacial phenomena. Catalysis, corrosion, electrical and ionic contact, and wetting behavior are critical to the performance of fuel cells and batteries. Accordingly, development of processing techniques to control these surface properties is important to successful commercialization of advanced batteries and fuel cells. Many of the surface processing issues are specific to a particular electrochemical system. Therefore, the working group focused on systems that are of specific interest to DOE/Conservation and Renewable Energy. These systems addressed were: Polymer Electrolyte Membrane (PEM) Fuel Cells, Direct Methanol Oxidation (DMO) Fuel Cells, and Lithium/Polymer Batteries. The approach used by the working group for each of these systems was to follow the current path through the system and to identify the principal interfaces. The function of each interface was specified together with its desired properties. The degree to which surface properties limit performance in present systems was rated. Finally, the surface processing needs associated with the performance limiting interfaces were identified. This report summarizes this information.

Eberhardt, J. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Office of Advanced Transportation Materials); Landgrebe, A. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Electric and Hybrid Propulsion Systems); Lemons, R.; Wilson, M. (Los Alamos National Lab., NM (United States)); MacAurther, D. (CH

1991-01-01T23:59:59.000Z

6

Fuel Cells vs. Batteries: Issues and Challenges Facing the Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells vs. Batteries: Issues and Challenges Facing the Development of Electrochemical Power Systems for Transportation Applications Speaker(s): Elton Cairns Frank McLarnon John...

7

A fuel-cell-battery hybrid for portable embedded systems  

Science Conference Proceedings (OSTI)

This article presents our work on the development of a fuel cell (FC) and battery hybrid (FC-Bh) system for use in portable microelectronic systems. We describe the design and control of the hybrid system, as well as a dynamic power management (DPM)-based ... Keywords: DPM, Simulation, battery, fuel cell, hybrid systems, simulator

Kyungsoo Lee; Naehyuck Chang; Jianli Zhuo; Chaitali Chakrabarti; Sudheendra Kadri; Sarma Vrudhula

2008-01-01T23:59:59.000Z

8

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

9

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

10

Fuel cell based battery-less ups system  

E-Print Network (OSTI)

With the increased usage of electrical equipment for various applications, the demand for quality power apart from continuous power availability has increased and hence requires the development of appropriate power conditioning system. A major factor during development of these systems is the requirement that they remain environment-friendly. This cannot be realized using the conventional systems as they use batteries and/or engine generators. Among various viable technologies, fuel cells have emerged as one of the most promising sources for both portable and stationary applications. In this thesis, a new battery less UPS system configuration powered by fuel cell is discussed. The proposed topology utilizes a standard offline UPS module and the battery is replaced by a supercapacitor. The system operation is such that the supercapacitor bank is sized to support startup and load transients and steady state power is supplied by the fuel cell. Further, the fuel cell runs continuously to supply 10% power in steady state. In case of power outage, it is shown that the startup time for fuel cell is reduced and the supercapacitor bank supplies power till the fuel cell ramps up from supplying 10% load to 100% load. A detailed design example is presented for a 200W/350VA 1- phase UPS system to meet the requirements of a critical load. The equivalent circuit and hence the terminal behavior of the fuel cell and the supercapacitor are considered in the analysis and design of the system for a stable operation over a wide range. The steady state and transient state analysis were used for stability verification. Hence, from the tests such as step load changes and response time measurements, the non-linear model of supercapacitor was verified. Temperature rise and fuel consumption data were measured and the advantages of having a hybrid source (supercapacitor in parallel with fuel cell) over just a standalone fuel cell source were shown. Finally, the transfer times for the proposed UPS system and the battery based UPS system were measured and were found to be satisfactory. Overall, the proposed system was found to satisfy the required performance specifications.

Venkatagiri Chellappan, Mirunalini

2008-08-01T23:59:59.000Z

11

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

12

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

DOE Green Energy (OSTI)

Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

Kerr, John B.

2003-06-24T23:59:59.000Z

13

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network (OSTI)

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell. The hardware for the power supply proposed in this thesis consists of a single DC/DC buck converter at the output terminals of the fuel cell. The battery does not have a DC/DC converter, and it is therefore passive in the system. The use of one single converter is attractive, because it reduces the cost of this power supply. This thesis proposes a method of controlling the fuel cell's DC/DC buck converter to act as a current source instead of a voltage source. This thesis will explain why using the fuel cell's buck converter to act as a current source is most appropriate. The proposed design techniques for the buck converter are also based on stiff systems theory. Combining a fuel cell and a battery in one power supply allows exploitation of the advantages of both devices and undermines their disadvantages. The fuel cell has a slow dynamic response time, and the battery has a fast dynamic response time to fluctuations in a load. A fuel cell has high energy density, and a battery has high power density. And the performance of the hybrid power supply exploits these advantages of the fuel cell and the battery. The controller designed in this thesis allows the fuel cell to operate in its most efficient region: even under dynamic load conditions. The passive battery inherits all load dynamic behavior, and it is therefore used for peaking power delivery, while the fuel cell delivers base or average power. Simulations will be provided using MATLAB/Simulink based models. And the results conclude that one can successfully control a hybrid fuel cell/battery power supply that decouples fluctuations in a load from the fuel cell with extremely limited hardware. The results also show that one can successfully control the fuel cell to operate in its most efficient region.

Smith, Richard C.

2009-08-01T23:59:59.000Z

14

Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus  

SciTech Connect

Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

1997-05-01T23:59:59.000Z

15

Control of fuel cell/battery/supercapacitor hybrid source for vehicle applications  

Science Conference Proceedings (OSTI)

This paper presents a control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices (batteries and supercapacitors) for dc distributed system, particularly for future FC vehicle applications. ...

Phatiphat Thounthong; Panarit Sethakul; Stephane Rael; Bernard Davat

2009-02-01T23:59:59.000Z

16

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

17

Assessment of the status of fuel cell/battery vehicle power systems  

DOE Green Energy (OSTI)

An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

Escher, W.J.D.; Foster, R.W.

1980-02-01T23:59:59.000Z

18

Assessment of the status of fuel cell/battery vehicle power systems  

SciTech Connect

An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

Escher, W.J.D.; Foster, R.W.

1980-02-01T23:59:59.000Z

19

5th International Conference on Polymer Batteries and Fuel Cells - PBFC-5 -  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Conference Goals Organizers Sponsors Speakers Program Posters Registration Hotels Breakfast/Dinner Options Maps and Transportation to Argonne Bus Schedule Contact Us Chicago skyline Battery research Argonne APS 5th INTERNATIONAL CONFERENCE ON POLYMER BATTERIES AND FUEL CELLS (PBFC-5) PBFC 2011 August 1 - 5, 2011 Advanced Photon Source, Argonne National Laboratory Argonne, Illinois USA About the Conference It is a great pleasure for the organizing committee of the 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5, PBFC-2011) to invite all who are interested in materials for and systems based on lithium polymer, lithium-ion, metal-air, and flow batteries, and proton-exchange membrane and alkaline-exchange membrane fuel cells to attend PBFC-5. Read more.

20

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

22

Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior  

DOE Green Energy (OSTI)

Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

Cooper, J.F.; Krueger, R.

1997-01-01T23:59:59.000Z

23

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

24

Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle  

Science Conference Proceedings (OSTI)

A power management strategy based on an adaptive neuro-fuzzy inference system is proposed to enhance the fuel economy of fuel cell-battery hybrid vehicle and increase the mileage of continuation of journey. The model of hybrid vehicle for fuel cell-battery structure is developed by electric vehicle simulation software advisor. The simulation results demonstrate that the proposed strategy can satisfy the power requirement of four standard drive cycles and achieve the power distribution between fuel cell system and battery. The comprehensive comparisons with a power tracking control strategy which is widely adopted in advisor verify that the proposed strategy has better validity in terms of fuel economy in four standard drive cycles. Hence

Qi Li; Weirong Chen; Shukui Liu; Zhiyu You; Shiyong Tao; Yankun Li

2012-01-01T23:59:59.000Z

25

Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations  

Science Conference Proceedings (OSTI)

A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

Cooper, J F; Krueger, R

2003-10-01T23:59:59.000Z

26

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

27

NIST: NIF - PEM Fuel Cells  

Science Conference Proceedings (OSTI)

... Fuel cells are operationally equivalent to a battery. The reactants or fuel in a fuel cell can be replaced unlike a standard disposable or rechargeable ...

28

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

29

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

30

ac/dc power converter for batteries and fuel cells. Annual report  

SciTech Connect

The overall objective of the EPRI RP841-1 program is the design of an advanced power converter for use in both battery energy storage and fuel cell generation systems in the 1980's. This goal will be accomplished by expansion of United's existing FCG-1 fuel cell power conditioning inverter into a high-efficiency inverter--rectifier system employing improved commutation circuits and advanced (1980's) semiconductor devices capable of operating over wider dc voltage ranges. A separate but concurrent program for the U.S. Department of Energy (DOE) -- E(49-18)2122 -- is examining augmentation of the present FCG-1 inverter for operation as an inverter--rectifier with battery systems; feasibility and operating characteristics have been demonstrated. United's activities and accomplishments in the EPRI RP841-1 program include revision of the preliminary specification for ac/dc conversion equipment contained in the Statement of Work, survey of seven semiconductor manufacturers to project characteristics of 1980's thyristors, screening of fifteen commutation concepts and selection of the two most promising options for experimental evaluation, and modifications of existing experimental power pole hardware to evaluate the selected advanced commutation circuits. 34 figures, 3 tables.

Rosati, R.W. (ed.)

