Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of control system for automatic mechanical transmission of battery electric bus  

Science Conference Proceedings (OSTI)

Due to the advantages of high efficiency, zero emission and good drivability, the battery electric vehicles (BEVs) promise to be one of the best choices to replace the oil fueled vehicle. In this paper a solution for the development of a control system ... Keywords: AMT, battery electric vehicle, control system, layered architecture, modular design

Hong-bo Liu; Yu-long Lei; Yu Zhang; Xiao-lin Zhang; You-de Li

2011-09-01T23:59:59.000Z

2

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

3

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

4

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Ford Electric Battery Group Jump to: navigation, search Name Ford Electric Battery Group Place Dearborn, MI Information About Partnership with NREL Partnership with NREL Yes...

5

Designing electricity transmission auctions  

E-Print Network (OSTI)

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

6

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

7

Electric Transmission Lines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

8

FOR ELECTRIC POWER TRANSMISSION  

E-Print Network (OSTI)

A contract network extends the concept of a contract path to address the problem of loop flow and congestion in electric power transmission systems. A contract network option provides a well defined, internally consistent framework for assigning long-term capacity rights to a complicated electric transmission network. The contract network respects the special conditions induced by Kirchoff's Laws; accommodates thermal, voltage and contingency constraints on transmission capacity; and can be adopted without disturbing existing methods for achieving an economic power dispatch subject to these constraints. By design, a contract network would maintain short-run efficiency through optimal spot price determination of transmission prices. Through payment of congestion rentals, the contract network makes a long-term capacityright holder indifferent between delivery of the power or receipt of payments in a settlement system. And the contract network framework can support allocation of transmission capacity rights through a competitive bidding process. CONTRACT NETWORKS

William W. Hogan; William W. Hogan

1990-01-01T23:59:59.000Z

9

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

10

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

11

Regulations for Electric Transmission and Fuel Gas Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long...

12

Electric Transmission System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauren Azar Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System Workshop We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Visions for the Future Artist: Paolo Frattesi Artist: Paolo Frattesi Uncertainty = changing industry Changes in technology, threats and policies Can we make decisions in the face of change? .......How can we not? Can we agree on several key design attributes for the future grid? Taking Action in the Face of Uncertainty Step 1: Establish common ground on key design attributes GTT's Proposed Key Design Attributes:

13

Recombinant electric storage battery  

SciTech Connect

This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

Flicker, R.P.; Fenstermacher, S.

1989-10-10T23:59:59.000Z

14

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

15

Electricity Transmission and Distribution Technologies ...  

Electricity Transmission and Distribution Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research ...

16

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

17

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

18

Electricity Transmission, A Primer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system,...

19

Electric Transmission Line Siting Compact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission Line Siting Compact Electric Transmission Line Siting Compact 1 ______________________________________________________________________________ 2 ARTICLE I 3 PURPOSE 4 5 Siting electric transmission lines across state borders and federal lands is an issue for states, the 6 federal government, transmission utilities, consumers, environmentalists, and other stakeholders. 7 The current, multi-year application review process by separate and equal jurisdictions constitutes 8 a sometimes inefficient and redundant process for transmission companies and complicates the 9 efforts of state and federal policy-makers and other stakeholders to develop more robust 10 economic opportunities, increase grid reliability and security, and ensure the consumers have the 11 lowest cost electricity possible. 12

20

DOE Affirms National Interest Electric Transmission Corridor...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest...

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

22

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

23

Electricity Transmission, A Primer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the electric power system, 2) gives electricity customers flexibility to diversify the mix of fuels that produces their electricity by giving them access to power plants, 3)...

24

An Economic Analysis of Used Electric Vehicle Batteries Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Used Electric Vehicle Batteries Integrated into Commercial Building Microgrids Title An Economic Analysis of Used Electric Vehicle Batteries Integrated into...

25

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

26

U.S.-China Electric Vehicle and Battery Technology Workshop ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home U.S.-China Electric Vehicle and Battery Technology Workshop U.S.-China Electric Vehicle and Battery Technology Workshop...

27

Electrical transmission line diametrical retainer  

DOE Patents (OSTI)

The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2004-12-14T23:59:59.000Z

28

National Electric Transmission Congestion Studies  

Energy.gov (U.S. Department of Energy (DOE))

Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission...

29

DOE Affirms National Interest Electric Transmission Corridor...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations March 6, 2008 - 11:54am Addthis...

30

Electric generating or transmission facility: determination of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination...

31

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

32

Energy and Materials Issues That Affect Electric Vehicle Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

leaching processes on the spent battery (without smelting). Argonne has published several papers on Ni-MH batteries. Energy and Materials Issues That Affect Electric Vehicle...

33

Design of Electric Drive Vehicle Batteries for Long Life and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation...

34

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

35

Thermal control of electric vehicle batteries  

DOE Green Energy (OSTI)

The need to operate electric vehicles in warm, summer conditions and also provide for long periods of standby in cold climates is a challenging problem for any battery system. All advanced batteries of high specific energy require active cooling systems because adiabatic heating will raise the temperature to a level that is deleterious to cycle life. This cooling requires efficient paths for escape of heat to cooled surfaces; cooling the exterior of modules is insufficient. If a battery is heated by its own energy, and insulated to withstand exposure to a cold climate, only vacuum insulation will afford an appreciable reduction (>10{degrees}C) in the ambient temperature that can be tolerated. Standard insulations are of little use for this purpose because the heat loss rate causes too high a drain on the battery energy even for near-ambient temperature batteries.

Nelson, P.A.; Battaglia, V.S.; Henriksen, G.L.

1995-07-01T23:59:59.000Z

36

Learning policies for battery usage optimization in electric vehicles  

Science Conference Proceedings (OSTI)

The high cost, limited capacity, and long recharge time of batteries pose a number of obstacles for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery with supercapacitors are currently one of the most ...

Stefano Ermon; Yexiang Xue; Carla Gomes; Bart Selman

2012-09-01T23:59:59.000Z

37

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

39

DOE National Interest Electric Transmission Corridors Conference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Interest Electric Transmission Corridors Conference March 29, 2006 Hilton Garden Hotel Chicago, IL William H. Whitehead General Manager, Transmission Strategy PJM...

40

Casablanca Carlos American Electric Power Transmission Owner  

E-Print Network (OSTI)

(Facilitator) Chantal PJM Interconnection Not Applicable Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner

Pjm Interconnection Llc; Teleconference Webex Participants; Firstenergy Solutions; Corp Transmission Owner; Boltz Jeff; Firstenergy Solutions; Corp Transmission Owner; Fecho Thomas; Indiana Michigan; Power Company; Transmission Owner; Patten Kevin; Company Transmission Owner

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Michigan Electric Transmission Company | Open Energy Information  

Open Energy Info (EERE)

Transmission Company Jump to: navigation, search Name Michigan Electric Transmission Company Place Michigan Utility Id 56163 Utility Location Yes Ownership T NERC RFC Yes ISO MISO...

42

Electric Power Generation and Transmission (Iowa) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generation and Transmission (Iowa) Electric Power Generation and Transmission (Iowa) < Back Eligibility Agricultural Industrial Investor-Owned Utility MunicipalPublic...

43

Economic assessment of the utilization of lead-acid batteries in electric utility systems. Final report  

DOE Green Energy (OSTI)

Specific applications in which lead--acid batteries might be economically competitive on an electric utility system are identified. Particular attention is given to searching the Public Service Electric and Gas Company (PSE and G) system for installations of batteries which could defer or cancel costly transmission and/or distribution projects. Although the transmission and distribution data are based on specific applications on the PSE and G system, the generation data are based on a national reference system. The report analyzes and summarizes all costs and savings attributable to lead--acid batteries. 40 figures, 78 tables. (RWR)

Johnson, A.C.; Hynds, J.A.; Nevius, D.R.; Nunan, G.A.; Sweetman, N.

1977-04-01T23:59:59.000Z

44

Transmission Electron Microscopy Studies on Lithium Battery ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Energy Nanomaterials. Presentation Title, Transmission Electron Microscopy ...

45

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

46

Bi-cell electrical storage battery  

Science Conference Proceedings (OSTI)

A battery is described, comprising: a pressure vessel; an internal impermeable membrane within the pressure vessel dividing the pressure vessel into two compartments hermetically sealed against mass flow between the compartments; storage means for storing electrical energy, the storage means including at least one active plate set in each of the compartments of the pressure vessel.

Lim, Hong S.; Bogner, R.S.

1993-07-06T23:59:59.000Z

47

Optimal charging scheduling for battery electric vehicles under smart grid.  

E-Print Network (OSTI)

??M.S. A projected high penetration of battery electric vehicles (BEV s) in the market will introduce an additional load in the electricity grid. Furthermore, uncontrolled… (more)

Abd Rahman, Nur Dayana

2011-01-01T23:59:59.000Z

48

Management of electric vehicle battery charging in distribution networks.  

E-Print Network (OSTI)

??This thesis investigated the management of electric vehicle battery charging in distribution networks. Different electric vehicle fleet sizes and network locations were considered. The energy… (more)

Grau, Ińaki

2012-01-01T23:59:59.000Z

49

Modular Electromechanical Batteries forStorage of Electrical ...  

Modular Electromechanical Batteries forStorage of Electrical Energy for Land-Based Electric Vehicles. ... A preliminary budgetary cost of $10M for the ...

50

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

51

EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative, Lancaster, OH EA-1722: Toxco, Inc. Electric...

52

Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes  

E-Print Network (OSTI)

Wireless networks with energy harvesting battery powered nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for. In particular, unlike wireless networks considered up to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies. In this work, we consider such transmission policies for rechargeable nodes, and identify the optimum solution for two related problems. Specifically, the transmission policy that maximizes the short term throughput, i.e., the amount of data transmitted in a finite time horizon is found. In addition, we show the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data, and solve that as well. The tra...

Tutuncuoglu, Kaya

2010-01-01T23:59:59.000Z

53

DOE Electricity Transmission System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION SYSTEM WORKSHOP TRANSMISSION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years DoubleTree Crystal City, 300 Army Navy Drive, Arlington, VA November 1-2, 2012 AGENDA Thursday, November 1, 2012 8:00-8:10 Welcome and Kickoff David Sandalow, Acting Undersecretary of Energy 8:10-8:30 Introduction to the Grid Tech Team (GTT), Vision, and Framework Distribution Workshop Summary Dr. Anjan Bose, Grid Tech Team Lead 8:30-8:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 8:50-9:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE)

54

PP-76 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 The Vermont Electric Transmission Company PP-76 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to construct,...

55

PP-76-1 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76-1 The Vermont Electric Transmission Company PP-76-1 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to...

56

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

57

Online Algorithm for Battery Utilization in Electric Computer Science Department  

E-Print Network (OSTI)

Online Algorithm for Battery Utilization in Electric Vehicles Ron Adany Computer Science Department the problem of utilizing the pack of batteries serving current demands in Electric Vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. Due to its internal

Tamir, Tami

58

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

59

Recycling of Advanced Batteries for Electric Vehicles  

DOE Green Energy (OSTI)

The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

JUNGST,RUDOLPH G.

1999-10-06T23:59:59.000Z

60

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lessons Learned: Battery-Electric Transit-Bus Opportunity Charging  

Science Conference Proceedings (OSTI)

This document details the results of a study of battery-electric bus opportunity charging. This document is an interim report pending conclusion of further experiments with at least one other rapid-charging system and battery type.

1999-12-10T23:59:59.000Z

62

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

63

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

64

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

65

2009 National Electric Transmission Congestion Study - Hartford...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hartford Workshop 2009 National Electric Transmission Congestion Study - Hartford Workshop On July 9, 2008, DOE hosted a regional pre-study workshop in Hartford, CT to receive...

66

2012 National Electric Transmission Congestion Study - Philadelphia...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Workshop 2012 National Electric Transmission Congestion Study - Philadelphia Workshop On December 6, 2011, DOE hosted a regional pre-study workshop in Philadelphia, PA...

67

2009 National Electric Transmission Congestion Study - Oklahoma...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oklahoma City Workshop 2009 National Electric Transmission Congestion Study - Oklahoma City Workshop On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City,...

68

Coordination of Federal Authorizations for Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Facilities-Interim Final Rule and Proposed Rule The utility operating companies of the American Electric Power System1 ("AEP") commend the Department of Energy...

69

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK  

E-Print Network (OSTI)

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK Geoff Walker Dept of Computer Science vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker

Walker, Geoff

70

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

71

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower… (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

72

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

73

Comments of New England Electric Transmission Corporation on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation and...

74

Comparison of advanced battery technologies for electric vehicles  

DOE Green Energy (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

75

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge - discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

76

Comments of New England Electric Transmission Corporation on Proposed Open  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Electric Transmission Corporation on New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities Comments of New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities Motion to intervene out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation and New England Power Company. Comments of New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities FE Docket No 99-1 (PP-76/EA-76) More Documents & Publications Ontario Power Generation Motion to Intervene & Comments in FE Docket No.

77

Coordination of Federal Authorizations for Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordination of Federal Authorizations for Electric Transmission Coordination of Federal Authorizations for Electric Transmission Facilities-Interim Final Rule and Proposed Rule Coordination of Federal Authorizations for Electric Transmission Facilities-Interim Final Rule and Proposed Rule The utility operating companies of the American Electric Power System1 ("AEP") commend the Department of Energy ("DOE") for its ongoing commitment to implement the provisions of the Energy Policy Act of 2005 ("EPAct"), specifically, as addressed here, the DOE's continuing effort to establish procedures under which entities may request that DOE coordinate Federal authorizations for the siting of interstate transmission facilities. Coordination of Federal Authorizations for Electric Transmission Facilities-Interim Final Rule and Proposed Rule

78

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of synaptic transmission: chemical and electrical. In chemical synapses, presynaptic electrical currents

Rash, John E.

79

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

80

Battery modeling for electric vehicle applications using neural networks  

SciTech Connect

Neural networking is a new approach to modeling batteries for electric vehicle applications. This modeling technique is much less complex then a first principles model but can consider more parameters then classic empirical modeling. Test data indicates that individual cell size and geometry and operating conditions affect a battery performance (energy density, power density and life). Given sufficient battery data, system parameters and operating conditions a neural network model could be used to interpolate and perhaps even extrapolate battery performance under wide variety of operating conditions. As a result the method could be a valuable design tool for electric vehicle battery design and application. This paper describes the on going modeling method at Texas A and M University and presents preliminary results of a tubular lead acid battery model. The ultimate goal of this modeling effort is to develop the values necessary to be able to predict performance for batteries as wide ranging as sodium sulfur to zinc bromine.

Swan, D.H.; Arikara, M.P.; Patton, A.D.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Electricity Transmission System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(including regional diversity, AC-DC transmission and distribution solutions, microgrids, energy storage, and centralized-decentralized control) * Accommodates two-way flows...

82

Zinc air battery development for electric vehicles  

DOE Green Energy (OSTI)

This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this soluble'' zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

Putt, R.A.; Merry, G.W. (MATSI, Inc., Atlanta, GA (United States))

1991-07-01T23:59:59.000Z

83

Progress and forecast in electric-vehicle batteries  

SciTech Connect

With impetus provided by US Public Law 94-413 (Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976), the Department of Energy (DOE) launched a major battery development program early in 1978 for near-term electric vehicles. The program's overall objective is to develop commercially viable batteries for commuter vehicles (with an urban driving range of 100 miles) and for vans and trucks (with a range of 50 miles) by the mid-1980's. Three near-term battery candidates are receiving major developmental emphasis - improved lead-acid, nickel/iron and nickel/zinc systems. Sharing the cost with the government, nine industrial firms (battery developers) are participating in the DOE battery project. They are Eltra Corp., Exide Management and Technology Co., and Globe-Union Inc., for the lead-acid battery; Eagle-Picher Industries, Inc., and Westinghouse Electric Corp. for the nickel/iron battery; and Energy Research Corp., Exide Management and Technology Co., and Gould Inc., for the nickel/zinc battery. Good progress has been made in improving the specific energy, specific power, and manufacturing processes of these three battery technologies. Current emphasis is directed toward reduction of manufacturing cost and enhancement of battery cycle life and reliability. Recently, the zinc-chloride battery was added as the fourth candidate to the near-term battery list. Testing of the zinc-chloride battery in a vehicle and evaluation of its operating characteristics are currently under way. This paper presents the development goals, the status, and the outlook for the near-term battery program.

Webster, W.H. Jr.; Yao, N.P.

1980-01-01T23:59:59.000Z

84

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

85

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reality Check: Cheaper Batteries are GOOD for America's Electric Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers September 16, 2011 - 11:05am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Today's New York Times includes a story about loans the Department of Energy has issued for electric vehicle manufacturing. The story says that the price of advanced batteries for electric vehicles is rapidly declining. That's true. And it's also very good news, since it makes America more competitive. The story goes on to say that this price decline could hurt the electric vehicle manufacturers that the Department has extended loans to. That is not true. In fact, it's just the opposite. Think about it - cheaper

86

Electric Companies and Electric Transmission Lines (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Companies and Electric Transmission Lines (North Dakota) Electric Companies and Electric Transmission Lines (North Dakota) Electric Companies and Electric Transmission Lines (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis The Public Service Commission has the authority to regulate the

87

Electric Transmission Lines (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska) Nebraska) Electric Transmission Lines (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Public Service Commission The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway

88

Electrical Effects of HVDC Transmission Lines  

Science Conference Proceedings (OSTI)

High-voltage direct current (HVDC) transmission lines are used to transmit large amounts of power over long distances. The Electric Power Research Institute (EPRI) and others have produced many publications over approximately the past three decades, expounding on this topic. Several HVDC transmission lines have been built and have been in operation around the world over that period, and recently, there has been increased interest in the advantages that HVDC transmission affords. HVDC lines, like high-vol...

