Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bath Electric Gas & Water Sys | Open Energy Information  

Open Energy Info (EERE)

Electric Gas & Water Sys Electric Gas & Water Sys Jump to: navigation, search Name Bath Electric Gas & Water Sys Place New York Utility Id 1343 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (20 KW to 75 KW demand) Commercial Industrial (Over 75 KW demand) Industrial Outdoor Lighting (175W MV-150W HPS) Lighting Outdoor Lighting (250W HPS) Lighting Outdoor Lighting (400W MV/HPS) Lighting Residential Residential Small Commercial ( Under 20 KW demand) Commercial

2

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

3

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

4

Electricity and Gas  

Science Journals Connector (OSTI)

As in electricity, the downstream sector of the natural gas business has traditionally been regarded as a ... the two sub-industries: economies of scale, capital-intensiveness and the geographic specificity of as...

Julián Barquín

2013-01-01T23:59:59.000Z

5

Rochester Gas & Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Rochester Gas & Electric Corp (Redirected from RGE) Jump to: navigation, search Name: Rochester Gas & Electric Corp Place: New York References: EIA Form EIA-861 Final Data File for...

6

EA-160 Rochester Gas and Electric Corporation | Department of...  

Broader source: Energy.gov (indexed) [DOE]

60 Rochester Gas and Electric Corporation EA-160 Rochester Gas and Electric Corporation Order authorizing Rochester Gas and Electric Corporation to export electric energy to...

7

Comments of Baltimore Gas & Electric Company | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company BGE comments to DOE addressing policy and logistical challenges Comments of Baltimore Gas & Electric...

8

EA-159 Cincinnati Gas and Electric Corporation | Department of...  

Broader source: Energy.gov (indexed) [DOE]

59 Cincinnati Gas and Electric Corporation EA-159 Cincinnati Gas and Electric Corporation Order authorizing Cincinnati Gas and Electric Corporation to export energy to Canada....

9

Danish Energy Authority Poland -Electricity and gas  

E-Print Network [OSTI]

Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector analyses December 2004 #12;Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector

10

Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Central Hudson Gas and Electric (Electric) - Residential Energy Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Air Sealing: $600 Program Info State New York Program Type Utility Rebate Program Rebate Amount Central AC: $400 - $600, depending on efficiency Air-source Heat Pumps: $400 - $600, depending on efficiency Electronically Commutated Motor (ECM) Furnace Fans: $200 Electric Heat Pump Water Heaters: $400 Programmable Thermostats: $25

11

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

12

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies Provider Energy Efficiency Programs Group Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency Rebate Program. The program is available to all residential NIPSCO natural gas and electric customers. Flat rebates are offered for natural gas boilers, natural gas

13

Applications for Certificates for Electric, Gas, or Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

Electric, Gas, or Natural Gas Electric, Gas, or Natural Gas Transmission Facilities (Ohio) Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio) < Back Eligibility Commercial Developer Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Ohio Program Type Siting and Permitting Provider The Ohio Power Siting Board An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a reference for state and local governments and for the public. The applicant shall provide a statement explaining the need for the

14

Affording Gas and Electricity: Self Disconnection and  

E-Print Network [OSTI]

Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

Feigon, Brooke

15

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

16

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

17

Baltimore Gas and Electric Company (Electric) - Commercial Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas and Electric Company (Electric) - Commercial Energy Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $1,000,000/corporate tax ID/year Commercial Rebates: Contact BGE Retro-Commissioning, Operations, and Maintenance: $15,000 Program Info State Maryland Program Type Utility Rebate Program Rebate Amount New Construction Performance Lighting: $0.40 - $0.80/watt reduced New Construction Green Building Incentive: $0.25 - $0.40/kWh saved first

18

Baltimore Gas and Electric Company (Electric) - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas and Electric Company (Electric) - Residential Energy Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Contact BGE Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Central A/C: $150 - $500 Air Source Heat Pump: $200 - $500 Ductless Mini-Split Heat Pump: $300 Geothermal Heat Pump (Closed Loop): $500 Duct Sealing: $250 Tune-ups: $100 Heat Pump Water Heater: $350 Room A/C: $25

19

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

20

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

22

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

23

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

MGE) Jump to: navigation, search Name: Madison Gas & Electric Co Place: Madison, Wisconsin References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information...

24

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Madison Gas & Electric Co Place: Madison, Wisconsin References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 SGIC3 EIA...

25

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

26

Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate  

Broader source: Energy.gov (indexed) [DOE]

Commercial Lighting Commercial Lighting Rebate Program Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Up to 70% of the equipment cost of a qualified efficiency upgrade Provider Central Hudson Gas and Electric Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam utilizes the services of Lime Energy to install new lighting fixtures with Central Hudson covering up to 70% of the cost. The 30 percent of cost remaining can be financed at

27

The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters  

Science Journals Connector (OSTI)

Abstract In this study a computational procedure for the computation of Joule–Thomson coefficient of natural gas has been developed using fundamental thermodynamic equations and AGA-8 equation of state, and then the minimum possible temperature of the natural gas entering to the pressure regulator of city gate stations (CGS) is calculated. As a case study, a CGS located in Bistoon (of Iran's CGSs) with nominal capacity of 20,000 SCMH has been considered. A comparison has been made between the calculated results and corresponding collected data from the station within 10 months. Results of this study help to determine the minimum temperature values of entering gas with different pressures to the regulator in order to avoid hydrate formation of the outlet gas, and can be used to design appropriate temperature control systems for water bath heaters and in turn save consumed energy for gas heating. The results show that heating the gas up to calculated minimum temperatures can save energy consumption of heaters by 43%. Also, it is indicated that by applying a control system, based on the result of this study, in the CGS the payback period would be less than a year.

Esmail Ashouri; Farzad Veysi; Ehsan Shojaeizadeh; Maryam Asadi

2014-01-01T23:59:59.000Z

28

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

29

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

30

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

31

,,,"Electricity","from Sources",,"Natural Gas","from Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" ,,,,"Electricity",,,"Natural...

32

Auto goes hybrid with gas-electric engine  

Science Journals Connector (OSTI)

Auto goes hybrid with gas-electric engine ... A hybrid automobile, under development for some time by General Electric and others, has been completed. ...

1983-07-18T23:59:59.000Z

33

QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies...  

Energy Savers [EERE]

and General Manager, Brazos Electric Cooperative - Statement Beth Musich, Director Energy Markets and Capacity Products, Southern California Gas Company and San Diego Gas &...

34

Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL  

Energy Savers [EERE]

natural gas power plants to back up increasing amounts of intermittent wind and solar power. Though the electricity and natural gas pipeline industries have operated...

35

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network [OSTI]

An important aspect of the design of cost-effective HVAC systems today is (a) sensitivity to the cost impact of the interplay of utility demand charges, time-of-day rates, gas rates, and gas/electric utility incentive programs vis-à-vis HVAC system...

Meckler, G.

1989-01-01T23:59:59.000Z

36

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

37

Rochester Gas and Electric | Open Energy Information  

Open Energy Info (EERE)

and Electric and Electric Jump to: navigation, search Name Rochester Gas and Electric Address 89 East Avenue Place Rochester, New York Zip 14649 Sector Services Product Green Power Marketer Website http://www.rge.com/ Coordinates 43.156495°, -77.602118° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.156495,"lon":-77.602118,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Pacific Gas and Electric Company to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Google Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Delicious Rank Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

39

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network [OSTI]

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

40

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Vehicle Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on AddThis.com...

42

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Broader source: Energy.gov (indexed) [DOE]

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

43

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

44

Electric, Street Railway, and Gas Corporations (South Dakota) | Department  

Broader source: Energy.gov (indexed) [DOE]

Electric, Street Railway, and Gas Corporations (South Dakota) Electric, Street Railway, and Gas Corporations (South Dakota) Electric, Street Railway, and Gas Corporations (South Dakota) < Back Eligibility Commercial Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Line Extension Analysis Provider South Dakota Public Utilities Commission This legislation contains provisions pertaining to a corporation formed for the purpose of constructing, maintaining and operating a street railway or railways; generating, transmitting or distributing electricity to be sold to or used by the public for heat, light or power manufacturing; or producing, supplying, or transporting natural or artificial gas. The

45

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

46

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

47

Gas storage and separation by electric field swing adsorption  

DOE Patents [OSTI]

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

48

QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Director, Marketing Services, Williams - Northwest Pipeline GP and on behalf of the Western Gas-Electric Regional Assessment Task Force - Written Statement Joe M. Holmes,...

49

Pacific Gas and Electric Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: Pacific Gas and Electric Company Address: PO Box 770000 Place: San Francisco Zip: 94177 Region: United States Sector: Marine and...

50

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

51

,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

52

,"Kansas Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

53

,"Louisiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

54

,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

55

,"Wyoming Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

56

,"Missouri Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

57

,"North Carolina Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

58

,"Michigan Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

59

,"Virginia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

60

,"South Dakota Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

62

,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

63

,"Minnesota Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

64

,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

65

,"Florida Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

66

,"Mississippi Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

67

,"New Jersey Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

68

,"Tennessee Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

69

,"North Dakota Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

70

,"Delaware Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

71

,"Indiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

72

,"Alaska Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

73

,"Pennsylvania Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

74

,"Maryland Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

75

,"Arizona Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

76

,"Connecticut Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

77

,"New Hampshire Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

78

,"Rhode Island Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

79

,"North Dakota Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

80

,"Arkansas Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Alabama Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

82

,"Massachusetts Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

83

,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

84

,"Georgia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

85

,"Nevada Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

86

,"Illinois Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

87

,"Vermont Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

88

,"Oklahoma Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

89

,"New Jersey Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

90

,"Montana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

91

,"Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

92

,"Oregon Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

93

,"North Carolina Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

94

,"Nebraska Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

95

,"Washington Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

96

,"West Virginia Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

97

,"Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

98

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

99

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

100

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Broader source: Energy.gov (indexed) [DOE]

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EA-137-A New York State Electric and Gas Corporation | Department...  

Broader source: Energy.gov (indexed) [DOE]

-A New York State Electric and Gas Corporation EA-137-A New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to export electric...

102

Regulation of Gas, Electric, and Water Companies (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) < Back Eligibility Agricultural Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Public Service Commission The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting considerations for electric

103

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

104

Pacific Gas and Electric Company Presentation by Steve Metague  

Broader source: Energy.gov (indexed) [DOE]

Metague Metague Sr. Director, Project Development Pacific Gas & Electric Co. 2012 National Electric Transmission Congestion Study Western Regional Workshop December 13, 2011 - Portland, Oregon California Transmission Planning Group (CTPG) * CTPG is a voluntary organization comprised of all the entities within California responsible for transmission planning: - California Independent System Operator (ISO) - Imperial Irrigation District (IID) - Los Angeles Department of Water and Power (LADWP) - Pacific Gas and Electric (PG&E) - Southern California Edison (SCE) - Southern California Public Power Authority (SCPPA) - San Diego Gas and Electric (SDG&E) - Sacramento Municipal Utility District (SMUD) - Transmission Agency of Northern California (TANC) - Turlock Irrigation District (TID)

105

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

106

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

107

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network [OSTI]

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado-1712 As demand for electricity increases, investments into new generation capacity from renewable,CaliforniaandtherestoftheWestCoastoftheUnited States started to experience severe shortages of electricity. Investments

Kammen, Daniel M.

108

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

109

Energy Efficiency Fund (Electric and Gas) - Residential New Construction  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Fund (Electric and Gas) - Residential New Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Varies Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount Varies by technology for prescriptive measures and whether the applicant is seeking ENERGY STAR Certification or Home Energy Rating System (HERS)

110

EA-137 NYSEG New York State Electric and Gas Corporation | Department...  

Broader source: Energy.gov (indexed) [DOE]

NYSEG New York State Electric and Gas Corporation EA-137 NYSEG New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to export...

111

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

112

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

113

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

114

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

115

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents [OSTI]

Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

116

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Diego Gas & Electric Co Diego Gas & Electric Co (Redirected from San Diego Gas and Electric Company) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3]

117

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co (Redirected from BGE) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Landing Page www.bge.com/Pages/default Green Button Reference Page www.businesswire.com/news Green Button Implemented Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded

118

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

119

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas and Electric Company) Baltimore Gas and Electric Company) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png

120

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:54:29 PM" "Back to Contents","Data 1: Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

VEA-0008- In the Matter of Cincinnati Gas & Electric Company  

Broader source: Energy.gov [DOE]

This Decision and Order considers an Appeal filed by Cincinnati Gas & Electric Company (CG&E) from a determination issued on December 8, 1997, by the Office of Energy Efficiency and...

122

,"New York Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:52 PM" "Back to Contents","Data 1: New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

123

,"New York Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:52 PM" "Back to Contents","Data 1: New York Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NY2"...

124

,"Connecticut Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:03:36 PM" "Back to Contents","Data 1: Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

125

Public Service Electric & Gas | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

126

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...and conventional gas are not significantly...harmonized estimates of life cycle GHG emissions...unconventional gas used for electricity...combined cycle turbine (NGCC) compared...explanation of the remaining harmonization...evaluated shale gas LCAs: inclusion of missing life cycle stages...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

127

Dynamic behaviour of electric arc gas discharge  

Science Journals Connector (OSTI)

The time-dependent energy and circuit equations are solved numerically to obtain temperature profiles, current-voltage characteristics and electric field strength vs axial temperature diagrams in the asymptoti...