1978-08-01T23:59:59.000Z

31

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

DOE Green Energy (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

32

Fuel Cells & Renewable Portfolio Standards  

E-Print Network (OSTI)

.....................................................12 SOFC Battery Range Extender Auxiliary Power Unit (SOFC) as Military APU Replacements" (presentation, DOD-DOE Workshop on Fuel Cells in Aviation cell plasma lighting demonstration, a solid oxide fuel cell (SOFC) battery range extender APU

33

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

34

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

35

Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary  

DOE Green Energy (OSTI)

Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

Not Available

1980-10-01T23:59:59.000Z

36

Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report  

DOE Green Energy (OSTI)

Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

NONE

1990-02-28T23:59:59.000Z

37

Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.  

DOE Green Energy (OSTI)

The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

Swain; Greg M.

2009-04-13T23:59:59.000Z

38

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

DOE Green Energy (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

39

Symposium on Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems, San Diego, CA, Oct. 20-22, 1986, Proceedings  

SciTech Connect

Papers are presented on modeling of the zinc chlorine battery, design modeling of zinc/bromine battery systems, the modeling of aluminum-air battery systems, and a point defect model for a nickel electrode structure. Also considered are the impedance of a tubular electrode under laminar flow, mathematical modeling of a LiAl/Cl2 cell with a gas diffusion Cl2 electrode, ultrahigh power batteries, and battery thermal modeling. Other topics include an Na/beta-alumina/NaAlCl4, Cl2/C circulating cell, leakage currents in electrochemical systems having common electrodes, modeling for CO poisoning of a fuel cell anode, electrochemical corrosion of carbonaceous materials, and electrolyte management in molten carbonate fuel cells.

Selman, J.R.; Maru, H.C.

1986-01-01T23:59:59.000Z

40

Research development and demonstration of a fuel cell/battery powered bus system. Interim report, August 1, 1991--April 30, 1992  

DOE Green Energy (OSTI)

This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, application of fuel cells to other vehicles, current problems, work planned, and manpower, cost and schedule reports.

Romano, S.; Wimmer, R.

1992-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

42

Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997  

DOE Green Energy (OSTI)

Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

Wimmer, R.

1999-01-01T23:59:59.000Z

43

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

44

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

DOE Green Energy (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

45

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

46

Fuel Cell 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

47

Fuel Cells publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells » Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

48

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

of fuel cell/battery/supercapacitor hybrid power source for479 7. Soonil Jeon, Hyundai Supercapacitor Fuel Cell Hybridtechnology, fuel cell/supercapacitor hybrid fuel cell

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

49

Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system  

DOE Green Energy (OSTI)

In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercial non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.

Zalbowitz, M.

1992-06-02T23:59:59.000Z

50

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

the batteries, and to power accessories like the air condi- tioner and heater. Hybrid electric cars can exceed#12;#12;Hydrogen Fuel Cell Engines MODULE 8: FUEL CELL HYBRID ELECTRIC VEHICLES CONTENTS 8.1 HYBRID ELECTRIC VEHICLES .................................................................................. 8-1 8

51

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

52

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

53

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

54

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

55

NREL: Learning - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

56

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

DOE Green Energy (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

57

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

58

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network (OSTI)

to electricity or to work, while the remaining energy is wasted, primarily as heat. The energy stored this energy would go to waste and most of it would be transformed to heat. The unique structure of the fuel environment! Since the total energy in the process is conserved, the more energy we waste by emission of heat

Andelman, David

59

Thin film battery/fuel cell power generating system. Second quarterly report, July 1, 1978-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on the development of the high-temperature solid-oxide electrolyte fuel cell. Oxygen loss behavior in the lanthanum chromite interconnection material was investigated by the microweighing technique. RF sputtered interconnection bands have been produced that display suitable density to permit the technique to be used in the construction of cell stacks. Electrochemical vapor deposition equipment has been modified to enable preparation of 20 cell fuel cell stack fabrication to proceed. The fuel electrode process and equipment have been improved to permit fabrication of long (0.3 m) tube segments, showing good mechanical and electrical properties. Long tube sections have been used to fabricate air electrodes, having desired porosity without loss of conductivity. Porous support tube work (involving equipment and fabrication techniques) is being extended to the fabrication of 0.3 m long tubes, needed for the fabrication of the 20 cell stacks. Work continues on the construction of the 5 station fuel cell stack life test facility. Theoretical interpretations of fuel cell stack polarization losses have been compared with actual measured losses in the 5 cell fuel cell stack previously tested in the program. Analyses of the intercell leakage current in the five cell fuel cell stack that was life tested for 700 hours were conducted. (WHK)

Feduska, W.

1978-10-25T23:59:59.000Z

60

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

62

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

63

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

65

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

66

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

67

HNEI Overview and Fuel Cell Programs  

E-Print Network (OSTI)

. Another opportunity for improvement is the catalyst in the cell, which is usually madefrom3 of oil. A fuel cell is arguably a better option for powering a car because it shares many of the strengths of a battery while addressing its weaknesses. Unlike a battery, the chemical energy of a fuel cell

68

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

69

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

4/3/2012 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future development of roadmaps and technical targets for flow cells for various applications. 3. Identify grand challenges and prioritize R&D needs. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications.

70

Thin film battery/fuel cell power generating system. Final report, Task E-4, April 1976-April 1978  

DOE Green Energy (OSTI)

A two-year researth program to design and demonstrate the technical feasibility of a high-temperature solid-electrolyte fuel cell is described in detail. A rare-earth chromite, in particular, La /sub 95/Mg /sub 05/Cr /sub 75/Al /sub 25/0/sub 3/ was identified, synthesized by RF-sputtering tested for resistivity, thermal expansion and inertness in contact with yttria-stabilized zirconia, and was found promising as a candidate interconnection material. Films of these interconnection materials have been successfully deposited onto stabilized zirconia tubes by electrochemical vapor deposition (EVD) and the technique has been used to fabricate such films in building fuel cell stacks. Tin-doped indium oxide and antimony-doped tin oxide air electrode current collector materials have been successfully (CVD) chemically vapor deposited, as thin films, onto zirconia tubes. Fabrication procedures for the preparation of thin films of the nickel-cermet fuel electrode and yttria-stabilized zirconia solid electrolyte have been re-verified and improved for use in preparing unit cells and cell stacks on the program. An in-house extrusion technology for porous calcia-stabilized zirconia tubes has been developed and has been used to provide suitable support tubes for component combination samples, unit cell and cell stack sample preparation. Test concepts for component combinations and for unit cells and cell stacks have been evolved, particularly, the crossed electrode technique, and test equipment has been designed, built and used to evaluate fuel cell components and their interfaces. A five-cell fuel cell stack has been fabricated and operated for 700 hours at 200 mA/cm/sup 2/ at 950 to 980/sup 0/C and was subjected to three temperature cycles during the testing. Three series connected cells of this five cell stack met the 80% voltage efficiency final target objective of the program (less than 10% voltage degradation in 700 hours - with only 300 hours required.)

Feduska, W.

1978-03-31T23:59:59.000Z

71

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

James, A cost comparison of fuel-cell and battery electricHowever, battery electric vehicles have lower fuel cost, usebattery-electric vehicles in terms of weight, volume, GHGs and cost,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

72

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

73

Thin film fuel cell/battery power generating system. Annual report, April 1, 1978-March 31, 1979  

DOE Green Energy (OSTI)

Work on the modified lanthanum chromite interconnection (IC) proceeded in a number of areas. Toward determining the stability of the IC, oxygen ion transport mechanisms were evaluated, as well as IC stability under low oxygen partial pressures (10/sup -6/t 10/sup -18/ atm). To produce long, continuous, 40 ..mu..m thick IC films on 0.3 m long porous support tubes, improvements were made in both the EVD apparatus and process. Porous support tubes of calcia-stabilized zirconia were produced, up to 0.3 m long, for fuel cell stack fabrication. Work on the air electrode current collector covered several areas. The high-temperature resistivity of doped indium oxide was studied at various doping levels, as a function of oxygen partial pressure. Also, other possible current collector formulations were investigated. By incorporating materials and process improvements, as well as improved porous support tubes, in the fabrication of 20 cell stacks, stack quality and performance at 400 mA/cm/sup 2/ and 1000/sup 0/C have steadily improved. Measurement techniques have been refined on the fuel cell and its components. Realistic combination specimens, as fuel electrode-interconnection layers on a porous support tube, have been used to determine interconnection apparent resistivity at 1000/sup 0/C. From polarization tests on fabricated fuel cell stacks, major electrical resistance contributors to the total cell resistance are the air electrode and the interconnection, with the latter being the largest contributor.

Not Available

1979-04-30T23:59:59.000Z

74

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

75

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

16, Appendix I Fuel cell hybrid vehicles with load levelingfuel cell/battery hybrid vehicles, Journal of Power Sourcesfor a PEM Fuel Cell Hybrid Vehicle, Transactions of the

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

76

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

77

Solid State Research CenterDOE Fuel Cell Portable Power Workshop End User Perspective Industrial  

E-Print Network (OSTI)

Portable Power Workshop Fuel Cell Cost · Desktop/Travel/Vehicle Charger ­ Current battery chargers: $25) · Fuel Cell System ­ Total cost "comparable" to charger/battery ­ Includes both fuel cell and battery Power Workshop Outline · Energy & Power of Portable Devices · Fuel Cell Applications & Cost · Key

78

Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

79

Computational Fuel Cell Research and SOFC Modeling at Penn State  

E-Print Network (OSTI)

Computational Fuel Cell Research and SOFC Modeling at Penn State Chao-Yang Wang Professor of PEM Fuel Cells SOFC Modeling & Simulation Fuel Cell Controls Summary #12;ECEC Overview Vision: provide, DMFC, and SOFC #12;ECEC Facilities (>5,000 sq ft) Fuel Cell/Battery Experimental Labs Fuel Cell

80

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

DOE Green Energy (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

82

Fuel Cell Technologies Office: Early Market Applications for...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cells can offer significant cost savings over both battery-generator systems and battery-only systems when shorter runtime capabilities of up to 72 hours are sufficient...

