Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Applied Battery Research  

Broader source: Energy.gov [DOE]

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

2

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

3

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

4

Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

5

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

6

Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries  

E-Print Network [OSTI]

in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle applications. One way to improve the energy density of a battery is to use high specific capacity materials, e

Boyer, Edmond

7

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

8

Vehicle Technologies Office Merit Review 2014: The Voltage Fade Project, A New Paradigm for Applied Battery Research  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new approach to the challenge of voltage fade in batteries for plug-in electric vehicles.

9

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

10

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

11

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

12

Overview of Applied Battery Research  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

13

Overview of Applied Battery Research  

Broader source: Energy.gov (indexed) [DOE]

to investigate SEI layers formed via the use of electrolyte additives Conduct second-level TLVT tests using commercial cells to further validate TLVT test protocols Cell...

14

Overview of Applied Battery Research  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

15

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

16

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

17

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

18

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

19

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

20

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

22

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

23

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

24

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

25

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

26

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

27

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

28

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

29

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

30

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

31

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

32

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

33

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

34

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

35

Finger wear detection for production line battery tester  

DOE Patents [OSTI]

A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

Depiante, E.V.

1997-11-18T23:59:59.000Z

36

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine  

E-Print Network [OSTI]

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated Accepted 9 July 2014 Available online 17 July 2014 Keywords: Li-ion batteries Thermal shutdown Polyethylene binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR

Sottos, Nancy R.

37

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

38

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

39

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

40

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

42

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

43

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

44

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

45

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

46

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

47

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

48

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

49

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

50

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

51

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

52

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

53

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

54

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

55

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

56

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

57

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

58

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

59

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

60

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

62

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

63

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

64

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

65

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

66

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network [OSTI]

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

67

Students race lithium ion battery powered cars in Pantex competition |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

68

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

69

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

70

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

71

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

72

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

73

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

74

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

75

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

76

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

77

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

78

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

79

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

80

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

82

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

83

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

84

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

85

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

86

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

87

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

88

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

89

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

90

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

91

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

92

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

93

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

94

R&D 100: Battery Technology Goes Viral | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Battery Technology Goes Viral Battery Technology Goes Viral R&D 100: Battery Technology Goes Viral July 24, 2013 - 3:55pm Addthis By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

95

R&D 100: Battery Technology Goes Viral | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Battery Technology Goes Viral Battery Technology Goes Viral R&D 100: Battery Technology Goes Viral July 24, 2013 - 3:55pm Addthis By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

96

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

97

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

98

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

99

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect (OSTI)

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

100

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

102

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

103

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

104

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

105

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

106

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

107

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

108

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

109

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

110

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

111

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

112

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

113

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

114

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

115

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

116

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

117

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

118

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

119

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

120

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

122

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

123

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

124

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

125

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

126

Overview and Progress of the Applied Battery Research (ABR) Activity  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

127

Overview and Progress of the Applied Battery Research (ABR) Activity  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

128

Overview and Progress of the Applied Battery Research (ABR) Activity  

Broader source: Energy.gov (indexed) [DOE]

Annual Merit Review & Peer Evaluation Meeting 2012 U.S. Department of Energy Hydrogen and Fuel Cells Program and Vehicle Technologies Program 2 of 20 Vehicle Technologies Program...

129

Overview and Progress of the Applied Battery Research (ABR) Activity  

Broader source: Energy.gov (indexed) [DOE]

w) FEC 0.05 to 2V Binders tested: -poly(vinylidenefluoride) (PVDF) -poyacrylic acid (PAA) -sodium alginate -poly(amine imide) (PAI) -carboxymethyl cellusoe (CMC)...

130

WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste  

SciTech Connect (OSTI)

Highlights: • We analyse 26.1 Mg of residual waste from 3129 Danish households. • We quantify and characterise misplaced WEEE and portable batteries. • We compare misplaced WEEE and batteries to collection through dedicated schemes. • Characterisation showed that primarily small WEEE and light sources are misplaced. • Significant amounts of misplaced batteries were discarded as built-in WEEE. - Abstract: A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other western European countries as well.

Bigum, Marianne, E-mail: mkkb@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljøvej 113, 2500 Kgs. Lyngby (Denmark); Petersen, Claus, E-mail: claus_petersen@econet.dk [Econet A/S, Strandboulevarden 122, 5, 2100 København Ø (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljøvej 113, 2500 Kgs. Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljøvej 113, 2500 Kgs. Lyngby (Denmark)

2013-11-15T23:59:59.000Z

131

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

132

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

133

Pulse width modulation inverter with battery charger  

DOE Patents [OSTI]

An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

Slicker, James M. (Union Lake, MI)

1985-01-01T23:59:59.000Z

134

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

135

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

136

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

137

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

138

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

139

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

140

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

142

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

143

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

144

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

145

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

146

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J. S.; Pesaran, A.

2013-01-01T23:59:59.000Z

147

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

148

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

149

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

150

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

151

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

152

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

153

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

154

Resynthesis of LiCo1?xMnxO2 as a cathode material for lithium secondary batteries  

Science Journals Connector (OSTI)

A recycling process involving chemical, mechanical, and electrochemical steps has been applied to recover cobalt from spent lithium ion batteries and resynthesize cathode active materials. LiCo1?xMnxO2...powders ...

Soo-Kyung Kim; Dong-Hyo Yang; Jeong-Soo Sohn…

2012-04-01T23:59:59.000Z

155

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

156

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

157

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

158

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

159

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

160

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

162

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

163

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

164

Flow Batteries for Microfluidic Networks: Configuring An Electroosmotic Pump for Nonterminal Positions  

Science Journals Connector (OSTI)

In this work we develop a flow battery (or pressure power supply) to address this issue. ... A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a ?EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the ?EOP. ... An external high voltage is applied to this outlet?inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP’s inlet and the ?EOP’s outlet (the flow battery’s inlet and outlet) are grounded. ...