2010-12-23T23:59:59.000Z

89

An empirical evaluation of battery power consumption for streaming data transmission to mobile devices  

Science Conference Proceedings (OSTI)

Internet streaming applications are becoming increasingly popular on mobile devices. However, receiving streaming services on mobile devices is often constrained by their limited battery power supply. Various techniques have been proposed to save battery ... Keywords: battery power consumption, data transmission, internet mobile streaming, power saving

Yao Liu; Lei Guo; Fei Li; Songqing Chen

2011-11-01T23:59:59.000Z

90

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

91

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

92

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

93

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

94

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

95

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

96

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

97

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

98

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

99

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

100

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

102

2009 National Electric Transmission Congestion Study - Atlanta Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 National Electric Transmission Congestion Study - Atlanta 2009 National Electric Transmission Congestion Study - Atlanta Workshop 2009 National Electric Transmission Congestion Study - Atlanta Workshop On July 29, 2008, DOE hosted a regional pre-study workshop in Atlanta, GA to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda and full transcript are available below. 7-29-08 Congestion Workshop Agenda - Atlanta, GA.pdf Transcript - 2009 National Electric Transmission Congestion Study Atlanta Workshop.pdf More Documents & Publications 2009 National Electric Transmission Congestion Study - San Francisco Workshop 2012 National Electric Transmission Congestion Study - St. Louis Workshop 2009 National Electric Transmission Congestion Study - Las Vegas Workshop

103

DOE Issues Two Draft National Interest Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Two Draft National Interest Electric Transmission Corridor Designations DOE Issues Two Draft National Interest Electric Transmission Corridor Designations U.S....

104

National Electric Transmission Congestion Study 2006 Area Maps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission National Electric Transmission Congestion Study Congestion Study Congestion Area Maps Congestion Area Maps U.S. Department of Energy U.S. Department of Energy...

105

Electricity Transmission Congestion Costs: A Review of Recent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission Congestion Costs: A Review of Recent Reports Electricity Transmission Congestion Costs: A Review of Recent Reports This study reviews reports of congestion...

106

2006 National Electric Transmission Congestion Study and Related...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Related Materials 2006 National Electric Transmission Congestion Study and Related Materials The 2006 National Congestion Electric Transmission Study, required by section...

107

Electric Power Transmission and Distribution (EPTD) Smart Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back...

108

DOE EAC Electricity Adequacy Report. CHAPTER 4: Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHAPTER 4: Transmission Adequacy. October 17, 2008 DRAFT DOE EAC Electricity Adequacy Report. CHAPTER 4: Transmission Adequacy. October 17, 2008 DRAFT A robust interstate electric...

109

The Electric Transmission Network: A Multi-Region Analysis  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers>The Electric Transmission Network: A Multi-Region Analysis : The Electric Transmission Network: A Multi-Region Analysis

110

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

111

Electrical Transmission Line Diametrical Retention Mechanism  

DOE Patents (OSTI)

The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2006-01-03T23:59:59.000Z

112

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

Pesaran, A. A.

2011-05-01T23:59:59.000Z

113

Overview of Sandia`s Electric Vehicle Battery Program  

DOE Green Energy (OSTI)

Sandia National Laboratories is actively involved several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

Clark, R.P.

1993-12-31T23:59:59.000Z

114

Real-time prediction of battery power requirements for electric vehicles  

Science Conference Proceedings (OSTI)

A battery management system (BMS) is responsible for protecting the battery from damage, predicting battery life, and maintaining the battery in an operational condition. In this paper, we propose an efficient way of predicting the power requirements ... Keywords: acceleration prediction, battery management system (BMS), electric vehicles (EVs), prediction of battery power requirement

Eugene Kim, Jinkyu Lee, Kang G. Shin

2013-04-01T23:59:59.000Z

115

2012 National Electric Transmission Congestion Study - Philadelphia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Philadelphia Workshop 2012 National Electric Transmission Congestion Study - Philadelphia Workshop On December 6, 2011, DOE hosted a regional pre-study workshop in Philadelphia, PA to receive input and suggestions concerning the 2012 National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below. National Electric Transmission Congestion Study 2012 Eastern Workshops.pdf 12-06-11 Congestion Workshop Agenda - Philadelphia (final).pdf Introduction by David Meyer, DOE.pdf Presentation by Edward Finley, NCUC.pdf Presentation by Betty Ann Kane, DC PSC.pdf Presentation by Robert Bradish, American Electric Power.pdf Presentation by John Buechler, NYISO.pdf Presentation by Jim Busbin, Southern Company.pdf

116

Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems  

DOE Patents (OSTI)

A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

1998-01-01T23:59:59.000Z

117

Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems  

DOE Patents (OSTI)

A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

King, R.D.; DeDoncker, R.W.A.A.

1998-01-20T23:59:59.000Z

118

Impact of increased electric vehicle use on battery recycling infrastructure  

DOE Green Energy (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

119

The lithium-ion battery industry for electric vehicles  

E-Print Network (OSTI)

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

120

An analysis of battery electric vehicle production projections  

E-Print Network (OSTI)

In mid 2008 and early 2009 Deutsche Bank and The Boston Consulting Group each released separate reports detailing projected Battery Electric Vehicle production through 2020. These reports both outlined scenarios in which ...

Cunningham, John Shamus

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A smart control system for electric vehicle batteries  

SciTech Connect

A smart control system for electric vehicle (EV) batteries was designed and its performance was evaluated. The hardware for the system was based on the Motorola MC68HC11ENB micro controller. A zinc bromide (Zn/Br{sub 2}) battery was chosen since it is a good candidate as an EV battery and has a large number of user variable parameters that affect its performance. The flexibility of the system arises from the fact that the system can be programmed to do a wide variety of jobs. The use of real time interrupts and other features makes the system safe for use along with the battery systems. Test data indicates that real time control of the different parameters can increase the performance of the battery by 15%. In addition to optimizing the performance of the battery the control system incorporates essential safety features.

Arikara, M.P.; Dickinson, B.E.; Branum, B. [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

1993-12-31T23:59:59.000Z

122

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

This consumer fact sheet provides an overview of battery power for residential solar electric systems, including sizing, estimating costs, purchasing, and performing maintenance.

Not Available

2002-10-01T23:59:59.000Z

123

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

124

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

125

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

126

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

127

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

128

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

129

Landscape Fragmentation and Electric Transmission Corridor Siting and Management  

Science Conference Proceedings (OSTI)

This report discusses landscape fragmentation and electric transmission corridor siting and management.

2003-12-04T23:59:59.000Z

130

2009 Electric Transmission Congestion Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Electric Transmission Congestion Study 9 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints across the Nation and identifies areas that are transmission-constrained, but does not make recommendations concerning existing or new National Corridor designations. This is the second Congestion Study the Department has conducted, with the first issued in 2006. Public comments received after the release of the 2009 Congestion Study can be found here. National Electric Transmission Congestion Study 2009 Executive Summary Full Text of the National Electric Transmission Congestion Study 2009 More Documents & Publications

131

2009 Electric Transmission Congestion Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints across the Nation and identifies areas that are transmission-constrained, but does not make recommendations concerning existing or new National Corridor designations. This is the second Congestion Study the Department has conducted, with the first issued in 2006. Public comments received after the release of the 2009 Congestion Study can be found here. National Electric Transmission Congestion Study 2009 Executive Summary Full Text of the National Electric Transmission Congestion Study 2009 More Documents & Publications

132

Near-term batteries for electric vehicles  

SciTech Connect

Major progress has been achieved in the lead-acid , nickel/iron and nickel/zinc battery technology development since the initiation of the Near-Term eV Battery Project in 1978. Against the specific energy goal of 56 wh/kg the demonstrated specific energies are 41 wh/kg for the improved lead-acid batteries, 48 wh/kg for the improved nickel/iron batteries, and 68 wh/kg for the improved nickel/zinc batteries. These specific energy values would allow an ETV-1 vehicle to have an urban range of 80 miles in the case of the improved lead-acid batteries, 96 miles for the improved nickel/zinc batteries, and 138 miles for the improved lead-acid batteries. All represent a significant improvement over the state-of-the-art lead-acid battery capability of about 30 wh/kg with approximately a 51 mile urban range for the ETV-1 vehicle. The project goal for specific power of 104 w/kg for 30 seconds at a 50% depth of discharge has been achieved for all of the technologies with the improved lead-acid demonstrating 111 w/kg, the improved nickel/iron demonstrating 103 w/kg, and the improved nickel/zinc demonstrating 131 w/kg. Again this is a significant improvement over the state-of-the-art lead-acid battery capability of 70 w/kg. Substantial progress has been made against the life cycle goal of 800 cycles as evidenced by the demonstrated lead-acid battery achievement of > 295 cycles in ongoing tests, the nickel/iron demonstrated capability of > 515 cycles in ongoing tests, and the nickel/zinc demonstrated capability of 179 cycles. Except for the nickel/zinc batteries, the demonstrated cycle life is better than the state-of-the-art lead-acid battery cycle life of about 250 cycles. Future program emphases will be on improving cycle life and further reductions in cost.

Christianson, C.C.; Yao, N.P.; Hornstra, F.

1981-01-01T23:59:59.000Z

133

Current and future developments of batteries for electric cars - an analysis.  

E-Print Network (OSTI)

??To make battery electric vehicles (BEVs) energetically, environmentally and economically competitive to internal combustion engine vehicles (ICEVs), batteries play an important role. In this study,… (more)

Gondelach, S.J.

2010-01-01T23:59:59.000Z

134

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

135

Battery availability for near-term (1998) electric vehicles  

SciTech Connect

Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

Burke, A.F.

1991-06-01T23:59:59.000Z

136

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

137

Cellular/Molecular Connexin35 Mediates Electrical Transmission at Mixed  

E-Print Network (OSTI)

Cellular/Molecular Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells regions, suggesting that connexin35-mediated electrical transmission is common in goldfish brain" (electrical and chemical) synaptic terminals that offer the unique opportunity to correlate physiological

Rash, John E.

138

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

139

DOE EAC Electricity Adequacy Report. Transmission Section - September 15,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Section - Transmission Section - September 15, 2008 DOE EAC Electricity Adequacy Report. Transmission Section - September 15, 2008 There is a critical need to upgrade the nation's electric transmission grid. Two reasons in particular drive this need. First, increasing transmission capability will help ensure a reliable electric supply and provide greater access to economically-priced power. Second, with the growth in state-adopted renewable performance standards (RPS) and the increasing possibility of a national RPS, significant new transmission, much of it interregional, is needed to access renewable resources. DOE EAC Electricity Adequacy Report. Transmission Section - September 15, 2008 More Documents & Publications DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT-

140

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations Presentations View program in brief » View the Conference Booklet with program (pdf) » Plenary Sessions 4th US - China Electric Vehicle and Battery Technology Workshop, Dave Howell, US Department of Energy (pdf) U.S. Department of Energy Vehicle Technologies Program Overview, Henry Kelly, US DOE Energy Efficiency and Renewable Energy (pdf) EcoPartnerships: A model for US-China Energy Collaboration, David Fleshler, Case Western Reserve University and QIN Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) Lishen Advanced Battery Development for EV and ESS, Qin Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) EV R&D in CAERI, Xiaochang Ren, China Automotive Engineering Research Institute (pdf) Roundtable 1: Joint Battery Technology Roadmapping

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

142

DOE Affirms National Interest Electric Transmission Corridor Designations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affirms National Interest Electric Transmission Corridor Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations. The U.S. Department of Energy (DOE) today denied requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as areas of significant electricity congestion and constraint. The designation of national corridors was made in accordance with the Energy Policy Act of 2005 (EPAct). DOE Affirms National Interest Electric Transmission Corridor Designations More Documents & Publications DOE Designates Southwest Area and Mid-Atlantic Area National Interest

143

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

144

DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Chapter DRAFT- September 18, 2008 DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 The purpose of this document is to seed...

145

Thermal Characteristic Analysis of Power Lithium-ion Battery System for Electric Vehicle  

Science Conference Proceedings (OSTI)

With the electric vehicles used lithium manganese lithium-ion power battery (LiMn2O4 power battery) as the research object, the paper researched on the parameter identification of battery cell, has built the finite element model of single cell and completed ... Keywords: Lithium-ion battery, Thermal characteristic analysis, Electric Vehicle

Wang Wenwei; Lin Cheng; Tang Peng; Zhou Chengjun

2012-07-01T23:59:59.000Z

146

Electrical Characterization of Textile Transmission Lines  

E-Print Network (OSTI)

In this paper, electrical characterization and modeling of conductive textiles are presented. A dedicated measurement setup has been developed to allow reliable connection of the textile samples with the equipment cables. Geometrical fabric structures and fabrication tolerances as well as high frequency properties up to 6 GHz for four types of textiles have been determined. Transmission lines with controlled characteristic impedance have been realized enabling the characterization of typical line attenuation factors. This work shows that textile transmission lines can be used for frequencies up to 1.2 GHz and 120 MHz with the maximal lengths of 10 and 100 cm, respectively. Index Terms---Attenuation constants, characteristic impedance, conductive textiles, transmission lines, wearable computing.

Didier Cottet; Janusz Grzyb; Student Member; Student Member; Tünde Kirstein; Gerhard Tröster; Senior Member

2003-01-01T23:59:59.000Z

147

Li/FeS battery design for an electric van  

DOE Green Energy (OSTI)

Li-alloy/FeS battery designs, based upon a well-characterized 300-Ah cell developed by Westinghouse Oceanic Division have been developed for four electric vans currently under development by the US Department of Energy and the Electric Power Research Institute. Computerized cell models were developed to calculate power, energy, weight, and volume values for a cell while varying key design parameters. Battery specifications and vehicle performance are given for the Chrysler TE Van, GMC G-Van, Ford ETX-II, and the Eaton DSEP. 2 refs., 1 fig., 2 tabs.

Chilenskas, A.A.; Barlow, G.

1989-01-01T23:59:59.000Z

148

2006 National Electric Transmission Congestion Study and Related Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 National Electric Transmission Congestion Study and Related 6 National Electric Transmission Congestion Study and Related Materials 2006 National Electric Transmission Congestion Study and Related Materials The 2006 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints and identifies areas that are transmission-constrained. This is the first Congestion Study the Department conducted. Based on this study, two National Interest Electric Transmission Corridors were designated in 2007. They were invalidated by a federal appeals court in 2011. Comments and form letters were submitted by the public in response to this study. National Electric Transmission Congestion Study 2006 Executive Summary Full Text of the National Electric Transmission Congestion Study 2006

149

Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission Summary of Key..................................................................................................................................... 1 Northwest Transmission Planning), there was concern that there had been little progress on addressing the developing transmission issues in the region

150

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

151

2009 National Electric Transmission Congestion Study - Las Vegas Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 National Electric Transmission Congestion Study - Las Vegas 2009 National Electric Transmission Congestion Study - Las Vegas Workshop 2009 National Electric Transmission Congestion Study - Las Vegas Workshop On August 6, 2008, DOE hosted a regional pre-study workshop in Las Vegas, NV to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda and full transcript available below. 8-06-08 Congestion Workshop Agenda - Las Vegas, NV.pdf Transcript - 2009 National Electric Transmission Congestion Study Las Vegas Workshop.pdf More Documents & Publications 2009 National Electric Transmission Congestion Study - San Francisco Workshop 2009 National Electric Transmission Congestion Study - Chicago Workshop 2012 National Electric Transmission Congestion Study - San Diego Workshop

152

FACT SHEET: Designation of National Interest Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Designation of National Interest Electric Transmission Corridors,As Authorized by the Energy Policy Act of 2005 FACT SHEET: Designation of National Interest Electric...

153

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

154

Electricity Transmission in a Restructured Industry: Data Needs ...  

U.S. Energy Information Administration (EIA)

Electricity Transmission in a Restructured Industry: ... as is now happening in the electricity industry, alters the basic data needed to describe that industry.

155

How much electricity is lost in transmission and distribution in ...  

U.S. Energy Information Administration (EIA)

... is electricity that is generated at facilities that is not put onto the electricity transmission and distribution grid, ... How many smart meters are installed in ...

156

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

157

Method of controlling the condition of an electric battery and apparatus for carrying out this method  

SciTech Connect

A method and apparatus for determining the condition or freshness of an electric battery is described. The battery is discharged with a load current having an amplitude increasing linearly with time. The battery voltage is measured as the battery is discharged and the amplitude of the load current is measured when the battery voltage decreases to a predetermined value. The measured amplitude of the load current is representative of the battery condition or freshness.

Froidevaux, J.H.