83

Multi-cell storage battery  

DOE Patents (OSTI)

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

84

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

85

2009 Fuel Cell Market Report, November 2010  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

86

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

87

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

88

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than todays flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRCs flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

2010-09-09T23:59:59.000Z

89

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than todays flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRCs flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

None

2010-09-09T23:59:59.000Z

90

Fuel cells: A handbook (Revision 3)  

SciTech Connect

Fuel cells are electrochemical devices that convert the chemical energy of reaction directly into electrical energy. In a typical fuel cell, gaseous fuels are fed continuously to the anode (negative electrode) compartment and an oxidant (i.e., oxygen from air) is fed continuously to the cathode (positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. A fuel cell, although having similar components and several characteristics, differs from a typical battery in several respects. The battery is an energy storage device, that is, the maximum energy that is available is determined by the amount of chemical reactant stored within the battery itself. Thus, the battery will cease to produce electrical energy when the chemical reactants are consumed (i.e., discharged). In a secondary battery, the reactants are regenerated by recharging, which involves putting energy into the battery from an external source. The fuel cell, on the other hand, is an energy conversion device which theoretically has the capability of producing electrical energy for as long as the fuel and oxidant are supplied to the electrodes. In reality, degradation or malfunction of components limits the practical operating life of fuel cells.

Hirschenhofer, J.H.; Stauffer, D.B.; Engleman, R.R.

1994-01-01T23:59:59.000Z

91

High power bipolar battery/cells with enhanced overcharge tolerance  

SciTech Connect

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

Kaun, Thomas D. (New Lenox, IL)

1998-01-01T23:59:59.000Z

92

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

93

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

94

Micro and Man-Portable Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

& USFCC Fuel Cells Meeting: & USFCC Fuel Cells Meeting: US DOE & USFCC Fuel Cells Meeting: Matching Federal Government Energy Needs Matching Federal Government Energy Needs with Energy Efficient Fuel Cells with Energy Efficient Fuel Cells Micro & Man Micro & Man - - Portable Fuel Cells Portable Fuel Cells Jerry Hallmark Jerry Hallmark Motorola Labs Motorola Labs - - President USFCC President USFCC Hotel Palomar Hotel Palomar Washington, DC Washington, DC April 26th, 2007 April 26th, 2007 US DOE & USFCC Fuel Cells Meeting 1 4/26/2007 U.S. Fuel Cell Council Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU * 100 Watts to 10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup,

95

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

96

An Overview of Stationary Fuel Cell Technology  

DOE Green Energy (OSTI)

Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

DR Brown; R Jones

1999-03-23T23:59:59.000Z

97

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

DOE Green Energy (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

98

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

99

Fuel-cell-powered golf cart  

DOE Green Energy (OSTI)

The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

1980-01-01T23:59:59.000Z

100

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

102

NETL: Fuel Cells - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel CellsSolid State Energy Conversion Alliance (SECA) Contacts For information on the Fuel CellsSECA program, contact: Fuel Cells Technology Manager: Shailesh Vora 412-386-7515...

103

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

104

Progress in fuel cells for transportation applications  

DOE Green Energy (OSTI)

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

105

Definition: Fuel cell | Open Energy Information  

Open Energy Info (EERE)

Fuel cell Fuel cell Jump to: navigation, search Dictionary.png Fuel cell An electrochemical device that converts chemical energy directly into electricity. View on Wikipedia Wikipedia Definition A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen/air to sustain the chemical reaction; however, fuel cells can produce electricity continually for as long as these inputs are supplied. In 1838, German physicist Christian Friedrich Schönbein invented the first

106

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

efficiency of the electric power system. This opportunity isvehicles and of the electric power grid, yet analysts,cell vehicle generates electric power, but it's not hooked

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

107

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

108

FCT Fuel Cells: Fuel Cell R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell R&D Activities to someone by E-mail Share FCT Fuel Cells: Fuel Cell R&D Activities on Facebook Tweet about FCT Fuel Cells: Fuel Cell R&D Activities on Twitter Bookmark...

109

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Technical Cell Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

110

A fuel cell overview  

SciTech Connect

This paper is an overview of the fuel cell as an efficient and environmentally benign energy conversion technology. The topics of the paper include their physical arrangement, types of fuel cells, status of commercial development, applications of the fuel cell power plants and comparison with existing alternatives, and good design practice for fuel cell safety.

Krumpelt, M. [Argonne National Lab., IL (United States); Reiser, C.

1994-10-01T23:59:59.000Z

111

Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode (or anode) and a positive electrode (or cathode)-sandwiched around an electrolyte. A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons

112

Fuel cells seminar  

SciTech Connect

This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

1996-12-01T23:59:59.000Z

113

Hydrogen & Fuel Cells - Fuel Cell - Solid Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Research and Development Solid Oxide Fuel Cells Solid oxide diagram In an SOFC, oxygen from air is reduced to ions at the cathode, which diffuse through the...

114

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

115

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

116

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

117

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

118

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: November 2012 on Facebook Tweet about Fuel Cell Technologies...

119

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Archives to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter Archives on Facebook Tweet about Fuel Cell Technologies...

120

Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies Office Newsletter on...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Portable Power Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Portable Power Workshop on Facebook Tweet about Fuel Cell Technologies...

122

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Fuel Cell Technologies Office: News on Google Bookmark Fuel Cell Technologies Office: News on Delicious Rank Fuel Cell Technologies...

123

Fuel Cell Technologies Office: Webinars  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinars to someone by E-mail Share Fuel Cell Technologies Office: Webinars on Facebook Tweet about Fuel Cell Technologies Office: Webinars on Twitter Bookmark Fuel Cell...

124

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

125

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

126

Fuel cell arrangement  

DOE Patents (OSTI)

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-05-12T23:59:59.000Z

127

Fuel cell arrangement  

DOE Patents (OSTI)

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

Isenberg, A.O.

1987-05-12T23:59:59.000Z

128

California Fuel Cell Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker(s): Bob Knight Date: October 19, 2000 - 12:00pm Location: Bldg. 90 The California Fuel Cell Partnership is a current collaboration among major automakers, fuel cell...

129

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Usage » Storage » Hydrogen & Fuel Cells Energy Usage » Storage » Hydrogen & Fuel Cells Hydrogen & Fuel Cells December 19, 2013 Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. This is helping them become more mainstream in the U.S., with more than 4,000 vehicles in operation in 2012, and this year, they might even be helping bring you holidays to you. | Photo courtesy of Plug Power, Inc. Your Holidays ... Brought to You by Fuel Cells Next time you're at the airport or at a shop picking up a last-minute gift, you might see speciality vehicles powered by fuel cells, a clean energy technology that is helping bring your holidays to you.

130

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

131

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Pre-Solicitation Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation Workshop on Facebook Tweet about Fuel Cell...

132

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

133

Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

134

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

135

Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

09 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

136

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

137

Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Buildings Roadmap Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap Workshop on Facebook Tweet about Fuel Cell...

138

Micro fuel cell  

SciTech Connect

An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

1998-12-31T23:59:59.000Z

139

Thin film battery/fuel cell power generating system. Final report of the continuation contract (Tasks 1-4), April 1, 1978-March 31, 1980  

DOE Green Energy (OSTI)

Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are now being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)

Not Available

1980-06-30T23:59:59.000Z

140

Reversible (unitized) PEM fuel cell devices  

DOE Green Energy (OSTI)

Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety and logistics force these URFC demonstration units to be small, transportable, and easily set up, hence they already prove the viability of URFC systems for portable applications.

Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Power from the Fuel Cell  

E-Print Network (OSTI)

Power for Buildings Using Fuel-Cell Cars, Proceedings ofwell as to drive down fuel-cell system costs through productis most likely to be the fuel-cell vehicle. Fuel cells are

Lipman, Timothy E.

2000-01-01T23:59:59.000Z

142

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel...

143

Fuel Cell Handbook update  

DOE Green Energy (OSTI)

The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

1993-11-01T23:59:59.000Z

144

Fuel Cells Information at NIST  

Science Conference Proceedings (OSTI)

NIST Home > Fuel Cells Information at NIST. Fuel Cells Information at NIST. (the links below are a compilation of programs ...

2010-08-23T23:59:59.000Z

145

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

146

2008 Fuel Cell Technologies Market Report  

SciTech Connect

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

DOE

2010-06-01T23:59:59.000Z

147

Fuel Cells Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

148

Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells  

SciTech Connect

Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

2013-03-30T23:59:59.000Z

149

Fuel cell generator  

DOE Patents (OSTI)

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

150

MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation ...  

Rechargeable batteries presently provide limited energy ... as well as to manufacture the fuel cell via a continuous integration ... Microfluidic systems with ...

151

Benthic Microbial Fuel Cell Persistent power supply for in-water ...  

Benthic Microbial Fuel Cell Persistent power supply for in-water sensors ... and high-density sensor arrays where the cost of battery replacement is high.