Chiyang He; Joann J. Lu; Zhijian Jia; Wei Wang; Xiayan Wang; Purnendu K. Dasgupta; Shaorong Liu

2011-03-04T23:59:59.000Z

165

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

166

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

167

Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics  

Science Journals Connector (OSTI)

Abstract A pseudo two-dimensional mathematical model is developed for a lithium ion battery, integrating the elementary reaction based solid-electrolyte interphase (SEI) growth model with multiple transport processes. The model is validated using the experimental data. Simulation results indicate that the operating temperature has great effect on the SEI layer generation and growth. Under different charging–discharging rates, it is found that high charging–discharging rate can intensify the battery capacity fading process. Different cooling conditions are then applied and show that enhanced surface convective cooling condition can effectively slow down the battery capacity fading. After that, the effect of electrolyte salt concentration and exchange current density are studied. It is found that raising the electrolyte salt concentration can improve the diffusion property of lithium ions, and stabilize the battery performance under lithium ion consumption induced resistance rising. It also suggests that improving exchange current density could greatly decrease the lithium ion battery capacity fading.

Yuanyuan Xie; Jianyang Li; Chris Yuan

2014-01-01T23:59:59.000Z

168

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

170

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

171

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

172

Design and simulation of lithium rechargeable batteries  

SciTech Connect (OSTI)

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

173

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

174

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

175

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

176

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

177

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

178

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

179

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

180

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network [OSTI]

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

182

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

183

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

184

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

185

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

186

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

187

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

188

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

189

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

190

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

191

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

192

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

193

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

194

Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets  

Science Journals Connector (OSTI)

Abstract A passive thermal management system (TMS) for LiFePO4 battery modules using phase change material (PCM) as the heat dissipation source to control battery temperature rise is developed. Expanded graphite matrix and graphite sheets are applied to compensate low thermal conductivity of PCM and improve temperature uniformity of the batteries. Constant current discharge and mixed charge-discharge duties were applied on battery modules with and without PCM on a battery thermal characteristics test platform. Experimental results show that PCM cooling significantly reduces the battery temperature rise during short-time intense use. It is also found that temperature uniformity across the module deteriorates with the increasing of both discharge time and current rates. The maximum temperature differences at the end of 1C and 2C-rate discharges are both less than 5°C, indicating a good performance in battery thermal uniformity of the passive TMS. Experiments on warm-keeping performance show that the passive TMS can effectively keep the battery within its optimum operating temperature for a long time during cold weather uses. A three dimensional numerical model of the battery pack with the passive TMS was conducted using ANSYS Fluent. Temperature profiles with respect to discharging time reveal that simulation shows good agreement with experiment at 1C-discharge rate.

Chunjing Lin; Sichuan Xu; Guofeng Chang; Jinling Liu

2014-01-01T23:59:59.000Z

195

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

196

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

197

Batteries as they are meant to be seen | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

198

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

199

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network [OSTI]

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

200

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

202

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

203

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

204

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

205

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

206

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

207

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

208

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

209

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

210

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

211

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

212

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

213

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

214

NREL: Transportation Research - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

215

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

216

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

217

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

218

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

219

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

220

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

By losing their shape, material fails batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

222

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

223

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

224

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

225

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

226

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers [EERE]

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

227

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

228

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

229

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

230

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

231

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

232

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

233

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

234

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

235

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Broader source: Energy.gov (indexed) [DOE]

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

236

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

237

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect (OSTI)

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

238

Pioneering battery maker files for bankruptcy  

Science Journals Connector (OSTI)

... Ultimately, the fate of US battery makers will remain tied to that of the electric car itself. And for now, no battery technology can compete cost-wise with the internal ... cost-wise with the internal combustion engine. “The outlook in the near future for electric cars does not look that promising,” says Daniel Scherson, an electrochemist at Case Western ...

Devin Powell

2012-10-24T23:59:59.000Z

239

Battery Stack-on Process Improvement  

E-Print Network [OSTI]

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

240

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network [OSTI]

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Argonne Transportation - Lithium Battery Technology Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

242

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Towards Safer Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

244

The BATINTREC process for reclaiming used batteries  

SciTech Connect (OSTI)

The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

Xia Yueqing; Li Guojian

2004-07-01T23:59:59.000Z

245

Multi-cell storage battery  

DOE Patents [OSTI]

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

246

CX-011746: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Bettergy Corp. - Low Cost Solid State Battery for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 10/25/2013 Location(s): New York Offices(s): Advanced Research Projects Agency-Energy

247

CX-011749: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Ceramatec, Inc. - Advanced Planar Li/S Battery CX(s) Applied: B3.6 Date: 10/31/2013 Location(s): Utah, Illinois, Texas Offices(s): Advanced Research Projects Agency-Energy

248

CX-011748: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Purdue University - Crash Safety of Batteries for Passenger Vehicle CX(s) Applied: B3.6 Date: 11/06/2013 Location(s): Indiana Offices(s): Advanced Research Projects Agency-Energy

249

CX-011745: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

The Pennsylvania State University - POWERPANELS: Multifunctional Composites with Lithium-Ion Battery Cores CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Pennsylvania Offices(s): Advanced Research Projects Agency-Energy

250

CX-009188: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

(0675-1578) Robert Bosch LLC - Advanced Battery Management System CX(s) Applied: B3.6 Date: 09/11/2012 Location(s): California, Michigan, California Offices(s): Advanced Research Projects Agency-Energy

251

CX-010564: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Palo Alto Research Center Incorporated - Printed Integral Batteries CX(s) Applied: B3.6 Date: 01/23/2013 Location(s): California, California Offices(s): Advanced Research Projects Agency-Energy

252

CX-011379: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Solid Power, LLC--An Ultra High Energy, Safe and Low-Cost All Solid-State Rechargeable Battery for Electric Vehicles CX(s) Applied: B3.6 Date: 10222013...