J. Jeništa

1994-01-01T23:59:59.000Z

128

San Diego Gas & Electric Video (Text Version)  

Broader source: Energy.gov [DOE]

Narrator: Having a workplace charging stations is a great way to encourage employees to switch to electric vehicles but there are a few things you may want to consider. There are several companies...

129

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network [OSTI]

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

130

Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy (Gas and Electric) - Residential and Builder Energy Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency Rebate Program Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heating Heat Pumps Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Existing Home Air-source Heat Pump: $200 (home owner); $100 (dealer) Existing Home Geothermal Heat Pump: $200 (homeowner); $100 (dealer) Existing Home Air Conditioner: $200 (home owner); $100 (dealer) Existing Home Gas Furnace: $200 (home owner); $100 (builder) Heat Pump/AC in New Home: $300/heat pump installed (builder)

131

Baltimore Gas and Electric Company - Home Performance with Energy Star  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas and Electric Company - Home Performance with Energy Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates Baltimore Gas and Electric Company - Home Performance with Energy Star Rebates < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate HVAC (Equipment Installation/Duct Sealing/Tune-up): $1,150 Air Sealing/Insulation/Gas Tankless Water Heater: $2,000 Total: $3,150 Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount Comprehensive Home Energy Audit: Reduced cost of $100

132

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or  

E-Print Network [OSTI]

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or system Electricity and Gas: A system used to distribute electricity and gas around the world/certain area, by compromising to minimise costs and generate the most electricity and gas as possible, which maximises profits

Wright, Francis

133

Quantum Heat Bath  

E-Print Network [OSTI]

A model for a quantum heat bath is introduced. When the bath molecules have finitely many degrees of freedom, it is shown that the assumption that the molecules are weakly interacting is sufficient to enable one to derive the canonical distribution for the energy of a small system immersed in the bath. While the specific form of the bath temperature, for which we provide an explicit formula, depends on (i) spectral properties of the bath molecules, and (ii) the choice of probability measure on the state space of the bath, we are in all cases able to establish the existence of a strictly positive lower bound on the temperature of the bath. The results can be used to test the merits of different hypotheses for the equilibrium states of quantum systems. Two examples of physically plausible choices for the probability measure on the state space of a quantum heat bath are considered in detail, and the associated lower bounds on the temperature of the bath are worked out.

Dorje C. Brody; Lane P. Hughston

2014-11-17T23:59:59.000Z

134

Gas and Electricity as Heating Agents1  

Science Journals Connector (OSTI)

... This is a misconception, which was very general also as regards the combustion of solid fuel in furnaces, until it was disproved by Stirling, by Neilson, and by the ... be largely employed, however, for heating purposes, it will have to come down in price; and considering that heating gas need not be highly putified, or possessed of high ...

1881-02-10T23:59:59.000Z

135

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network [OSTI]

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

136

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Gas and Electric Company) Oklahoma Gas and Electric Company) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

137

Louisville Gas and Electric - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Louisville Gas and Electric - Commercial Energy Efficiency Rebate Louisville Gas and Electric - Commercial Energy Efficiency Rebate Program Louisville Gas and Electric - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 per facility per calendar year Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount T5 Fixtures (T12 Replacement): $3 - $12 T5 HO High-Bay Fixtures: $15 - $74 T8 Fixtures: $1 - $16 T8 High-Bay Fixtures: $21 - $34 CFL Hardwired Fixture/Bulb: $4 CFL/LED Bulbs: $2 CFL Highbay Fixture: $35 LED Refrigerated Display Light: $6 LED Interior Lights: $5 - $10

138

MidAmerican Energy (Gas and Electric) - Commercial New Construction  

Broader source: Energy.gov (indexed) [DOE]

MidAmerican Energy (Gas and Electric) - Commercial New Construction MidAmerican Energy (Gas and Electric) - Commercial New Construction Energy-Efficiency Program MidAmerican Energy (Gas and Electric) - Commercial New Construction Energy-Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Solar Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Construction rebates: $0.06-$0.19/kWh saved; $0.60-$1.90/therm saved based on % savings from Iowa Energy Code

139

Louisville Gas and Electric - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Louisville Gas and Electric - Residential Energy Efficiency Rebate Louisville Gas and Electric - Residential Energy Efficiency Rebate Program (Kentucky) Louisville Gas and Electric - Residential Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $300 Refrigerator: $100 Freezer: $50 Clothes Washer: $75 Dishwasher: $50 Window Film: 50% of material cost, up to $200 Central AC: $100, plus $100 for each SEER above minimum federal high efficiency standard Air-Source Heat Pump: $100, plus $100 for each SEER above minimum federal

140

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive |  

Broader source: Energy.gov (indexed) [DOE]

Anaerobic Digester Gas-to-Electricity Rebate and Performance Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Tribal Government Savings Category Bioenergy Maximum Rebate Total Incentive: $2 million (combined production and capacity incentives) Fixed Base + Capacity Incentive: varies, limited to the total maximum incentive of $2 million minus the applicable performance incentive Program Info Funding Source RPS surcharge; NYPA Expiration Date 01/31/2013 State New York Program Type State Rebate Program Rebate Amount Fixed Base Incentive: varies Capacity Incentive: varies Production Incentive: $0.025/kWh production payment for new systems for up

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Efficiency First Fuel Requirement (Gas and Electric) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) < Back Eligibility Investor-Owned Utility Utility Program Info State Massachusetts Program Type Energy Efficiency Resource Standard Provider Massachusetts Energy Efficiency Advisory Council Note: The 2013 Three Year Efficiency Plans have not yet been approved. The process is underway. For the latest draft plan, review the Massachusetts Energy Efficiency Advisory Council [http://www.ma-eeac.org/3%20Year%20Draft%20Plan%20November%202012.htm web site]. This summary will be updated once the Three Year Efficiency Plans have been approved in early 2013. In 2008, Governor Patrick signed a major energy reform bill, the [http://www.malegislature.gov/Laws/SessionLaws/Acts/2008/Chapter169 Green

142

Louisville Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Electric Co Gas & Electric Co Jump to: navigation, search Name Louisville Gas & Electric Co Place Kentucky Utility Id 11249 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ; CSR10-Curtailable Service Rider- Primary voltage Commercial

143

Rochester Gas & Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Rochester Gas & Electric Corp Rochester Gas & Electric Corp Jump to: navigation, search Name Rochester Gas & Electric Corp Place New York Utility Id 16183 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SERVICE CLASSIFICATION NO. 1 - RESIDENTIAL SERVICE RSS (Non-Retail Access

144

Xcel Energy (Gas and Electric) - Business Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy (Gas and Electric) - Business Energy Efficiency Rebate Xcel Energy (Gas and Electric) - Business Energy Efficiency Rebate Programs Xcel Energy (Gas and Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Construction Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Custom Rebates: up to $400/kW saved and up to $5/Dth saved Compressed Air, Data Center, Recommissioning and Optimization Studies: up to $25,000; up to 75% of study cost Lighting: Contact Xcel Motors: 60% of cost Program Info State Minnesota Program Type

145

Energy Efficiency Fund (Electric and Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Fund (Electric and Gas) - Residential Energy Energy Efficiency Fund (Electric and Gas) - Residential Energy Efficiency Financing Energy Efficiency Fund (Electric and Gas) - Residential Energy Efficiency Financing < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Insulation Appliances & Electronics Water Heating Maximum Rebate 20,000 Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type State Loan Program Rebate Amount 2,500 - 20,000 Provider Connecticut Housing Investment Fund Connecticut homeowners and customers of Connecticut Light and Power Company (CL&P), and United Illuminating Company (UI) may apply for up to 100%

146

South Carolina Electric&Gas Co | Open Energy Information  

Open Energy Info (EERE)

Electric&Gas Co Electric&Gas Co Jump to: navigation, search Name South Carolina Electric&Gas Co Place South Carolina Utility Id 17539 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16 (General Service Time-Of-Use) Commercial

147

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

148

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png 100 watt Incandescent Lighting 100000 Lumen 1090 Watt MHR Lighting

149

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company Smart Grid Project and Electric Company Smart Grid Project Jump to: navigation, search Project Lead Oklahoma Gas and Electric Company Country United States Headquarters Location Oklahoma City, Oklahoma Additional Benefit Places Arkansas Recovery Act Funding $130,000,000.00 Total Project Value $357376037 Coverage Area Coverage Map: Oklahoma Gas and Electric Company Smart Grid Project Coordinates 35.4675602°, -97.5164276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co (Redirected from Madison Gas and Electric Company) Jump to: navigation, search Name Madison Gas & Electric Co Place Madison, Wisconsin Utility Id 11479 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cg-3 Commercial Cg-5 Residential

151

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 10 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory January 15, 2011 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 17 Repor t Report Type: Quarterly Starting October 1, 2010 Ending December 31, 2010 Author: John A. Dunbar Baylor University Department of Geology January 15, 2011 DOE Award Number: DE-FC26-06NT142959

152

Effect of copper doping on structural, optical and electrical properties of Cd0·8Zn0·2S films prepared by chemical bath deposition  

Science Journals Connector (OSTI)

Cd 0·8Zn 0·2S:Cu films of 1 ·3–6 ·1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique. The films have been characterized by using XRD, SEM and UV spectrophoto...

K HADASA; G YELLAIAH; M NAGABHUSHANAM

2014-02-01T23:59:59.000Z

153

Electrical Control of Gas Flows in Combustion Processes  

Science Journals Connector (OSTI)

...research-article Electrical Control of Gas Flows in Combustion Processes J. Lawton P. J. Mayo F. J. Weinberg The theory...where they can be used to modify a variety of combustion processes. Theoretical maximum values of the flow parameters...

1968-01-01T23:59:59.000Z

154

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network [OSTI]

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity...

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

155

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 1 - September 30, 2011 July 1 - September 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory October 14, 2011 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 20 Repor t Report Type: Quarterly Starting July 1, 2011 Ending September 30, 2011 Author: John A. Dunbar Baylor University Department of Geology October 14, 2011 DOE Award Number: DE-FC26-06NT142959

158

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 1 - March 31, 2012 January 1 - March 31, 2012 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory April 18, 2012 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 22 Repor t Report Type: Quarterly Starting January 1, 2012 Ending March 31, 2012 Author: John A. Dunbar Baylor University Department of Geology April 18, 2012 DOE Award Number: DE-FC26-06NT142959

160

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Prices of Purchased Electricity, Steam, and Natural Gas" 9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)" ,"-","-----------","-","-----------","-","-","-","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

162

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

163

Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity, Steam, and Natural Gas by Type" Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",," ------------------------------------",,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

164

Shale-gas scheduling for natural-gas supply in electric power production  

Science Journals Connector (OSTI)

Abstract This paper describes a novel integration of shale-gas supply in geographical proximity to natural-gas power production. Shale-gas reservoirs hold special properties that make them particularly suited for intermittent shut-in based production schemes. The proposed scheme argues that shale-gas reservoirs can be used to shift storage of gas used for meeting varying demands, from separate underground storage units operated by local distribution companies to the gas producers themselves. Based on this property, we present an economical attractive option for generating companies to increase their use of firm gas–supply contracts to the natural-gas power plants in order to secure a sufficient gas supply. The shale-well scheduling is formulated as profit-maximization model for well operators, in which we seek to include their main operational challenges, while preserving an economic incentive for the operators to adopt the proposed scheme. The resulting large-scale mixed integer linear program is solved by a Lagrangian relaxation scheme, with a receding horizon strategy implemented to handle operational uncertainties. We present the proposed optimization framework by illustrative case studies. The numerical results show a significant economic potential for the shale-well operators, and a viable approach for generating companies to secure a firm gas supply for meeting varying seasonal electricity demands.

Brage Rugstad Knudsen; Curtis H. Whitson; Bjarne Foss

2014-01-01T23:59:59.000Z

165

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co (Redirected from SDG&E) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections

166

Madison Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $5,550,941.00 Total Project Value $11,101,881.00 Coverage Area Coverage Map: Madison Gas and Electric Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Electric Co Electric Co Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile

168

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector  

Broader source: Energy.gov [DOE]

This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use.

170

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

171

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

172

Comments of San Diego Gas & Electric Company | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

San Diego Gas & Electric Company San Diego Gas & Electric Company Comments of San Diego Gas & Electric Company San Diego Gas & Electric Company ("SDG&E") submits these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the Southern California Gas Company, is the nation's largest gas-distribution utility, serving another 20.3 million consumers in a

173

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

174

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635 692 3,391 1,675 3112 Grain and Oilseed Milling 932 850 82 673 261 311221 Wet Corn Milling 352 331 21 296 103 31131 Sugar Manufacturing 105 87 18 87 39 3114 Fruit and Vegetable Preserving and Specialty Foods 698

175

How to Read Residential Electric and Natural Gas Meters | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Electric and Natural Gas Meters Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters June 24, 2012 - 3:00pm Addthis An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A natural gas meter on a house. | Photo courtesy of ©iStockphoto/fstockfoto A natural gas meter on a house. | Photo courtesy of ©iStockphoto/fstockfoto An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha

176

Oklahoma Gas & Electric Co (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

Arkansas) Arkansas) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Arkansas Utility Id 14063 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Time of Use (CS-TOU) Commercial General Service (GS) Commercial Power and Light (PL-1) Residential Service (R-1) Residential Residential Service TOU (R-TOU) Residential Average Rates Residential: $0.0752/kWh Commercial: $0.0654/kWh Industrial: $0.0509/kWh The following table contains monthly sales and revenue data for Oklahoma Gas & Electric Co (Arkansas). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

177

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

178

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

179

Certificate of Public Good--Gas and Electric (Vermont) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) < Back Eligibility Agricultural Commercial Construction Developer Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Siting and Permitting This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in section 201 of this title, may in any way purchase electric capacity or energy from outside the state; invest in an electric generation or transmission facility located

180

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011  

Broader source: Energy.gov [DOE]

Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation’s electric infrastructure and natural gas...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Numerical modeling of the interaction between an electric arc and a gas flow  

Science Journals Connector (OSTI)

The interaction between an equilibrium arc discharge and a gas (air or argon) ... The dynamics and the special features of the electric arc formation are studied for both gases. In the air the electrically conduc...