152

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

153

Hybrid fuel cell for mobile devices : an integrated approach  

E-Print Network (OSTI)

As mobile devices advance to 3G and beyond, there will be a pressing need for increased power to drive these devices, which the current batteries cannot provide. The direct methanol fuel cell has been identified as a ...

Sohn, Munhee, 1981-

2006-01-01T23:59:59.000Z

154

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

155

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost negativeelectrodes...

156

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

157

Fuel Cell Technologies Office: Early Market Applications for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on AddThis.com...

158

Free air breathing planar PEM fuel cell design for portable electronics  

E-Print Network (OSTI)

PEM fuel cell technology is an energy source that can provide several times more energy per unit volume then current lithium ion batteries. However, PEM fuel cells remain to be optimized in volume and mass to create a ...

Crumlin, Ethan J

2005-01-01T23:59:59.000Z

159

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

160

NETL: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Coal and Power Systems Fuel Cells SECA Logo Welcome to NETL's Fuel Cells Webpage. In partnership with private industry, educational institutions and national laboratories, we are leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal-based SOFC power generation systems for stationary market large central power plants under the Solid State Energy Conversion Alliance (SECA). The SECA cost reduction goal is to have SOFC systems capable of being manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt (MW)-class fuel flexible products by 2012 and 2015. The SECA coal-based systems goal is the development of large

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rechargeable solid polymer electrolyte battery cell  

SciTech Connect

A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

Skotheim, Terji (East Patchoque, NY)

1985-01-01T23:59:59.000Z

162

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, Thomas D. (New Lenox, IL); Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

163

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, T.D.; Smith, J.L.

1986-07-08T23:59:59.000Z

164

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

165

Fuel cell market applications  

DOE Green Energy (OSTI)

This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

Williams, M.C.

1995-12-31T23:59:59.000Z

166

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

167

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

168

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

169

Modeling & Simulation - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

GCTool Computer Model Helps Focus Fuel Cell Vehicle Research Somewhere near Detroit, an automotive engineer stares at the ceiling, wondering how to squeeze 1% more efficiency out...

170

Opportunities with Fuel Cells  

Reports and Publications (EIA)

The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

Information Center

1994-05-01T23:59:59.000Z

171

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

172

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

DOE Green Energy (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

173

Thin film battery/fuel cell power generating system. Sixth quarterly report, July-September 1977. [LaMgCrAlO/sub 3/  

DOE Green Energy (OSTI)

The purpose of this research program is the demonstration of the technical feasibility of a high-temperature, solid-electrolyte fuel cell, building on the presently-existing technological base. The bulk of the work consists of identifying and selecting candidate component materials, fabricating cells and cell stacks from these materials, and testing these cells and cell stacks under conditions which might be expected in operation. The major emphasis is on the invention and fabrication of an interconnection film, which has the following properties at 1000/sup 0/C, the proposed temperature of stack operation: (1) chemical stability in air and fuel gas; (2) electronic resistivity in the working environment of less than 50 ohm-cm; (3) thermal expansion characteristics compatible with other components; and (4) non-reactivity with adjoining components. Emphasis is also being placed on the fabrication of porous support tubes of calcia-stabilized zirconia, to the desired specifications of tensile strength, porosity, surface finish, and purity. Concurrently, tubes will be prepared in-house and also will be purchased from commercial suppliers and evaluated for compliance with the following specifications: (1) tensile strength of 5000 to 10,000 psi; (2) open porosity of 25 to 30 volume percent; and (3) no surface pore greater than 10 ..mu..m in diameter. Progress is reported. (WHK)

Not Available

1977-10-07T23:59:59.000Z

174

Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

175

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

176

How Fuel Cells Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Fuel Cells Work How Fuel Cells Work Diagram: How a PEM fuel cell works. 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.

177

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network (OSTI)

a microbial fuel cell that digests wastes, instantly producing electricity. Just take a look at Dr. EmittCell.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www a battery that generates electricity from deep sea composting micro-organisms that just love to break down

Lovley, Derek

178

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

179

Molten salt electrolyte battery cell with overcharge tolerance  

SciTech Connect

A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

1989-01-01T23:59:59.000Z

180

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

1993-11-02T23:59:59.000Z

182

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

183

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

184

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

185

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

186

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

187

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

188

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

189

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

190

Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Manufacturing R&D Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing R&D Workshop on Facebook Tweet...

191

Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)  

DOE Green Energy (OSTI)

Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

2005-05-01T23:59:59.000Z

192

Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordinatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Coordination Meeting to someone by E-mail Share Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordination Meeting on Facebook Tweet about...

193

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

194

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

195

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

196

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

197

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Economy Improvemen t Battery Capacity (Ah) Figure 7 FuelFuel Economy Improvemen t Battery Capacity (Ah) Figure 15Fuel Economy Improvemen t Battery Capacity (Ah) Figure 16

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

198

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and fuel cells offer great  

E-Print Network (OSTI)

and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary fuel cell technol vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated in addition to hydrogen fuel for local demonstration fuel cell vehicles. As advanced vehicles begin to enter

199

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

variety of other fuels, including natural gas and renewable fuels such as methanol or biogas. Hydrogen and fuel cells can provide these benefits and address critical challenges in...

200

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reversible Fuel Cell Systems at Proton Energy, Mr. Everett Anderson, PROTON ON SITE Regenerative Fuel Cells for Energy Storage, Mr. Corky Mittelsteadt, Giner Electrochemical...

202

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development and Demonstration Plan* to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Multi-Year Research, Development and...

203

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologie...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption of Fuel Cell Technologies Federal Facilities Guide Read Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers for step-by-step guidance...

204

NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results...

205

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Products Supported by the Fuel Cell Technologies Office, finds DOE funding has led to more than 360 hydrogen and fuel cell patents, 36 commercial...

206

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

offices, including Fuel Cell Technologies. Funding Opportunities SBIRSTTR Phase I Release 1 Technical Topics Announced for FY14-Hydrogen and Fuel Cell Topics Include...

207

A Combined Model for Determining Capacity Usage and Battery Size...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

208

Advanced Electrocatalysts for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar on PEM Fuel Cells 2-12-2013 Webinar on PEM Fuel Cells 2-12-2013 Advanced Electrocatalysts for PEM Fuel Cells Nenad M. Markovic Vojislav R. Stamenkovic Materials Science Division Argonne National Laboratory 1 st Layer 2 nd Layer 3 rd Layer Pt=100 at.% Pt=48 at.% Ni=52 at.% Pt=87 at.% Ni=13 at.% Pt[111]-Skin surface 5 nm (111) (100) 3 nm Size distribution c-15 nm Shape Bulk composition Surface structure ? HR-TEM: Characterization of Nanoscale Pt/C Catalyst x 15 x 5 Surface composition ? 2 Surface Science Approach design, synthesis, characterization, and testing of well-defined interfaces Pt/C H 2 O 2 Real Applications FUEL CELLS / BATTERIES / ELECTROLIZERS Activity and Stability Mapping DFT/MC EC Pt Au Ru Surface Characterization UHV Chemical / Physical Synthesis SXS/HRDFS FTIR HRTEM DOUBLE-LAYER-BY-DESIGN

209

Fuel cell stack arrangements  

DOE Patents (OSTI)

Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

1982-01-01T23:59:59.000Z

210

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

211

Fuel Cell Technologies Office: Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

212

Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Fuel Cells Jump to: navigation, search TODO: Add description List of Fuel Cells Incentives...

213

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

& Local Governments For Early Adopters For Students & Educators Careers in Hydrogen & Fuel Cells Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells...

214

DOE Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

500 2007 2013 Cumulative Number of Patents Fuel Cells ProductionDelivery Storage * DOE funding has led to 40 commercial hydrogen and fuel cell technologies and 65 emerging...

215

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOEs priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freights Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freights previous field trial experience with a handful of Plug Powers GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

216

Electric storage cell or battery  

SciTech Connect

A lead storage cell comprises a storage jar, an electrolyte contained in the storage jar, negative and positive electrodes within the electrolyte and respectively having a negative electrode metal or active material and a positive electrode active material which are placed in contact with each other preferably a large-meshed woven or non-woven fabric having resistance to the electrolyte and inserted between the negative and positive electrodes.

Kosuga, J.

1981-11-17T23:59:59.000Z

217

Fuel cell systems for personal and portable power applications  

SciTech Connect

Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

Fateen, S. A. (Shaheerah A.)

2001-01-01T23:59:59.000Z

218

Fuel Cell Portable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

219

Rapidly refuelable fuel cell  

DOE Patents (OSTI)

This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

Joy, Richard W. (Santa Clara, CA)

1983-01-01T23:59:59.000Z

220

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party December 16, 2011 - 11:25am Addthis A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program How does it work? Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. Employees at the Energy Department's annual holiday party were greeted with many familiar sights - festive decorations, sugar cookies, and a

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel cell generator energy dissipator  

DOE Patents (OSTI)

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

222

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

223

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

224

Hydrogen & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

225

Hydrogen and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

226

Composite fuel cell membranes  

DOE Patents (OSTI)

A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

1997-08-05T23:59:59.000Z

227

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

life (based on total battery capacity) 0.90 In-use batterylife (based on total battery capacity, including any energy58.8 Nominal battery discharge capacity, to provide driving

Delucchi, Mark

1992-01-01T23:59:59.000Z

228

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

229

Layered Electrodes for Lithium Cells and Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Layered Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes...