253

CX-008963: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

High Energy Batteries for Electric Vehicles CX(s) Applied: B5.1 Date: 08/03/2012 Location(s): California Offices(s): National Energy Technology Laboratory

254

CX-007700: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination University of Utah - A New Generation High Density Thermal Battery Based on Advanced Metal Hydrides CX(s) Applied: A9, B3.6 Date: 11182011...

255

CX-009141: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Manufacturing of Protected Lithium Electrodes for Advanced Lithium Air, Water, and Batteries CX(s) Applied: A9, B3.6 Date: 09/04/2012 Location(s): California Offices(s): Golden Field Office

256

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network [OSTI]

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

257

Understanding human-battery interaction on mobile phones  

Science Journals Connector (OSTI)

Mobile phone users have to deal with limited battery lifetime through a reciprocal process we call human-battery interaction (HBI). We conducted three user studies in order to understand HBI and discover the problems in existing mobile phone designs. ... Keywords: batteries, human-battery interaction, mobile phones, power management

Ahmad Rahmati; Angela Qian; Lin Zhong

2007-09-01T23:59:59.000Z

258

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

259

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a “fuel” tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

260

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies  

Science Journals Connector (OSTI)

Abstract Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.

Tao Wang; K.J. Tseng; Jiyun Zhao; Zhongbao Wei

2014-01-01T23:59:59.000Z

262

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

263

Applied Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science Applied Science Correlation of predicted and measured iron oxidation states in mixed iron oxides H. D. Rosenfeld and W. L. Holstein Development of a quantitative measurement of a diesel spray core using synchrotron x-rays C.F. Powell, Y. Yue, S. Gupta, A. McPherson, R. Poola, and J. Wang Localized phase transformations by x-ray-induced heating R.A. Rosenberg, Q. Ma, W. Farrell, E.D. Crozier, G.J. Soerensen, R.A. Gordon, and D.-T. Jiang Resonant x-ray scattering at the Se edge in ferroelectric liquid crystal materials L. Matkin, H. Gleeson, R. Pindak, P. Mach, C. Huang, G. Srajer, and J. Pollmann Synchrotron-radiation-induced anisotropic wet etching of GaAs Q. Ma, D.C. Mancini, and R.A. Rosenberg Synchrotron-radiation-induced, selective-area deposition of gold on

264

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

265

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

266

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

267

APPLICATIONS – PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250 W carried by entire squads and smaller fuel cells in the range of 25 W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tübke; M. Krausa

2009-01-01T23:59:59.000Z

268

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodium–sulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

269

Role of Recycling in the Life Cycle of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

270

Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O{sub 2} batteries  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Doped polypyrrole as cathode catalysts for Li-O{sub 2} batteries. • Polypyrrole has an excellent redox capability to activate oxygen reduction. • Chloride doped polypyrrole demonstrated an improved catalytic performance in Li-O{sub 2} batteries. - Abstract: Polypyrrole conducting polymers with different dopants have been synthesized and applied as the cathode catalyst in Li-O{sub 2} batteries. Polypyrrole polymers exhibited an effective catalytic activity towards oxygen reduction in lithium oxygen batteries. It was discovered that dopant significantly influenced the electrochemical performance of polypyrrole. The polypyrrole doped with Cl{sup ?} demonstrated higher capacity and more stable cyclability than that doped with ClO{sub 4}{sup ?}. Polypyrrole conducting polymers also exhibited higher capacity and better cycling performance than that of carbon black catalysts.

Zhang, Jinqiang; Sun, Bing [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Chengyin [College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002 (China); Wang, Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia)

2013-12-15T23:59:59.000Z

271

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

272

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

273

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

274

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

275

Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600 °C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g?1 before modification to 160.8 mAh g?1 after modification for the first discharge at the rate of 2 C. After 200 charge–discharge cycles, when discharge rate was increased from 2 C to 5 C to 10 C, modified battery capacity was reduced from 152.4 mAh g?1 to 127.9 mAh g?1 to 106 mAh g?1. When the ratio was reduced from 10 C to 5 C to 2 C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning.

Lei Qiu; Ziqiang Shao; Mingshan Yang; Wenjun Wang; Feijun Wang; Long Xie; Shaoyi Lv; Yunhua Zhang

2013-01-01T23:59:59.000Z

276

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Recycling of Li-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

279

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

From corrosion to batteries: Electrochemical interface studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

282

Studies On Advanced Lead-Acid Batteries.  

E-Print Network [OSTI]

??Subsequent to the studies on precursor lead-acid systems by Daniel, Grove and Sindesten, practical lead-acid batteries began with the research and inventions of Raymond Gaston… (more)

Martha, Surendra Kumar

2005-01-01T23:59:59.000Z

283

Sulphur back in vogue for batteries  

Science Journals Connector (OSTI)

... densities and relative safety are more important than the thousands of charge cycles a commercial electric car requires. Researchers do not expect to see a commercial lithium–sulphur battery before the ...

Richard Van Noorden

2013-06-26T23:59:59.000Z

284

Memorandum to DOE re Battery Chargers  

Broader source: Energy.gov [DOE]

We are following up on our meeting with DOE on August 7, 2014.  During the meeting, several topics were identified as warranting further investigation as related to battery chargers,  including...

285

NREL: Energy Storage - Isothermal Battery Calorimeters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

286

A monolithically integrated thermo-adsorptive battery .  

E-Print Network [OSTI]

??A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150… (more)

McKay, Ian Salmon

2014-01-01T23:59:59.000Z

287

How Advanced Batteries Are Energizing the Economy  

Broader source: Energy.gov [DOE]

Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

288

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

289

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

290

USABC Battery Separator Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

291

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

292

High-discharge-rate lithium ion battery  

DOE Patents [OSTI]

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

293

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

294

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It all began in 2001, when three NREL researchers took their thin-film It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers knew that lithium batteries tended to degrade quickly because the fragile lithium metal anode was on the top of the battery, where any cracks in the encapsulant could lead to rapid failure. The team developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte, made of lithium phosphorous oxynitride (LiPON), then the cathode, a metal oxide. Lithium is typically intercalated (chemically trapped) within the cathode material. Placing an initial charge on the battery causes the lithium ions to migrate out of the cathode

295

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

296

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

297

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

298

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

299

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

300

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts  

Science Journals Connector (OSTI)

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts ... Aqueous Rechargeable Li and Na Ion Batteries ...