E. N. Vasil’ev; D. A. Nesterov

2013-03-01T23:59:59.000Z

182

U.S. Heat Content of Natural Gas Deliveries to Electric Power...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

183

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

184

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

185

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

186

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network [OSTI]

??  This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest… (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

187

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

188

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

189

Baltimore Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Baltimore, Maryland Recovery Act Funding $200,000,000.00 Total Project Value $451,814,234.00 Coverage Area Coverage Map: Baltimore Gas and Electric Company Smart Grid Project Coordinates 39.2903848°, -76.6121893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

OG&E) OG&E) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

191

Comments of San Diego Gas & Electric Company | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

files these comments in files these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated public electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the Southern California Gas Company, is the nation's largest gas-distribution utility, serving another 20.3 million consumers in a 20,000 square-mile area via 5.7 million gas meters. Comments of San Diego Gas & Electric Company More Documents & Publications Comments of San Diego Gas & Electric Company

192

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

193

VEE-0044 - In the Matter of Public Service Electric and Gas Company (New  

Broader source: Energy.gov (indexed) [DOE]

44 - In the Matter of Public Service Electric and Gas Company 44 - In the Matter of Public Service Electric and Gas Company (New Jersey) VEE-0044 - In the Matter of Public Service Electric and Gas Company (New Jersey) On July 14, 1997, the Office of Hearings and Appeals received from the Energy Information Administration (EIA) a "letter of appeal" that had been filed with the EIA by the Public Service Electric and Gas Company of New Jersey (PSE&G). In the letter, PSE&G requested confidential treatment of several items of information that it provides to the EIA on Form EIA-860, "Annual Electric Generator Report." For each electrical generator of each generating plant that PSE&G operates, the items of information are: (1) the unit heat rate; (2) the winter and summer net capabilities; and (3) the unit retirement date. During the lengthy

194

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

195

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

196

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2 October 13, 2010 for developing a risk management framework as well as pricing of options. Many derivatives on both electricity and electricity prices is a relevant issue. Numerous diffusion-type and econometric models have been proposed

Boyer, Edmond

197

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2 October 9, 2009 for developing a risk management framework as well as pricing of options. Many derivatives on both electricity and electricity prices is a relevant issue. Numerous diffusion-type and econometric models have been proposed

198

Greenhouse gas emissions from electricity generated by offshore wind farms  

Science Journals Connector (OSTI)

Abstract For wind power generation offshore sites offer significantly better wind conditions compared to onshore. At the same time, the demand for raw materials and therefore the related environmental impacts increase due to technically more demanding wind energy converters and additional components (e.g. substructure) for the balance of plant. Additionally, due to environmental concerns offshore wind farms will be sited farshore (i.e. in deep water) in the future having a significant impact on the operation and maintenance efforts (O&M). Against this background the goal of this analysis is an assessment of the specific GHG (greenhouse gas) emissions as a function of the site conditions, the wind mill technology and the O&M necessities. Therefore, a representative offshore wind farm is defined and subjected to a detailed LCA (life cycle assessment). Based on parameter variations and modifications within the technical and logistical system, promising configurations regarding GHG emissions are determined for different site conditions. Results show, that all parameters related to the energy yield have a distinctive impact on the specific GHG emissions, whereas the distance to shore and the water depth affect the results marginally. By utilizing the given improvement potentials GHG emissions of electricity from offshore wind farms are comparable to those achieved onshore.

Britta Reimers; Burcu Özdirik; Martin Kaltschmitt

2014-01-01T23:59:59.000Z

199

Application of mechanical and electrical equipment in a natural gas processing plant  

SciTech Connect (OSTI)

In 1984 the Northwest Pipeline Corporation purchased and installed equipment for their Ignacio, Colorado, gas processing plant to extract ethane and heavier hydrocarbons from the gas arriving at their pipeline system from various natural gas producing sources. In addition to the basic turbo-expander required to achieve the very low gas temperatures in the process, the equipment includes gas turbine driven compressors, heat recovery steam generators, and a steam turbine driven electric power generator. This paper reviews the process itself, the various mechanical and electrical equipment involved, and some of the control system utilized to tie it all together.

Lang, R.P.; Mc Cullough, B.B.

1987-01-01T23:59:59.000Z

200

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

202

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

203

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

204

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Broader source: Energy.gov (indexed) [DOE]

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

205

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

206

TEA-0013 - In the Matter of Madison Gas and Electric Company | Department  

Broader source: Energy.gov (indexed) [DOE]

3 - In the Matter of Madison Gas and Electric Company 3 - In the Matter of Madison Gas and Electric Company TEA-0013 - In the Matter of Madison Gas and Electric Company This Decision and Order considers an Appeal filed by the Madison Gas and Electric Company (MGE) from a determination issued on September 17, 2009, on behalf of the Assistant Secretary for Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under the provisions of 10 C.F.R. Part 490. In its determination, EE denied a request filed by MGE for one exemption from the firm's Model Year (MY) 2008 alternative fuel vehicle (AFV) purchase requirements under the Alternative Fuel Transportation Program. If the present Appeal were granted, MGE would receive the additional exemption it requested. As set forth in this Decision and Order, we have concluded that MGE's Appeal should be

207

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

208

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

209

,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:55:12 PM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

210

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

211

Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications  

E-Print Network [OSTI]

A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

Eshraghi, R. R.; Welch, D. E.

212

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Broader source: Energy.gov [DOE]

The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

213

Xcel Energy (Electric and Gas) - Home Performance with ENERGY STAR Rebates  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy (Electric and Gas) - Home Performance with ENERGY STAR Xcel Energy (Electric and Gas) - Home Performance with ENERGY STAR Rebates Xcel Energy (Electric and Gas) - Home Performance with ENERGY STAR Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate $1,200 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount See Xcel's web site for current levels This program is available only to Minnesota residents who take both electric and natural gas service from Xcel Energy. Customers must undertake a low-cost energy audit ($60) before implementing energy-efficiency

214

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

215

EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS  

SciTech Connect (OSTI)

Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose effects on conducting polymers must be fully understood before these materials can be used

Kane, M.; Clark, E.; Lascola, R.

2009-12-16T23:59:59.000Z

216

Microsoft Word - DOE QER meeting on Gas-Electric interdependency...  

Energy Savers [EERE]

purchase agreements with coal and lignite fired generation plants, as well as a hydroelectric facility. Brazos, as well as ERCOT, is heavily dependent upon natural gas for...

217

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

218

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Broader source: Energy.gov (indexed) [DOE]

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

219

Phorgotten phenomena: Verifying electrical CP contacts on gas distribution pipelines  

SciTech Connect (OSTI)

Federal and state regulations mandate that gas companies must maintain cathodic protection (CP) throughout distribution systems to protect against corrosion. From time to time, underground contacts occur. Any contact of metal lines depletes CP potentials. Finding and clearing these contacts is time-consuming and costly. Some gas companies report that only one in 10 of these underground contacts are found. The paper describes a method that has maintained a 98% efficiency in clearing underground contacts for the past 10 years for Cascade Natural Gas.

Maxwell, J.L. [Cascade Natural Gas Corp., Seattle, WA (United States)

1999-04-01T23:59:59.000Z

220

Workplace Charging Challenge Partner: Pacific Gas & Electric Company  

Broader source: Energy.gov [DOE]

In keeping with its strong support for clean transportation, PG&E employees now have an opportunity to charge plug-in electric vehicles (PEVs) at seven locations, including the main office in...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

was no competitive in Mexico, at present this situation is changing, due to different factors. One of them is the high price of fossile fuel in Mexico mainly natural gas. Other...

222

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect (OSTI)

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

223

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Broader source: Energy.gov (indexed) [DOE]

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

224

www.bath.ac.uk The Bath Advantage  

E-Print Network [OSTI]

challenge for us but also a practical, unifying purpose. Departmental energy champions, resident students, and the wider campus community have all contributed to delivering an absolute reduction in our energy usage. University of Bath Energy also emerges as an increasingly strong theme linking the many and diverse

Burton, Geoffrey R.

225

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...thermal efficiency, fuel heating value, power plant...natural gas as a bridge fuel . Clim Change 118 : 609...emissions and freshwater consumption of Marcellus shale gas...following Fig. S1) for the fuel cycle of shale gas...water, and/or oil) Vessel and pipeline blowdowns...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

226

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

227

Pacific Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co Place California Service Territory California Website www.pge.com Green Button Landing Page www.pge.com/myhome/myacco Green Button Reference Page www.pge.com/myhome/myacco Green Button Implemented Yes Utility Id 14328 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile

228

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

229

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

230

MidAmerican Energy (Gas and Electric) - Residential EnergyAdvantage Loan  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric) - Residential EnergyAdvantage Gas and Electric) - Residential EnergyAdvantage Loan Program MidAmerican Energy (Gas and Electric) - Residential EnergyAdvantage Loan Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate not specified Program Info Start Date 1/1/2011 State Iowa Program Type Utility Loan Program Rebate Amount Joint check payable to customer and dealer Provider MidAmerican Energy MidAmerican Energy's EnergyAdvantage Financing Program, in partnership with First American Bank, offers Iowa residential energy customers below-prime

231

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

232

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

233

ConEd (Gas and Electric) - Small Business Direct Install Program (New York)  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Gas and Electric) - Small Business Direct Install Program ConEd (Gas and Electric) - Small Business Direct Install Program (New York) ConEd (Gas and Electric) - Small Business Direct Install Program (New York) < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Program Info State New York Program Type Utility Rebate Program Rebate Amount Energy Survey: Free Programmable Thermostat: Free Equipment Upgrades Identified in Energy Survey: Con Edison will pay up to 70% of the remaining cost directly to the contractor ConEd is providing free energy surveys to its small business customers. The survey will take 30 to 90 minutes and efficiency opportunities and associated costs will be presented on the spot. If the customer agrees to

234

Deregulating UK Gas and Electricity Markets: How is Competition Working for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deregulating UK Gas and Electricity Markets: How is Competition Working for Deregulating UK Gas and Electricity Markets: How is Competition Working for Residential Consumers? Speaker(s): Catherine Waddams Date: April 15, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Chris Marnay Retail gas and electricity prices were deregulated in the UK in April 2002, following introduction of retail choice for residential consumers between 1996 and 1999. We use information from consumer surveys, including a panel survey over three years, to analyse consumer attitudes and behaviour. In particular we explore how awareness changed, whether those who were actively considering switching in one wave of the survey had actually done so by the next round, whether individuals become willing to switch for smaller price gains as the markets matured, and how expectations

235

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown  

Broader source: Energy.gov [DOE]

From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

236

Development of the temperature fields in an electric arc struck on a point electrode in a homogeneous gas stream  

Science Journals Connector (OSTI)

A study is made of the problem of a point electric source in a homogeneous gas stream and operating in the arc discharge regime. The development of an electric arc struck on a point cathode in a ... . The station...

A. B. Vatazhin

237

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

238

The electric and gas industries are converging: What does it mean?  

SciTech Connect (OSTI)

Three broad views define deregulation in retail gas and electric markets. One sees the future as but a lengthened shadow of the present. Change is glacial. The second predicts a significant but mannerly shift-a leisurely transition from monopoly to competition. The third posits revolution. It awaits a future marked by epochal, discontinuous, and abrupt changes. This third future is the most interesting. It raises the stakes. This article examines the industrial organization of gas and electric enterprises as they will be reinvented by those who embrace the third view. Not a prediction; rather, a thought experiment.

Dar, V.K.

1995-04-01T23:59:59.000Z

239

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

240

International Natural Gas Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per 107 Kilocalories - Gross Calorific Value2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria NA NA NA NA NA NA NA NA NA Barbados NA NA NA NA NA NA NA NA NA Belgium C C C C C C C C C Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 145.5 144.7 174.9 171.9 225.2 NA NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 244.7 252.1 258.6 281.0 326.2 348.5 400.8 499.3 NA

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...rock allow for the release and collection of the natural gas. Fracking can be done in vertical or horizontal wells. Liquids...methods to increase gas flows, such as mechanical or chemical fracking, is often required before the wells are able to produce commercial...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

242

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...collection of the natural gas. Fracking can be done in vertical...as mechanical or chemical fracking, is often required...C (2011) The greenhouse impact of unconventional gas...Subgroup of the Operations and Environment Task Group of the National...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

243

State law equation of a real gas and simulation of electrical arc/gas flow interaction  

Science Journals Connector (OSTI)

Modeling of gas movements in a circuit breaker arc chamber requires an accurate knowledge of thermodynamic functions. The proposed method gives a simplified form of the law of state, in close agreement with the tables. This law has been implemented in the NS2 code developed at Merlin Gerin, France. This code allows detailed investigation of gas flows in circuit breakers.