1980-05-20T23:59:59.000Z

158

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

159

Electricity generation with looped transmission networks: Bidding to an ISO  

E-Print Network (OSTI)

Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes in transmission capacity mean the ISO potentially sets a different electricity price at each node of the trans

Ferris, Michael C.

160

VULNERABILITY OF BLUETOOTH TO IMPULSIVE NOISE IN ELECTRICITY TRANSMISSION SUBSTATIONS  

E-Print Network (OSTI)

VULNERABILITY OF BLUETOOTH TO IMPULSIVE NOISE IN ELECTRICITY TRANSMISSION SUBSTATIONS S A Bhattil environment of an Electricity transmission substation environment is modelled as a Symmetric Alpha Stable of an electricity transmission substation. I. INTRODUCTION In industrial environments, Supervisor Control and Data

Atkinson, Robert C

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Golden Valley Electrical Association Battery Energy Storage System  

Science Conference Proceedings (OSTI)

In June 2003, the Golden Valley Electrical Association (GVEA) in Alaska commissioned a nickel-cadmium battery energy storage system (BESS) that is capable of providing 27 MW for 15 minutes or 46 MW for 5 minutes. This Engineer-of-Record report summarizes the background, planning, design, engineering, testing, and operation of the GVEA BESS.

2010-05-13T23:59:59.000Z

162

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

163

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

164

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network (OSTI)

of automobiles. The propulsion solutions for EVs are based on hybrid or fully battery powered electric vehiclesSwitching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b 27 December 2012 Keywords: Electric Vehicles (EV) Switching algorithms Battery life Lithium ion

Kraus, Sarit

165

10 Year Transmission Plan for the Western Electricity Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Year Transmission Plan for the Western Electricity 10 Year Transmission Plan for the Western Electricity Interconnection Released 10 Year Transmission Plan for the Western Electricity Interconnection Released October 3, 2011 - 8:11am Addthis Western Electricity Coordinating Council releases its first-ever transmission plan for the Western Interconnection. The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements, including transmission

166

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network (OSTI)

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm Ron Adany Tami Tamir Abstract We consider the problem of utilizing a pack of m batteries serving among the batteries in the pack. A battery's life depends on the discharge current used for supplying

Tamir, Tami

167

2006 National Electric Transmission Congestion Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 National Electric Transmission Congestion Study 6 National Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. Based on these studies, and comments concerning them from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor). Based on the 2006 study, two National Interest Electric Transmission Corridors were designated in 2007. These were invalidated by a federal appeals court in

168

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

169

Transmission rights and market power on electric power networks  

E-Print Network (OSTI)

We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

170

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

171

Public Comments on the National Electric Transmission Congestion Study 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments on the National Electric Transmission Congestion Comments on the National Electric Transmission Congestion Study 2012 Public Comments on the National Electric Transmission Congestion Study 2012 The Department issued a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. DOE requested comments on what publicly-available data and information should be considered, and what types of analysis should be performed to identify and understand the significance and character of transmission congestion. The following public comments were received as of March 30, 2012, in response to the 2012 study. DOE appreciates the comments that various individuals and organizations submitted. Comments were received from these organizations, listed alphabetically.

172

DOE Action Plan Addressing the Electricity Transmission System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY ACTION PLAN ADDRESSING THE ELECTRICITY TRANSMISSION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Transmission System 1 Table of Contents * INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ...................................................................................................... 2 Focus on Transmission .................................................................................................. 3 Roadmap Goals ............................................................................................................. 4 * PROCESS OVERVIEW ........................................................................................................... 5

173

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

174

Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology  

E-Print Network (OSTI)

Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology Javier Ibáñez Vial Santiago, Chile jdixon@ing.puc.cl Abstract-- A monitoring system for a battery powered electric vehicle (EV of the 24 batteries. Besides, the system will also allow monitoring the energy delivered by a photovoltaic

Rudnick, Hugh

175

Market Feasibility for Nickel Metal Hyride and Other Advanced Electric Vehicle Batteries in Selected Stationary Applications  

Science Conference Proceedings (OSTI)

Governments in the United States and other countries, as well as the automotive, battery, and utility industries, have spent millions to demonstrate the viability of next generation of batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). An important question remains unanswered: "What value might these EV and HEV batteries add when employed in stationary and secondary use applications?"

2000-12-12T23:59:59.000Z

176

TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS  

E-Print Network (OSTI)

TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS Thomas J. Overbye George Gross, congestion, merger analysis, PTDF 1. INTRODUCTION The electric power industry throughout the world of the impact that the electrical transmission system has on the analysis market power opportunities

Gross, George

177

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding in revised form 16 May 2012 Accepted 23 May 2012 Available online 31 May 2012 Keywords: Electrical synapse

Rash, John E.

178

Updating the Electric Grid: An Introduction to Non-Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updating the Electric Grid: An Introduction to Non-Transmission Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Throughout the United States a consensus has emerged that an improved transmission system is in the interest of the country as a whole.1 However, decisions to implement new transmission lines may face significant cost, environmental, and public acceptance barriers which delay implementation of needed transmission improvements. As State decision makers consider transmission investments, it may be important to account for Non-Transmission Alternatives (NTA). NTAs are programs and technologies that complement and improve operation of existing transmission systems that individually or in combination defer or eliminate the need for upgrades to

179

Updating the Electric Grid: An Introduction to Non-Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updating the Electric Grid: An Introduction to Non-Transmission Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Throughout the United States a consensus has emerged that an improved transmission system is in the interest of the country as a whole.1 However, decisions to implement new transmission lines may face significant cost, environmental, and public acceptance barriers which delay implementation of needed transmission improvements. As State decision makers consider transmission investments, it may be important to account for Non-Transmission Alternatives (NTA). NTAs are programs and technologies that complement and improve operation of existing transmission systems that individually or in combination defer or eliminate the need for upgrades to

180

2009 National Electric Transmission Congestion Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 National Electric Transmission Congestion Study 9 National Electric Transmission Congestion Study 2009 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. Based on these studies, and comments concerning them from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor). The 2009 study is the second Congestion Study that the Department conducted. The first Congestion Study was conducted in 2006. Preparations

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DEPARTMENT OF ENERGY National Electric Transmission Congestion Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Electric Transmission Congestion Report National Electric Transmission Congestion Report [Docket No. 2007-OE-01, Mid-Atlantic Area National Interest Electric Transmission Corridor; Docket No. 2007-0E-02, Southwest Area National Interest Electric Transmission Corridor] AGENCY: Department of Energy. ACTION: Order Denying Rehearing. SUMMARY: On October 5,2007, the Department of Energy (Department or DOE) published in the Federal Register a National Electric Transmission Congestion Report and Order (Report and Order) in the above dockets in which it designated the Mid- Atlantic Area and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) (72 FR 56992). Numerous parties in each of the above named dockets filed timely applications for rehearing of DOE's Report and Order. Some parties

182

Electricity Transmission Data Needs Focus Group Results  

U.S. Energy Information Administration (EIA)

power, transmission flows within states, the implications of transmission on capacity expansion decisions and costs; age of transformers and other facilities;

183

Designation of National Interest Electric Transmission Bottlenecks (NIETB)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary of Comments Summary of Comments Designation of National Interest Electric Transmission Bottlenecks (NIETB) Summary of Comments The US Department of Energy (DOE) issued a Federal Register Notice of Inquiry [FR doc. 04-16724] on July 22, 2004, which solicited comments related to the Designation of National Interest Transmission Bottlenecks (NIETB). The 60-day comment period ended on September 21, 2004. Forty-seven comments were received in response to the Notice of Inquiry. Designation of National Interest Electric Transmission Bottlenecks (NIETB) Summary of Comments More Documents & Publications Comments to the Designation of National Interest Transmission Bottlenecks (NIETB) Notice of Inquiry Designation of National Interest Electric Transmission Bottlenecks (NIETB)

184

DOE Issues Two Draft National Interest Electric Transmission Corridor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Two Draft National Interest Electric Transmission Issues Two Draft National Interest Electric Transmission Corridor Designations DOE Issues Two Draft National Interest Electric Transmission Corridor Designations April 26, 2007 - 10:58am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the issuance of two draft National Interest Electric Transmission Corridor (National Corridor) designations. The Energy Policy Act of 2005 authorizes the Secretary, based on the findings of DOE's National Electric Transmission Congestion Study (Congestion Study), to designate National Corridors. "These draft designations set us on the path to modernize our constrained and congested electric power infrastructure. They are a crucial step toward realizing President Bush's goal of a modern, more efficient electric

185

DOE Issues Two Draft National Interest Electric Transmission Corridor Designations  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the issuance of two draft National Interest Electric Transmission Corridor (National Corridor)...

186

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Electricity Transmission Congestion Costs: A Review of Recent Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission Congestion Costs: A Review of Recent Electricity Transmission Congestion Costs: A Review of Recent Reports Electricity Transmission Congestion Costs: A Review of Recent Reports This study reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, 1) facilitate more vibrant and fair competition in wholesale electricity markets, and 2)enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is

188

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

189

Florida Electric Transmission Line Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission Line Siting Act (Florida) Electric Transmission Line Siting Act (Florida) Florida Electric Transmission Line Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Transmission Line Siting Act (TLSA) is the state's centralized process for licensing electrical transmission lines which; (a) are 230 kV or larger; (b) cross a county line; and, (c) are 15 miles or longer. An

190

2006 National Electric Transmission Congestion Study Federal Register  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 National Electric Transmission Congestion Study Federal 6 National Electric Transmission Congestion Study Federal Register Notice & Comments 2006 National Electric Transmission Congestion Study Federal Register Notice & Comments The Federal Register Notice of Inquiry requesting comments and providing notice of a technical conference for the 2006 National Electric Transmission Congestion Study was issued February 2, 2006. February 2, 2006 Federal Register Notice of Inquiry Comments to the Feb 06 FRN received as of March 9, 2006 Comments to the Feb 06 FRN received after March 9, 2006 More Documents & Publications Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission Congestion Study - Session 2 Proceedings of the March 29, 2006 Conference for the 2006 National Electric

191

DOE Affirms National Interest Electric Transmission Corridor Designations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affirms National Interest Electric Transmission Corridor Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations March 6, 2008 - 11:54am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today denied requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as areas of significant electricity congestion and constraint. The designation of national corridors was made in accordance with the Energy Policy Act of 2005 (EPAct). In affirming the National Corridor designations today, DOE dismissed as being without merit challenges raised by the applicants for rehearing, citing extensive data analysis conducted in its 2006 National Interest Electric Transmission

192

2009 National Electric Transmission Congestion Study - Hartford Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 National Electric Transmission Congestion Study - Hartford 2009 National Electric Transmission Congestion Study - Hartford Workshop 2009 National Electric Transmission Congestion Study - Hartford Workshop On July 9, 2008, DOE hosted a regional pre-study workshop in Hartford, CT to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 7-09-08 Congestion Workshop Agenda - Hartford, CT.pdf Transcript - 2009 National Electric Transmission Congestion Study Hartford Workshop.pdf Comments of the New York Independent System Operator, submitted at 2009 Congestion Study Hartford workshop_0.pdf Prepared Remarks of Brian Forshaw, Connecticut Municipal Electric Energy Cooperative, submitted at 2009 Congestion Study Hartford workshop_0.pdf

193

Transmission Asset Investment in Electricity Markets Javier Contreras1  

E-Print Network (OSTI)

Transmission Asset Investment in Electricity Markets Javier Contreras1 and George Gross2 Abstract: We construct a general analytic framework for the transmission network investment problem in the evaluation of the impacts of new transmission investments under competition. The proposed metrics are useful

Gross, George

194

Electric Transmission Rights-of-Way Uses and Risks  

Science Conference Proceedings (OSTI)

Significant societal and economic benefits accrue through multiple uses of electric transmission rights-of-way (ROWs). Authorization of multiple ROW uses, however, has the potential to be detrimental to the safe, reliable transmission of electricity. Understanding benefits and risks will help utilities evaluate the myriad of current and potential ROW uses, establish effective protocols, and identify the best opportunities for expanding ROW uses.

2004-12-15T23:59:59.000Z

195

Category:Smart Grid Projects - Electric Transmission Systems | Open Energy  

Open Energy Info (EERE)

Transmission Systems category. Transmission Systems category. Pages in category "Smart Grid Projects - Electric Transmission Systems" The following 10 pages are in this category, out of 10 total. A American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project D Duke Energy Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project N New York Independent System Operator, Inc. Smart Grid Project P PJM Interconnection, LLC Smart Grid Project W Western Electricity Coordinating Council Smart Grid Project Retrieved from "http://en.openei.org/w/index.php?title=Category:Smart_Grid_Projects_-_Electric_Transmission_Systems&oldid=214227

196

Assessment of Advanced Batteries for Energy Storage Applications in Deregulated Electric Utilities  

Science Conference Proceedings (OSTI)

Energy storage technologies, including advanced batteries, are likely to find new roles in a restructured electric utility environment. This study evaluated the near-term potential of fourteen advanced battery technologies to outperform conventional lead-acid batteries in four key energy storage applications.

1998-12-08T23:59:59.000Z

197

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

198

Factors Influencing the Diffusion of Battery Electric Vehicles in Urban Areas.  

E-Print Network (OSTI)

??Purchasing a battery electric vehicle is a type of pro-environmental behavior but the impact of such behavior on the environment becomes significant and beneficial only… (more)

Mashayekhi, Morteza

2013-01-01T23:59:59.000Z

199

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

200

Notice of Technical Workshop in Support of 2009 Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Technical Workshop in Support of 2009 Electric Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) conducted a Technical Workshop to receive input from subject matter experts on the historical transmission data in the Western and Eastern Interconnections and on studies of future transmission projections within the two Interconnections. Technical Workshop in Support of 2009 Electric Transmission Congestion Study - Federal Register Vol 74 No. 32 - Feb. 19, 2009.pdf More Documents & Publications

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Notice of Technical Workshop in Support of 2009 Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Technical Workshop in Support of 2009 Electric Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) conducted a Technical Workshop to receive input from subject matter experts on the historical transmission data in the Western and Eastern Interconnections and on studies of future transmission projections within the two Interconnections. Technical Workshop in Support of 2009 Electric Transmission Congestion Study - Federal Register Vol 74 No. 32 - Feb. 19, 2009.pdf More Documents & Publications

202

2009 National Electric Transmission Congestion Study - Chicago Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicago Chicago Workshop 2009 National Electric Transmission Congestion Study - Chicago Workshop On September 17, 2008, DOE hosted a regional pre-study workshop in Chicago, IL to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 9-17-08 Congestion Workshop Agenda - Chicago, IL.pdf Transcript - 2009 National Electric Transmission Congestion Study Chicago Workshop.pdf Statement of Michael J. Kormos, PJM Interconnection, submitted at 2009 Congestion Study Chicago workshop.pdf More Documents & Publications 2009 National Electric Transmission Congestion Study - San Francisco Workshop 2009 National Electric Transmission Congestion Study - Las Vegas Workshop

203

Coordinating Interstate ElectricTransmission Siting: An Introduction to the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordinating Interstate ElectricTransmission Siting: An Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate In recent years, experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased energy demand that suggests a need for new electric transmission and the challenge of connecting renewable energy sources to load centers highlight some needs that could be underserved by the existing system in the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other strategies (such as distributed

204

Electricity transmission congestion costs: A review of recent reports  

SciTech Connect

Recently, independent system operators (ISOs) and others have published reports on the costs of transmission congestion. The magnitude of congestion costs cited in these reports has contributed to the national discussion on the current state of U.S. electricity transmission system and whether it provides an adequate platform for competition in wholesale electricity markets. This report reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, (1) facilitate more vibrant and fair competition in wholesale electricity markets, and (2) enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is essential to understand who pays, how much, and how do they benefit in evaluating options (both transmission and non-transmission alternatives) to address transmission congestion. To describe the differences among published estimates of congestion costs, we develop and motivate three ways by which transmission congestion costs are calculated in restructured markets. The assessment demonstrates that published transmission congestion costs are not directly comparable because they have been developed to serve different purposes. More importantly, critical information needed to make them more comparable, for example in order to evaluate the impacts of options to relieve congestion, is sometimes not available.

Lesieutre, Bernard C.; Eto, Joseph H.

2003-10-01T23:59:59.000Z

205

NREL: Transmission Grid Integration - Electricity Market Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Market Design Researchers at NREL are studying electricity market designs to find ways to better accommodate variable renewable energy resources and maximize...

206

2009 National Electric Transmission Congestion Study Workshops | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Technology Development » Transmission Planning » Services » Technology Development » Transmission Planning » Congestion Studies » 2009 Congestion Study » 2009 National Electric Transmission Congestion Study Workshops 2009 National Electric Transmission Congestion Study Workshops DOE hosted six regional pre-study workshops in mid-2008 to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study, including comments on practical metrics for gauging levels and significance of transmission congestion. Each workshop featured a panel of invited speakers to present their views and comments. For details, including agendas, transcripts, and documents submitted for consideration for the 2009 study, please select a workshop, below. June 11, 2008 San Francisco, CA June 18, 2008 Oklahoma City, OK

207

Study on Intelligent Control Strategy of Battery-Electric Bus Based on the Fuzzy Comprehensive Evaluation Method  

Science Conference Proceedings (OSTI)

How to use the lithium-ion power battery effectively, how to improve the discharging efficiency and the cycle-life of the power battery is a hotspot of research in battery-electric vehicle(BEV) field. The fuzzy comprehensive evaluation method is used ... Keywords: battery-electric bus, CAN-bus, control strategy, fuzzy comprehensive evaluation method

Lin Cheng; Zhou Hui; Sun Fengchun; Nan Jinrui

2009-05-01T23:59:59.000Z

208

Electrical Effects of HVDC Transmission Lines  

Science Conference Proceedings (OSTI)

Electrical effects can constrain the design of prospective high-voltage direct current (HVDC) lines operating either alone or sharing the same rights of way structures with high-voltage alternate current (HVAC) lines. In 2013, the Electric Power Research Institute (EPRI) research on HVDC electrical effects focused on electric field and ion density at ground level. The ultimate goal of the project is to calculate with confidence these electrical effects. The algorithms on which the software currently ...