Eunjoo Yoo; Haoshen Zhou

2011-03-25T23:59:59.000Z

302

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

303

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

304

BatPRO: Battery Manufacturing Cost Estimation | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type...

305

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network [OSTI]

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

306

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

307

Shida Battery Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries with applications that include e-bikes. References: Shida Battery Technology Co,...

308

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a stub. You can...

309

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

310

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

311

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes  

E-Print Network [OSTI]

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes Huigang Zhang Supporting Information ABSTRACT: Silicon-based lithium ion battery anodes are attracting significant during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix

Braun, Paul

312

Meeting regarding DOE Energy Conservations Standards for Battery  

Broader source: Energy.gov [DOE]

Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers.  The DOE battery charger efficiency regulations cover only consumer...

313

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

314

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

315

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

316

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

317

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

318

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

319

Efficient Lithium-Ion Battery Pack Electro-Thermal Simulation  

Science Journals Connector (OSTI)

A methodology to derive a computational efficient electro-thermal battery pack model is showed. It is taken ... up of three orders of magnitude for the thermal part. The electrical battery model is implemented an...

L. Kostetzer

2014-01-01T23:59:59.000Z

320

Determining the environmental and thermal characteristics of coke oven batteries  

Science Journals Connector (OSTI)

A method is proposed for assessing the environmental and thermal characteristics of coke oven batteries and is tested for coke oven batteries 1 and 5 at OAO Zaporozhkoks. On ... the basis of data for the environm...

E. I. Toryanik; A. L. Borisenko; A. S. Malysh; A. A. Lobov…

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Thermophysical Properties of Lithium Alloys for Thermal Batteries  

Science Journals Connector (OSTI)

Thermal batteries are electrochemical systems primarily used in defense ... . The current state-of-the art for thermal batteries relies upon the Li/FeS2...couple for power generation with the anode typically an L...

Geoffrey A. Swift

2011-10-01T23:59:59.000Z

322

Thermal runaway of valve-regulated lead-acid batteries  

Science Journals Connector (OSTI)

Valve-regulated lead-acid (VRLA) batteries that have aged on a float charge at constant voltage occasionally suffer from thermal runaway. Operating conditions for a VRLA battery have been simulated by changing th...

Junmei Hu; Yonglang Guo; Xuechou Zhou

2006-10-01T23:59:59.000Z

323

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

324

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network [OSTI]

??Batteries are used on-board vehicles for broadly two applications – starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery… (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

325

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

326

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

327

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

328

Water and Gold: A Promising Mix for Future Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

329

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

330

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

331

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

332

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

333

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

334

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

335

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

336

Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover  

SciTech Connect (OSTI)

A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

Deligiannis, F.; Frank, H.; Staniewicz, R.J.; Willson, J. [SAFT America, Inc., Cockeysville, MD (United States)

1996-02-01T23:59:59.000Z

337

NREL: News Feature - NREL Battery Testing Capabilities Get a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery module consisting of 12 cylindrical lithium ion cells. The unit was tested for Saft America as part of a DOEFreedomCAR project. Credit: Pat Corkery The battery research...

338

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

339

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Batteries - Beyond Lithium Ion Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

342

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

343

Composite Battery Boost | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Like Properties of Soft Nanoparticle Suspensions Water-Like Properties of Soft Nanoparticle Suspensions Real-Time Capture of Intermediates in Enzymatic Reactions A New Multilayer-Based Grating for Hard X-ray Grating Interferometry The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Composite Battery Boost December 2, 2013 Bookmark and Share Normalized XANES spectra of Li/Se cell during cycling. Black line is the battery voltage profile. New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to

344

Iron-air battery development program  

SciTech Connect (OSTI)

The progress and status of the research and development program on the iron-air advanced technology battery system at the Westinghouse Electric Corporation during the period June 1978-December 1979 are described. This advanced battery system is being developed for electric vehicle propulsion applications. Testing and evaluation of 100 cm/sup 2/ size cells was undertaken while individual iron and air electrode programs continued. Progress is reported in a number of these study areas. Results of the improvements made in the utilization of the iron electrode active material coupled with manufacturing and processing studies related to improved air electrodes continue to indicate that a fully developed iron-air battery system will be capable of fulfilling the performance requirements for commuter electric vehicles.

Buzzelli, E.S.; Liu, C.T.; Bryant, W.A.

1980-05-01T23:59:59.000Z

345

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2014-07-01T23:59:59.000Z

346

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

347

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

348

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

349

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of...

350

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

351

Abuse Testing of High Power Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

352

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Broader source: Energy.gov [DOE]

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

353

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

354

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

355

Battery Calendar Life Estimator Manual Modeling and Simulation  

SciTech Connect (OSTI)

The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

2012-10-01T23:59:59.000Z

356

Making better batteries with metal oxide & graphene composites  

ScienceCinema (OSTI)

Learn how PNNL and Princeton scientists create better materials for batteries, materials that assemble on their own into durable nanocomposites.

None

2012-12-31T23:59:59.000Z

357

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Broader source: Energy.gov [DOE]

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

358

October 29 ESTAP Webinar: Flow Battery Basics (Part 2)  

Broader source: Energy.gov [DOE]

On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and technological readiness.

359

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

360

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

of 3D battery fabrication using (a) a solid-state LiCoO 2of 3D battery fabrication using (a) a solid-state LiCoO 2a solid-state silica matrix, which means that more battery

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...long research and development path. Fig. 4...the anode and a cathode consisting of...lithium battery cathodes . J. Electrochem...tetrahydroxybenzoquinone: Toward the development of a sustainable...battery research and development . J. Electrochem...Rechargeable alkali-ion cathode-flow battery...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

362

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network [OSTI]

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

363

Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries  

Science Journals Connector (OSTI)

Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. ... New developments in the chem. of secondary and flow batteries as well as regenerative fuel cells are also considered. ...