P Chevrier; J Maftoul

1993-01-01T23:59:59.000Z

244

Flexible gas insulated transmission line having regions of reduced electric field  

DOE Patents [OSTI]

A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

1983-01-01T23:59:59.000Z

245

Natural gas, uncertainty, and climate policy in the US electric power sector  

Science Journals Connector (OSTI)

Abstract This paper investigates how uncertainties related to natural gas prices and potential climate policies may influence capacity investments, utilization, and emissions in US electricity markets. Using a two-stage stochastic programming approach, model results suggest that climate policies are stronger drivers of greenhouse gas emission trajectories than new natural gas supplies. The dynamics of learning and irreversibility may give rise to an investment climate where strategic delay is optimal. Hedging strategies are shown to be sensitive to the specification of probability distributions for climate policy and natural gas prices, highlighting the important role of uncertainty quantification in future research. The paper also illustrates how this stochastic modeling framework could be used to quantify the value of limiting methane emissions from natural gas production.

John E. Bistline

2014-01-01T23:59:59.000Z

246

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

247

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

248

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households ... Conventional wisdom holds that large appliances, in particular washers, dryers, refrigerators and freezers, dominate residential energy consumption apart from heat, hot water and light. ... (16) It excludes lighting, all professional equipment, space heating, hot water, garden or car equipment, fire alarms, and air conditioning. ...

Edgar G. Hertwich; Charlotte Roux

2011-08-30T23:59:59.000Z

249

San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services  

E-Print Network [OSTI]

Fact Sheet San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services Docket No. EL00-95-000 July 6, 2007 The Federal Energy Regulatory Commission today approved an $18 million uncontested settlement that resolves matters and claims related to BP Energy Company (BP) and California

Laughlin, Robert B.

250

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

251

Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity  

E-Print Network [OSTI]

and the security of supply. Index Terms-- Power system economics, electricity-gas integration, natural gas. The largest use still is for industrial heating. The second largest use is for electric power generation for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy

Catholic University of Chile (Universidad Católica de Chile)

252

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

253

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents [OSTI]

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

1982-12-28T23:59:59.000Z

254

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...production activities to the oil produced from associated...of production in the price environment...for transportation and heating should be...study (51%, higher heating value basis). 1 Olmstead...reductions in natural gas prices for emissions of CO2 from the US power...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

255

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

256

Public Service Electric and Gas (PSEG) Services Corporation - Comments to the 2012 Congestion Study.pdf  

Broader source: Energy.gov (indexed) [DOE]

David K. Richter David K. Richter Assistant General Regulatory Counsel Regulatory Department 80 Park Plaza, T5C, Newark, NJ 07102-4194 tel: 973.430.6451 fax: 973.802.1267 email: david.richter@pseg.com January 31, 2012 VIA ELECTRONIC FILING David Meyer Office of Electricity Delivery and Energy Reliability OE-20, Attention: Congestion Study Comments U.S. Department of Energy, 1000 Independence Avenue, SW. Washington, DC 20585 Dear Mr. Meyer, Public Service Electric and Gas Company ("PSE&G"), PSEG Power LLC ("PSEG Power") and PSEG Energy Resources & Trade LLC ("PSEG ER&T") (collectively referred to herein as the "PSEG Companies") respectfully submit the

257

DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities  

Broader source: Energy.gov (indexed) [DOE]

AND REGIONAL POLICIES THAT AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National Association of State Energy Offi- cials, shall conduct a study of State and regional policies that promote cost-effective programs to reduce energy con- sumption (including energy efficiency programs) that are carried out by- (1) utilities that are subject to State regulation; and

258

STATEMENT OF CONSIDERATIONS REQUEST BY NEW YORK STATE ELECTRIC & GAS CORPORATION  

Broader source: Energy.gov (indexed) [DOE]

NEW YORK STATE ELECTRIC & GAS CORPORATION NEW YORK STATE ELECTRIC & GAS CORPORATION (NYSEG) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-92PC-92642, W(A)-93-016, CH-0773 NYSEG was awarded this cooperative agreement under the fourth round of the Innovative Clean Coal Technology Program pursuant to P.L. 101-512 to demonstrate a combination of cost effective emission reduction and efficiency improvement technolo- gies including: Saarberg-Holter Umwelltechnik's (S-H-U) advanced SO2 scrubber technology which uses formic acid enhancement and cocurrent/countercurrent open spray tower absorber design; Stebbins Engineering's tile-lined split module absorber construction; NOxOUT injection and air combustion modeling technology and implementation for NOx control; and heat pipe air heater technology to increase energy

259

,"South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:08 PM" "Back to Contents","Data 1: South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045SC2" "Date","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" 35611,2731 35976,8703 36341,10453

260

,"South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045SC2" "Date","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" 36906,357

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

262

Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers  

DOE Patents [OSTI]

A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

Fenstermacher, Charles A. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

1986-01-01T23:59:59.000Z

263

Thermoecological cost of electricity production in the natural gas pressure reduction process  

Science Journals Connector (OSTI)

Abstract The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.

Wojciech J. Kostowski; Sergio Usón; Wojciech Stanek; Pawe? Bargiel

2014-01-01T23:59:59.000Z

264

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

265

San Diego Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location San Diego, California Recovery Act Funding $28115052 Total Project Value $59427645 Coverage Area Coverage Map: San Diego Gas and Electric Company Smart Grid Project Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

266

Energy transition and path creation for natural gas in the Brazilian electricity mix  

Science Journals Connector (OSTI)

Abstract Emerging economies will account for more than 90% of net energy demand growth to 2035. Although there is international consent about the need for reducing green-house gas (GHG) emissions, reduction targets have been left to governments' responsibility. Such opening lead to different energy policies and approaches among countries, specially comparing developing economies to developed ones. Technology development and new reserves found have set natural gas as the lead resource for transitioning energy mixes to lower carbon levels. However, hydropower has been the main source for the Brazilian electricity grid, and increasing dispatch of natural gas in fact increases GHG, which has been the core of current Brazilian energy policies. We estimated future Brazilian market shares of hydro, thermal, wind and nuclear power, through historical data analysis of power dispatch and installed capacity. The findings propose that current Brazilian administration is creating a new technological path, which will lead far from the desired GHG targets. If actual growth rate of thermal power continues, by the year 2022 thermal plants will be major suppliers of the Brazilian electricity grid, leaving hydro with the second largest market share. Furthermore, we propose several approaches for increasing adoption of renewable distributed generation and the development of other market niches for natural gas in Brazil, as alternative paths.

Fabrício Peter Vahl; Nelson Casarotto Filho

2015-01-01T23:59:59.000Z

267

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

268

Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico  

Science Journals Connector (OSTI)

We present new results and interpretations of the electrical anisotropy and reservoir architecture in gas hydrate-bearing sands using logging data collected during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II. We focus specifically on sand reservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R? and the resistivity of the current flowing perpendicular to the bedding, R?. We find the sand reservoir in Hole AC21-A to be relatively isotropic, with R? and R? values close to 2 ? m. In contrast, the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R? is between 2 and 30 ? m, and R? is generally an order of magnitude higher. Using Schlumberger’s WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gas hydrate-bearing sand reservoir in Hole WR313-H. The results showed that gas hydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10–100 cm) with varying gas hydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gas hydrate forming in thin layers within larger sand units.

Ann E. Cook; Barbara I. Anderson; John Rasmus; Keli Sun; Qiming Li; Timothy S. Collett; David S. Goldberg

2012-01-01T23:59:59.000Z

269

Characterization of chemical bath deposited CdS thin films doped with methylene blue and Er3+  

Science Journals Connector (OSTI)

The optical, electrical, and structural properties of CdS thin films grown by chemical bath deposition and simultaneously doped with methylene blue (MB) and Er3+ were studied. Doping was achieved by adding a c...

S. A. Tomás; R. Lozada-Morales; O. Portillo…

2008-01-01T23:59:59.000Z

270

Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates  

E-Print Network [OSTI]

This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, methods, and guidelines...

McClure, J. D.; Estes, M. C.; Estes, J. M.

1989-01-01T23:59:59.000Z

271

Electric Power Generation Using Low Bandgap TPV Cells in a Gas?fired Heating Furnace  

Science Journals Connector (OSTI)

Low bandgap TPV cells are preferred for electric power generation in TPV cogeneration systems. Recently significant progress has been made in fabrication of low bandgap semiconductor TPV devices such as InGaAsSb and InGaAs cells. However it appears that only limited data are available in the literature with respect to the performance of these TPV cells in combustion?driven TPV systems. In the research presented in this paper power generation using recently?developed InGaAsSb TPV cells has been investigated in a gas?fired space heating appliance. The combustion performance of the gas burner associated with a broadband radiator was evaluated experimentally. The radiant power density and radiant efficiency of the gas?heated radiator were determined at different degrees of exhaust heat recuperation. Heat recuperation is shown to have a certain effect on the combustion operation and radiant power output. The electric output characteristics of the InGaAsSb TPV devices were investigated under various combustion conditions. It was found that the cell short circuit density was greater than 1 A/cm2 at a radiator temperature of 930°C when an optical filter was used. An electric power density of 0.54 W/cm2 was produced at a radiator temperature of 1190°C. Furthermore modeling calculations were carried out to reveal the influence of TPV cell bandgap and radiator temperature on power output and conversion efficiency. Finally the design aspects of combustion?driven TPV systems were analyzed showing that development of a special combustion device with high conversion level of fuel chemical energy to useful radiant energy is required to improve further the system efficiency.

K. Qiu; A. C. S. Hayden

2003-01-01T23:59:59.000Z

272

Sustainable Integration of Algal Biodiesel Production with Steam Electric Power Plants for Greenhouse Gas Mitigation  

Science Journals Connector (OSTI)

Because fossil fuel combustion power stations are responsible for over 65% of estimated carbon dioxide (CO2) emissions caused by power generation systems,(1) a major challenge facing this electric power sector is how to reconcile the growing global electricity demand with the increasing urgency to reduce CO2 emissions due to carbon dioxide being the main greenhouse gas (GHG) and, consequently, one of the most important contributors for the increase in anthropogenic climate change and global warming that distorts the ecological balance and environmental sustainability. ... Ng, R. T. L.; Tay, D. H. S.; Ng, D. K. S.Simultaneous process synthesis, heat and power integration in a sustainable integrated biorefinery Energy Fuels. 2012, 26, 7316– 7330 ... Integrated biorefinery emerged as noteworthy concept to integrate several conversion technologies to have more flexibility in product generation with energy self-sustained and reduce the overall cost of the process. ...

César G. Gutiérrez-Arriaga; Medardo Serna-González; José María Ponce-Ortega; Mahmoud M. El-Halwagi

2014-04-18T23:59:59.000Z

273

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Executive Summary - Natural Gas Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-57702 January 2013 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

274

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas and the Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-55538 November 2012 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

275

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

276

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

277

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

278

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

279

Procedure for Koehler Digital Constant Temperature Viscosity Bath This unit is designed to perform kinematic viscosity tests using glass capillary viscometers, for this lab  

E-Print Network [OSTI]

protection (OTP), which protects the system and prevents the bath from exceeding safe Actual Bath Temp protection circuit which prevents operating this unit under unsafe electrical conditions. If the power to perform kinematic viscosity tests using glass capillary viscometers, for this lab you will be using Cannon

Saskatchewan, University of

280

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Broader source: Energy.gov [DOE]

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

282

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-04-01T23:59:59.000Z

283

Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program  

SciTech Connect (OSTI)

This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

Vine, E.; De Buen, O.; Goldfman, C.

1990-12-01T23:59:59.000Z

284

EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

285

An alternative methodology for the analysis of electrical resistivity data from a soil gas study  

Science Journals Connector (OSTI)

......causes a problem, especially in landfill gas models. The uncertainties originate...the gas in the soil pores. In landfill gas models, several authors (e...Lamborn J. , 2007. Developing a landfill gas model, inTenth International Waste......

Sara Johansson; Håkan Rosqvist; Mats Svensson; Torleif Dahlin; Virginie Leroux

2011-08-01T23:59:59.000Z

286

Idaho Bath Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bath Geothermal Area Bath Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Idaho Bath Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7211,"lon":-115.0144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Experimental study of heat transfer in an electric arc gas heater with vortex stabilization of the discharge  

Science Journals Connector (OSTI)

The results of an experimental investigation into heat transfer in the discharge chamber of an electric-arc gas heater are presented. For the anode...an=f(I, d), St=f(l/d, Re, N/GH0). The energy losses in the bas...