230

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

231

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

232

Fuel Cell Technologies Program Overview  

E-Print Network (OSTI)

Cell TypesFuel Cell Types Note: ITSOFC is intermediate temperature SOFC and TSOFC is tubular SOFC #12

233

Seventh Edition Fuel Cell Handbook  

DOE Green Energy (OSTI)

Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

NETL

2004-11-01T23:59:59.000Z

234

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

235

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

236

Argonne TDC: Fuel Cell Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

237

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

238

Fuel Cell Technologies Office: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

239

Bipolar battery with array of sealed cells  

DOE Patents (OSTI)

A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.

Kaun, T.D.; Smaga, J.A.

1986-07-08T23:59:59.000Z

240

Bipolar battery with array of sealed cells  

SciTech Connect

A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.

Kaun, Thomas D. (New Lenox, IL); Smaga, John A. (Lemont, IL)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell devices to charge electronics such as cell phones and audio players. EERE funding for hydrogen and fuel cells has led to more than 450 patents, 60 commercial...

242

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

243

Fuel cell system  

DOE Patents (OSTI)

A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

1982-01-01T23:59:59.000Z

244

Biomass Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilize ceramic microchannel reactor technology for * reforming of natural gas and biogas fuels for subsequent electrochemical oxidation within a solid-oxide fuel cell (SOFC)....

245

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

246

Preliminary Analysis of Energy Storage Options for Hydrogen Fuel Cell Buses for Urban Transport  

Science Conference Proceedings (OSTI)

The United Nations Development Program/Global Environment Facility (UNDP/GEF) Fuel Cell Bus Project will develop a fuel cell transit bus by combining two Ballard automotive fuel cells with an energy storage system. The battery system will be an important component of the bus and will assist the fuel cell systems (FC-S) to store regenerative baking energy in the hybrid system. The battery also has the potential to increase fuel cell system performance, efficiency, and durability by reducing FC-S transient...

2010-01-18T23:59:59.000Z

247

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

DOE Green Energy (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

248

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

249

TransForum v9n2 - Green Fuel Depot  

NLE Websites -- All DOE Office Websites (Extended Search)

> Alternative Fuels Autonomie Batteries Downloadable Dynamometer Database Engines Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling,...

250

Fuel cell system combustor  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

Pettit, William Henry (Rochester, NY)

2001-01-01T23:59:59.000Z

251

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

252

Handbook of fuel cell performance  

DOE Green Energy (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

253

PEM FUEL CELL TURBOCOMPRESSOR  

DOE Green Energy (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

254

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

255

Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report  

Science Conference Proceedings (OSTI)

LSIs fuel cell uses efficient Solid Oxide Fuel Cell (SOFC) technology, is manufactured using Micro Electrical Mechanical System (MEMS) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The companys Fuel Cell on a Chip technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

Alan Ludwiszewski

2009-06-29T23:59:59.000Z

256

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

257

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards May 21, 2013 The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program presented its annual awards...

258

Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cell Manufacturing R&D Workshop The National Renewable Energy Laboratory (NREL) hosted a Hydrogen and Fuel Cell Manufacturing R&D Workshop August 11-12, 2011, in...

259

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in...

260

DOE Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office FY2014 Budget Request Briefing on April 12 Apr 9, 2013 The Fuel Cell Technologies Office will hold a budget briefing for stakeholders on Friday, April...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cell Technologies Office: New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda (PDF 83 KB) New Fuel Cell Projects Overview (PDF 1.2 MB), P. Davis, DOE New Fuel Cell Projects Overview (PDF 609 KB), N. Garland, DOE Membranes Membranes and MEAs for Dry,...

262

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market...

263

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

- tions, distributed power generation, and cogeneration (in which excess heat released during electricity the imported petroleum we currently use in our cars and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

264

Compact fuel cell  

DOE Patents (OSTI)

A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

2010-10-19T23:59:59.000Z

265

Internal reforming fuel cell assembly with simplified fuel feed  

DOE Patents (OSTI)

A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

2001-01-01T23:59:59.000Z

266

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

267

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

268

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

269

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

270

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network (OSTI)

Sediment microbial fuel cells demonstrating marine (left)Model of hydrogen fuel cell kinetic losses including5 FutureWork 5.1 Microfluidic Microbial Fuel Cell Continued

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

271

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Name Canadian Fuel Cell Commercialization Roadmap...

272

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

273

Al-laminated film packaged organic radical battery for high-power...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs...

274

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

uses of fuel cell technologies. MotorWeek H2 on the Horizon Video Learn how car makers, energy suppliers, and the government are bringing fuel cell electric vehicles and hydrogen...

275

Fuel Cell Projects Kickoff Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cost-Competitive Fuel Cell Stacks James Cross, Nuvera 4:30 Fuel Cell Fundamentals at Low and Subzero Temperatures Adam Weber, LBNL 4:50 Development and Validation of...

276

Fuel Cell Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Events to someone by E-mail Share Fuel Cell Technologies Office: Events on Facebook Tweet...

277

DOE Fuel Cell Subprogram (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

* By 2010, develop a fuel cell system for consumer electronics (<50 W) with an energy density of 1,000 WhL. * By 2010, develop a fuel cell system for auxiliary power units (3-30...

278

Fuel Cell Technologies Office: Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Renewable Energy Fuel Cell Technologies Office Databases The Fuel Cell Technologies Office is developing databases to make it easier for users to find up-to-date...

279

Air Breathing Direct Methanol Fuel Cell  

DOE Patents (OSTI)

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

280

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Organic fuel cells and fuel cell conducting sheets  

DOE Patents (OSTI)

A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

2007-10-16T23:59:59.000Z

282

Fuel Cell Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

283

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

284

Fuel Cell Handbook, Fourth Edition  

DOE Green Energy (OSTI)

sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

285

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

286

Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the  

E-Print Network (OSTI)

[plug-in hybrid electric vehicles] and BEVs [battery- electric vehicles], and · The transition, and advanced vehicle technologies activities and reiterated DOE's portfolio approach to light-duty vehicles to hydrogen as a major transportation fuel utilized in fuel cell electric vehicles. ...The fuel cell

287

Fuel cell sub-assembly  

DOE Patents (OSTI)

A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

Chi, Chang V. (Brookfield, CT)

1983-01-01T23:59:59.000Z

288

Commercialization of fuel-cells  

DOE Green Energy (OSTI)

This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

1995-03-01T23:59:59.000Z

289

SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT  

DOE Green Energy (OSTI)

A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

Motyka, T

2008-11-11T23:59:59.000Z

290

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

291

Fuel Cell Handbook, Fifth Edition  

DOE Green Energy (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

292

Fuel cell membrane humidification  

DOE Patents (OSTI)

A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

Wilson, Mahlon S. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

293

Extending the lifetime of fuel cell based hybrid systems  

E-Print Network (OSTI)

Fuel cells are clean power sources that have much higher energy densities and lifetimes compared to batteries. However, fuel cells have limited load following capabilities and cannot be efficiently utilized if used in isolation. In this work, we consider a hybrid system where a fuel cell based hybrid power source is used to provide power to a DVFS processor. The hybrid power source consists of a room temperature fuel cell operating as the primary power source and a Li-ion battery (that has good load following capability) operating as the secondary source. Our goal is to develop polices to extend the lifetime of the fuel cell based hybrid system. First, we develop a charge based optimization framework which minimizes the charge loss of the hybrid system (and not the energy consumption of the DVFS processor). Next, we propose a new algorithm to minimize the charge loss by judiciously scaling the load current. We compare the performance of this algorithm with one that has been optimized for energy, and demonstrate its superiority. Finally, we evaluate the performance of the hybrid system under different system configurations and show how to determine the best combination of fuel cell size and battery capacity for a given embedded application.

Jianli Zhuo; Chaitali Chakrabarti; Naehyuck Chang; Sarma Vrudhula

2006-01-01T23:59:59.000Z

294

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

Farooque, M.; Yuh, C.Y.

1996-12-03T23:59:59.000Z

295

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

1996-01-01T23:59:59.000Z

296

Fuel cell oxygen electrode  

DOE Patents (OSTI)

An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

1980-11-04T23:59:59.000Z

297

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

298

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

299

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

300

Investigation on Operating Characteristics of Individual Cell among Battery Pack.  

E-Print Network (OSTI)

??Due to the discrepancy among series-connected cells in a lead-acid battery pack, the restored capacities may not be the same during the charging/discharging processes. Through (more)

Chen, Wen-Chih

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells  

E-Print Network (OSTI)

Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

Bradwell, David (David Johnathon)

2011-01-01T23:59:59.000Z

302

Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas and oxygen into electricity to power the electric motor; High-Output Battery - Stores energy generated from regenerative braking and provides supplemental power to the electric...

303

Sealed absorbed electrolyte battery with bulge compensating end cells  

Science Conference Proceedings (OSTI)

A sealed absorbed electrolyte battery is described comprising, in combination: a sealed container divided into working cells by internal partition walls; each working cell containing an electrode stack comprising positive and negative plates and substantially porous separators intimately contacting and separating the positive and negative plates; an electrolyte substantially completely absorbed in the plates and separators; the working cells being dimensioned to hold the plates and separators within the working cell in contact with each other; and bulge compensating auxiliary cells for accommodating gas pressure changes within the battery without substantially deforming the working cells.

Oswald, T.L.

1988-03-08T23:59:59.000Z

304

Reformate fuel cell system durability  

DOE Green Energy (OSTI)

The goal of this research is to identify the factors limiting the durability of fuel cells and fuel processors. This includes identifying PEM fuel cell durability issues for operating on pure hydrogen, and those that arise from the fuel processing of liquid hydrocarbons (e.g., gasoline) as a function of fuel composition and impurity content. Benchmark comparisons with the durability of fuel cells operating on pure hydrogen are used to identify limiting factors unique to fuel processing. We describe the design, operation and operational results of the durability system, including the operating conditions for the system, fuel processor sub-section operation over 1000 hours, post-mortem characterization of the catalysts in the fuel processor, and single cell operation.

Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Uribe, F. A. (Francisco A.); Tafoya, J. (Jose I.)

2002-01-01T23:59:59.000Z

305

Fuel cell generator with fuel electrodes that control on-cell fuel reformation  

Science Conference Proceedings (OSTI)

A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

2011-10-25T23:59:59.000Z

306

Ambient pressure fuel cell system  

DOE Patents (OSTI)

An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

Wilson, Mahlon S. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

307

Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Google Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Delicious Rank Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen and Fuel Cell Tax Exemption The following are exempt from state sales tax: 1) any device, equipment, or

308

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

309

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

310

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

311

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

312

Fuel Cell Pre-Solicitation Workshop 1 March 2010 BREAKOUT GROUP 5: LONG TERM INNOVATIVE TECHNOLOGIES  

E-Print Network (OSTI)

· Electrolyzers · Batteries High Temp Electrochemistry · SOFC systems design · High temp FC testing · SOFC FC) ­ Solid oxide fuel cell (SOFC) is best entry pathway > H2 Highways Initiatives (California and Illinois

313

Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...  

NLE Websites -- All DOE Office Websites (Extended Search)

has partnered with Proterra, a Colorado-based bus manufacturer, to bring its first fuel cell bus to the area. The bus design features a battery-dominant plug-in hybrid...

314

Adaptable Inverter for Injection of Fuel Cell and Photovoltaic Power  

E-Print Network (OSTI)

important to apply renewable energies and efficient technologies. For power injection of photovoltaic with different energy sources such as photovoltaic, fuel cell and battery. It is possible to adjust active inverter. These inverters for injection of photovoltaic energy are developed only for this purpose

Kulig, Stefan

315

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

316

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

317

NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team, which analyzes detailed data and reports on fuel cell technology status, progress, and technical challenges. Graphic representing NREL's Hydrogen Secure Data Center and the variety of applications from which it gathers data, including fuel cell (FC) stacks, FC backup power, FC forklifts, FC cars, FC buses, and FC prime power, and hydrogen infrastructure.

318

Quantifying Cell-to-Cell Variations in Lithium Ion Batteries  

DOE Green Energy (OSTI)

Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

Santhanagopalan, S.; White, R. E.

2012-01-01T23:59:59.000Z

319

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Session - Fuel Cell Portable Power Perspectives End User Perspective - Industry Consumer Electronics Power (PDF 1.51 MB) Jerry Hallmark, Motorola Portable Power Sources (above...

320

Fuel Cell Technologies Office: Alkaline Membrane Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory Anion Exchange Membranes for Fuel Cells, Prof. Andrew Herring, Colorado School of Mines Electrocatalysis in Alkaline Electrolytes, Prof. Sanjeev...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Hydrogen and Fuel Cells Research - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

high conductivity) for this application include tin oxide, indium tin oxide, and zinc oxide. Contact: Bryan Pivovar 303-275-3809 Printable Version Hydrogen & Fuel Cells Research...

322

DOE Hydrogen and Fuel Cells Program: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

portable power and auxiliary power applications in a limited fashion where earlier market entry would assist in the development of a fuel cell manufacturing base. This DOE...

323

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Year Research, Development and Demonstration Plan* The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan* describes the goals,...

324

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

with a focus on improving the performance and durability and reducing the cost of fuel cell components and systems. Research efforts involve: Developing advanced catalysts,...

325

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter: August 2013 The August 2013 issue of the Fuel Cell Technologies Office newsletter includes stories in these categories: In the News Funding Opportunities Webinars and...

326

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen and fuel cells. This information is provided in documents such as technical and project reports, conference proceedings and journal articles, technical presentations, and...

327

An advanced fuel cell simulator  

E-Print Network (OSTI)

Fuel cell power generation systems provide a clean alternative to the conventional fossil fuel based systems. Fuel cell systems have a high e?ciency and use easily available hydrocarbons like methane. Moreover, since the by-product is water, they have a very low environmental impact. The fuel cell system consists of several subsystems requiring a lot of e?ort from engineers in diverse areas. Fuel cell simulators can provide a convenient and economic alternative for testing the electrical subsystems such as converters and inverters. This thesis proposes a low-cost and an easy-to-use fuel cell simulator using a programmable DC supply along with a control module written in LabVIEW. This simulator reproduces the electrical characteristics of a 5kW solid oxide fuel cell (SOFC) stack under various operating conditions. The experimental results indicate that the proposed simulator closely matches the voltage-current characteristic of the SOFC system under varying load conditions. E?ects of non-electrical parameters like hydrogen ?ow rate are also modeled and these parameters are taken as dynamic inputs from the user. The simulator is customizable through a graphical user interface and allows the user to model other types of fuel cells with the respective voltage-current data. The simulator provides an inexpensive and accurate representation of a solid oxide fuel cell under steady state and transient conditions and can replace an actual fuel cell during testing of power conditioning equipment.

Acharya, Prabha Ramchandra

2004-08-01T23:59:59.000Z

328

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

329

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

330

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

331

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

332

Improved electrolytes for fuel cells  

DOE Green Energy (OSTI)

Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

Gard, G.L.; Roe, D.K.

1991-06-01T23:59:59.000Z

333

Fuel cell gas management system  

SciTech Connect

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

334

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

335

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, Richard C. (East Hartford, CT)

1986-09-02T23:59:59.000Z

336

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, R.C.

1984-10-17T23:59:59.000Z

337

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office - Education Students learn about solar energy. DOE supports demonstrations and commercialization by providing technically accurate and objective...

338

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

Steven A. Gabrielle

2004-12-03T23:59:59.000Z

339

LADWP FUEL CELL DEMONSTRATION PROJECT  

SciTech Connect

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

340

Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as high as 90% is achievable. This high efficiency operation saves money, saves energy, and reduces greenhouse gas emissions. Regenerative or Reversible Fuel Cells This...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Office: Education  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Offices | Consumer Information Education Search Search Help Education EERE Fuel Cell Technologies Office Education Printable Version Share this resource Send a link...

342

LADWP FUEL CELL DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

343

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

344

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

345

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

346

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

347

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

348

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

349

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

350

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

351

Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell (SOFC) technology, which offers many advantages over traditional energy conversion systems including low emission and high efficiency, has become increasingly attractive to the utility, automotive, and defense industries (as shown in Figure 1). As an all solid-state energy conversion device, the SOFC operates at high temperatures (700-1,000 C) and produces electricity by electrochemically combining the fuel and oxidant gases across an ionically conducting oxide membrane. To build up a useful voltage, a number of cells or PENs (Positive cathode-Electrolyte-Negative anode) are electrically connected in series in a stack through bi-polar plates, also known as interconnects. Shown in Figure 2 (a) is a schematic of the repeat unit for a planar stack, which is expected to be a mechanically robust, high power-density and cost-effective design. In the stack (refer to Figure 2 (b)), the interconnect is simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing (fuels such as hydrogen or natural gas) environment on the anode side for thousands of hours at elevated temperatures (700-1,000 C). Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain sulfide impurities. Also, the interconnect must be stable towards any sealing materials with which it is in contact, under numerous thermal cycles. Furthermore, the interconnect must also be stable towards electrical contact materials that are employed to minimize interfacial contact resistance, and/or the electrode materials. Considering these service environments, the interconnect materials should possess the following properties: (1) Good surface stability (resistance to oxidation and corrosion) in both cathodic (oxidizing) and anodic (reducing) atmospheres. (2) Thermal expansion matching to the ceramic PEN and other adjacent components, all of which typically have a coefficient of thermal expansion (CTE) in the range of 10.5-12.0 x 10{sup -6} K{sup -1}. (3) High electrical conductivity through both the bulk material and in-situ formed oxide scales. (4) Satisfactory bulk and interfacial mechanical/thermomechanical reliability and durability at the SOFC operating temperatures. (5) Good compatibility with other materials in contact with interconnects such as seals and electrical contact materials. Until recently, the leading candidate material for the interconnect was doped lanthanum chromite (LaCrO3), which is a ceramic material which can easily withstand the traditional 1000 C operating temperature. However, the high cost of raw materials and fabrication, difficulties in obtaining high-density chromite parts at reasonable sintering temperatures, and the tendency of the chromite interconnect to partially reduce at the fuel gas/interconnect interface, causing the component to warp and the peripheral seal to break, have plagued the commercialization of planar SOFCs for years. The recent trend in developing lower temperature, more cost-effective cells which utilize anode-supported, several micron-thin electrolytes and/or new electrolytes with improved conductivity make it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2003-06-15T23:59:59.000Z

352

FBIS report. Science and technology. Japan: Latest battery technology development, November 27, 1995  

Science Conference Proceedings (OSTI)

;Table of Contents: Latest Battery Technology Development; Development Status of Solid Oxide Fuel Cells; Diverse Applications of Polymer Electrolyte Fuel Cell; Development Status of On-Board EV Batteries; Development Status of Electric Power Batter System; Development Status of Redox Flow-Type Batteries; Development Status, Future Outlook on Electrolyte Materials; Development Status of Cathode Materials; Development Status of Anode Materials; Development Status, Future Outlook of Lithium Ion Battery Separators; Development Status of Polymer Battery; Characteristics, Future Prospects of Disulfide Battery.

NONE

1995-11-27T23:59:59.000Z

353

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicles Fuel Cell Vehicles August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel...