Richard Y. Wang; Colin D. Wessells; Robert A. Huggins; Yi Cui

2013-10-22T23:59:59.000Z

364

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

365

Life-Cycle Methods for Comparing Primary and Rechargeable Batteries  

Science Journals Connector (OSTI)

If battery materials are recycled, the recovered metals may be used in the production of new batteries, or they may be used for another secondary application. ... fuels ... The converted fuel equivalent demand is about 49 times less for rechargeable batteries than for primary ones. ...

Rebecca L. Lankey; Francis C. McMichael

2000-04-25T23:59:59.000Z

366

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

367

Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

vanadium redox flow battery; anion exchange membrane; ion exchange capacity; cycling performance; power density ... All electrochemical measurements were conducted using a fully automated redox flow battery testing system (Scribner 857 Redox Flow Cell System). ... Characteristics of a new all-vanadium redox flow battery ...

Dongyang Chen; Michael A. Hickner; Ertan Agar; E. Caglan Kumbur

2013-06-25T23:59:59.000Z

368

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

369

U.S. Battery R&D Progress and Plans  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power & Capacity Increase Life Improvement VTO Battery R&D Activities 10-100 mAh cells 0.5 - 1.0 Ah cells 5 - 40 + Ah cells 5 Battery R&D Progress Plug-In Battery Cost (per...

370

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network [OSTI]

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

371

Rebalancing electrolytes in redox flow battery systems  

DOE Patents [OSTI]

Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

Chang, On Kok; Pham, Ai Quoc

2014-12-23T23:59:59.000Z

372

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

373

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network [OSTI]

Wh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower profile used for this study Fixed Power System Parameters The diesel and inverter were both sizedThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS

374

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

375

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect (OSTI)

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

376

Li-Ion and Other Advanced Battery Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

377

Washington: Battery Manufacturer Brings Material Production Home  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

378

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

379

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

380

Alternative battery systems for transportation uses  

ScienceCinema (OSTI)

Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

Michael Thackeray

2013-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

No Moore’s Law for batteries  

Science Journals Connector (OSTI)

...nature’s ideal fuel. A full tank of gasoline...ourselves from powering cars with gasoline. There...is still a fossil fuel, and hydrogen can presently be produced...why not power our cars this way? We already...electrolytes. A D-cell battery stores more...

Fred Schlachter

2013-01-01T23:59:59.000Z

382

Flexible Bio-battery February 7, 2013  

E-Print Network [OSTI]

Flexible Bio-battery Materials Thursday February 7, 2013 12:30pm - 1:30pm Talk by Dr. W.H. Katie at Washington State University (WSU), and 2012 International Visiting Research Scholar with the Peter Wall elastic and superior ionic conductive solid polymer electrolytes (SPEs) are prerequisite

Handy, Todd C.

383

Towards a lithium-ion fiber battery  

E-Print Network [OSTI]

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

384

The Utility Battery Storage Systems Program Overview  

SciTech Connect (OSTI)

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

385

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

386

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

active material for Li-ion battery, Fe2OF4. ElectrochemistryIron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-raymaterials for Li-ion battery……………………………133 8.2. P2 type

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

387

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

388

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect (OSTI)

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

389

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

390

TransForum - Special Issue: Batteries - August 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

391

US Advanced Battery Consortium USABC | Open Energy Information  

Open Energy Info (EERE)

US Advanced Battery Consortium USABC US Advanced Battery Consortium USABC Jump to: navigation, search Name US Advanced Battery Consortium (USABC) Place Southfield, Michigan Zip 48075 Sector Vehicles Product Michigan-based, research consortium focused on R&D of advanced energy systems for electric vehicles. References US Advanced Battery Consortium (USABC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Advanced Battery Consortium (USABC) is a company located in Southfield, Michigan . References ↑ "US Advanced Battery Consortium (USABC)" Retrieved from "http://en.openei.org/w/index.php?title=US_Advanced_Battery_Consortium_USABC&oldid=352587" Categories: Clean Energy Organizations

392

Energy Conservation Standards for Battery Chargers and External Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and External Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed with DOE. Apple_ex_parte_communication.pdf More Documents & Publications Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

393

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

394

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

395

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

396

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

397

Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals  

DOE Patents [OSTI]

A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

2014-01-21T23:59:59.000Z

398

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

399

Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells  

Science Journals Connector (OSTI)

Abstract Lithium ion (Li-ion) batteries are promising power sources for hybrid powertrain systems, and the thermal management of batteries has been identified as a critical issue both for safety and efficiency concerns. This work studied thermal management of a Li-ion battery module both experimentally and computationally. A battery module consisting of multiple cells was fabricated and experimentally tested in a wind tunnel facility. Systematic tests were performed under various flow velocities, charging and discharging current, and module configuration. Computationally, a high-fidelity two dimensional computational fluid dynamics (CFD) model was developed to capture the detailed dynamics of thermal management of the cells. Temperature rise of cells and pressure measurements were recorded in the experiments, and compared with CFD model simulations. Reasonable agreement was obtained, confirming the validity of the model. The validated model was then applied to study the power consumption required by the thermal management system. The results obtained in this combined experimental and numerical study are expected to be valuable for the optimized design of battery modules and the development of reduced-order models.

Fan He; Xuesong Li; Lin Ma

2014-01-01T23:59:59.000Z

400

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information · Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It stores electricity in plastic. Plastic batteries are the most radical innovation in commercial batteries since the dry cell was introduced in 1890. Plastic batteries offer higher capacity, higher voltage, and longer shelf-life than many competitive designs. Companies are testing new shapes and configurations, including flat batteries, that can be bent like cardboard. Researchers expect that the new technology will free electronic designers from many of the constraints imposed by metal batteries such as limited recharging cycles, high weight, and high cost.