V. L. Sergeev

1971-01-01T23:59:59.000Z

288

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

289

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

290

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

291

Science Week: Bath Taps into Science  

Science Journals Connector (OSTI)

Science Week: Bath Taps into Science Awards: Top of the SHAPs 2002 Wales: Virtual Instruments and Dataloggers INSET in Pembrokeshire Institute of Physics: Mission impossible? Astronomy Competition: Design your own constellations WMAP: Now we know WMAP: Prehistoric inflation WMAP: Where is the L2 Lagrange point? Materials Update: Energy efficient materials Institute of Physics: Women matter at IoP

292

String melting in a photon bath  

SciTech Connect (OSTI)

We compute the decay rate of a metastable cosmic string in contact with a thermal bath by finding the instanton solution. The new feature is that this decay rate is found in the context of non thermal scalar fields in contact with a thermal bath of photons. In general, to make topologically unstable strings stable, one can couple them to such a bath. The resulting plasma effect creates metastable configurations which can decay from the false vacuum to the true vacuum. In our specific set-up, the instanton computation is realized for the case of two out-of-equilibrium complex scalar fields: one is charged and coupled to the photon field, and the other is neutral. New effects coming from the thermal bath of photons make the radius of the nucleated bubble and most of the relevant physical quantities temperature-dependent. However, the temperature appears in a different way than in the purely thermal case, where all scalar fields are in thermal equilibrium. As a result of the tunneling, the core of the initial string melts while bubbles of true vacuum expand at the speed of light.

Karouby, Johanna, E-mail: karoubyj@mit.edu [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139 (United States)

2013-10-01T23:59:59.000Z

293

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

294

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

295

Processing A Printed Wiring Board By Single Bath Electrodeposition  

DOE Patents [OSTI]

A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

2003-04-15T23:59:59.000Z

296

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network [OSTI]

, given that natural gas from neighbouring Argentina is not longer available and LNG price projections, the most economic technologies define the system's development. Availability of natural gas from Argentina on import of natural gas from Argentina since 2004 created an unbalance in the Chilean electric market

Dixon, Juan

297

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

298

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

299

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

300

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:11 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:10 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

302

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

303

Interdependency of electricity and natural gas markets in the United States : a dynamic computational model  

E-Print Network [OSTI]

Due to high storage costs and limited storage availability, natural gas is generally used as a just-in- time resource that needs to be delivered as it is consumed. With the shale gas revolution, coal retirements and ...

Jenkins, Sandra Elizabeth

2014-01-01T23:59:59.000Z

304

Security analysis of the interaction between the UK gas and electricity transmission systems   

E-Print Network [OSTI]

Natural gas has become the UK’s foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

305

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

306

Electric Urban Delivery Trucks: Energy Use, Greenhouse Gas Emissions, and Cost-Effectiveness  

Science Journals Connector (OSTI)

Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively. ... The relationship between electric and ICE passenger car manufacturing energy use and GHG emissions is used to infer electric truck data from diesel truck manufacturing data. ... van Vliet, O.; Brouwer, A. S.; Kuramochi, T.; van den Broek, M.; Faaij, A.Energy use, cost and CO2 emissions of electric cars J. Power Sources 2011, 196 ( 4) 2298– 2310 ...

Dong-Yeon Lee; Valerie M. Thomas; Marilyn A. Brown

2013-06-20T23:59:59.000Z

307

Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system  

Science Journals Connector (OSTI)

Abstract In this paper, electricity generation using very low bandgap InGaAsSb thermophotovoltaic (TPV) cells whose bandgap is 0.53 eV was investigated in a gas-fired furnace system where thermal radiation was emitted from a metal alloy emitter. The electric output of the InGaAsSb TPV cells was characterized under various operating conditions. The cell short circuit density was measured to be 3.01 A/cm2 at an emitter temperature of 1197 °C. At this emitter temperature, an electric power density of 0.65 W/cm2 was produced by the TPV cells. Experimental results show that direct thermal to electrical energy conversion was achieved in a gas-fired heating furnace system. Such a system could be employed to form a micro-combined heat and power (micro-CHP) process where exhaust heat is utilized for home heating needs. The TPV integrated energy system provides an effective means for primary energy savings.

K. Qiu; A.C.S. Hayden

2014-01-01T23:59:59.000Z

308

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

309

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network [OSTI]

of natural gas prices, renewable resources in general have aSince the use of renewable resources decreases fuel priceof its electricity from renewable resources under long-term

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

310

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network [OSTI]

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges… (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

311

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

312

CO{sub 2} allowance allocation in the Regional Greenhouse Gas Initiative and the effect on electricity investors  

SciTech Connect (OSTI)

The Regional Greenhouse Gas Initiative (RGGI) is an effort by nine Northeast and Mid-Atlantic states to develop a regional, mandatory, market-based cap-and-trade program to reduce greenhouse gas (GHG) emissions from the electricity sector. The initiative is expected to lead to an increase in the price of electricity in the RGGI region and beyond. The implications of these changes for the value of electricity-generating assets and the market value of the firms that own them depends on the initial allocation of carbon dioxide allowances, the composition of generating assets owned by the firm, and the locations of those assets. Changes in asset values inside the RGGI region may be positive or negative, whereas changes outside of the RGGI region are almost always positive but nonetheless vary greatly. Viewing changes at the firm level aggregates and moderates both positive and negative effects on market value compared with what would be observed by looking at changes at individual facilities. Nonetheless, a particular firm's portfolio of assets is unlikely to reflect the overall composition of assets in the industry as a whole, and some firms are likely to do substantially better or worse than the industry average. 16 refs., 4 figs.

Dallas Burtraw; Danny Kahn; Karen Palmerook

2005-12-15T23:59:59.000Z

313

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

314

Interdependence of Electricity System Infrastructure and Natural...  

Broader source: Energy.gov (indexed) [DOE]

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

315

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

316

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

317

2012 SG Peer Review - Recovery Act: NSTAR Automated Mater Reading Based Dynamic Pricing - Douglas Horton, NSTAR Electric & Gas  

Broader source: Energy.gov (indexed) [DOE]

Peer Peer Review Meeting Peer Review Meeting AMR Based Dynamic Pricing y g Doug Horton NSTAR Electric & Gas Co. 6/8/2012 AMR Based Dynamic Pricing Objective Provide two-way communication of electricity cost & consumption data utilizing the customers existing meter & Internet. Goal to achieve 5% reduction in peak and Goal to achieve 5% reduction in peak and average load. Life-cycle Funding ($K) Total Budget Total DOE Funding to Technical Scope Use customer's existing AMR meter and broadband Internet to achieve two way Total Budget Total DOE Funding Funding to Date $4,900k $2,362k $1,623k broadband Internet to achieve two way communication and "AMI" functionality Cutting-edge solution to integrate: * Existing meters E i ti I t t December 2008 * Existing Internet * Existing billing & CIS

318

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

319

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity  

Science Journals Connector (OSTI)

...economy). 24 Electric Power Research Institute, “Assessment of achievable potential from energy efficiency and demand response programs in the U.S. (2010–2030)” (Rep. No. 1016987, Palo Alto, CA, 2009). 25 California Public...

James H. Williams; Andrew DeBenedictis; Rebecca Ghanadan; Amber Mahone; Jack Moore; William R. Morrow III; Snuller Price; Margaret S. Torn

2012-01-06T23:59:59.000Z

320

Calculating the parameters of electric-arc heaters with gas-stabilized arcs  

Science Journals Connector (OSTI)

We used a turbulent model of a longitudinally streamlined electric arc to derive an analytical solution for the ... of the distribution of the primary flow and discharge parameters in a cylindrical discharge chan...

N. A. Zyrichev

1969-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electric Resistance Welded Steels for Normalized N-80 Oil and Gas Well Tubulars  

Science Journals Connector (OSTI)

This paper reports the development and successful commercialization of a manganese-molybdenum steel for use in the production of normalized electric resistance welded N-80 casing and tubing. The...

David L. Sponseller; Thomas B. Cox; Evan J. Vineberg

1984-06-01T23:59:59.000Z

322

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings  

Broader source: Energy.gov [DOE]

This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

323

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

324

Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles  

E-Print Network [OSTI]

We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.

Sašo Grozdanov; Janos Polonyi

2015-01-26T23:59:59.000Z

325

Development of an electrical resistivity cone for the detection of gas hydrates in marine sediments  

E-Print Network [OSTI]

onshore and offshore environments, as well as in permafrost and tropical regions. The presence of natural gas hydrates in marine sediments are of concern to geotechnical engineers for several reasons, including: (1) their effect on the load bearing...

McClelland, Martha Ann

2012-06-07T23:59:59.000Z

326

DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the Electric Power Sector  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) will continue to offer analysis and technical support for state, local, tribal and regional planning efforts related to reducing greenhouse gas emissions in the...

327

Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers  

E-Print Network [OSTI]

Yankee Gas 4 ? Offer technical assistance to C & I customers who want to improve energy efficiency ? Offer financial incentives to help implement energy-efficient measures ? Provide $4 in benefits for every $1 spent on programs 5 New...&P www.cl-p.com ? UI www.uinet.com ? Yankee Gas www.yankeegas.com ? CNG www.cngcorp.com ? SCG www.soconngas.com ? CCEF www.ctcleanenergy.com 20 QUESTIONS??? ...

Sermakekian, E.

2011-01-01T23:59:59.000Z

328

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

329

Processing a printed wiring board by single bath electrodeposition  

DOE Patents [OSTI]

A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

2010-12-07T23:59:59.000Z

330

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

331

Electrical hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

332

SEEING AND COMMUNICATING THROUGH WEAK ELECTRIC  

E-Print Network [OSTI]

Inside JEB i SEEING AND COMMUNICATING THROUGH WEAK ELECTRIC FIELDS Weakly electric fish spend their lives bathed in their own internally generated mild electric field, interpreting perturbations frequency electric `chirps'. Rüdiger Krahe, from McGill University, Canada, says, `These fish are very

333

High voltage capability electrical coils insulated with materials containing SF.sub.6 gas  

DOE Patents [OSTI]

A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

1988-01-01T23:59:59.000Z

334

EFFECT OF GAS ADSORPTION ON THE ELECTRICAL PROPERTIES OF SINGLE WALLED CARBON NANOTUBES MATS  

E-Print Network [OSTI]

, 34095 Montpellier, France. ABSTRACT Single wall nanotubes have been made by arc-discharge method on the experimental preparation (arc discharge or laser ablation) [3-5] and measurements conditions. Due to their high were performed in a high vacuum chamber on SWNT mats. These samples were produced by the electric arc

Demouchy, Sylvie

335

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity  

Science Journals Connector (OSTI)

...biofuels, CCS, on-grid energy storage...vehicle batteries, smart charging, building...emission reduction benefits at acceptable cost...electricity before the grid is substantially...negates the emissions benefits of electrification...vehicles without smart charging will reduce...

James H. Williams; Andrew DeBenedictis; Rebecca Ghanadan; Amber Mahone; Jack Moore; William R. Morrow III; Snuller Price; Margaret S. Torn

2012-01-06T23:59:59.000Z

336

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity  

Science Journals Connector (OSTI)

...electricity-sector governance as a tool of climate policy, but...regulation has existing tools for pursuing many...wedges in action: A systems approach to energy sustainability...Climate Analysis Indicators Tools (version 4.0 and 7.0...Group III to the Fourth Assessment Report of the IPCC, B...

James H. Williams; Andrew DeBenedictis; Rebecca Ghanadan; Amber Mahone; Jack Moore; William R. Morrow III; Snuller Price; Margaret S. Torn

2012-01-06T23:59:59.000Z

337

The problem of the burning of an electric arc in a stream of gas  

Science Journals Connector (OSTI)

A one-dimensional heat-conduction equation is analyzed for the positive column of an arc discharge in a lateral gas flow (V?J). Two discharge burning regimes are found for the same parameters (E and V). The cr...

V. L. Goryachev; A. D. Lebedev

1967-10-01T23:59:59.000Z

338

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Broader source: Energy.gov [DOE]

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

339

Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles  

E-Print Network [OSTI]

We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition betwee...

Grozdanov, Sašo

2015-01-01T23:59:59.000Z

340

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

342

University of Bath Travel Survey Spring 2013  

E-Print Network [OSTI]

.3% of all respondents were aware of the car-share parking permits, and 11.5% were aware of the electric car

Burton, Geoffrey R.

343

BC's Electricity Options: Multi-Attribute Trade-Off and Risk Analysis of the Natural Gas  

E-Print Network [OSTI]

losses) Cogeneration 628 1,255 1,883 Woodwaste 628 1,255 1,883 Small-Medium Hydro 628 1,255 1,883 Total 1 Jaccard and Murphy ii 05/01/02 Executive Summary BC Hydro's Integrated Electricity Plan (IEP) for 2000 overlooked in BC Hydro's latest planning process. By making this report available to the public, we hope

344

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

345

Limited Electricity Generation Supply and Limited Natural Gas Supply Cases (released in AEO2008)  

Reports and Publications (EIA)

Development of U.S. energy resources and the permitting and construction of large energy facilities have become increasingly difficult over the past 20 years, and they could become even more difficult in the future. Growing public concern about global warming and CO2 emissions also casts doubt on future consumption of fossil fuels -- particularly coal, which releases the largest amount of CO2 per unit of energy produced. Even without regulations to limit greenhouse gas emissions in the United States, the investment community may already be limiting the future use of some energy options. In addition, there is considerable uncertainty about the future availability of, and access to, both domestic and foreign natural gas resources.