2013-11-08T23:59:59.000Z

209

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program View the Conference Booklet with program (pdf) » THURSDAY, AUGUST 4 Time Title, Speaker Plenary Session 9:00 AM Welcome and Orientation Welcome to Argonne by Eric Isaacs, Laboratory Director Orientation, Logistics and Workshop Format by Larry Johnson, Transportation Center Director 9:20 - 10:40 Technology Policy: US-China Collaboration on the Electric Vehicle Initiative Henry Kelly, USDOE Principal Deputy Assistant Secretary, Energy Efficiency and Renewable Energy ZHANG Zhihong, MOST, Deputy Director General, Department of New and High Technology WU Feng, Beijing Institute of Technology, Chief Scientist of National (973) Advance Secondary Battery Project Dave Howell, USDOE Vehicle Technologies Program, Team Lead, Hybrid Electric Systems 10:40 - 11:00 Tea/Coffee Break

210

Modeling, testing and economic analysis of a wind-electric battery charging station  

Science Conference Proceedings (OSTI)

Battery charging systems are very important in many developing countries where rural families cannot afford a solar-battery home system or other electricity options, but they can afford to own a battery (in some cases more than one battery) and can pay for it to be charged on a regular basis. Because the typical households that use batteries are located far from the grid, small wind battery charging stations can be a cost-competitive options for charging batteries. However, the technical aspects of charging numerous 12-volt batteries on one DC bus with a small permanent magnet alternator wind turbine suggest that a special battery charging station be developed. NREL conducted research on two different types of wind battery charging stations: a system that uses one charge controller for the entire DC bus and charges batteries in parallel strings of four batteries each, and one that uses individual charge controllers for each battery. The authors present test results for both system configurations. In addition, modeling results of steady-state time series simulations of both systems are compared. Although the system with the single charge controller for the entire bus is less expensive, it results in less efficient battery charging. The authors also include in the paper a discussion of control strategies to improve system performance and an economic comparison of the two alternative system architectures.

Gevorgian, V.; Corbus, D.A.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (US). National Wind Technology Center; Thomas, K.E. [Univ. of California, Berkeley, CA (US). Dept. of Chemical Engineering

1998-07-01T23:59:59.000Z

211

Apparatus for monitoring and charging electric storage battery  

SciTech Connect

A charge protector is described for battery maintenance and operable to continuously monitor the battery terminal voltage of a storage battery while the latter is not in use and to control charging of the battery by controlling the supply of DC power from a battery charger to the battery in accordance with the battery terminal voltage. The battery charge protector voltage; means energizable from the battery to effect initial supply of DC power to the battery when the battery terminal voltage is sensed as being at a predetermined minimum charge voltage level; means energizable from the battery to repeatedly effect subsequent termination and resupply of DC power to the battery when the battery terminal voltage is sensed as having reached an upper trip level voltage and a lower trip level voltage, respectively, the lower trip level voltage being greater than the minimum charge voltage and the upper trip level voltage being greater than the lower trip level voltage; and timer means energizable from the battery to maintain the supply of DC power to the battery for a predetermined interval of time after the battery terminal voltage is sensed as having reached the upper trip level voltage but before it reaches a maximum charge level voltage which is greater than the upper trip level voltage.

Sloan, A.H.

1986-04-15T23:59:59.000Z

212

Trends In U.S. Electric Power Transmission  

SciTech Connect

The report provides an overview of the changes that are occurring in the industry to implement the goals of improved reliability and reduced congestion costs. As the electric industry works to become a more efficient market, transmission stands as a key link between the competitive generation and the regulated distribution sectors. In this role as a key link, transmission is a major focus of government efforts to improve reliability and reduce congestion costs. The scope of the report is to analyze the dominant reliability, investment, siting, and competition/open access trends that are occurring in the domestic electric transmission industry. Topics covered include: the impact of the 2003 Northeast blackout on reliability rules; the move from voluntary to mandatory reliability standards; the advent of real-time transmission system monitoring; ISO/RTO efforts to improve system reliability; the drivers of government intervention in transmission investment; the move towards incentive-based rates for transmission investment; legislative and regulatory efforts to spur transmission investment to support renewable energy resources; the emergence of merchant transmission; the need for federal backstop authority on regional transmission projects; the designation of national interest electric transmission corridors; FERC Orders on siting transmission; the need for changes in open access and competition regulations; FERC efforts to increase open access and competition; legislative efforts to increase competition; and, current competitive issues in the industry.

NONE

2007-11-15T23:59:59.000Z

213

2009 National Electric Transmission Congestion Study - Chicago Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicago Chicago Workshop 2009 National Electric Transmission Congestion Study - Chicago Workshop On September 17, 2008, DOE hosted a regional pre-study workshop in Chicago, IL to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 9-17-08 Congestion Workshop Agenda - Chicago, IL.pdf Transcript - 2009 National Electric Transmission Congestion Study Chicago Workshop.pdf Statement of Michael J. Kormos, PJM Interconnection, submitted at 2009 Congestion Study Chicago workshop.pdf More Documents & Publications Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations 2009 National Electric Transmission Congestion Study - San Francisco

214

Electric generating or transmission facility: determination of rate-making  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

215

Today's electrical transmission system delivers high levels of  

E-Print Network (OSTI)

for electricity demand that reliability be maintained as we transition to clean electricity generation- ated and delivered to electric loads. Clean Energy Transmission and Reliability Energy Storage Smart a smarter, mod- ern grid. Through the Distrib- uted Energy Communication & Control (DECC) facility, re

216

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

217

Electrical Effects of HVDC Transmission Lines--2012  

Science Conference Proceedings (OSTI)

Electrical effects may constrain the design of prospective high-voltage direct current (HVDC) lines, when either alone or sharing the same structures with high-voltage alternating current (HVAC) lines. In 2012, the Electric Power Research Institute (EPRI) research focused on electric field and ion density at ground level. The ultimate goal is to calculate with confidence these electrical effects. The work built on research previously performed, including pioneering research performed at EPRI’s ...

2012-12-12T23:59:59.000Z

218

Electrochemistry theorem based state-of-charge estimation of the lead acid batteries for electric vehicles  

Science Conference Proceedings (OSTI)

A method for the estimation of the state-of-charge in lead-acid batteries for electric vehicles is investigated. The electrochemistry theorem is introduced to measure the resistance effect of the electrode reaction and to estimate the internal energy ... Keywords: digital signal processor, electric vehicles, electrode reaction, electrolyte specific gravity, lead-acid battery, state-of-charge

Ying-Shing Shiao; Ding-Tsair Su; Jui-Liang Yang; Rong-Wen Hung

2008-10-01T23:59:59.000Z

219

Electric vehicle battery R D in the context of a propulsion system  

SciTech Connect

A battery system for an electric vehicle should be designed and developed in concert with the other components of the propulsion system. Technology development efforts sponsored by the US Department of Energy are addressing all the constituent electric vehicle component technologies, including the battery subsystem technologies, from the perspective of the complete propulsion system. This approach is considered to be essential for three reasons. First, the ultimate viability of a given battery technology can only be assured in the context of a complete propulsion system. Second, many required battery subsystem technology advancements can only be addressed in concert with the other propulsion system components. Third, development and testing of battery subsystem technologies in conjunction with powertrain subsystem technology development is necessary in order to provide essential information to the battery developer and to the vehicle developer that can not be obtained when battery development is performed as a discrete activity. 7 refs., 6 figs.

Patil, P.G. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of Transportation Systems); Christianson, C.C.; Miller, J.F. (Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

220

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network (OSTI)

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S.-China Electric Vehicle and Battery Technology Workshop | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle and Battery Technology Workshop Electric Vehicle and Battery Technology Workshop U.S.-China Electric Vehicle and Battery Technology Workshop August 31, 2010 - 2:52pm Addthis DOE's Office of Policy and International Affairs and China's Ministry of Science and Technology convened a 3-day workshop at Argonne National Laboratory that brought together more than 100 U.S. and Chinese experts from government, industry, and academia to discuss progress made in the electric vehicle industry to date and opportunities for increased collaboration. The workshop was held in support of the U.S.-China Electric Vehicles Initiative announced by President Obama and China's President Hu Jintao in 2009. Participants engaged in three concurrent roundtables on battery technology roadmapping, battery test procedures, and vehicle

222

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

223

2012 National Electric Transmission Congestion Study Workshops | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Planning » Transmission Planning » Congestion Studies » 2012 National Electric Transmission Congestion Study Workshops 2012 National Electric Transmission Congestion Study Workshops DOE hosted four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the 2012 National Electric Transmission Congestion Study. For details, please select a workshop, below. Agendas, presentations, and transcripts are available on the individual workshop pages; please select a workshop from the list below. Note: The November 10, 2011 Federal Register notice incorrectly stated that the four regional workshops would be simulcast over the Internet and that advanced registration for the Webcasts was required. The workshops were not simulcast. The Department requested, but did not require, those who

224

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

225

Federal Register Notice: Plan for Conduct of 2012 Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice: Plan for Conduct of 2012 Electric Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study November 10, 2011 - 1:42pm Addthis The Department has issued a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. The Department is seeking comments on what publicly-available data and information should be considered, and what types of analysis should be performed to identify and understand the significance and character of transmission congestion. DOE will host four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the study. Addthis Related Articles 2012 Congestion Study Workshops to be Held in December; Agendas Now

226

Proposed Open Access Requirement for International Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Open Access Requirement for International Electric Proposed Open Access Requirement for International Electric Transmission Facilities and Delegation to the Federal Energy Regulatory Commission: Federal Register Notice Volume 64, No. 143 - Jul. 27, 1999 Proposed Open Access Requirement for International Electric Transmission Facilities and Delegation to the Federal Energy Regulatory Commission: Federal Register Notice Volume 64, No. 143 - Jul. 27, 1999 Notice is given of the Department of Energy's (DOE or Department) intention to amend existing Presidential permits issued for the construction, operation, maintenance, or connection of facilities at the international border for the transmission of electric energy between the United States and foreign countries to require permit holders to provide ondiscriminatory open access transmission services. The open access

227

National Electric Transmission Congestion Study 2006 Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXECUTIVE EXECUTIVE SUMMARY AUGUST 2006 U.S. Department of Energy NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY EXECUTIVE SUMMARY AUGUST 2006 U.S. Department of Energy Executive Summary Section 1221(a) of the Energy Policy Act of 2005 amended the Federal Power Act (FPA) by adding a new section 216 to that Act. FPA section 216(a) di- rected the Secretary of Energy to conduct a nation- wide study of electric transmission congestion 1 by August 8, 2006. Based upon the congestion study, comments thereon, and considerations that include economics, reliability, fuel diversity, national en- ergy policy, and national security, the Secretary may designate "any geographic area experiencing electric energy transmission capacity constraints or congestion that adversely affects customers as a na- tional interest electric transmission corridor." The national congestion study

228

2012 National Electric Transmission Congestion Study Webinars | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

National Electric Transmission Congestion Study 2012 » 2012 National Electric Transmission Congestion Study Webinars 2012 National Electric Transmission Congestion Study Webinars The Department of Energy hosted three webinars in August 2012 to present the preliminary findings of DOE's 2012 National Electric Transmission Congestion Study, with time in each for dialogue and discussion. Two of the webinars were to discuss with state officials the initial findings of the DOE 2012 congestion analysis. The third webinar was for industry representatives and other interested parties, although stakeholders could dial into any of the three meetings. The webinars were held on: Tuesday, August 7, 2012 2-3:30 pm ET (state focus) Thursday, August 16, 2012 2-3:30 pm ET (industry and others)

229

2012 National Electric Transmission Congestion Study | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 2012 National Electric Transmission Congestion Study 2012 National Electric Transmission Congestion Study 2012 National Electric Transmission Congestion Study The Department issued a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. DOE hosted four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the study. DOE appreciates the comments that various individuals and organizations submitted. The Department is preparing the 2012 Congestion Study now, and hosted three webinars in August 2012 to receive input and suggestions concerning the preliminary findings of the study. The presentation used in the webinars is now available. Later this year, DOE will release a draft of the study

230

Proposed Open Access Requirement for International Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Open Access Requirement for International Electric Proposed Open Access Requirement for International Electric Transmission Facilities and Delegation to the Federal Energy Regulatory Commission: Federal Register Notice Volume 64, No. 143 - Jul. 27, 1999 Proposed Open Access Requirement for International Electric Transmission Facilities and Delegation to the Federal Energy Regulatory Commission: Federal Register Notice Volume 64, No. 143 - Jul. 27, 1999 Notice is given of the Department of Energy's (DOE or Department) intention to amend existing Presidential permits issued for the construction, operation, maintenance, or connection of facilities at the international border for the transmission of electric energy between the United States and foreign countries to require permit holders to provide ondiscriminatory open access transmission services. The open access

231

2012 National Electric Transmission Congestion Study - San Diego...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Diego Workshop 2012 National Electric Transmission Congestion Study - San Diego Workshop On December 15, 2011, DOE hosted a regional pre-study workshop in San Diego, CA to...

232

2012 National Electric Transmission Congestion Study- San Diego Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On December 15, 2011, DOE hosted a regional pre-study workshop in San Diego, CA to receive input and suggestions concerning the 2012 National Electric Transmission Congestion Study. The workshop...

233

Transmission Pricing Issues for Electricity Generation From Renewable Resources  

Reports and Publications (EIA)

This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

Information Center

1999-02-01T23:59:59.000Z

234

Electricity Transmission in a Restructured Industry: Data Needs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Transmission in a Restructured Industry: Data Needs for Public Policy Analysis Speaker(s): Douglas Hale Date: February 24, 2005 - 12:00pm Location: Bldg. 90 Seminar...

235

2012 National Electric Transmission Congestion Study: Presentation from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Electric Transmission Congestion Study: Presentation National Electric Transmission Congestion Study: Presentation from Congestion Study Webinar Series 2012 National Electric Transmission Congestion Study: Presentation from Congestion Study Webinar Series August 21, 2012 - 12:29pm Addthis The Department is preparing the 2012 Congestion Study now, and is hosting three webinars in August 2012 to receive input and suggestions concerning the preliminary findings of the study. The updated presentation used in the webinars is now available. Addthis Related Articles 2012 Congestion Study Webinars to Present Preliminary Findings and Receive Input from Stakeholders 2012 Congestion Study Workshops to be Held in December; Agendas Now Available Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study

236

Electricity Transmission System Workshop: EERE Issues and Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission System Electricity Transmission System Workshop: EERE Issues and Opportunities November 1, 2012 Dr. David Danielson Assistant Secretary for the Office of Energy Efficiency and Renewable Energy eere.energy.gov "If you can't solve a problem, expand it." - Dwight D. Eisenhower eere.energy.gov eere.energy.gov Stationary Energy Demand Transport Energy Supply Deploy Clean Electricity Deploy Alternative Hydrocarbon Fuels Modernize the Grid Electrify the Fleet Increase Building and Industrial Efficiency Increase Vehicle Efficiency Source: DOE ,Quadrennial Technology Review, September 2011 eere.energy.gov Rapid Growth in Renewable Electricity Since 2008, the U.S. has doubled renewable energy generation from wind, solar, and

237

Electrical and Biological Effects of Transmission Lines: A Review.  

Science Conference Proceedings (OSTI)

This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

Lee, Jack M.

1989-06-01T23:59:59.000Z

238

Optimal Transmission Switching in Electric Networks for Improved Economic Operations1  

E-Print Network (OSTI)

1 Optimal Transmission Switching in Electric Networks for Improved Economic Operations1 Emily. Abstract Growing demand for electric power seems to necessitate new transmission lines, but obstacles" bulk electric grid, one that is more controllable and flexible. Optimal transmission switching

Ferris, Michael C.