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect (OSTI)

Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

2014-01-15T23:59:59.000Z

402

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network [OSTI]

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1 , and Peter Kofinas2 1 Department to an all solid- state polymer battery. Such a battery would have greater safety, without potential, the search for an all solid-state battery has continued. Research on polymeric materials for batteries has

Kofinas, Peter

403

Lightweight, durable lead-acid batteries  

DOE Patents [OSTI]

A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

Lara-Curzio, Edgar (Lenoir City, TN); An, Ke (Knoxville, TX); Kiggans, Jr., James O. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Contescu, Cristian I. (Knoxville, TN); Baker, Frederick S. (Oak Ridge, TN); Armstrong, Beth L. (Clinton, TN)

2011-09-13T23:59:59.000Z

404

Lightweight, durable lead-acid batteries  

SciTech Connect (OSTI)

A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

2013-05-21T23:59:59.000Z

405

Process to produce lithium-polymer batteries  

DOE Patents [OSTI]

A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

MacFadden, K.O.

1998-06-30T23:59:59.000Z

406

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Rate-dependent morphology of Li2O2 growth in Li-O2 batteries  

E-Print Network [OSTI]

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.

Horstmann, B; Mitchell, R; Bessler, W G; Shao-Horn, Y; Bazant, M Z

2013-01-01T23:59:59.000Z

408

A three-dimensional model for negative half cell of the vanadium redox flow battery  

Science Journals Connector (OSTI)

A stationary, isothermal, three-dimensional model for negative half cell of the vanadium redox flow battery is developed, which is based on the comprehensive conservation laws, such as charge, mass and momentum, together with a kinetic model for reaction involving vanadium species. The model is validated against the results calculated by the available two-dimensional model. With the given geometry of the negative half cell, the distributions of velocity, concentration, overpotential and transfer current density in the sections that are perpendicular and parallel to the applied current are studied. It is shown that the distribution of the electrolyte velocity in the electrode has significant impact on the distribution of concentration, overpotential and transfer current density. The lower velocity in the electrode will cause the higher overpotential, further result in the side reaction and corrosion of key materials locally. The development of the design of the vanadium redox flow battery is discussed, and the further research is proposed.

Xiangkun Ma; Huamin Zhang; Feng Xing

2011-01-01T23:59:59.000Z

409

Battery using a metal particle bed electrode  

DOE Patents [OSTI]

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

410

A Look Inside SLAC's Battery Lab  

SciTech Connect (OSTI)

In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

Wei Seh, Zhi

2014-07-17T23:59:59.000Z

411

Thermal fuse for high-temperature batteries  

DOE Patents [OSTI]

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

412

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

413

Technology Analysis - Battery Recycling and Life Cycle Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

414

NREL: News Feature - Award-Winning Battery's Secret is 'Buried'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Award-Winning Battery's Secret is 'Buried' Award-Winning Battery's Secret is 'Buried' September 11, 2009 Photo of three men in a laboratory. In the background is a glovebox. NREL scientists Ed Tracy, left, Roland Pitts, right, and Dane Gillaspie, rear, pose in the lab where they continue to work on improving the award-winning buried-anode battery. Credit: Joe Poellot An innovative microbattery based on a National Renewable Energy Laboratory team's inspired digression is already bringing home major awards. But those involved with the buried anode thin-film rechargeable battery's ongoing development say the technology holds greatest promise as a building block for big batteries powering automobiles and storing power generated by wind, solar and other renewable energy systems. The PowerPlane UX, a coin-cell-sized battery produced by Planar Energy

415

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

416

Remember the Batteries - and Maybe a Charger? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? December 21, 2010 - 11:20am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Happy holidays, everyone! No matter what holidays you observe in December, chances are you are getting gifts for someone. Yes, okay, that's a little crude-there's a whole lot more to any of the holidays than gifts-but chances are, you got something, or got something for someone. And some of those somethings probably need batteries. Back when I was much younger, batteries were one of the crucial elements of Christmas. We'd get a ton of toys, and then someone would have to have the foresight to buy a bunch of batteries. And while my family is blessed with someone who plans so thoroughly that we had a mighty stockpile of every

417

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network [OSTI]

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

419

The Salty Science of the Aluminum-Air Battery  

Science Journals Connector (OSTI)

Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries1 in which metal reacts with oxygen in the air in order to generate free electrons which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using coppercathode aluminum anode and saltwater.

Stephanie V. Chasteen; N. Dennis Chasteen; Paul Doherty

2008-01-01T23:59:59.000Z

420

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

422

Vanadium Flow Battery for Energy Storage: Prospects and Challenges  

Science Journals Connector (OSTI)

Vanadium Flow Battery for Energy Storage: Prospects and Challenges ... Her work involves investigating the strategy to improve the stability of electrolytes for the vanadium flow battery. ... Dr. Huamin Zhang currently is a tenured Professor at Dalian Institute of Chemical Physics, Chinese Academy of Science; he serves as the head of the energy storage division and chief scientist of the 973 National Project on Flow Battery. ...

Cong Ding; Huamin Zhang; Xianfeng Li; Tao Liu; Feng Xing

2013-03-28T23:59:59.000Z

423

EV Everywhre Grand Challenge - Battery Status and Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Grand Challenge Battery Status and Cost Reduction Prospects July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S....

424

Sodium cobalt bronze batteries and a method for making same  

DOE Patents [OSTI]

A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode. A method is provided for producing same.

Doeff, Marca M. (Hayward, CA); Ma, Yanping (Berkeley, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard (Lafayette, CA)

1999-01-01T23:59:59.000Z

425

Leading experts to speak at battery & energy storage technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading experts to speak at battery & energy storage technology conference adipex for sale Speakers from US Department of Energy, academia and industry to meet November 5th in...

426

Ex Parte Communication Memorandum re Computer and Battery Back...  