2008-01-01T23:59:59.000Z

346

A PLAN DEVELOPED BY MORE THAN 50 LEADING ORGANIZATIONS IN PURSUIT OF ENERGY SAVINGS AND ENVIRONMENTAL BENEFITS THROUGH ELECTRIC AND NATURAL GAS ENERGY EFFICIENCY  

E-Print Network [OSTI]

aggressive national commitment to energy efficiency through gas and electric utilities, utility regulators, and partner organizations. Improving energy efficiency in our homes, businesses, schools, governments, and industries—which consume more than 70 percent of the natural gas and electricity used in the country—is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. The U.S. Department of Energy and U.S. Environmental Protection Agency facilitate the

unknown authors

347

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

348

A projective Simson line Geoff Smith, University of Bath  

E-Print Network [OSTI]

A projective Simson line Geoff Smith, University of Bath 15th October 2014 This is a preprint-profit making educational or research pur- poses. c G. C. Smith October 15 2014 Introduction Let ABC

Smith, Geoff

349

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

350

Seismic base isolation of gas insulated electrical substations: Comparison among different solutions  

SciTech Connect (OSTI)

Base isolation of an outdoor 170 kV Gas-Insulated Substation conforming to ENEL standardization is proposed. The analyzed GIS has two separated phases and its layout consists of a compact block composed of five bays and two High-to-Medium Voltage power transformers. The design has been carried out following the International Electrotechnical Commission (IEC) requirements for seismic qualification of HV equipment. Three solutions are presented, each making use of different isolation devices: High-Damping Steel-Laminated Rubber Bearings, helical springs and visco-dampers, Friction Pendulu devices. The procedures adopted in the design of the three isolation systems are briefly explained, pointing out advantages and drawbacks of each solution.

Serino, G. [Univ. di Napoli Federico II (Italy). Dipt. di Analisi e Progettazione Strutturale; Bettinali, F. [ENEL s.p.a., Milano (Italy). Centro di Ricerca Idraulica e Strutturale; Bonacina, G. [ISMES s.p.a., Seriate (Italy). Div. Indagini Strutturali

1995-12-31T23:59:59.000Z

351

Experimental Heat-Bath Cooling of Spins  

E-Print Network [OSTI]

Algorithmic cooling (AC) is a method to purify quantum systems, such as ensembles of nuclear spins, or cold atoms in an optical lattice. When applied to spins, AC produces ensembles of highly polarized spins, which enhance the signal strength in nuclear magnetic resonance (NMR). According to this cooling approach, spin-half nuclei in a constant magnetic field are considered as bits, or more precisely, quantum bits, in a known probability distribution. Algorithmic steps on these bits are then translated into specially designed NMR pulse sequences using common NMR quantum computation tools. The $algorithmic$ cooling of spins is achieved by alternately combining reversible, entropy-preserving manipulations (borrowed from data compression algorithms) with $selective$ $reset$, the transfer of entropy from selected spins to the environment. In theory, applying algorithmic cooling to sufficiently large spin systems may produce polarizations far beyond the limits due to conservation of Shannon entropy. Here, only selective reset steps are performed, hence we prefer to call this process "heat-bath" cooling, rather than algorithmic cooling. We experimentally implement here two consecutive steps of selective reset that transfer entropy from two selected spins to the environment. We performed such cooling experiments with commercially-available labeled molecules, on standard liquid-state NMR spectrometers. Our experiments yielded polarizations that $bypass$ $Shannon's$ $entropy$-$conservation$ $bound$, so that the entire spin-system was cooled. This paper was initially submitted in 2005, first to Science and then to PNAS, and includes additional results from subsequent years (e.g. for resubmission in 2007). The Postscriptum includes more details.

Gilles Brassard; Yuval Elias; José M. Fernandez; Haggai Gilboa; Jonathan A. Jones; Tal Mor; Yossi Weinstein; Li Xiao

2014-04-28T23:59:59.000Z

352

Electricity Monthly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

353

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private,  

E-Print Network [OSTI]

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private, have created an increased risk to pedestrians and has damaged walkways Director or the designee. · Private and vendor vehicles are restricted at all times. Vehicles requiring

de Lijser, Peter

354

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

355

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

356

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect (OSTI)

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

357

Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

Published scientific literature contains many studies estimating life cycle greenhouse gas (GHG) emissions of residential and utility-scale solar photovoltaics (PVs). Despite the volume of published work, variability in results hinders generalized conclusions. Most variance between studies can be attributed to differences in methods and assumptions. To clarify the published results for use in decision making and other analyses, we conduct a meta-analysis of existing studies, harmonizing key performance characteristics to produce more comparable and consistently derived results. Screening 397 life cycle assessments (LCAs) relevant to PVs yielded 13 studies on crystalline silicon (c-Si) that met minimum standards of quality, transparency, and relevance. Prior to harmonization, the median of 42 estimates of life cycle GHG emissions from those 13 LCAs was 57 grams carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with an interquartile range (IQR) of 44 to 73. After harmonizing key performance characteristics, irradiation of 1,700 kilowatt-hours per square meter per year (kWh/m{sup 2}/yr); system lifetime of 30 years; module efficiency of 13.2% or 14.0%, depending on module type; and a performance ratio of 0.75 or 0.80, depending on installation, the median estimate decreased to 45 and the IQR tightened to 39 to 49. The median estimate and variability were reduced compared to published estimates mainly because of higher average assumptions for irradiation and system lifetime. For the sample of studies evaluated, harmonization effectively reduced variability, providing a clearer synopsis of the life cycle GHG emissions from c-Si PVs. The literature used in this harmonization neither covers all possible c-Si installations nor represents the distribution of deployed or manufactured c-Si PVs.

Hsu, D. D.; O'Donoughue, P.; Fthenakis, V.; Heath, G. A.; Kim, H. C.; Sawyer, P.; Choi, J. K.; Turney, D. E.

2012-04-01T23:59:59.000Z

358

2-D numerical simulation of digital rock experiments with lattice gas automation for electrical properties of reservoir formation  

Science Journals Connector (OSTI)

......41074103 from National Natural Science Foundation...law from lattice-gas hydrodynamics, Phys...equation using a lattice gas Boltzmann method...1991b. Lattice gas automata for flow...Logging Analysist, Corpus Christi, TX, 1982 July......

Wenzheng Yue; Guo Tao; Shangxu Wang; Bin Tian

2010-12-01T23:59:59.000Z

359

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

360

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

362

Electron Spin Decoherence in Silicon Carbide Nuclear Spin Bath  

E-Print Network [OSTI]

In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}\\rm{Si}$ ($p_{\\rm{Si}}=4.7\\%$) is about 4 times larger than that of $^{13}{\\rm C}$ ($p_{\\rm{C}}=1.1\\%$), the electron spin coherence time of defect centers in SiC nuclear spin bath in strong magnetic field ($B>300~\\rm{Gauss}$) is longer than that of nitrogen-vacancy (NV) centers in $^{13}{\\rm C}$ nuclear spin bath in diamond. The reason for this counter-intuitive result is the suppression of heteronuclear-spin flip-flop process in finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.

Li-Ping Yang; Christian Burk; Mattias Widmann; Sang-Yun Lee; Jörg Wrachtrup; Nan Zhao

2014-09-16T23:59:59.000Z

363

A pair of oscillators interacting with a common heat bath  

E-Print Network [OSTI]

Here the problem considered is that of a pair of oscillators coupled to a common heat bath. Many, if not most, discussions of a single operator coupled to a bath have used the independent oscillator model of the bath. However, that model has no notion of separation, so the question of phenomena when the oscillators are near one another compared with when they are widely separated cannot be addressed. Here the Lamb model of an oscillator attached to a stretched string is generalized to illustrate some of these questions. The coupled Langevin equations for a pair of oscillators attached to the string at different points are derived and their limits for large and small separations obtained. Finally, as an illustration of a different phenomenon, the fluctuation force between a pair of masses attached to the string is calculated, with closed form expressions for the force at small and large separations.

G. W. Ford; R. F. O'Connell

2014-08-25T23:59:59.000Z

364

Solvent Selection Use dry ice/isopropanol for cooling baths  

E-Print Network [OSTI]

Solvent Selection Use dry ice/isopropanol for cooling baths Reaches essentially the same temperature as dry ice/acetone (-77°C vs. -78°C), but the lower volatility of isopropanol minimizes vapor a closed-loop cooling system for condensers Closed-loop cooling systems eliminate wastewater and accidental

Chan, Hue Sun

365

Gas-Turbine Propulsion in a Naval Vessel  

Science Journals Connector (OSTI)

... Messrs. Metropolitan-Vickers Electrical Co., Ltd., Trafford Park, Manchester, have installed gas- ...gas-turbine ...

1947-09-20T23:59:59.000Z

366

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

367

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

368

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

369

Climate and Environmental Effects of Electric Vehicles versus Compressed Natural Gas Vehicles in China: A Life-Cycle Analysis at Provincial Level  

Science Journals Connector (OSTI)

Under such circumstances, there will be a battle between coal and NG in many sectors, particularly the on-road transport sector, which is exclusively petroleum-dependent but currently facing a worldwide oil shortage. ... Consumption-based power mixes estimated based on provincial data provided by China Energy Statistical Yearbook 2011(4) (data include amount of electricity produced from coal, NG, hydro and others, and amount of electricity imported from and exported to other provinces), under the following assumptions: (1) Electricity-imported provinces first import electricity from other provinces under the same interprovincial power grid, then from neighboring grids (China has six interprovincial power grids serving six regions, respectively; for details refer to our previous study(13)); (2) the mix of exported electricity is 100% coal considering the marginal effect, except for provinces (e.g., Hubei and Sichuan) where huge hydropower projects (e.g., the Three Gorges project) are built with intent to export hydropower outside the province. ... China’s oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. ...

Hong Huo; Qiang Zhang; Fei Liu; Kebin He

2012-12-31T23:59:59.000Z

370

Bath, New Hampshire: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bath, New Hampshire: Energy Resources Bath, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1670079°, -71.9662009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1670079,"lon":-71.9662009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Experimental bath engineering for quantitative studies of quantum control  

E-Print Network [OSTI]

We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a wide variety of relevant classical error models may be realized through In-Phase/Quadrature modulation on a vector signal generator producing a resonant carrier signal. We demonstrate our approach through high-bandwidth modulation of the 12.6 GHz carrier appropriate for trapped $^{171}$Yb$^{+}$ ions. Experiments demonstrate the reduction of coherent lifetime in the system in the presence of an engineered bath, with the observed $T_{2}$ scaling as predicted by a quantitative model described herein. These techniques form the basis of a toolkit for quantitative tests of quantum control protocols, helping experimentalists characterize the performance of their quantum coherent systems.

A. Soare; H. Ball; D. Hayes; X. Zhen; M. C. Jarratt; J. Sastrawan; H. Uys; M. J. Biercuk

2014-03-18T23:59:59.000Z

372

The Electric Discharge in Superhigh Density Gas at Current Amplitude up to 5105 A.A. Bogomaz, A.V. Budin, M.E. Pinchuk, Ph.G. Rutberg, A.F. Savvateev  

E-Print Network [OSTI]

The Electric Discharge in Superhigh Density Gas at Current Amplitude up to 5·105 A A.A. Bogomaz, A a increase of voltage on discharge gap and feature on a curve of a current. Arc parameters were calculated temperature. Introduction The results of investigations of powerpulse electric discharge in hydrogen

Paris-Sud XI, Université de

373

Contaminant trap for gas-insulated apparatus  

DOE Patents [OSTI]

A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

374

The efficiency of conversion of energy in an electric-discharge light-gas accelerator of bodies  

Science Journals Connector (OSTI)

The results are given of investigation of the processes of energy transfer in a power supply-projectile system, ... the working gas and a number of other factors on the efficiency of energy conversion. It is foun...

A. V. Budin; V. A. Kolikov; F. G. Rutberg

2008-06-01T23:59:59.000Z

375

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging PHEVs, as well as the powertrain technology and fuel sources for PHEVs.

376

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

377

Generalized energy equipartition in harmonic oscillators driven by active baths  

E-Print Network [OSTI]

We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.

Claudio Maggi; Matteo Paoluzzi; Nicola Pellicciotta; Alessia Lepore; Luca Angelani; Roberto Di Leonardo

2014-11-06T23:59:59.000Z

378

Solubility Studies of Testosterone in Organic Solvents Using Gas Chromatography,  

Science Journals Connector (OSTI)

......3% XE-60 on Gas Chrom Q, 80...of N2 carrier gas 12 lbs. above...unusually low solubility required an additional...0.6 C) water bath, maintained...evaporated urider nitrogen in a salt- crystal...30 C (with a T solubility of 401,093 7...degrees Kelvin R = gas constant in calories......

Maryon W. Ruchelman

1971-04-01T23:59:59.000Z

379

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

380

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

382

Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions  

Science Journals Connector (OSTI)

Abstract Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of \\{PEVs\\} on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region?s energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio.