239

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network (OSTI)

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

240

2006 National Electric Transmission Congestion Study | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2009 National Electric Transmission Congestion Study | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

242

National Electric Transmission Congestion Studies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

243

2012 National Electric Transmission Congestion Study Workshops...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

244

2012 National Electric Transmission Congestion Study | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

245

National Interest Electric Transmission Corridors | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

246

2012 National Electric Transmission Congestion Study Webinars...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

247

Full Text of the National Electric Transmission Congestion Study 2006  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUGUST AUGUST 2006 U.S. Department of Energy NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY AUGUST 2006 U.S. Department of Energy NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY AUGUST 2006 U.S. Department of Energy Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acronyms Used in This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Organization of This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Definitions of Key Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Consultation with States and Regional Entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Study Approach and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

248

Zinc air battery development for electric vehicles. Final report  

DOE Green Energy (OSTI)

This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this ``soluble`` zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

Putt, R.A.; Merry, G.W. [MATSI, Inc., Atlanta, GA (United States)

1991-07-01T23:59:59.000Z

249

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back Eligibility Agricultural Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State New York Program Type Grant Program Provider New York State Energy Research and Development Authority Up to $10 million in funds is available from NYSERDA to support research and engineering studies, product development and demonstration projects that improve the reliability, efficiency, quality, and overall performance

250

Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance  

E-Print Network (OSTI)

Abstract—Low power dissipation and maximum battery runtime are crucial in portable electronics. With accurate and efficient circuit and battery models in hand, circuit designers can predict and optimize battery runtime and circuit performance. In this paper, an accurate, intuitive, and comprehensive electrical battery model is proposed and implemented in a Cadence environment. This model accounts for all dynamic characteristics of the battery, from nonlinear open-circuit voltage, current-, temperature-, cycle number-, and storage time-dependent capacity to transient response. A simplified model neglecting the effects of self-discharge, cycle number, and temperature, which are nonconsequential in low-power Li-ion-supplied applications, is validated with experimental data on NiMH and polymer Li-ion batteries. Less than 0.4 % runtime error and 30-mV maximum error voltage show that the proposed model predicts both the battery runtime and I–V performance accurately. The model can also be easily extended to other battery and power sourcing technologies. Index Terms—Batteries, cadence simulation, electrical model, I–V performance, nickel-metal hydride battery, polymer lithiumion battery, runtime prediction, test system. I.

Min Chen; Student Member; Gabriel A. Rincón-mora; Senior Member

2006-01-01T23:59:59.000Z

251

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

252

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Obama Hails Electric-Vehicle Battery Plant President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

253

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

254

Electrical Safety Practices in Underground Transmission Systems  

Science Conference Proceedings (OSTI)

This report addresses utility safety practices relating to underground transmission cables and provides analytical approaches and worked examples for induced voltages and currents for several scenarios that may be encountered by utilities.BackgroundSafety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public ...

2012-12-20T23:59:59.000Z

255

2012 National Electric Transmission Congestion Study: Preliminary Findings - updated presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meyer Meyer Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 2012 National Electric Transmission Congestion Study Preliminary Findings Stakeholder Consultation Webinars August 2012 Background  The Energy Policy Act of 2005 amended the Federal Power Act to require DOE to conduct a transmission congestion study every three years, in consultation with the states.  DOE published a study in 2006, and a second for 2009 (in early 2010). We are now preparing the 2012 study.  Statutory text directs DOE to seek to identify "geographic areas experiencing ... transmission capacity constraints or congestion that adversely affects consumers ...."  Statute also authorizes (but does not require) the Secretary

256

Real-time studies of battery electrochemical reactions inside a transmission electron microscope.  

DOE Green Energy (OSTI)

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

2012-01-01T23:59:59.000Z

257

Economics of Electric Compressors for Gas Transmission  

E-Print Network (OSTI)

Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental regulations, economics, and new compressor technology. In ozone Non-Attainment regions, it is necessary to bring gas compressors into compliance with NOx regulations, and replacement with new electric systems represents a Lowest Achievable Emission Rate (LAER) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review here the impacts of the Clean Air Act Amendments of 1990 and economics on the selection process for considering electric drives versus alternatives for both ozone Non-Attainment areas and Attainment areas.

Schmeal, W. R.; Hibbs, J. J.

1994-04-01T23:59:59.000Z

258

Electrically and Hydraulically Rechargeable Zinc-air Battery  

A secondary zinc air battery, which can be either eletrically or hydraulically recharged, is provided with an inventive metal ...

259

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

260

2009 National Electric Transmission Congestion Study - San Francisco  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San San Francisco Workshop 2009 National Electric Transmission Congestion Study - San Francisco Workshop On June 11, 2008, DOE hosted a regional pre-study workshop in San Francisco, CA to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 6-11-08 Congestion Workshop Agenda - San Francisco, CA.pdf Transcript - 2009 National Electric Transmission Congestion Study San Francisco Workshop.pdf California Initiatives To Be Considered in DOE's 2009 Congestion Study, submitted at 2009 Congestion Study San Francisco workshop.pdf Arizona Renewable Transmission Task Force BTA Response, submitted at 2009 Congestion Study San Francisco workshop.pdf

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Full Text of the National Electric Transmission Congestion Study 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DECEMBER DECEMBER 2009 U.S. Department of Energy NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY DECEMBER 2009 U.S. Department of Energy NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY DECEMBER 2009 U.S. Department of Energy Note to Readers As the Department of Energy (DOE) stated when it announced the beginning of its work on this study in May 2006, the 2009 Congestion Study focused on the identification of existing electric transmission-level congestion based on publicly available historic information and data related to transmission congestion. The information and data used by DOE in conducting the analysis in this study was that which was available through May 2009. As a result the study does not address the possible impacts of the recent recession on congestion, or any other recent events, reports, or other developments affecting congestion. Consistent with the requirements

262

2009 National Electric Transmission Congestion Study - San Francisco  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San San Francisco Workshop 2009 National Electric Transmission Congestion Study - San Francisco Workshop On June 11, 2008, DOE hosted a regional pre-study workshop in San Francisco, CA to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 6-11-08 Congestion Workshop Agenda - San Francisco, CA.pdf Transcript - 2009 National Electric Transmission Congestion Study San Francisco Workshop.pdf California Initiatives To Be Considered in DOE's 2009 Congestion Study, submitted at 2009 Congestion Study San Francisco workshop.pdf Arizona Renewable Transmission Task Force BTA Response, submitted at 2009 Congestion Study San Francisco workshop.pdf

263

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

264

Electrical Safety Practices of Underground Transmission Systems  

Science Conference Proceedings (OSTI)

Safety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public and are diligent about monitoring compliance. However, underground transmission cables present unique requirements that might not be covered in existing utility safety practices. This report addresses the grounding requirements and induced voltage calculation procedures that should be considered when performing operation, mainten...

2010-12-23T23:59:59.000Z

265

In-situ Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and Opportunities  

SciTech Connect

The critical challenge facing the lithium ion battery development is the basic understanding of the structural evolution during the cyclic operation of the battery and the consequence of the structural evolution on the properties of the battery. Although transmission electron microscopy (TEM) and spectroscopy have been evolved to a stage such that it can be routinely used to probe into both the structural and chemical composition of the materials with a spatial resolution of a single atomic column, a direct in-situ TEM observation of structural evolution of the materials in lithium ion battery during the dynamic operation of the battery has never been reported. This is related to three factors: high vacuum operation of a TEM; electron transparency requirement of the region to be observed, and the difficulties dealing with the liquid electrolyte of lithium ion battery. In this paper, we report the results of exploring the in-situ TEM techniques for observation of the interface in lithium ion battery during the operation of the battery. A miniature battery was fabricated using a nanowire and an ionic liquid electrolyte. The structure and chemical composition of the interface across the anode and the electrolyte was studied using TEM imaging, electron diffraction, and electron energy loss spectroscopy. In addition, we also explored the possibilities of carrying out in-situ TEM studies of lithium ion batteries with a solid state electrolyte.

Wang, Chong M.; Xu, Wu; Liu, Jun; Choi, Daiwon; Arey, Bruce W.; Saraf, Laxmikant V.; Zhang, Jiguang; Yang, Zhenguo; Thevuthasan, Suntharampillai; Baer, Donald R.; Salmon, Norman

2010-08-01T23:59:59.000Z

266

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

267

National Electric Transmission Congestion Study 2012 - How to Submit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Electric Transmission Congestion Study 2012 - How to National Electric Transmission Congestion Study 2012 - How to Submit Comments National Electric Transmission Congestion Study 2012 - How to Submit Comments You may submit written comments to Congestionstudy2012@hq.doe.gov or by mail to: Office of Electricity Delivery and Energy Reliability, OE-20 U.S. Department of Energy 1000 Independence Avenue SW. Washington, DC 20585 The Department intends to use only data that is publicly available for this study. Accordingly, please do not submit information that you believe is or should be protected from public disclosure. DOE is responsible for the final determination concerning disclosure or nondisclosure of information submitted to DOE and for treating it in accordance with the DOE's Freedom of Information regulations (10 CFR 1004.11). All comments received by DOE

268

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P.C. Sernia and G.R. Walker  

E-Print Network (OSTI)

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost costs of ultracapacitors in battery electric vehicle applications. The lifecycle operation

Walker, Geoff

269

Battery testing at Argonne National Laboratory. Electric and hybrid propulsion systems, No. 1  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-12-31T23:59:59.000Z

270

Energy and environmental impacts of electric vehicle battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

Gaines, L.; Singh, M.

1995-12-31T23:59:59.000Z

271

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

272

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

273

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

274

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

275

Evaluation of Near-Term Electric Vehicle Battery Systems through In-Vehicle Testing  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) using today's technology are suitable for certain commercial fleets. Yet expanding the EV market largely depends on developing and marketing batteries with performance characteristics superior to those already commercially available. The in-vehicle test results summarized in this report provide valuable information on the performance, life, and maintenance of 10 new batteries under real-world operating conditions.

1986-12-01T23:59:59.000Z

276

Fault Prediction and Fault-Tolerant of Lithium-ion Batteries Temperature Failure for Electric Vehicle  

Science Conference Proceedings (OSTI)

Design and implementation of dual-redundancy was developed to predict Lithium-ion battery failure for electric vehicle. Data fusion unit, prediction unit and determination unit were designed. Outputs from original and redundant sensors were integrated ... Keywords: Lithium-ion battery, dual-redundancy, data fusion, prediction, Fault-tolerant

Hu Chunhua; He Ren; Wang Runcai; Yu Jianbo

2012-07-01T23:59:59.000Z

277

Cost and design study for electric vehicle lead--acid batteries  

SciTech Connect

A design and cost study for electric-vehicle lead--acid batteries is presented; a research and development program leading to demonstration and testing of 20- to 30-kWh batteries is proposed. Both flat pasted and tubular positive electrodes are included. Detailed testing programs are set forth. 110 figures, 8 tables (RWR)

1977-01-01T23:59:59.000Z

278

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

DOE Green Energy (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

279

Progress in the development of recycling processes for electric vehicle batteries  

SciTech Connect

Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EVs in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EVs and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EVs, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

Jungst, R.G.; Clark, R.P.

1994-08-01T23:59:59.000Z

280

Registration Contact List: Electricity Transmission System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11/2/2012 11/2/2012 First Name Last Name Title Company Address1 Address2 City State/Province Zip Country Work Phone Sandy Aivaliotis , Valley Group, a Nexans 3A Trowbridge Drive Bethel CT 6801 United States 416-648-4382 Robert Anders Management U.S. Department of Energy / EERE Rm 6A-067 1000 Independence Ave., SW Washington DC 20585 United States 202-586-4716 Phillip Anderson g g Project Leader Idaho Power 1221 W. Idaho St. Boise ID 83702 United States 208-484-2024 Mihai Anitescu Dr. Argonne National Laboratory 9700 S Cas Avenue Argonne IL 60439 United States 16302524172 Sam Baldwin Officer USDOE/EERE 1000 Independence Ave., SW Washington DC 20585 United States 202-586-0927 Thomas Baldwin Energy Lead Idaho National Laboratory P.O. Box 1655 Idaho Falls ID 83415-3810 United States 208-526-1864 Venkat Banunarayanan g Transmission Department of Energy

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Electric Transmission Congestion Study 2012 Workshops | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Congestion Study 2012 Workshops Transmission Congestion Study 2012 Workshops National Electric Transmission Congestion Study 2012 Workshops DOE will host four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the National Electric Transmission Congestion Study 2012. For details, please see the pdfs, below. Online registration for these workshops is now available. Agendas are available below. Note: The November 10, 2011 Federal Register notice incorrectly stated that the four regional workshops will be simulcast over the Internet and that advanced registration for the Webcasts is required. The workshops will not be simulcast. The Department requests, but does not require, those who are planning to attend the workshops in person to pre-register using the link

282

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer power. #12;The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

283

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

284

Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.  

SciTech Connect

In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-12-04T23:59:59.000Z

285

2012 National Electric Transmission Congestion Study - St. Louis Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

St. Louis St. Louis Workshop 2012 National Electric Transmission Congestion Study - St. Louis Workshop On December 8, 2011, DOE hosted a regional pre-study workshop in St. Louis, MO to receive input and suggestions concerning the 2012 National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below. National Electric Transmission Congestion Study 2012 Eastern Workshops 12-08-11 Congestion Workshop Agenda - St Louis (final).pdf Introduction by David Meyer, DOE Presentation by Kevin Gunn, MO PSC.pdf Presentation by Jerry Lein, ND PSC.pdf Presentation by Tom Sloan, KS Legislature.pdf Presentation by Maureen Borkowski, Ameren.pdf Presentation by Laureen L Ross McCalib, Great River Energy.pdf Presentation by Dale Osborn, MISO.pdf

286

2009 National Electric Transmission Congestion Study - Oklahoma City  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Oklahoma City Workshop 2009 National Electric Transmission Congestion Study - Oklahoma City Workshop On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City, OK to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full transcript, and documents submitted for consideration for the 2009 study are available below. 6-18-08 Congestion Workshop Agenda - Oklahoma City, OK.pdf Transcript - 2009 National Electric Transmission Congestion Study Oklahoma City Workshop.pdf Independent Market Monitor Monthly Market Metrics Report, May 2008, submitted at 2009 Congestion Study Oklahoma City workshop.pdf Comments of the Missouri Public Service Missouri Commission, submitted at 2009 Congestion Study Oklahoma City workshop.pdf

287

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Consultation Letters Appendix A- Consultation Letters A-1 APPENDIX A CONTENTS A-2 Letter from the State Historic Preservation Office regarding Certificate of Environmental Compatibility Case No. 111: The Proposed Tucson Electric Power Company (TEP) South Substation to Nogales Transmission Line, Pima and Santa Cruz Counties, Arizona A-6 Letter from Tetra Tech, Inc. to El Paso Natural Gas, regarding the Proposed Tucson Electric Power Transmission Line Adjacent to an El Paso Natural Gas Company Pipeline A-8 Letter from Tetra Tech, Inc. to the Drug Enforcement Administration, regarding the Proposed Tucson Electric Power Transmission Line near Nogales, Arizona A-10 Letter from Tetra Tech, Inc. to the U.S. Immigration and Naturalization Service, regarding the

288

2012 National Electric Transmission Congestion Study - Portland Workshop |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Portland Workshop 2012 National Electric Transmission Congestion Study - Portland Workshop On December 13, 2011, DOE hosted a regional pre-study workshop in Portland, OR to receive input and suggestions concerning the 2012 National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below. National Electric Transmission Congestion Study 2012 Western Workshops.pdf 12-13-11 CONGESTION WORKSHOP AGENDA - PORTLAND (final).pdf Introduction by David Meyer, DOE .pdf Presentation by Steve Oxley, WY PSC.pdf Presentation by Rich Bayless, NTTG.pdf Presentation by Susan Henderson, Xcel Energy.pdf Presentation by Marv Landauer, ColumbiaGrid.pdf Presentation by Steve Metague, PGE.pdf Presentation by Bradley Nickell, WECC.pdf

289

Lessons learned in acquiring new regulations for shipping advanced electric vehicle batteries  

DOE Green Energy (OSTI)

In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy established its ad hoc EV Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced EV battery technologies and facilitate the removal of these barriers. A Shipping Sub-Working Group (SSWG) was formed to address the regulatory issues associated with the domestic and international shipment of these new battery technologies. The SSWG invites major industrial developers of advanced battery technologies to join as members and work closely with appropriate domestic and international regulatory authorities to develop suitable regulations and procedures for the safe transport of these new battery technologies. This paper describes the domestic and international regulatory processes for the transport of dangerous goods; reviews the status of shipping regulations for sodium-beta and lithium batteries; and delineates the lessons learned to date in this process. The sodium-beta battery family was the first category of advanced EV batteries to be addressed by the SSWG. It includes both sodium/sulfur and sodium/metal chloride batteries. Their efforts led to the establishment of a UN number (UN 3292) in the UN Recommendations, for cold cells and batteries, and establishment of a US Department of Transportation general exemption (DOT-E-10917) covering cold and hot batteries, as well as cold cells. The lessons learned for sodium-beta batteries, over the period of 1990--94, are now being applied to the development of regulations for shipping a new generation of lithium battery technologies (lithium-polymer and lithium-aluminum/iron sulfide batteries).

Henriksen, G. [Argonne National Lab., IL (United States); Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Altemos, E.A. [Winston and Strawn, Washington, DC (United States)

1994-12-01T23:59:59.000Z

290

Design and analysis of a battery for a formula electric car  

E-Print Network (OSTI)

The purpose of this paper is to present the philosophy and methodology behind the design of the battery pack for MITs 2013 Formula SAE Electric racecar. Functional requirements are established for the pack. An overview of ...