354

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

355

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

356

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Workshop on Facebook Tweet about Fuel Cell...

357

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Webinar to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Webinar on Facebook Tweet about Fuel Cell...

358

Fuel Cells for Robots  

NLE Websites -- All DOE Office Websites (Extended Search)

For Robots For Robots Fuel Cells For Robots Pavlo Rudakevych iRobot Pavlo Rudakevych iRobot Product Needs Product Needs * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig PackBot PackBot * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight System Concept System Concept System Concept System Concept System Concept Continued System Concept Continued * Modular payload bays - 3 primary - 1 head - 4 side pods * Each payload socket supports - Ethernet

359

Bi-cell electrical storage battery  

Science Conference Proceedings (OSTI)

A battery is described, comprising: a pressure vessel; an internal impermeable membrane within the pressure vessel dividing the pressure vessel into two compartments hermetically sealed against mass flow between the compartments; storage means for storing electrical energy, the storage means including at least one active plate set in each of the compartments of the pressure vessel.

Lim, Hong S.; Bogner, R.S.

1993-07-06T23:59:59.000Z

360

Heated transportable fuel cell cartridges  

DOE Patents (OSTI)

A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bronx Zoo Fuel Cell Project  

DOE Green Energy (OSTI)

A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

Hoang Pham

2007-09-30T23:59:59.000Z

362

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

363

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

Olson, J.B.

1999-02-16T23:59:59.000Z

364

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-02-16T23:59:59.000Z

365

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-12-07T23:59:59.000Z

366

Hydrogen & Fuel Cells - Fuel Cell - Polymer Electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer Electrolyte Fuel Cell Research Polymer Electrolyte Fuel Cell Research Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. One of the main barriers to the commercialization of polymer electrolyte fuel cell (PEFC) systems, especially for automotive use, is the high cost of the platinum electrocatalysts. Aside from the cost of the precious metal, concern has also been raised over the adequacy of the world supply of platinum, if fuel cell vehicles were to make a significant penetration into the global automotive fleet. At Argonne, chemists are working toward the development of low-cost nonplatinum electrocatalysts for the oxygen reduction reaction--durable materials that would be stable in the fuel

367

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network (OSTI)

to demonstrate: World's first tri-generation station World's first fuel cell forklifts World's first fuel cell

368

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

369

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

370

NETL: Fuel Cells/SECA News - Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells/Solid State Energy Conversion Alliance (SECA) Fuel Cells/Solid State Energy Conversion Alliance (SECA) News Archive SECA Workshop Proceedings, Peer Reviews, and Annual Reports 2013 Archive 2012 Archive 2011 Archive Previous Highlights FuelCell Energy's Stack Boosts Power and Minimizes Degradation FuelCell Energy has developed a new solid oxide fuel cell stack design that boosts the overall power output of the fuel cell stack by nearly 50%. FuelCell Energy also achieved a voltage degradation rate of 1.3% per 1000 hours after testing the fuel cells for 26,000 hours of operation. This breakthrough by FuelCell Energy of greater power from the fuel cell stack while minimizing fuel cell degradation pushes it further towards meeting SECA's goal of a market ready, affordable solid oxide fuel cell ready by the year 2010. (5/05)

371

Fuel Cell Technologies Office: International Partnership for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership for Hydrogen and Fuel Cells in the Economy to someone by E-mail Share Fuel Cell Technologies Office: International Partnership for Hydrogen and Fuel Cells in the...

372

Fuel Cell Today | Open Energy Information  

Open Energy Info (EERE)

Today Jump to: navigation, search Name Fuel Cell Today Place London, United Kingdom Zip EC1N 8EE Product Fuel Cell Today is a online information service for the global fuel cell...

373

Fuel Cell Technologies Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Fuel Cell Technologies Office: NewsDetail on Google Bookmark Fuel Cell Technologies Office: NewsDetail on Delicious Rank Fuel Cell...

374

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and Technology of Ceramic Fuel Cells, p. 209, Elsevier, NewI. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

375

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network (OSTI)

LemonsR. A. ( 1990) Fuel Cells for Transportation. Jour- DC,M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinsolid tember. oxide fuel cell development. Journal of

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

376

Characterization of Fuel-Cell Diffusion Media  

E-Print Network (OSTI)

electrolyte membrane fuel cells, 2009. C. Lim and C. Y.directly into full fuel-cell simulations to predictFCgen1020ACS, www.ballard.com/fuel-cell-products, Accessed

Gunterman, Haluna Penelope Frances

2011-01-01T23:59:59.000Z

377

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Markets Ltd Place Buckinghamshire, United Kingdom Zip SL0 9AQ Sector Hydro, Hydrogen Product Fuel Cell Markets was set up to assist companies in the fuel cell and...

378

Economic and Environmental Analysis of Fuel Cell Powered Materials Handling Equipment  

Science Conference Proceedings (OSTI)

This technical update describes an analysis of the economic and environmental attributes of forklift fleets powered by battery and fuel cell power plants. The report first provides background on the fuel cell forklift technology. The fuel cell forklift is then compared to three other technology options: conventional battery-powered forklifts, fast-charge forklifts at 15 kW of charging power, and fast-charge forklifts at 20 kW of charging power. This study develops models of the infrastructure and equipme...

2010-12-31T23:59:59.000Z

379

fuel cells | OpenEI  

Open Energy Info (EERE)

cells cells Dataset Summary Description Developed for the U.S. Department of Energy's Office of Fuel Cell Technologies by Argonne National Laboratory and RCF Economic and Financial Consulting, Inc., JOBS and economic impacts of Fuel Cells (JOBS FC) is a spreadsheet model that estimates economic impacts from the manufacture and use of select types of fuel cells. Source Argonne Date Released Unknown Date Updated Unknown Keywords fuel cells Job Creation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon File without Macros. Full version at official link. (xlsx, 2.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment From Argonne National Lab

380

Corrugated Membrane Fuel Cell Structures  

DOE Green Energy (OSTI)

By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

382

Navy fuel cell demonstration project.  

DOE Green Energy (OSTI)

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

Black, Billy D.; Akhil, Abbas Ali

2008-08-01T23:59:59.000Z

383

Fuel cell with internal flow control  

SciTech Connect

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

384

Hydrocarbon Reformers for Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Several new or emerging technologies are vying to compete in the distributed resources market; notably, fuel cells and microturbines. Fuel cells represent an idealized power generation technology with tremendous long-term promise. As a hydrogen-fueled system, however, fuel cells need either a hydrogen fuel supply infrastructure or fuel processing (reforming and clean-up) technology to convert conventional fossil fuels to a hydrogen-rich energy source. This report provides an overview of fuel processing t...

2000-11-30T23:59:59.000Z

385

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

386

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

387

DOE Hydrogen and Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

388

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

supporting the role that fuel cells play in our nation's energy portfolio. Through its market transformation efforts, the Fuel Cell Technologies Office seeks to accelerate the...

389

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration to someone by E-mail Share Fuel Cell Technologies Office: Systems Integration on Facebook Tweet about Fuel Cell Technologies Office: Systems Integration on...

390

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

391

Fuel Cell Technologies Office: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

392

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

393

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

394

Fuel Cell Technologies Office: Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

395

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

396

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Market Analysis Reports Reports about fuel cell and hydrogen technology market analysis...

397

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

398

Joint Fuel Cell Bus Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment is heavy and costly * Slow response time of the fuel cell adversely affects regenerative energy recovery potential and efficiency Barriers to full fuel cell bus...

399

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

400

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations The Fuel Cell Technologies Office staff members give presentations about fuel cells and hydrogen at a variety of conferences. Some of their presentations are below....

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: Durability Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Durability Working Group to someone by E-mail Share Fuel Cell Technologies Office:...

402

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

used. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Fuel Cell Hybrid Electric Medium Duty Trucks, Roof-top Backup Power, and Advanced Hydrogen...

403

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

404

Fuel Cell Technologies Office: Educational Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

405

EERE: Fuel Cell Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

406

EERE: Fuel Cell Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Webmaster to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

407

EERE: Fuel Cell Technologies Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Contacts to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

408

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

409

Fuel Cell Technologies Office: Hydrogen Sensor Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

CSA Standards DOE Fuel Cell Technologies Office Element One, Inc. EmersonTherm-O-Disc FM Global Fuel Cell & Hydrogen Energy Association H2scan Honeywell Analytics Intelligent...

410

Fuel Cell Power Electronics Status & Challenges Tejinder ...  

Science Conference Proceedings (OSTI)

... Fuel cell powered critical refrigeration loads, preventing ... Ref. CL&P Connecticut Outage Map for October 2011 Fuel Cells: Power Through the Storm ...

2012-07-27T23:59:59.000Z

411

Hydrogen & Fuel Cells Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Hydrogen & Fuel Cells Blog Bioenergy Buildings Geothermal Government Energy Management Homes Hydrogen & Fuel Cells Manufacturing Solar Vehicles Water Wind Blog Archive Recent...

412

Fuel Cell Store Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Fuel Cell Store, Inc Place San Diego, California Zip 92154 Sector Hydro, Hydrogen Product San Diego-based firm selling fuel cell stacks, components, and hydrogen...

413

Technology Validation: Fuel Cell Bus Evaluations (Poster)  

DOE Green Energy (OSTI)

Poster discusses hydrogen fuel cell transit bus evaluations conducted for the Hydrogen, Fuel Cells, & Infrastructure Technologies Program (HFCIT). It was presented at the 2006 HFCIT Program Review.

Eudy, L.