Jae D. Kim; Mansour Rahimi

2014-01-01T23:59:59.000Z

383

Resilience of gas-phase anharmonicity in the vibrational response of adsorbed carbon monoxide and breakdown under electrical conditions  

E-Print Network [OSTI]

In surface catalysis, the adsorption of carbon monoxide on transition-metal electrodes represents the prototype of strong chemisorption. Notwithstanding significant changes in the molecular orbitals of adsorbed CO, spectroscopic experiments highlight a close correlation between the adsorbate stretching frequency and equilibrium bond length for a wide range of adsorption geometries and substrate compositions. In this work, we study the origins of this correlation, commonly known as Badger's rule, by deconvoluting and examining contributions from the adsorption environment to the intramolecular potential using first-principles calculations. Noting that intramolecular anharmonicity is preserved upon CO chemisorption, we show that Badger's rule for adsorbed CO can be expressed solely in terms of the tabulated Herzberg spectroscopic constants of isolated CO. Moreover, although it had been previously established using finite-cluster models that Badger's rule is not affected by electrical conditions, we find here th...

Dabo, Ismaila

2012-01-01T23:59:59.000Z

384

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

385

Bath Institute for Complex Systems Minimal supporting subtrees for the free energy of polymers  

E-Print Network [OSTI]

. We show that, for high temperatures, the free energy is supported by a random tree of positiveBICS Bath Institute for Complex Systems Minimal supporting subtrees for the free energy of polymers on disordered trees Peter M¨orters and Marcel Ortgiese Bath Institute For Complex Systems Preprint 10/08 (2008

Burton, Geoffrey R.

386

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

for natural gas in the electric power sector soared during the week in order to meet heating needs from the current cold spell. The operator for the electric power grid in Texas...

387

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

Yang, Christopher

2008-01-01T23:59:59.000Z

388

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

389

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network [OSTI]

2003. Electricity and Natural Gas Assessment Report . 100-2003 Electricity and Natural Gas Assessment Report. In this

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

390

2/21/2014 Downsizing Wind Energyfor Your Phone | Glacial EnergyBlog -Commercial Electric Savings, Electric Provider, Electric Supplier http://blog.glacialenergy.com/2014/02/19/downsizing-wind-energy-for-your-phone/ 1/2  

E-Print Network [OSTI]

suppliers selling electricity and natural gas to residential, commercial, industrial, and institutional Energy Saving Tips Events General Electricity green roof Household Tips Life Tips Natural Gas New Announcements Community Electrical Safety Electricity Energy Energy Efficiency Energy Innovations Energy News

Chiao, Jung-Chih

391

Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data  

Science Journals Connector (OSTI)

Abstract With the growing share of wind production, understanding its impacts on electricity price and greenhouse gas (GHG) emissions becomes increasingly relevant, especially to design better wind-supporting policies. Internal grid congestion is usually not taken into account when assessing the price impact of fluctuating wind output. Using 2006–2011 hourly data from Ontario (Canada), we establish that the impact of wind output, both on price level and marginal GHG emissions, greatly differs depending on the congestion level. Indeed, from an average of 3.3% price reduction when wind production doubles, the reduction jumps to 5.5% during uncongested hours, but is only 0.8% when congestion prevails. Similarly, avoided GHG emissions due to wind are estimated to 331.93 kilograms per megawatt-hour (kg/MWh) using all data, while for uncongested and congested hours, estimates are respectively 283.49 and 393.68 kg/MWh. These empirical estimates, being based on 2006–2011 Ontario data, cannot be generalized to other contexts. The main contribution of this paper is to underscore the importance of congestion in assessing the price and GHG impacts of wind. We also contribute by developing an approach to create clusters of data according to the congestion status and location. Finally, we compare different approaches to estimate avoided GHG emissions.

Mourad Ben Amor; Etienne Billette de Villemeur; Marie Pellat; Pierre-Olivier Pineau

2014-01-01T23:59:59.000Z

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

394

EA-363 Noble Americas Gas & Power Corporation | Department of...  

Broader source: Energy.gov (indexed) [DOE]

3 Noble Americas Gas & Power Corporation EA-363 Noble Americas Gas & Power Corporation Order authorizong Noble Americas Gas & Power Corporation to export electric energy to Mexico...

395

EA-364 Noble Americas Gas & Power Corporation | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4 Noble Americas Gas & Power Corporation EA-364 Noble Americas Gas & Power Corporation Order authorizong Noble Americas Gas & Power Corporation to export electric energy to Canada...

396

A Continuous 4He Refrigerator for Use in a Superfluid Helium Bath  

SciTech Connect (OSTI)

In cryogenic applications in space, the base temperature, Tmin of the helium bath in the dewar is typically determined by the design of the porous plug and the associated plumbing. For certain experiments, the required operating temperature of the instrument is lower than the bath temperature. In the laboratory, temperatures below 1.2 K require very large pumps or the use of 3He systems. We have demonstrated a modified 4He refrigerator with a continuous fill from a superfluid helium bath with a base temperature more than 0.5 K below the bath temperature. We describe the operation as well as the mechanism of such a refrigerator. For operation in space the refrigerator would need to be equipped with a porous plug to retain the fluid.

Wang, Suwen; Avaloff, D.; Nissen, J. A.; Stricker, D. A.; Lipa, J. A. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, California (United States)

2006-09-07T23:59:59.000Z

397

Quantitative Methods for the Gas Chromatographic Characterization of Acidic Fermentation By-Products of Anaerobic Bacteria  

Science Journals Connector (OSTI)

......250 C. The nitrogen carrier gas flow rate...incubated in a water bath at 50...deionized water and 0.5...as above. Gas Chromatographic...ml/min nitrogen and the injector...showed low solubility in water, especially...Overall, the gas chromatographic......

Thomas E. Bohannon; Gerald Manius; Francisco Mamaril; Lan-Fun Li Wen

1978-01-01T23:59:59.000Z

398

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

399

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

400

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10,51 "Electric Utilities",, "IPP & CHP",10,51 "Net Generation (megawatthours)",71787,51 "Electric...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

402

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

automobile manufacturers are currently introducing electricautomobile mass market. EDVs come in the form of plug-in hybrid electric

Greer, Mark R

2012-01-01T23:59:59.000Z

403

Alternatives to Electric Air Conditioning Systems  

E-Print Network [OSTI]

The rapid escalation of electricity prices has created an opportunity to re-introduce gas-fired air conditioning systems to the commercial building market. In 1985 Gas Research Institute initiated a program to develop an advanced gas engine...

Lindsay, B. B.; Koplow, M. D.

1988-01-01T23:59:59.000Z

404

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

405

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

406

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

407

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

statistics (Georgia) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Natural gas Net Summer Capacity (megawatts) 38,488 7 Electric Utilities 29,293 3...

408

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Natural Gas Net Summer Capacity (megawatts) 39,520 6 Electric Utilities 10,739 26...

409

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

statistics (Rhode Island) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Natural Gas Net Summer Capacity (megawatts) 1,781 49 Electric Utilities 8 50 Independent...

410

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alabama Table 1. 2012 Summary statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary energy source Natural gas Net summer capacity (megawatts) 32,547 9 Electric...

411

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

412

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

413

Natural Gas Electric Power Price  

Gasoline and Diesel Fuel Update (EIA)

7.31 9.26 4.93 5.27 4.89 3.54 1997-2012 7.31 9.26 4.93 5.27 4.89 3.54 1997-2012 Alabama 7.19 10.03 4.30 4.85 W 3.09 1997-2012 Alaska 3.58 W W W 5.04 4.32 1997-2012 Arizona 6.84 8.60 4.16 4.84 W 3.51 1997-2012 Arkansas 7.04 9.23 4.14 5.11 W 3.19 1997-2012 California 6.72 8.23 4.44 4.99 4.71 3.68 1997-2012 Colorado 4.35 7.02 4.27 5.16 4.98 W 1997-2012 Connecticut 7.81 10.48 4.89 5.70 5.09 3.99 1997-2012 Delaware W W W W W -- 1997-2012 District of Columbia -- -- -- -- 4.96 -- 2001-2012 Florida 9.35 10.41 7.90 6.54 5.86 4.80 1997-2012 Georgia 7.54 10.40 4.70 5.21 4.72 3.40 1997-2012 Hawaii -- -- -- -- -- -- 2001-2012 Idaho W W W W W W 2001-2012 Illinois 7.26 10.10 4.69 5.14 W W 1997-2012 Indiana 7.48 9.61 4.69 4.91 W W 1997-2012

414

Natural Gas Electric Power Price  

Gasoline and Diesel Fuel Update (EIA)

4.79 4.56 4.34 4.03 4.19 4.26 2002-2013 4.79 4.56 4.34 4.03 4.19 4.26 2002-2013 Alabama 4.60 4.36 4.05 3.80 W W 2002-2013 Alaska 4.60 4.78 4.82 4.86 5.11 4.78 2002-2013 Arizona 4.83 4.73 4.38 4.22 4.45 4.49 2002-2013 Arkansas W W W W W 4.18 2002-2013 California W 4.55 4.45 4.26 4.41 4.43 2002-2013 Colorado W 4.80 4.56 4.51 4.58 W 2002-2013 Connecticut 4.74 4.49 5.09 3.92 4.11 3.99 2002-2013 Delaware -- -- -- -- -- -- 2002-2013 District of Columbia -- -- -- -- -- -- 2002-2013 Florida W 5.24 W 4.71 W W 2002-2013 Georgia 4.91 4.60 W 4.10 3.85 4.37 2002-2013 Hawaii -- -- -- -- -- -- 2002-2013 Idaho W W W W W W 2002-2013 Illinois W W 4.65 W W W 2002-2013 Indiana 4.31 W 3.99 W W W 2002-2013 Iowa 4.82 4.44 4.12 3.99 4.38 6.01 2002-2013

415

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 7.31 9.26 4.93 5.27 4.89 3.54 1997-2012 Alabama 7.19 10.03 4.30 4.85 W 3.09 1997-2012 Alaska 3.58 W W W 5.04 4.32 1997-2012 Arizona 6.84 8.60 4.16 4.84 W 3.51 1997-2012 Arkansas 7.04 9.23 4.14 5.11 W 3.19 1997-2012 California 6.72 8.23 4.44 4.99 4.71 3.68 1997-2012 Colorado 4.35 7.02 4.27 5.16 4.98 W 1997-2012 Connecticut 7.81 10.48 4.89 5.70 5.09 3.99 1997-2012 Delaware W W W W W -- 1997-2012 District of Columbia -- -- -- -- 4.96 -- 2001-2012 Florida 9.35 10.41 7.90 6.54 5.86 4.80 1997-2012

416

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012...

417

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network [OSTI]

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

419

Muscle metabolism and meat quality of Pectoralis from turkeys treated with postmortem electrical stimulation  

E-Print Network [OSTI]

This experiment was conducted to evaluate the effects of electrical stimulation (ES) on muscle metabolism and breast meat quality in turkeys. Thirty-six turkey hens were either electrically stimulated at the neck in a saline bath (570 V, 450 mA, AC...

Owens, Casey Michelle

2012-06-07T23:59:59.000Z

420

Typical, finite baths as a means of exact simulation of open quantum systems  

E-Print Network [OSTI]

There is presently considerable interest in accurately simulating the evolution of open systems for which Markovian master equations fail. Examples are systems that are time-dependent and/or strongly damped. A number of elegant methods have now been devised to do this, but all use a bath consisting of a continuum of harmonic oscillators. While this bath is clearly appropriate for, e.g., systems coupled to the EM field, it is not so clear that it is a good model for generic many-body systems. Here we explore a different approach to exactly simulating open-systems: using a finite bath chosen to have certain key properties of thermalizing many-body systems. To explore the numerical resources required by this method to approximate an open system coupled to an infinite bath, we simulate a weakly damped system and compare to the evolution given by the relevant Markovian master equation. We obtain the Markovian evolution with reasonable accuracy by using an additional averaging procedure, and elucidate how the typicality of the bath generates the correct thermal steady-state via the process of "eigenstate thermalization".

Luciano Silvestri; Kurt Jacobs; Vanja Dunjko; Maxim Olshanii

2014-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

422

CO2 Reforming of Methane in a Molten Carbonate Salt Bath for Use in Solar Thermochemical Processes  

Science Journals Connector (OSTI)

From the point of view of the chemical pathway for this process, several high-temperature endothermic reactions have been investigated as solar high-temperature thermochemical processes, such as a multistep water-splitting reaction,4-6 coal gasification,7,8 and natural gas reforming. ... The calorifically upgraded product of syngas can be stored and transported to be combusted in a conventional gas turbine (GC) or a combined cycle (CC), to generate electricity with a high conversion efficiency (up to 55% in a modern, large CC). ... The dry effluent gases were analyzed by gas chromatography equipment (Shimadzu, GC-4C) with a TCD detector. ...

T. Kodama; T. Koyanagi; T. Shimizu; Y. Kitayama

2000-11-17T23:59:59.000Z

423

The Natural Gas Advantage  

Science Journals Connector (OSTI)

Environmental think-tank leaders and the new energy secretary are singing the praises of the ever-expanding U.S. natural gas bonanza, but at the same time, they worry about permanent dependence on this fossil fuel. ... This flood of shale-based natural gas finds has been great for U.S. chemical companies because it is a cheap feedstock and fuel source. ... Equally important, it is also revising the greenhouse gas-climate change equation because, when burned to generate electricity, natural gas produces the same electrical output as coal but emits half the amount of carbon dioxide. ...

JEFF JOHNSON

2013-06-24T23:59:59.000Z

424

The Implementation of California AB 32 and its Impact on Wholesale Electricity Markets  

E-Print Network [OSTI]

its Impact on Wholesale Electricity Markets James Bushnellits Impact on Wholesale Electricity Markets James Bushnell *gas emissions from electricity and perhaps other industries.