Reineman, Samuel (Samuel Thomas)

2013-01-01T23:59:59.000Z

291

Quantifying the Promise of Li-Air Batteries for Electric Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Promise of Li-Air Batteries for Electric Vehicles December 17, 2013 11:00AM to 12:00PM Presenter Kevin Gallagher, JCESR Location Building 205, Y-Wing Auditorium...

292

Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications  

E-Print Network (OSTI)

Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

Fernandez, Ted (Ted A.)

2010-01-01T23:59:59.000Z

293

Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications  

SciTech Connect

BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

2010-10-01T23:59:59.000Z

294

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

295

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

296

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

297

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

298

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

299

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

300

PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

302

USABC electric vehicle Battery Test Procedures Manual. Revision 2  

DOE Green Energy (OSTI)

This manual summarizes the procedural information needed to perform the battery testing being sponsored by the United States Advanced Battery Consortium (USABC). This information provides the structure and standards to be used by all testing organizations, including the USABC developers, national laboratories, or other relevant test facilities.

NONE

1996-01-01T23:59:59.000Z

303

OUT Success Stories: Battery Electricity Storage for Quality Power  

DOE Green Energy (OSTI)

A 3.5-megawatt valve-regulated lead-acid (VRLA) battery system installed at a lead recycling plant in California provides one hour of energy storage for both peak-shaving and uninterruptible power. It incorporates improvements in battery materials, manufacturing processes, and quality control.

Recca, L.

2000-08-31T23:59:59.000Z

304

Recommended mission directed goals for electric vehicle battery research and development. The task force on electric vehicle battery goals  

SciTech Connect

Research and development goal packages were developed for the state-of-the-art, flow-through, and bipolar lead-acid batteries, nickel/iron, nickel/zinc, nickel/cadmium, zinc/bromine, iron/air, lithium/iron sulfide, and sodium/sulfur technologies. Since each battery must satisfy mission power/energy requirements throughout every cycle of its operating life, the principal ''design point'' is the end-of-life condition. Since all batteries exhibit deteriorating performance with age, excess kWh capacity of 20 to 30 percent is required early in life. The Battery Panel first identified present state-of-the-art performance characteristics and design interrelationships for each battery technology, and projected the degree of advance expected by 1995. Near-term and 1995 design tradeoffs were modeled using the EVA computerized system developed by ANL. The next step was to target each battery system for a single range (80, 120 or 160 km), depending on its projected 1995 capabilities. For each battery, baseline calculations were carried out assuming the maximum battery weight (695 kg) to be on board. In addition to performance, life, and cost goals, development targets were also established for efficiency, maintenance, and allowable self-discharge rate. The Task Force attempted to establish battery cost requirements, assuming economic parity (in 1995) with other modes of transportation.

Not Available

1986-03-01T23:59:59.000Z

305

National Electric Transmission Congestion Study 2009 Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Executive Executive Summary In the Energy Policy Act of 2005 (EPAct), Con- gress directed the U.S. Department of Energy (DOE) to conduct a study every three years on elec- tric transmission congestion and constraints within the Eastern and Western Interconnections. The American Reinvestment and Recovery Act of 2009 (Recovery Act) further directed the Secretary to in- clude in the 2009 Congestion Study an analysis of significant potential sources of renewable energy that are constrained by lack of adequate transmis- sion capacity. Based on this study, and comments concerning it from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest elec- tric transmission corridor (National Corridor). In August 2006, the Department published its first National Electric

306

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

307

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

1995-04-04T23:59:59.000Z

308

Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993  

DOE Green Energy (OSTI)

In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

NONE

1993-06-01T23:59:59.000Z

309

Environmental impact analysis of electric and hybrid vehicle batteries. Final report  

DOE Green Energy (OSTI)

This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

Not Available

1977-12-16T23:59:59.000Z

310

ESS 2012 Peer Review - Painesville Municipal Electric Power Vanadium Redox Battery Demo Project - Jodi Startari, Ashlawn Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Electric Power Vanadium Redox Battery Demonstration Project Jodi Startari Ashlawn Energy LLC Briefing Overview * Painesville Municipal Electric Power Plant Project Synopsis * Vanadium Redox Flow Battery Technology * City of Painesville Municipal Electric Plant History * Project Multiple Objectives and Additional Detail * Project Risk Analysis presented at previous Peer Review * Project to date progress * Cost Distribution * Summary/Conclusions * Future Tasks * Questions US Produced Vanadium Redox Flow Battery for Bulk Storage, Peak Shaving * 8 MW Hour redox flow battery (1MW 8 hours) * To be installed at Painesville Municipal Electric Plant (PMEP), a 32 MW coal fired facility * Most efficient PMEP operation is steady state at 26 MW (lowest emissions, lowest operating cost)

311

Effects of battery technologies, driving patterns, and climate comfort control on the performance of electric vehicles  

SciTech Connect

A computer software package, EAGLES, has been developed at Argonne National Laboratory to analyze electric vehicle (EV) performance. In this paper, we present EAGLES predictions of EV driving range, acceleration rate, and energy consumption under various driving patterns, with different battery technologies, and with assumptions concerning use of air conditioners and/or heaters for climate comfort control. The specifications of a baseline, four-passenger EV for given design performance requirements are established, assuming urban driving conditions represented by the Los Angeles 92 (LA-92) driving cycle and using battery characteristics similar to those of the United States Advanced Battery Consortium (USABC) midterm battery performance goals. To examine the impacts of driving patterns, energy consumption is simulated under three different driving cycles: the New York City Cycle, the Los Angeles 92 Cycle, and the ECE-15 Cycle. To test the impacts of battery technologies, performance attributes of an advanced lead-acid battery, the USABC midterm battery goals, and the USABC long-term battery goals are used. Finally, EV energy consumption from use of air conditioners and/or heaters under different climates is estimated and the associated driving range penalty for one European city (Paris) and two United States cities (Chicago and Los Angeles) is predicted. The results of this paper show the importance of considering various effects, such as battery technology, driving pattern, and climate comfort control, in the determination of EV performances. Electric vehicle energy consumption decreases more than 20% when a battery with characteristics similar to the USABC long-term goals is used instead of an advanced lead-acid battery.

Marr, W.W.; Wang, M.Q.; Santini, D.J.

1994-05-15T23:59:59.000Z

312

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

313

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

314

Application of Two-Speed Dual Clutch Transmission in Pure Electric Vehicle  

Science Conference Proceedings (OSTI)

Two-speed dual clutch transmission is used in electric vehicle to improve vehicle power performance and efficiency of an electric driveline. To illustrate the improvement of power performance and efficiency, single-speed transmission system was introduced ... Keywords: pure electric vehicle, dual clutch transmission, single-speed transmission

Yongdao Song; Xiusheng Cheng; Zhonghua Lu; Xueshong Li

2012-10-01T23:59:59.000Z

315

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

316

Updating the Electric Grid: An Introduction to Non-Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updating the Electric Grid: Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Prepared by The National Council on Electricity Policy September 2009 NATIONAL COUNCIL ON ELECTRICITY POLICY MEMBER ORGANIZATIONS The National Council on Electricity Policy (National Council) is a unique venture between the National Association of Regulatory Utility Commissioners (NARUC), the National Association of State Energy Officials (NASEO), the National Conference of State Legislatures (NCSL), National Association of Clean Air Agencies (NACAA) and the National Governors Association Center for Best Practices (NGA). The National Council also includes participation by the Federal Energy Regulatory Commission (FERC), U.S. Department of Energy (DOE), and the U.S. Environment Protection Agency (EPA). Established in

317

National program plan for electric vehicle battery research and development  

SciTech Connect

EVs offer the prospect of reducing US petroleum fuel usage and air pollution in major metropolitan areas. In 1987, DOE-EHP commissioned a two-phase study at INEL to produce a national plan for R D on battery technology -- the limiting component in EVs. The battery assessment phase identified the most-promising'' technologies from a comprehensive list of viable EV batteries. This multi-year R D program plan identifies development schedules, milestones, and tasks directed at resolving the critical technical and economic issues for the most-promising developmental batteries: bipolar lead/acid, flow-through lead/acid, iron/air, lithium/iron sulfide, nickel/iron, sodium/metal chloride, sodium/sulfur, zinc/air, and zinc/bromine. 8 refs., 1 fig., 6 tabs.

Henriksen, G.L.; Douglas, D.L.; Warde, C.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA); Douglas (David L.), Inc., Bloomington, MN (USA); Warde Associates, Inc., Greensboro, NC (USA))

1989-08-01T23:59:59.000Z

318

Specific systems studies of battery energy storage for electric utilities  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

1993-08-01T23:59:59.000Z

319

Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement  

SciTech Connect

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150 M/year lead to a 66% chance of achieving a battery that costs less than $200/kWh, and a 20% chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 billion in 2050.

Baker, Erin D.; Chon, Haewon; Keisler, Jeffrey M.

2010-09-01T23:59:59.000Z

320

Exposure to transmission line electric fields during farming operations  

Science Conference Proceedings (OSTI)

This paper describes an analysis of exposure to transmission line electric fields during typical farming operations. This analysis makes use of experimentally determined ''activity factors'' and time budget information for typical farms as compiled by the U.S. Department of Agriculture. A detailed exposure assessment for 18 ''typical farms'' (as defined by USDA) is provided for a base case 345 kV design. Exposure estimates for transmission lines ranging from 115-765 kV are provided for a representative farm.

Silva, M.; Huber, D.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double Layer on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion is used because of its high surface area. Lithium-ion Batteries ·Higher energy density than other

Mellor-Crummey, John

322

Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Ziga, Angel Abusleme and Daniel Soto  

E-Print Network (OSTI)

transport costs. Keywords: solar energy, battery charge, photovoltaic. 1 Introduction Although rangeBattery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Zúñiga, Angel-capacity batteries, it is still difficult to develop an economically viable and socially acceptable EV for massive

Rudnick, Hugh

323

Development and Testing of Commercial Prototype Wind-Electric Battery Charging Station  

SciTech Connect

The technical aspects of charging 12-volt (V) batteries with a small permanent magnet wind-turbine generator suggested that a special battery-charging station be developed. Scientists at the National Renewable Energy Laboratory (NREL) conducted research on several possible configurations of wind-electric battery-charging stations. Based on preliminary modeling and test results, the optimal system for this application was the one with individual charge controllers. This paper presents the development efforts and test results of a commercial prototype wind-electric battery-charging station designed and manufactured by Ascension Technology, a Division of Applied Power Corporation (APC). The system, which is powered by a 3-kilowatt (kW) wind turbine, was tested at the National Wind Technology Center (NWTC). The paper discusses control strategies to improve system performance, and includes recommendations for system integrators based on the testing experience accumulated at the NWTC.

Gevorgian, V.; Corbus, D.; Kern, G.

2000-08-24T23:59:59.000Z

324

The ANL electric vehicle battery R D program for DOE-EHP  

DOE Green Energy (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

Not Available

1990-01-01T23:59:59.000Z

325

The ANL electric vehicle battery R D program for DOE-EHP  

SciTech Connect

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

1990-01-01T23:59:59.000Z

326

Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles  

Science Conference Proceedings (OSTI)

This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

Corbus, D.; Hammel, C.J.; Mark, J.

1993-08-01T23:59:59.000Z

327

ANL's electric vehicle battery activities for USABC. [US Advanced Battery Consortium (USABC)  

DOE Green Energy (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides advanced battery R D; technology transfer to industry; technical analyses, assessments, modeling, and databases; and independent testing and post-test analyses of advanced batteries. These capabilities and services are being offered to the US Advanced Battery Consortium (USABC) and Cooperative Research and Development Agreements (CRADA) are being negotiated for USABC-sponsored work at ANL. A small portion of DOE's cost share for USABC projects has been provided to ANL to continue R D and testing activities on key technologies that were previously supported directly by DOE. This report summarizes progress on these USABC projects during the period of April I through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Lithium/Sulfide Batteries; 2.0 Nickel/Metal Hydride Support 3.0 EV Battery Performance and Life Evaluation.

Not Available

1992-01-01T23:59:59.000Z

328

ANL's electric vehicle battery activities for USABC. [US Advanced Battery Consortium (USABC)  

SciTech Connect

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides advanced battery R D; technology transfer to industry; technical analyses, assessments, modeling, and databases; and independent testing and post-test analyses of advanced batteries. These capabilities and services are being offered to the US Advanced Battery Consortium (USABC) and Cooperative Research and Development Agreements (CRADA) are being negotiated for USABC-sponsored work at ANL. A small portion of DOE's cost share for USABC projects has been provided to ANL to continue R D and testing activities on key technologies that were previously supported directly by DOE. This report summarizes progress on these USABC projects during the period of April I through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Lithium/Sulfide Batteries; 2.0 Nickel/Metal Hydride Support 3.0 EV Battery Performance and Life Evaluation.

1992-01-01T23:59:59.000Z

329

Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report  

DOE Green Energy (OSTI)

This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

1994-01-01T23:59:59.000Z

330

Novel Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles. Tests include both characterization and cycle life and/or calendar life. Tests have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacitance, and the modeling of calendar and cycle life data. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries.

Motloch, Chester George; Batt, J. R.; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn

2001-06-01T23:59:59.000Z

331

Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989  

SciTech Connect

This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

1989-04-01T23:59:59.000Z

332

Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies  

Science Conference Proceedings (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

Neubauer, J.; Brooker, A.; Wood, E.

2012-07-01T23:59:59.000Z

333

Develop nickel--zinc battery suitable for electric vehicle propulsion. Task A: design and cost study  

DOE Green Energy (OSTI)

A three-month design and cost study for the use of nickel--zinc batteries in electric vehicles is presented. Battery configuration is analyzed, and expected performance is set forth. Current development problems concern component materials and capacity decline on cycling, electrolyte maintenance, and thermal characteristics. The manufacturing process is outlined, and estimates are made for cost, materials requirements, capital needs, etc. 61 figures, 24 tables. (RWR)

None

1977-02-15T23:59:59.000Z

334

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

Not Available

2012-06-01T23:59:59.000Z

335

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

336

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

337

Electric power transmission for a Hanford Nuclear Energy Center (HNEC)  

SciTech Connect

The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

Harty, H.; Dowis, W.J.

1983-06-01T23:59:59.000Z

338

Proof-of-concept zinc/bromine electric vehicle battery  

SciTech Connect

At the inception of the contract, Johnson Controls acquired and tested the zinc/bromine battery design developed by Exxon Research and Engineering Corporation (the Z-design) and, with Exxon, determined the key problems in this design: expansion and warping of electrodes, leaking of electrolyte from the battery stack, and excessive self-discharge brought about by transfer of bromine across the separator. The problems of electrode expansion and high self-discharge were mitigated by developing improved electrode and separator materials. Starting in the second year of the contract, JCI developed a new V-design battery stack which used different hardware and tooling to address the problem of stack leakage. The V-design uses thermal welding to achieve a hermetically sealed construction. The flow distribution is improved, and the massive endblocks of the original system have been replaced by thinner, lighter endblocks which are stiffened by means of rigid aluminum honeycomb inserts. Highlights of performance characteristics of batteries built and tested under the contract given. The battery was developed for the ETX-II, a Ford Aerostar minivan. 44 figs., 21 tabs.

Bolsted, J.; Eidler, P.; Miles, R.; Petersen, R.; Yaccarino, K. (Johnson Controls, Inc., Milwaukee, WI (USA). Advanced Battery Engineering); Lott, S. (Sandia National Labs., Albuquerque, NM (USA))

1991-04-01T23:59:59.000Z

339

Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport  

SciTech Connect

The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

2013-07-01T23:59:59.000Z

340

Advanced battery technology for electric two-wheelers in the people's Republic of China.  

DOE Green Energy (OSTI)

This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

Patil, P. G.; Energy Systems

2009-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

342

ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Program Takes an Innovative Approach to Electric Vehicle ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries September 4, 2013 - 1:29pm Addthis Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. Mark D. Mitchell Communications Support Contractor to ARPA-E What are the key facts? ARPA-E's new RANGE Program looks at electric vehicle design from a holistic level. Through RANGE, ARPA-E is working to make EVs cost and performance competitive with internal combustion engines, while also allowing them to

343

Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980  

DOE Green Energy (OSTI)

The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

Not Available

1981-03-01T23:59:59.000Z

344

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J

1992-11-01T23:59:59.000Z

345

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed...

346

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

347

Does EIA have data on the costs for electricity transmission and ...  

U.S. Energy Information Administration (EIA)

EIA does not have data on the costs to build or operate electricity transmission lines and distribution networks. However, ...

348

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

DOE Green Energy (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

349

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents (OSTI)

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

Rouhani, S.Z.

1996-12-03T23:59:59.000Z

350

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

SciTech Connect

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

Rouhani, S. Zia (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

351

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

DOE Green Energy (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

352

A refuelable zinc/air battery for fleet electric vehicle propulsion  

SciTech Connect

We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

Cooper, J.F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K.