Energy Savers [EERE]

of the Department of Energy to discuss coverage of computers and backup batteries. Ex Parte Memo re Computers More Documents & Publications Ex Parte Communication...

427

Meeting on Battery Chargers and External Power Supplies | Department...  

Energy Savers [EERE]

for Energy Conservation Standards for Battery Chargers and External Power Supplies, BatteriesandExternalPowerSupplies.pdf More Documents & Publications Ex Parte Communication...

428

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

429

Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

430

Overview and Progress of the Batteries for Advanced Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

431

Characterization of Materials for Li-ion Batteries: Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion...

432

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

433

Three Angles on PEV Battery Second Use (Presentation)  

SciTech Connect (OSTI)

This presentation looks at three aspects of the second use of PEV batteries: Competitive technology, revenue streams, and supply and demand.

Neubauer, J.; Pesaran, A.

2011-10-01T23:59:59.000Z

434

EV Everywhere Batteries Workshop - Pack Design and Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the...

435

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

436

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

437

Vorbeck Materials Licenses Graphene-based Battery Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America Energy Storage Energy Storage Return to Search Vorbeck Materials Licenses Graphene-based Battery Technologies Pacific Northwest National Laboratory Testing materials in...

438

Costs of lithium-ion batteries for vehicles  

SciTech Connect (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

439

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office...

440

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EV Everywhere Grand Challenge- Battery Workshop attendees list  

Broader source: Energy.gov [DOE]

Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

442

EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

443

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

444

Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that...

445

Taking Battery Technology from the Lab to the Big City  

SciTech Connect (OSTI)

Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

2013-07-29T23:59:59.000Z

446

NREL: Energy Storage - Innovative Way to Test Batteries Fills...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prototypes to a commercial product," said Ahmad Pesaran, manager of NREL's Battery and Energy Storage Research Group. "NETZSCH has a proven track record of developing and...

447

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network [OSTI]

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

448

Thermal Electrochemical Dynamic Modeling of Sealed Lead Acid Batteries.  

E-Print Network [OSTI]

??Limitations to battery technology ranks second as the most vital problem facing the electronic and mechanical engineering industry in the future. The life span and… (more)

Siniard, Kevin

2009-01-01T23:59:59.000Z

449

Alloys as Anode Materials in Magnesium Ion Batteries.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of the possible application of magnesium alloys forfuture magnesium-ion batteries. It investigates dierent alloys and characterizesthem with respect… (more)

Syvertsen, Alf Petter

2012-01-01T23:59:59.000Z

450

Batteries: Direct-write Microbatteries for Microelectronic Devices  

E-Print Network [OSTI]

Batteries: Direct-write Microbatteries for Microelectronic Devices Mesoscale electrochemical charge and ultra- capacitors have a minimal heat signature, generate no noise, and have no moving parts, so

Arnold, Craig B.

451

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network [OSTI]

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

452

Team Led by Argonne National Lab Selected as DOE's Batteries...  

Office of Environmental Management (EM)

combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances in battery...

453

Stable Separator Identified for High-Energy Batteries | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Materials for Energy Stable Separator Identified for High-Energy Batteries November 04, 2014 A combination of carbon coating and cryo-STEM technique enables atomic level...

454

Request for Information on Evaluating New Products for the Battery...  

Broader source: Energy.gov (indexed) [DOE]

and External Power Supply Rulemaking - Ex Parte Communication List of topics that Apple Inc. discussed with DOE RFIEvaluating New ProductsBattery Chargers & External Power...

455

EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects  

Broader source: Energy.gov [DOE]

Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

456

Battery Thermal Modeling and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf More Documents & Publications NREL Battery Thermal and Life Test Facility...

457

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

458

Nuclear Batteries with Tritium and Promethium-147 Radioactive Sources.  

E-Print Network [OSTI]

??Long-lived power supplies for remote and even hostile environmental conditions are needed for space and sea missions. Nuclear batteries can uniquely serve this role. In… (more)

Yakubova, Galina N.

2010-01-01T23:59:59.000Z

459

Impact of Battery Management on Fuel Efficiency Validity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

460

High Voltage Electrolytes for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

* Funding for FY12 * 250K Timeline Budget Barriers * Argonne National Laboratory * Saft Batteries * U of Texas, Austin * U of Utah * U of Maryland Partners * SOA electrolytes...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

462

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

463

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

464

Fact #607: January 25, 2010 Energy and Power by Battery Type  

Broader source: Energy.gov [DOE]

Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific...

465

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

466

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

4) Lithium Battery Cathode. Electrochemical and Solid-StateBattery Electrodes Utilizing Fibrous Conductive Additives. Electrochemical and Solid-Statesolid state, these effects can become limiting in some systems. 1.3 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

467

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates  

Science Journals Connector (OSTI)

Flexible graphene-based lithium ion batteries with ultrafast charge and...and flexible lithium ion battery made from graphene foam, a three-dimensional...and flexible lithium ion battery made from graphene foam, a three-dimensional...

Na Li; Zongping Chen; Wencai Ren; Feng Li; Hui-Ming Cheng

2012-01-01T23:59:59.000Z

468

A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered  

Science Journals Connector (OSTI)

Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of ... results show that the combination of lead-acid batteries or lithium-ion batteries

Chung-Hsing Chao; Jenn-Jong Shieh

2013-01-01T23:59:59.000Z

469

Computational battery dynamics (CBD)--electrochemical/thermal coupled modeling and multi-scale modeling  

E-Print Network [OSTI]

Computational battery dynamics (CBD)--electrochemical/thermal coupled modeling and multi the development of first-principles based mathematical models for batteries developed on a framework parallel to computation fluid dynamics (CFD), herein termed computational battery dynamics (CBD). This general

470

Failure Analysis of Power Battery Under High Environment Temperatures in Impact Test  

Science Journals Connector (OSTI)

The impact tests of the power battery were performed at 40 and 65 °C ... circuit, the heat can accumulate inside the battery, and those accumulated heat can lead to thermal runaway and even battery burning and ex...