2006-05-01T23:59:59.000Z

414

Fuel Cell Technologies Office: IPHE Infrastructure Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

IPHE Infrastructure Workshop to someone by E-mail Share Fuel Cell Technologies Office: IPHE Infrastructure Workshop on Facebook Tweet about Fuel Cell Technologies Office: IPHE...

415

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

416

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

417

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the DOE Hydrogen Program (PDF 1.1 MB), JoAnn Milliken, DOE Hydrogen Program Manager SOFC Technology R&D Needs (PDF 1.7 MB), Steven Shaffer, Delphi Chief Engineer, Fuel Cell...

418

Fuel Cell Technologies Office: Fuel Cells Today: Early Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Here (music) Hydrogen and fuel cell technologies are beginning to enter the market and learning demonstrations are spreading to various parts of the country. As you begin to see...

419

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020....

420

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

422

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

423

Fuel Cells using Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Fuel Cells using Renewable Fuels Jump to: navigation, search TODO: Add description List of...

424

Overview of Hydrogen Fuel Cell Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Budget Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D - Technology-neutral fuel cell systems R&D for diverse applications * Hydrogen Fuel R&D - Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities

425

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Research Center, 2012 1/22 National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy density of H 2 is much greater than batteries * Rapid fueling, long range ZEV * H 2 must be produced * energy intensive, may have emissions, fossil fuels, economies of scale * Low volumetric energy density of H 2 compared to current infrastructure fuels (@ STP)

426

Double interconnection fuel cell array  

DOE Patents (OSTI)

A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

Draper, Robert (Churchill Boro, PA); Zymboly, Gregory E. (Murrysville, PA)

1993-01-01T23:59:59.000Z

427

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Natural Gas Fueled 3 kWe SOFC Generator Test Results,"a design for a monolithic SOFC stack with an energy density

Delucchi, Mark

1992-01-01T23:59:59.000Z

428

Fuel Cell Systems for Portable, Backup, and UPS Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Federal Agency Purchasing Managers Federal Agency Purchasing Managers Fuel Cell Systems for Portable, Backup and UPS Fuel Cell Systems for Portable, Backup and UPS Applications Applications Eric Simpkins, USFCC President Eric Simpkins, USFCC President Vice President, IdaTech, LLC Vice President, IdaTech, LLC Washington, DC Washington, DC April 26, 2007 April 26, 2007 Definitions Introduction What's Available & How Used Typical Operation & Maintenance Time: Order to Site Installation Pricing Summary 1 i l Megawatts l backup, cogeneration, trigeneration Material handling et. al. Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality appl cations Portable, Backup, APU * 100 Watts to 15 Kilowatts * Battery rep

429

Alternative Fuels Vehicle Group | Open Energy Information  

Open Energy Info (EERE)

Product Focussed on news and information on natural gas, biofuel, battery-electric, hybrid and fuel cell vehicles. References Alternative Fuels Vehicle Group1 LinkedIn...

430

Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: How They Fuel Cells: How They Work and How They're Used (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cells:

431

Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorWeek Fuel Cell MotorWeek Fuel Cell Video (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Google Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Delicious Rank Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

432

Fuel Cell and Hydrogen Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell and Hydrogen Energy Association Fuel Cell and Hydrogen Energy Association Alternative Fuels Quadrennial Review Workshop e-mail from FCHEA Fuel Cell and Hydrogen Energy...

433

Fuel Cell Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

434

PEM/SPE fuel cell  

DOE Patents (OSTI)

A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

Grot, S.A.

1998-01-13T23:59:59.000Z

435

Fuel-Cell Technology Overview  

Science Conference Proceedings (OSTI)

...Fuel cell Approximate operating temperature °C °F Polymer electrolyte (PEFC) 80 175 Alkaline (AFC) 100 212 Phosphoric acid (PAFC) 200 390 Molten carbonate (MCFC) 650 1200 Solid oxide (SOFC) 600??1000 1110??1830...

436

Just the Basics - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

and portable power applications. As of 2009, more than 200 buses and several hundred cars powered by fuel cells are navigating cities around the world, and more than 100...

437

Polybenzimidazole: Phosphoric Acid Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Polybenzimidazole: Phosphoric Acid Fuel Cells Speaker(s): Dave Sopchak Date: May 1, 2013 - 3:00pm - 4:00pm Location: 90-3122 Seminar HostPoint of Contact: Max Wei The PBI...

438

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

Mike Walneuski

2004-09-16T23:59:59.000Z

439

Fuel Cell Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage degradation, as reported in K. Wipke et al., National Fuel Cell Electric Vehicle Learning Demonstration Final Report, NRELTP -5600-54860, July 2012, http:www.nrel.gov...

440

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

cepgi.typepad.comfilescepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents...

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PEM/SPE fuel cell  

DOE Patents (OSTI)

A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

Grot, Stephen Andreas (Henrietta, NY)

1998-01-01T23:59:59.000Z

442

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE 2010 Waste To Energy Example Los Alamitos Joint Forces Training Base (JFTB) Urban Compost 25 tonday Gasifier & Cleanup Los Alamitos JFTB Fuel Cells 1,600 kW Resource...

443

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

444

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

445

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

446

Fuel Station of the Future- Innovative Approach to Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same...

447

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Market Readiness Workshop DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program February 16, 2011 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently: ~9 million metric tons of H 2 produced annually > 1200 miles of H 2 pipelines Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts. The largest markets for fuel cells today are in

448

Characterization of Fuel Cell Vehicle Duty Cycle Elements  

DOE Green Energy (OSTI)

This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.

MAISH, ALEXANDER B.; NILAN, ERIC J.; BACA, PAUL M.

2002-12-01T23:59:59.000Z

449

Stationary Fuel Cell Evaluation (Presentation)  

DOE Green Energy (OSTI)

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

450

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

1997-01-01T23:59:59.000Z

451

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

452

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

453

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

454

Lead-acid battery cells and manufacturing process thereof  

Science Conference Proceedings (OSTI)

A lead-acid battery cell wherein each cell includes a compressed assembly of negative plates separators and positive plates. The positive plates are sandwiched between two microporous separator elements having dimensions greater than that of the plates and the plate edges are coated with an epoxy resin ribbon, which is provided by pouring resin into the channel between the projecting portions of the separators.

Robert, J.; Alzieu, J.

1984-10-09T23:59:59.000Z

455

Fuel Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer Group techtransfer@netl.doe.gov November 2012 Opportunity Research on the patented technology "Fuel Cell-Fuel Cell...

456

Your Holidays ... Brought to You by Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Holidays ... Brought to You by Fuel Cells Holidays ... Brought to You by Fuel Cells Your Holidays ... Brought to You by Fuel Cells December 19, 2013 - 11:44am Addthis Fuel cells, which work like batteries but don’t run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. This is helping them become more mainstream in the U.S., with more than 4,000 vehicles in operation in 2012, and this year, they might even be helping bring you holidays to you. | Photo courtesy of Plug Power, Inc. Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time

457

Assessment of Direct Carbon Fuel Cells  

Science Conference Proceedings (OSTI)

Fuel cells have been under development for stationary power applications because of their high fuel efficiency and low emission characteristics. Research and development of direct carbon fuel cells (DCFC) that can use carbon as a fuel have been identified as an emerging option that needs further assessment and test validation. This project is one of several EPRI fuel cell projects that is investigating the technical and performance characteristics of fuel cells and their potential to impact electric util...

2005-02-16T23:59:59.000Z

458

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

electricity and hot water from a 400 kW fuel cell. Gills Onions' processing facility captures waste biogas2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff

459

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2012 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2012 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2012 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2012 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

460

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

Note: This page contains sample records for the topic "batteries fuel cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

462

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Webinar Archives 2011 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2011 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2011 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2011 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2011 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

463

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

464

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Financial Opportunities to someone by E-mail Share Fuel Cell Technologies Office: Past Financial Opportunities on Facebook Tweet about Fuel Cell Technologies Office: Past Financial Opportunities on Twitter Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Google Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Delicious Rank Fuel Cell Technologies Office: Past Financial Opportunities on Digg Find More places to share Fuel Cell Technologies Office: Past Financial Opportunities on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities

465

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

466

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2012 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2012: DOE Updates JOBS and economic impacts of Fuel Cells (JOBS FC 1.1) Model Hydrogen and Fuel Cell Manufacturing R&D Opportunities Fuel Cell Mobile Lighting California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems Material Characterization of Storage Vessels for Fuel Cell Forklifts Fuel Cells for Portable Power BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

467

Overdischarge protection in high-temperature cells and batteries  

DOE Patents (OSTI)

Overdischarge indication and protection is provided in a lithium alloy - metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li.sub.0.1 Al.sub.0.9 and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged.

Redey, Laszlo (Downers Grove, IL)

1990-01-01T23:59:59.000Z

468

1990 fuel cell seminar: Program and abstracts  

DOE Green Energy (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

469

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

470

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

471

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

Chandler, K.; Eudy, L.

2010-01-01T23:59:59.000Z

472

Low contaminant formic acid fuel for direct liquid fuel cell  

Science Conference Proceedings (OSTI)

A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

2009-11-17T23:59:59.000Z

473

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

about $0.50/gJ to the price of biomass-derived hydrogen (biomass (Larson and Katofsky, 1992). The fuel retati pricebiomass instead of from solar power, the production cost would be much lower (Table 5), and the breakeven gasoline price

Delucchi, Mark

1992-01-01T23:59:59.000Z

474

Direct Carbon Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

475

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fuel Cell Technologies Office is a comprehensive portfolio of activities that address the full range of barriers facing the development and deployment of hydrogen and fuel...

476

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for