1995-04-20T23:59:59.000Z

353

Design and Study on the State of Charge Estimation for Lithium-ion Battery Pack in Electric Vehicle  

Science Conference Proceedings (OSTI)

State of charge (SOC) estimation is an increasingly important issue in battery management system (BMS) and has become a core factor to promote the development of electric vehicle (EV). In addition to offering the real time display of battery parameters ... Keywords: combination algorithm, state of charge (SOC), open circuit voltage (OCV), extended Kalman filtering (EKF), ampere hour (Ah), battery management system (BMS), electric vehicle (EV)

Jie Xu; Mingyu Gao; Zhiwei He; Jianbin Yao; Hongfeng Xu

2009-11-01T23:59:59.000Z

354

The ANL electric vehicle battery R D program for DOE-EHP  

DOE Green Energy (OSTI)

The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

Not Available

1992-01-01T23:59:59.000Z

355

The ANL electric vehicle battery R D program for DOE-EHP  

SciTech Connect

The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

1992-01-01T23:59:59.000Z

356

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *  

E-Print Network (OSTI)

that generation firms have in restructured electricity markets for supporting long-term transmission investments electricity markets, have the incentives to fund or support social-welfare-improving transmission investments.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

357

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators  

E-Print Network (OSTI)

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators F. dell of the truss beam with an electrical transmission line by a line distribution of PZT actuators. It has been modular beams by coupling them with fourth-order electric transmission lines and adding PZT actu- ators

Paris-Sud XI, Université de

358

Electricity Transmission Pricing: How much does it cost to get it wrong?  

E-Print Network (OSTI)

PWP-058 Electricity Transmission Pricing: How much does it cost to get it wrong? Richard Green Channing Way Berkeley, California 94720-5180 www.ucei.berkeley.edu/ucei #12;Electricity Transmission optimal prices for electricity transmission. These are rarely applied in practice. This paper develops

California at Berkeley. University of

359

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.  

DOE Green Energy (OSTI)

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

2006-03-01T23:59:59.000Z

360

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementsuch as cycle life and battery cost and battery managementof the battery. The battery size and cost will vary markedly

Burke, Andrew

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

362

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

363

An assessment of research and development leadership in advanced batteries for electric vehicles  

DOE Green Energy (OSTI)

Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

Bruch, V.L.

1994-02-01T23:59:59.000Z

364

Safety and environmental aspects of zinc--chlorine hydrate batteries for electric-vehicle applications  

DOE Green Energy (OSTI)

Public acceptance of high-performance cost-effective zinc--chlorine hydrate batteries for the random-use electric-vehicle application will require meeting stringent safety and environmental requirements. These requirements revolve mainly around the question of accidental release and spread of toxic amounts of chlorine gas, the only potential hazard in this battery system. Available information in the areas of physiological effects, environmental impact, and governmental regulation of chlorine were reviewed. The design, operation, and safety features of a first commercial electric-vehicle battery were conceived and analyzed from the chlorine release aspect. Two types of accident scenarios were analyzed in terms of chlorine release rates, atmospheric dispersion, health hazard, and possible clean-up operations. The worst-case scenario, a quite improbable accident, involves the spillage of chlorine hydrate onto the ground, while the other scenario, a more probable accident, involves the release of chlorine gas from a ruptured battery case. Heat-transfer and chlorine-dispersion models, developed to analyze these scenarios, establish a firm basis for a comprehenive and factual position statement on this topic. The results of this preliminary study suggest that electric vehicles powered by appropriately designed zinc--chlorine hydrate batteries will pose negligible health or environmental hazards on the nation's streets and highways. 8 figures, 14 tables.

Kodali, S.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.

1978-03-01T23:59:59.000Z

365

Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries  

DOE Green Energy (OSTI)

Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

Corbus, D.; Hammel, C.J.

1995-02-01T23:59:59.000Z

366

Performance and life evaluation of nickel/iron battery technology for dual shaft electric propulsion vehicle  

SciTech Connect

As part of a cost-shared contract between the US Department of Energy (Office of Transportation Systems) and Eaton Corp. to develop an advanced dual shaft electric propulsion (DSEP) vehicle, several nickel/iron (Ni/Fe) batteries were designed and procured from Eagle-Picher Industries (EPI) for evaluation and vehicle use. In March 1986, two individual 5-cell Ni/Fe modules and a 140-cell (28-module) battery pack were delivered to Argonne for evaluation. Performance characterization tests were conducted on the two modules and life testing performed on the battery pack. Module performance testing was completed in early 1987 after about 215 cycles of operation. Each module still retained {approximately}90% of its initial 180-Ah capacity at the end of testing ({approximately}163 Ah/970 Wh). Life evaluation of the 168-V, 28-kWh battery pack was conducted with driving profile discharges. A 1377-s power profile that represented the battery load in a DSEP vehicle undergoing a Federal Urban Driving Schedule (FUDS) was used. Testing was temporarily suspended in October 1987 after the battery pack had accumulated 502 cycles (209 cycles in 1986). After a three-month trickle charge ({approximately}3 A), testing was resumed (January 1988) with driving profile discharges. In March 1988, battery performance was being limited by three modules. After 545 cycles, the three modules were removed from the pack. Battery performance, however, continued to decline and another four modules were removed in September 1988 (645 cycles). Several remaining modules started to exhibit a high self-discharge loss and a capacity of only 119 Ah (15.1 kWh) could be achieved. The life evaluation was halted in October 1988 after 661 cycles had been accumulated. This report outlines the test activities and presents the performance results of the individual modules and the battery pack involved in this technology evaluation. 18 figs., 4 tabs.

DeLuca, W. (ed.)

1990-05-01T23:59:59.000Z

367

National Electric Transmission Congestion Study 2006 Eastern Interconnection Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum To: Poonum Agrawal, David Meyer, U.S. Department of Energy CRA No. D08554-00 From: Prashant Murti, Alex Rudkevich, CRA International Date: Finalized March 13, 2006 Subject: GE MAPS INPUT ASSUMPTIONS: EASTERN INTERCONNECT This memorandum summarizes salient inputs to the CRA locational price forecasting model (GE MAPS). The model geographic footprint encompasses the US portion of the Eastern Interconnect and the Canadian province of Ontario. The analyses simulate the years 2008 and 2011. Primary data sources for the CRA GE MAPS model include the NERC MMWG, the General Electric generation and transmission databases for the Eastern Interconnect, various publications by NERC regions and Independent System Operators, FERC submissions by generation and transmission owners,

368

High-temperature sodium nickel chloride battery for electric vehicles  

DOE Green Energy (OSTI)

Although the sodium-nickel chloride cell couple has a high voltage (2.59 V) and a high specific energy (790 Wh/kg), the performance of present incarnations of this battery tend to be limited by their power. Because the nickel chloride electrode dominates the resistance and weight of the cell, research on this cell couple at Argonne National Laboratory (ANL) has been primarily directed toward improving both the specific power and energy of the NiCl{sub 2} electrodes. During the course of these investigations a major breakthrough was achieved in lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. This improved Ni/NiCl{sub 2} electrode has excellent performance characteristics, wide-temperature operation and fast recharge capability. Modeling studies done on this electrode indicate that a fully developed Na/NiCl{sub 2} battery based on ANL-single tube and bipolar designs would surpass the mid-term and approach the long-term goals of the US Advanced Battery Consortium.

Prakash, J.; Redey, L.; Nelson, P.A.; Vissers, D.R. [Argonne National Lab., IL (United States). Electrotechnical Technology Program

1996-07-01T23:59:59.000Z

369

Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications  

SciTech Connect

ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

2010-10-01T23:59:59.000Z

370

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Green Energy (OSTI)

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

371

The Electricity Transmission System Opportunities to Overcome Key Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities to Overcome Key Challenges Opportunities to Overcome Key Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia November 2, 2012 Breakout Group Discussion Overview Opportunities to Overcome Key Challenges Each of the four breakout groups prioritized the critical issues facing the grid from the list of synthesized challenges identified in the first breakout session of the workshop. Focusing on these top priorities, each group proposed specific R&D activities and initiatives that DOE can pursue to overcome these challenges and address existing gaps. Summary of Synthesized Challenges A. Need improved understanding of the availability, utility, maintenance, exchange, and security of data and associated requirements.

372

Electric Vehicle Battery Testing: It's Hot Stuff! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficiency in a wide range of driving conditions and climates. The next generation of electric-drive cars and light trucks will be required to travel farther on electric power...

373

Test Protocol for System Compatibility of Single-Phase Battery Chargers for Electric Vehicles (SC-320)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 240 V, single-phase residential battery chargers suitable for charging electric vehicles. The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

374

Test Protocol for System Compatibility of Three-Phase Battery Chargers for Electric Vehicles (SC-330)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 480 V, three-phase battery chargers suitable for charging electric vehicles (EVs). The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

375

Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition  

DOE Patents (OSTI)

The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

Carlsten, R.W.; Nissen, D.A.

1973-03-06T23:59:59.000Z

376

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

377

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

378

Conceptual design of a sodium sulfur cell for US electric-van batteries  

DOE Green Energy (OSTI)

A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the ``PB`` cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC`s mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

Binden, P.J. [Beta Power, Inc., Wayne, PA (United States)

1993-05-01T23:59:59.000Z

379

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network (OSTI)

of battery and hydrogen energy storage systems integratedenergy future: comparing hydrogen and electricity transmission, storagethe greater energy storage and quick refueling of hydrogen

Yang, Christopher

2008-01-01T23:59:59.000Z

380

East Bay startup mines for electric car batteries  

Friday, May 14, 2010 | Modified: Monday, May 17, 2010 San Francisco Business Times - by Lindsay Riddell To drive the electric car revolution, ...

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The lithium-ion battery industry for electric vehicles.  

E-Print Network (OSTI)

??Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand.… (more)

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

382

U.S.-China Electric Vehicle and Battery Technology Workshop ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

held in support of the U.S.-China Electric Vehicles Initiative announced by President Obama and China's President Hu Jintao in 2009. Participants engaged in three concurrent...

383

U.S. - China Electric Vehicle and Battery Technology Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag U.S. - China Electric Vehicle Technology Workshop August 30 - September 1, 2010...

384

President Obama Announces $2.4 Billion in Grants to Accelerate the Manufacturing and Deployment of the Next Generation of U.S. Batteries and Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Recovery Act will fund 48 new advanced battery and electric drive components manufacturing and electric drive vehicle deployment projects in over 20 states

385

AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES  

E-Print Network (OSTI)

AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES TIMO REIS Abstract. In this paper a model of linear electrical circuits with transmission lines is de-coupled with the telegraph equations who describe the behavior of the transmission lines. The resulting system of equations

Reis, Timo

386

Firm-based Measurements of Market Power in Transmission-Constrained Electricity  

E-Print Network (OSTI)

Firm-based Measurements of Market Power in Transmission-Constrained Electricity Markets: Technical: Transmission constraints, electricity markets, market power, market power index, residual supply index. 1 approaches to analyzing firm-based market power con- sidering transmission constraints are proposed. One

Baldick, Ross

387

Integrated Decision Algorithms for Auto-steered Electric Transmission System Asset Management  

Science Conference Proceedings (OSTI)

Electric power transmission systems are comprised of a large number of physical assets, including transmission lines, power transformers, and circuit breakers, that are capital-intensive, highly distributed, and may fail. Managing these assets under ... Keywords: Benders decomposition, asset management, condition monitoring, decision algorithms, electric transmission, optimization, service-oriented architecture, software-hardware

James Mccalley; Vasant Honavar; Sarah Ryan; William Meeker; Daji Qiao; Ron Roberts; Yuan Li; Jyotishman Pathak; Mujing Ye; Yili Hong

2007-05-01T23:59:59.000Z

388

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

389

ETX-I: First-generation single-shaft electric propulsion system program: Volume 2, Battery final report  

Science Conference Proceedings (OSTI)

The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ''ac propulsion system'' technology development program. In this context, the term ''propulsion system'' is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume II, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume I.

Not Available

1988-06-01T23:59:59.000Z

390

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

391

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

392

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

393

Lossy Electric Transmission Line Soft Fault Diagnosis: an Inverse Scattering Approach  

E-Print Network (OSTI)

1 Lossy Electric Transmission Line Soft Fault Diagnosis: an Inverse Scattering Approach Huaibin diagnosis is the reflectometry, which consists in analyzing the reflection and the transmission of electric Tang and Qinghua Zhang Abstract--In this paper, the diagnosis of soft faults in lossy electric

Paris-Sud XI, Université de

394

Electricity transmission pricing : how much does it cost to get it wrong?  

E-Print Network (OSTI)

Economists know how to calculate optimal prices for electricity transmission. These are rarely applied in practice. This paper develops a thirteen node model of the transmission system in England and Wales, incorporating ...

Green, Richard

2004-01-01T23:59:59.000Z

395

The Electricity Transmission System Future Vision & Grid Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Vision & Grid Challenges Future Vision & Grid Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia November 1, 2012 Breakout Group Discussion Overview Future Vision and Grid Challenges Each of the four breakout groups identified the key challenges facing the grid as it integrates all of the various technologies that are (or will be) deployed while ensuring a safe, reliable, and cost-effective system as described in the Future Vision. Utilizing the Grid Tech Team framework, each group identified integration challenges through a systems-based discussion that addressed all of the following topics: * Grid Visibility What challenges in the informational domain (sensors and relays, AMIs, PMUs, end-use energy

396

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service COVER SHEET Responsible Agency: U.S. Department of Energy (DOE), Office of Fossil Energy (FE) Cooperating Agencies: U.S. Department of Agriculture Forest Service (USFS), U.S. Department of the Interior Bureau of Land Management (BLM) Title: Tucson Electric Power Company (TEP) Sahuarita-Nogales Transmission Line Final Environmental Impact Statement (EIS) Location: Pima and Santa Cruz Counties, Arizona Contacts: For additional information on this Final Environmental Impact Statement (EIS), contact: For general information on the DOE

397

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service Tucson Electric Power Company Sahuarita-Nogales Transmission Line Final Environmental Impact Statement January 2005 DOE/EIS - 0336 BLM Reference No. AZA 31746 SUMMARY Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service COVER SHEET Responsible Agency: U.S. Department of Energy (DOE), Office of Fossil Energy (FE)

398

Unbundling generation and transmission services for competitive electricity markets  

SciTech Connect

Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

Hirst, E.; Kirby, B.

1998-01-01T23:59:59.000Z

399

Abstract--Three known use-based allocation methods for payments of electricity transmission systems are compared.  

E-Print Network (OSTI)

Abstract-- Three known use-based allocation methods for payments of electricity transmission of the electricity markets. Electricity transmission has economies of scale and scope, making the transmission sector in identifying the transmission lines used by each agent of the system. Electricity flows in accordance

Rudnick, Hugh

400

Preliminary evaluation of regulatory and safety issues for sodium-sulfur batteries in electric vehicle applications  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Electric and Hybrid Vehicle Program is involved in the development and evaluation of sodium-sulfur energy storage batteries for electric vehicle (EV) applications. Laboratory testing of complete battery systems, to be followed by controlled in-vehicle testing and on-road usage, are expected to occur as components of the DOE program during the 1988--1990 time frame. Testing and operation of sodium-sulfur batteries at other DOE contractor facilities may also take place during this time frame. A number of regulatory and safety issues can affect the technical scope, schedule, and cost of the expected programmatic activities. This document describes these issues and requirements, provides a preliminary evaluation of their significance, and lists those critical items that may result from them. The actions needed to permit the conduct of a successful program at DOE contractor facilities are identified, and concerns that could affect the eventual commercialization potential of sodium-sulfur batteries are noted to the extent they are known.

Evans, D.R.; Henriksen, G.L.; Hunt, G.L.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An SCR inverter with an integral battery charger for electric vehicles  

SciTech Connect

A thyristor-based inverter/charger for use in electric passenger vehicles is described, and prototype charger test results are presented. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The integral charger employs the inverter commutation components as a resonant ac/dc converter rated at 3.6 kW. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25kWh propulsion battery in 8 h from a 220-V ac line. Charger efficiency and power factor at an output power of 3.6 kW are 86 and 95 percent, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132-V propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. The combined ac inverter/charger package weighs 47 kg (103 lb).

Thimmesch, D.

1985-07-01T23:59:59.000Z

402

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

DOE Green Energy (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

403

Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-09-01T23:59:59.000Z

404

Analyzing strategic behaviors in electricity markets via transmission-constrained residual demand.  

E-Print Network (OSTI)

??This dissertation studies how to characterize strategic behaviors in electricity markets from a transmission-constrained residual demand perspective. This dissertation generalizes the residual demand concept, widely… (more)

Xu, Lin

2010-01-01T23:59:59.000Z

405

Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Transmission ,... ,...vc- "' ""'\ S I r;. Dr. Jerry Pell, CCM Principal NEP A Document Manager Permitting, Siting, and Analysis (OE-20) Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1 000 Independence A venue SW Washington, D.C. 20585-0001 Subject: Champlain Hudson Power Express Project Submittal of Amendment Application Dear Dr. Pell: February 28, 2012 On January 25, 2010, Transmission Developers, Inc. ("TDI") submitted on behalf of Champlain Hudson Power Express, Inc. ("CHPEI") an application to the U.S. Department of Energy ("DOE") for a Presidential Permit ("Application) in connection with the Champlain Hudson Power Express project ("Project"). The Application proposed to connect clean sources

406

A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles.  

E-Print Network (OSTI)

??In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised.… (more)

Lam, L.