Hongwei Wang; Haiqing Xiao; Yanling Fu…

2013-01-01T23:59:59.000Z

471

Stress fields in hollow core–shell spherical electrodes of lithium ion batteries  

Science Journals Connector (OSTI)

...core-shell spherical electrodes of lithium ion batteries Yingjie Liu 1 Pengyu Lv...System, Department of Mechanics and Engineering Science, College of Engineering...structure design of electrodes of lithium ion batteries. lithium ion battery...

2014-01-01T23:59:59.000Z

472

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

Lithium Ion Batteries", Materials Science and Engineering R,Ion Batteries", as it appears in Materials Science and EngineeringIon Batteries", as it appears in Materials Science and Engineering

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

473

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries  

E-Print Network [OSTI]

Rechargeable lithium-air batteries have the potential to provide ?3 times higher specific energy of fully packaged batteries than conventional lithium rechargeable batteries. However, very little is known about the oxygen ...

Gasteiger, Hubert A.

474

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

475

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

E-Print Network [OSTI]

Ethylene Carbonate in Li-Ion Battery Electrolyte Guoyingof a commercial Li-ion battery electrolyte containing 2 %are an important part of Li-ion battery technology yet their

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

476

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

477

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. THE INFLUENCE OF RELAXATION TIME OF THE CHARGING CHARACTERISTICS  

E-Print Network [OSTI]

need for careful thermal management of battery modules. Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

478

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries ... Lithium battery; cathode; polymer; graphene; nanocomposite ...

Zhiping Song; Terrence Xu; Mikhail L. Gordin; Ying-Bing Jiang; In-Tae Bae; Qiangfeng Xiao; Hui Zhan; Jun Liu; Donghai Wang

2012-03-26T23:59:59.000Z

479

In-situ measurement with fiber Bragg sensors in lithium batteries for safety usage  

Science Journals Connector (OSTI)

Fiber Bragg grating sensors are integrated in lithium batteries to measure temperature variations during batteries operated under normal and abnormal conditions. The thermal...

Yang, Gang; Leitão, Catia; Li, Yuhong; Pinto, João; Jiang, Xuefan

480

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

Note: This page contains sample records for the topic "batteries cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

E-Print Network 3.0 - advanced battery systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Computer Technologies and Information Sciences 3 : Measurement of Battery Capacity in Mobile Robot Systems Summary: RoBM2 : Measurement of Battery Capacity in Mobile...

482

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

binder material for solid-state battery electrodes. The1.10. Proposed new solid-state lithium battery design. The

Patel, Shrayesh

2013-01-01T23:59:59.000Z

483

2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice...  

Broader source: Energy.gov (indexed) [DOE]

Test Procedures for Battery Chargers; Notice of Data Availability 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability This document is a...

484

The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site  

E-Print Network [OSTI]

are lead mining, lead smelting and battery recycling.Areas near Pb recycling facilities may be enriched bysoil with lead. A battery recycling site is a location where

Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

2009-01-01T23:59:59.000Z

485

Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery.  

E-Print Network [OSTI]

??In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery… (more)

Kim, Baejung

2013-01-01T23:59:59.000Z

486

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network [OSTI]

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

487

The design and construction of a cryostat for thermal battery investigations.  

E-Print Network [OSTI]

??A test cryostat was constructed to investigate the potential of a locally made thermal battery. A thermal battery is proposed to be a useful component… (more)

Swann, Brett Matthew.

2011-01-01T23:59:59.000Z

488

Adaptive Estimation of Thermal Dynamics and Charge Imbalance in Battery Strings.  

E-Print Network [OSTI]

??Effective battery management relies on accurate monitoring of battery states, including temperature, state of charge, and voltage among others. The large number of cells used… (more)

Lin, Xinfan

2014-01-01T23:59:59.000Z

489

E-Print Network 3.0 - area nike battery Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system for electricity in poor rural areas - battery brigades. In many parts... of Africa, for example, the first source of electricity has been car batteries, which are...

490

E-Print Network 3.0 - aqueous rechargeable battery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system for electricity in poor rural areas - battery brigades. In many parts... of Africa, for example, the first source of electricity has been car batteries, which are...

491

Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island  

Science Journals Connector (OSTI)

Abstract This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote areas.

Tao Ma; Hongxing Yang; Lin Lu

2014-01-01T23:59:59.000Z

492

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

493

Method for improving voltage regulation of batteries, particularly Li/FeS/sub 2/ thermal batteries  

DOE Patents [OSTI]

Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS/sub 2/ system.

Godshall, N.A.

1986-06-10T23:59:59.000Z

494

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

SciTech Connect (OSTI)

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

495

In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications  

SciTech Connect (OSTI)

Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

Daniel A Scherson

2013-03-14T23:59:59.000Z

496

Fe-V redox flow batteries  

DOE Patents [OSTI]

A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-07-08T23:59:59.000Z

497

Redox shuttles for lithium ion batteries  

DOE Patents [OSTI]

Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

2014-11-04T23:59:59.000Z

498

Passivation-free solid state battery  

DOE Patents [OSTI]

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

Abraham, K.M.; Peramunage, D.

1998-06-16T23:59:59.000Z

499

Passivation-free solid state battery  

DOE Patents [OSTI]

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

Abraham, Kuzhikalail M. (Needham, MA); Peramunage, Dharmasena (Norwood, MA)

1998-01-01T23:59:59.000Z

500

Microsoft Word - Vehicle Battery EA_Pyrotek  

Broader source: Energy.gov (indexed) [DOE]

20 20 Environmental Assessment for Pyrotek, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Project, Sanborn, NY April 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment DOE/EA-1720 Pyrotek, Incorporated, Sanborn, NY April 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Pyrotek, Incorporated (Pyrotek), to partially fund the construction of an industrial building; installation of electrically heated furnaces and other production equipment such as conveyors, collectors, screens, and cooling towers required to accomplish the proposed expansion of Pyrotek's graphitization process. The plant expansion would enable the manufacture