2011-01-01T23:59:59.000Z

407

US Recovery Act Smart Grid Projects - Electric Transmission Systems | Open  

Open Energy Info (EERE)

American_Transmission_Company_LLC_II_Smart_Grid_Project\" American_Transmission_Company_LLC_II_Smart_Grid_Project\" title=\"American Transmission Company LLC II Smart Grid Project\">American Transmission Company LLC II Smart Grid Project","title":"American Transmission Company LLC II Smart Grid Project","link":null,"lat":43.0116784,"lon":-88.2314813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""},{"text":"Transmission_Company_LLC_Smart_Grid_Project\" title=\"American Transmission Company LLC Smart Grid Project\">American

408

Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979  

DOE Green Energy (OSTI)

The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

Rajan, J.B. (comp.) [comp.

1980-06-01T23:59:59.000Z

409

Control System Design and Transmission Line Resonance Elimination of a 3-Phase Battery Charger.  

E-Print Network (OSTI)

??This paper addresses two problems which may occur during the operation of a MTM-HF traction battery charger produced by the company MicroPower AB: Firstly, high-power… (more)

Barela, Krzysztof

2012-01-01T23:59:59.000Z

410

Conflicting Investment Incentives in Electricity Transmission Enzo Sauma, Student Member, IEEE and Shmuel S. Oren, Fellow, IEEE  

E-Print Network (OSTI)

1 Conflicting Investment Incentives in Electricity Transmission Enzo Sauma, Student Member, IEEE illustrates the potential existence of conflicting incentives concerning electricity transmission investment, this principle is not always true in deregulated electricity systems, where transfers are not always feasible

411

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

412

Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978  

DOE Green Energy (OSTI)

This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

Not Available

1979-10-01T23:59:59.000Z

413

DOE EAC Electricity Adequacy Report. Transmission Section - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

414

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

415

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

416

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

417

Wireless Sensor Network for Electric Transmission Line Monitoring  

SciTech Connect

Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8)

Alphenaar, Bruce

2009-06-30T23:59:59.000Z

418

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

419

Integral inverter/battery charger for use in electric vehicles. Final report  

SciTech Connect

The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components as a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95%, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92 to 94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

Thimmesch, D.

1983-09-01T23:59:59.000Z

420

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

422

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *  

E-Print Network (OSTI)

that generation firms have in restructured electricity markets for supporting long-term transmission investments electricity markets, have the incentives to fund or support incremental social-welfare-improving transmission.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

423

Forced cooling of underground electric power transmission lines : design manual  

E-Print Network (OSTI)

The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

Brown, Jay A.

1978-01-01T23:59:59.000Z

424

Randomized flow model and centrality measure for electrical power transmission network analysis  

E-Print Network (OSTI)

1 Randomized flow model and centrality measure for electrical power transmission network analysis. Centrality measures can then be coherently defined. An example of application to an electrical power transmission system is presented. Acknowledgements This work has been partially funded by the Foundation pour

425

Maximal network reliability with optimal transmission line assignment for stochastic electric power networks via genetic algorithms  

Science Conference Proceedings (OSTI)

This study proposes a genetic algorithm based method integrating the minimal paths and the recursive sum of disjoint products to find maximal network reliability with optimal transmission line assignment for a stochastic electric power network. In our ... Keywords: Genetic algorithm, Maximal network reliability, Recursive sum of disjoint products, Stochastic electric power network, Transmission line assignment

Yi-Kuei Lin; Cheng-Ta Yeh

2011-03-01T23:59:59.000Z

426

THE COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COUNCIL OF STATE GOVERNMENTS COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT LEGISLATIVE BRIEFING Background and Summary Background and Need The siting of interstate transmission lines has long been a problem that has vexed both states and the federal government. With the expected growth in electricity demand, coupled with the need to bring renewable energy to market and the necessity to enhance and secure the nation's energy infrastructure, the need for added transmission capacity has never been more apparent. National need and parochial interests, however, often do not align and have led to an underdeveloped and overstressed electricity transmission system.

427

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

DOE Green Energy (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

428

Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels  

SciTech Connect

This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

1994-11-01T23:59:59.000Z

429

Electric Utility Transmission and Distribution Line Engineering Program  

Science Conference Proceedings (OSTI)

Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

Peter McKenny

2010-08-31T23:59:59.000Z

430

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

431

Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries  

DOE Green Energy (OSTI)

The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

1995-09-01T23:59:59.000Z

432

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

433

Electricity transmission congestion costs: A review of recent reports  

E-Print Network (OSTI)

Making Competition Work in Electricity. John Wiley and Sons.Report on the New York Electricity Markets. June. Patton,Market Report: New York Electricity Markets. April. PJM (PJM

Lesieutre, Bernard C.; Eto, Joseph H.

2003-01-01T23:59:59.000Z

434

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

Science Conference Proceedings (OSTI)

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

435

Evaluation of a new type stable nickel-zinc battery for electric vehicle application. Final report  

SciTech Connect

This report describes discharge-recharge cycle testing of 14 nickel-zinc storage battery cells of a proprietary design. This testing was to obtain performance data on new types of stabilized nickel-zinc battery cells for possible electric vehicle applications. The test sample cells were manufactured by Electrochimica Corporation (ELCA) in two sizes (15 ampere-hours and 225 ampere-hours) with a total of seven different internal combinations. The cells completed up to 470 cycles when testing was halted due to funding limitations. Near the end of testing, the cells were providing 40% of nominal capacity when discharged to 1.2 volts and 58 to 73% when discharged in two steps to 1.0 volt.

Not Available

1985-07-26T23:59:59.000Z

436

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling 29 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March 15, 2012 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Why think about recycling?  Material scarcity alleviated

437

Converting Site Electricity to Include Generation and Transmission...  

U.S. Energy Information Administration (EIA) Indexed Site

Evaluation of Electricity Consumption in the Manufacturing Division The energy intensities presented in this report do not reflect adjustments for losses in electricity generation...

438

Electricity transmission congestion costs: A review of recent reports  

E-Print Network (OSTI)

in wholesale electricity trade, and enable consumers to seekelectricity markets rely on offer-based, centralized, wholesale tradeas reported in the trade press. These electricity hub prices

Lesieutre, Bernard C.; Eto, Joseph H.

2003-01-01T23:59:59.000Z

439

Battery technology for electric and hybrid vehicles: Expert viewsabout prospects for advancement. Under Review at Technological Forecasting and Social Change  

E-Print Network (OSTI)

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150M/yr lead to a 66 % chance of achieving a battery that costs less than $200/kWh, and a 20 % chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 Billion in 2050.

Erin Baker; Jeffrey Keisler

2009-01-01T23:59:59.000Z

440

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Updating the Electric Grid: An Introduction to Non-Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

system is in the interest of the country as a whole.1 However, decisions to implement new transmission lines may face significant cost, environmental, and public acceptance...

442

EPRI-GTC Overhead Electric Transmission Line Siting Methodology  

Science Conference Proceedings (OSTI)

This report explains and documents a standardized process that utilities could use to improve the way transmission line routes are evaluated and selected.

2006-02-06T23:59:59.000Z

443

Electric Transmission Network: A Multi-Region Analysis, The  

Reports and Publications (EIA)

This paper examines the ability of the existing transmission network to respond efficiently to increased trade over four reliability regions in the northeastern United States.

Robert T. Eynon

2000-08-01T23:59:59.000Z

444

The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990  

DOE Green Energy (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

Not Available

1990-12-31T23:59:59.000Z

445

User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications  

DOE Green Energy (OSTI)

DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

1990-06-01T23:59:59.000Z

446

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Second annual final report  

SciTech Connect

This report documents the performance from October 1985 through September 1986 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction batteries. This second annual report includes the addition of four new batteries and the termination of two sets. The purpose of this field test activity is to provide an impartial evaluation and comparison of battery performance in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. Battery performance data is typically presented on the basis of specific energy versus accumulated vehicle mileage and vehicle driving range over fixed operating cycle (35 mi/h) constant speed (SAE J227a ''C'' Cycle). Data is analyzed statistically with variable conditions normalized. The life-cycle is terminated when a battery system's measured capacity drops below 60 percent of rating (at the 2-hour rate) and/or after 25 percent of the battery modules have been replaced. 120 figs., 2 tabs.

Blickwedel, T.W.; Whitehead, G.D.; Thomas, W.A.

1987-12-01T23:59:59.000Z

447

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

448

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEP Sahuarita-Nogales Transmission Line Final EIS TEP Sahuarita-Nogales Transmission Line Final EIS 2-4 Figure 2.1-1. Close-up of Alternative Study Corridors Near Sahuarita and Green Valley. Chapter 2- Proposed Action and Alternatives 2-5 Figure 2.1-2. Close-up of Alternative Study Corridors Near Amado. TEP Sahuarita-Nogales Transmission Line Final EIS 2-6 Figure 2.1-3. Close-up of Alternative Study Corridors Near Nogales. TEP Sahuarita-Nogales Transmission Line Final EIS 2-8 Figure 2.1-4. Western Corridor on the Coronado National Forest. Chapter 2-Proposed Action and Alternatives 2-13 Figure 2.1-5. Central Corridor on the Coronado National Forest. Chapter 2-Proposed Action and Alternatives 2-15 Figure 2.1-6. Crossover Corridor on the Coronado National Forest. TEP Sahuarita-Nogales Transmission Line Final EIS

449

Electric Field Sensor Array for Node Localization on Two-Dimensional Signal Transmission Sheet  

E-Print Network (OSTI)

Electric Field Sensor Array for Node Localization on Two-Dimensional Signal Transmission Sheet Kei). In the method, the sensor node determines its own position by reading the electric field patterns above scanning. In this paper, firstly we introduce the method. Then we describe the structure of an electric

Shinoda, Hiroyuki

450

Electricity Markets and Policy Group Energy Analysis Department The Cost of Transmission for Wind  

E-Print Network (OSTI)

Electricity Markets and Policy Group · Energy Analysis Department 1 The Cost of Transmission Lawrence Berkeley National Laboratory February 2009 #12;Electricity Markets and Policy Group · Energy Implications and Future Work #12;Electricity Markets and Policy Group · Energy Analysis Department 3 Motivation

451

Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge  

DOE Green Energy (OSTI)

The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

1980-01-25T23:59:59.000Z

452

Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

Barsukov, Igor V.

2002-12-10T23:59:59.000Z

453

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy densitypresent study. The lithium-ion battery technology used for

Burke, Andrew

2009-01-01T23:59:59.000Z

454

A NEW CONCEPT IN AN ELECTRICALLY RECHARGEABLE ZINC-AIR ALKALINE BATTERY  

E-Print Network (OSTI)

Study of a New Zinc-Air Battery Concept Using Flowingdiagram of the zinc-air battery single cell prototype usedDivision . Presented at the Battery and Electrochemical

Ross, P.N.

2010-01-01T23:59:59.000Z

455

An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles  

E-Print Network (OSTI)

±metal hydride (NiMH) battery costs, several di€erent ``in other cases. The battery cost per mile is low in partstorage energy ± and hence battery cost ± required to supply

Delucchi, Mark; Lipman, Timothy

2001-01-01T23:59:59.000Z

456

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

defined as when the battery capacity decreases by 20% fromdiscern a decrease in battery capacity (decrease in range)capacity. The test results, which are summarized in Table 7, indicate that both battery

Burke, Andrew

2009-01-01T23:59:59.000Z

457

Definition of a Balancing Point for Electricity Transmission Contracts  

E-Print Network (OSTI)

exchanges of electricity”, Report for the European Commission, Directorate-General Energy and Transport Institute of Power Systems and Power Economics (IAEW) and CONSENTEC Consulting fur Energiewirtschaft und -technik, Aachen, “Analysis of Electricity...

Olmos, Luis; Neuhoff, Karsten

2004-06-16T23:59:59.000Z

458

Electricity transmission congestion costs: A review of recent reports  

E-Print Network (OSTI)

Market Report: New York Electricity Markets. April. PJM (PJM Interconnection, LLC).2002. PJM Interconnection State of the Market Report 2001.

Lesieutre, Bernard C.; Eto, Joseph H.

2003-01-01T23:59:59.000Z

459

Battery Electric Vehicles: Range Optimization and Diversification for the U.S. Drivers  

DOE Green Energy (OSTI)

Properly selecting the driving range is critical for accurately predicting the market acceptance and the resulting social benefits of BEVs. Analysis of transportation technology transition could be biased against battery electric vehicles (BEV) and mislead policy making, if BEVs are not represented with optimal ranges. This study proposes a coherent method to optimize the BEV driving range by minimizing the range-related cost, which is formulated as a function of range, battery cost, energy prices, charging frequency, access to backup vehicles, and the cost and refueling hassle of operating the backup vehicle. This method is implemented with a sample of 36,664 drivers, representing U.S. new car drivers, based on the 2009 National Household Travel Survey data. Key findings are: 1) Assuming the near term (2015) battery cost at $405/kWh, about 98% of the sampled drivers are predicted to prefer a range below 200 miles, and about 70% below 100 miles. The most popular 20-mile band of range is 57 to77 miles, unsurprisingly encompassing the Leaf s EPA-certified 73-mile range. With range limited to 4 or 7 discrete options, the majority are predicted to choose a range below 100 miles. 2) Found as a statistically robust rule of thumb, the BEV optimal range is approximately 0.6% of one s annual driving distance. 3) Reducing battery costs could motivate demand for larger range, but improving public charging may cause the opposite. 4) Using a single range to represent BEVs in analysis could significantly underestimate their competitiveness e.g. by $3226/vehicle if BEVs are represented with 73-mile range only or by $7404/BEV if with 150-mile range only. Range optimization and diversification into 4 or 7 range options reduce such analytical bias by 78% or 90%, respectively.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

460

Abstract--This paper proposes an optimization based method of planning reactive power control for electric transmission  

E-Print Network (OSTI)

for electric transmission systems to endow them with the capability of being reconfigured to a secure of the electric transmission system. There are three basic options for strengthening transmission systems: (1-term planning to strengthen transmission capability is necessary to increase future reliability levels

Kumar, Ratnesh

Note: This page contains sample records for the topic "batteries electricity transmission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electricity transmission congestion costs: A review of recent reports  

E-Print Network (OSTI)

Transmission Grid Study. FERC (Federal Energy RegulatoryLuong and Udi Helman (FERC), Frances Wood (Onlocation),ii Acronyms CAISO CRR DOE ECP FERC FTR ISO ISO-NE LMP MW MWh

Lesieutre, Bernard C.; Eto, Joseph H.

2003-01-01T23:59:59.000Z

462

Power electronics in electric utilities: HVDC power transmission systems  

SciTech Connect

High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

Nozari, F.; Patel, H.S.

1988-04-01T23:59:59.000Z

463

Electricity transmission: an overview of the current debate  

E-Print Network (OSTI)

, FERC, pursued the implementation of a Standard Market Design and encouraging larger Regional Transmission Organisations to facilitate efficient trade over wider areas and transmission investment. In Europe, under prompting from the European... will soon be) implemented in some variation in several states in the US (e.g. PJM, New York, New England, Texas and California) and is a cornerstone of FERC’s proposed Standard Market Design. For short-run congestion management there is agreement that a...

Brunekreeft, Gert; Neuhoff, Karsten; Newbery, David

2006-03-14T23:59:59.000Z

464

Dynamics of electrical transmission at club endings on the Mauthner cells Alberto E. Peredaa,*, John E. Rashb  

E-Print Network (OSTI)

Review Dynamics of electrical transmission at club endings on the Mauthner cells Alberto E. Peredaa, the club endings, have historically provided a window for the study of electrical transmission data show that electrical transmission at these terminals is mediated by connexin35 (Cx35), the fish

Rash, John E.

465

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

466

Research and development of advanced nickel-iron batteries for electric vehicle propulsion  

DOE Green Energy (OSTI)

The purpose of this program has been to develop and demonstrate an advanced nickel-iron battery suitable for use in electric vehicles. During the course of this contract various steps and modification have been taken to improve Nickel-Iron battery performance while reducing cost. Improvement of the nickel electrode through slurry formulations and substrate changes, as seen with the fiber electrode, were investigated. Processing parameters for impregnation and formation were also manipulated to improve efficiency. Impregnation saw the change of anode type from platinized titanium to the consumable nickel anode. Formation changes were also made allowing for doubled processing capabilities of positive electrodes, a savings in both time and money. A final design change involved the evolution of the NIF-200 from the NIF-220. This change permitted the use of 1.2 mm iron electrodes and maintained the necessary performance characteristics for electric vehicle propulsion. Emphasis on a pilot plant became the main focus during the late 1989--90 period. The pilot plant facility would be a culmination of the program providing the best product at the lowest price.

Not Available

1991-01-01T23:59:59.000Z

467

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

468

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

469

Secretary Chu Announces Efforts to Strengthen U.S. Electric Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Announces Efforts to Strengthen U.S. Electric Chu Announces Efforts to Strengthen U.S. Electric Transmission Networks Secretary Chu Announces Efforts to Strengthen U.S. Electric Transmission Networks December 18, 2009 - 12:00am Addthis Washington, DC-Energy Secretary Steven Chu announced today award selections for $60 million in funding from the American Recovery and Reinvestment Act to support transmission planning for the country's three interconnection transmission networks. The 6 awards will promote collaborative long-term analysis and planning for the Eastern, Western and Texas electricity interconnections, which will help states, utilities, grid operators, and others prepare for future growth in energy demand, renewable energy sources, and