Bushnell, Jim B

2007-01-01T23:59:59.000Z

425

Record of Categorical Exclusion (CS) Determination, Office of Electricity  

Broader source: Energy.gov (indexed) [DOE]

3 Noble Americas Gas 3 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-363 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): Noble Americas Gas & Power Corporation to export electric energy to Mexico EA-363 Noble Americas Gas & Power Corporation More Documents & Publications Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): OE Docket EA-364 Noble Americas Gas & Power Corporation EA-363 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity

426

Two-bath model for activated surface diffusion of interacting adsorbates  

E-Print Network [OSTI]

The diffusion and low vibrational motions of adsorbates on surfaces can be well described by a purely stochastic model, the so-called interacting single adsorbate model, for low-moderate coverages (\\theta \\lesssim 0.12). Within this model, the effects of thermal surface phonons and adsorbate-adsorbate collisions are accounted for by two uncorrelated noise functions which arise in a natural way from a two-bath model based on a generalization of the one-bath Caldeira-Leggett Hamiltonian. As an illustration, the model is applied to the diffusion of Na atoms on a Cu(001) surface with different coverages.

R. Martinez-Casado; A. S. Sanz; G. Rojas-Lorenzo; S. Miret-Artes

2008-10-10T23:59:59.000Z

427

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

428

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

429

Design of a Sustainable Electric Vehicle Charging Station:.  

E-Print Network [OSTI]

??Electric vehicles only become useful in reducing greenhouse gas emissions, if the electricity used to charge their batteries comes from renewable energy sources. This thesis… (more)

Bakolas, B.V.E.

2012-01-01T23:59:59.000Z

430

Well-to-Wheel Analyses for Energy Consumption and Greenhouse Gas Emissions of Electric Vehicles Using Various Thermal Power Generation Technologies in China  

Science Journals Connector (OSTI)

We compared BEV with the conventional gasoline car, diesel car, and hybrid electric car in terms of total energy use and... According to definition from U.S. EPA, mid-size car is pointed to th...

Wei Shen; Weijian Han

2013-01-01T23:59:59.000Z

431

An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives  

Science Journals Connector (OSTI)

...and PEVs require a new energy infrastructure to be deployed...because hydrogen is an energy carrier, like electricity, that...number of different primary energy resources. There are...accomplished by thermochemical conversion of hydrocarbon fuels...

2014-01-01T23:59:59.000Z

432

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

433

Chemical bath deposition of CdS thin films doped with Zn and Cu  

Science Journals Connector (OSTI)

Zn- and Cu-doped CdS thin films were deposited onto glass substrates...2 and CuCl2...were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effe...

A I OLIVA; J E CORONA; R PATIÑO; A I OLIVA-AVILÉS

2014-04-01T23:59:59.000Z

434

Last updated 20 May 2011 Uganda: Gregory Sankaran, University of Bath, UK, and Juma Kasozi,  

E-Print Network [OSTI]

Last updated 20 May 2011 Uganda: Gregory Sankaran, University of Bath, UK, and Juma Kasozi, Makerere University, Kampala, Uganda Makerere University is effectively the national university of Uganda and effectively refounded in 1986. The best-known alumnus outside Uganda is probably John Sentamu, Archbishop

Burton, Geoffrey R.

435

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network [OSTI]

Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

436

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network [OSTI]

and gas-turbines, fuel cells, heat exchangers, absorption chillers, stationary electricity storage, photovoltaic panels, solar

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

437

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

438

The gas surge  

Science Journals Connector (OSTI)

...S. SHALE GAS PRODUCTION SINCE 2007 40...TOTAL U.S. PRODUCTION 47—PERCENT INCREASE IN U.S. ELECTRICITY GENERATED USING...dusty gas drilling site in southwestern Kansas to try an experiment...40% of U.S. production, up from less...

David Malakoff

2014-06-27T23:59:59.000Z

439

Electric Resistance Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

440

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect (OSTI)

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low-Cost Production of Hydrogen and Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Bloom Energy is testing the potential to produce low-cost hydrogen and electricity simultaneously from natural gas.

442

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: March 2012 Electric Power Sector Coal Stocks: March 2012 Stocks The seasonal winter drawdown of coal stocks was totally negated during the winter months this year due to low natural gas prices and unseasonably warm temperatures throughout the continental United States. In fact, March 2012 was the seventh straight month that coal stockpiles at power plants increased from the previous month. The largest driver of increasing stockpiles has been declining consumption of coal due to unseasonably warm weather and declining natural gas prices. Because much of the coal supplied to electric generators is purchased through long-term contracts, increasing coal stockpiles have proven difficult for electric power plant operators to handle. Some operators have inventories so high that they are refusing

443

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

444

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

445

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

446

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: February 2012 Highlights: February 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during February 2012. Natural gas-fired generation increased in every region of the United States when compared to February 2011. Wholesale electricity prices remained in the low end of the annual range for most wholesale markets due to low demand and depressed natural gas prices Key Indicators Feb 2012 % Change from Feb. 2011 Total Net Generation (Thousand MWh) 310,298 -1.0% Residential Retail Price (cents/kWh) 11.55 3.9% Retail Sales (Thousand MWh) 285,684 -3.5% Heating Degree-Days 654 -12.0% Natural Gas Price, Henry Hub ($/MMBtu) 2.60 -38.1% Coal Stocks (Thousand Tons) 186,958 -13.6% Coal Consumption (Thousand Tons) 62,802 -14.6% Natural Gas Consumption

447

An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives  

Science Journals Connector (OSTI)

...will have peak-power devices such as high-power batteries or...Fuel-cell passenger cars and sport utility...feedstocks (water, electricity...Comparing land, water, and materials...hybrid vehicles: power sources, models...using a motor car. Transport...

2014-01-01T23:59:59.000Z

448

EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

449

Optimization Online - Consideration of Gas Supply Contracts with ...  

E-Print Network [OSTI]

Nov 18, 2008 ... ... natural gas (NG) providers, who supply gas for electric energy generators. In order to achieve more regularity for NG providers cash flows, ...

Leonardo A. M. Moraes

2008-11-18T23:59:59.000Z

450

NREL: Energy Analysis - Natural Gas-Fired Generation Results...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, natural gas-fired electricity generation systems (based...

451

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

Salomon, R.E.

1987-06-30T23:59:59.000Z

452

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

Salomon, Robert E. (Philadelphia, PA)

1987-01-01T23:59:59.000Z

453

Electricity Advisory Committee Meeting Presentations September...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Patricia Hoffman, Assistant Secretary, and William Parks, Senior Technical Advisor, DOE OE Panel - Gas-Electric Issues: Regulatory Mechanisms to Ensure Fuel Adequacy -...

454

Walcot Electric Machines | Open Energy Information  

Open Energy Info (EERE)

Walcot Electric Machines Walcot Electric Machines Jump to: navigation, search Name Walcot Electric Machines Place Bath, United Kingdom Zip BA2 7AY Sector Efficiency Product A spin-out from Bath University which that will develop and licence process relating to high efficiency electric motors for fixed speed applications, and will offer endusers substantial reductions in the cost of operation Coordinates 45.467055°, -98.329279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.467055,"lon":-98.329279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: Composition, structure, and processing bath chemistry  

SciTech Connect (OSTI)

A new corrosion resistant coating, being designed for possible replacement of chromate conversion coatings on aluminum alloys, was investigated for composition, structure, and solubility using a variety of techniques. The stoichiometry of the material, prepared by immersion of 1100 Al alloy into a lithium carbonate-lithium hydroxide solution, was approximately Li{sub 2}Al{sub 4}CO{sub 3}(OH){sub 12}{center_dot}3H{sub 2}O. Processing time was shown to be dependent upon the bath pH, and consistent coating formation required supersaturation of the coating bath with aluminum. The exact crystal structure of this hydrotalcite material, hexagonal or monoclinic, was not determined. It was shown that both the bulk material and coatings with the same nominal composition and crystal structure could be formed by precipitation from an aluminum supersatured solution of lithium carbonate. {copyright} {ital 1996 Materials Research Society.}

Drewien, C.A.; Eatough, M.O.; Tallant, D.R.; Hills, C.R.; Buchheit, R.G. [Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

1996-06-01T23:59:59.000Z

456

Removal of water from a shallow bath under laser pulse irradiation  

SciTech Connect (OSTI)

An experimental investigation was made of water removal from a shallow bath under the action of a CO{sub 2}-laser radiation pulse focused to a spot of size substantially smaller than the bath length. We showed that the specific expenditure of energy is determined by the intensity of laser radiation at the water surface for different values of the focal spot area and pulse duration. The removal dynamics was studied by single-frame photography technique. It was determined that the water is removed layerwise only from the walls of the cavern, which expands in the horizontal direction upon cessation of the radiation pulse. Two-dimensional numerical simulations were made of the water removal, and a mechanism was proposed to explain the experimentally observed removal pattern. (interaction of laser radiation with matter)

Antonova, L I; Gladush, G G; Glova, A F; Drobyazko, S V; Krasyukov, A G; Mainashev, V S; Rerikh, V L; Taran, M D [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation)

2011-05-31T23:59:59.000Z

457

Energy and information propagation in a finite coupled bosonic heat bath  

E-Print Network [OSTI]

The finite coupled bosonic model of reservoir introduced by Vasile et al. [1] to characterize non-Markovianity, is used to study the different dissipative behaviors of a harmonic oscillator coupled to it when it is in resonance, close to resonance or far detuned. We show that information and energy exchange between system and heat bath go hand in hand because phonons are the carriers of both: in resonance free propagation of excitations is achieved, and therefore pure dissipation, while when far detuned the system can only correlate with the first oscillator in the bath's chain, leading to almost unitary evolution. In the intermediate situation we show the penetration of correlations and the formation of oscillatory (dressed state) behavior, which lies at the root of non-Markovianity.

Fernando Galve; Roberta Zambrini

2014-09-15T23:59:59.000Z

458

Improving the Efficiency of Electricity Use in Manufacturing  

Science Journals Connector (OSTI)

...fuel energy into electricity. The gas-turbine technology thus provides a much...technology is the steam-injected gas turbine, which incorporates a modem aircraft...potentially important application of gas-turbine cogenera-tion technology involves...

MARC ROSS

1989-04-21T23:59:59.000Z

459

Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals  

DOE Patents [OSTI]

A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

Peng, Yu-Min (Hsinchu, TW); Wang, Jih-Wen (Hsinchu, TW); Liue, Chun-Ying (Tau-Yung, TW); Yeh, Shinn-Horng (Kaohsiung, TW)

1994-01-01T23:59:59.000Z

460

Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath  

SciTech Connect (OSTI)

Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.

Ni Xiaotong [Department of Physics and the Key Laboratory of Atomic and Nanosciences, Ministry of Education, Tsinghua University, Beijing 100084 (China); Liu Yuxi [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084 (China); Kwek, L. C. [Center for Quantum Technologies, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore and National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Wang Xiangbin [Department of Physics and the Key Laboratory of Atomic and Nanosciences, Ministry of Education, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084 (China)

2010-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Beyond heat baths: Generalized resource theories for small-scale thermodynamics  

E-Print Network [OSTI]

Small-scale heat exchanges have recently been modeled with resource theories intended to extend thermodynamics to the nanoscale and quantum regimes. We generalize these theories to exchanges of quantities other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d-majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from, and we bound the work cost of creating, a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.

Nicole Yunger Halpern; Joseph M. Renes

2014-09-13T23:59:59.000Z

462

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Reports Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

463

Record of Categorical Exclusion (CS) Determination, Office of Electricity  

Broader source: Energy.gov (indexed) [DOE]

OE Docket EA-364 Noble OE Docket EA-364 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): OE Docket EA-364 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): Application from Noble Americas Gas & Power Corporation to export electric energy to Canada Application to Export Electric Energy OE Docket EA-364 Noble Americas Gas & Power Corporation More Documents & Publications EA-364 Noble Americas Gas & Power Corporation Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-367 EDF Trading North America, LLC

464

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

465

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

466

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

467

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

468

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: October 2011 Highlights: October 2011 Mixed temperatures led to flat retail sales of electricity during October 2011. Coal-fired generation decreased or was flat across the United States except for the Central region when compared to October 2010. October's electric system load remained in the mid-to-low section of the annual range in many electric systems across the United States. Key Indicators Oct. 2011 % Change from Oct. 2010 Total Net Generation (Thousand MWh) 309,400 0.5% Residential Retail Price (cents/kWh) 12.12 2.2% Retail Sales (Thousand MWh) 285,156 -0.9% Heating Degree-Days 259 8.8% Natural Gas Price, Henry Hub ($/MMBtu) 3.68 4.0% Coal Stocks (Thousand Tons) 156,880 -10.7% Coal Consumption (Thousand Tons) 69,627 -1.8% Natural Gas Consumption (Mcf) 603,724 1.6%

469

Federal Energy Management Program: Energy Cost Calculator for Electric and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

470

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28 "..Electric Utilities",41844010,2...

471

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",2119,48 "Electric Utilities",1946,39 "IPP & CHP",172,50 "Net Generation (megawatthours)",6946419,49 "Electric...

472

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",23485,17 "Electric Utilities",17148,17 "IPP & CHP",6337,17 "Net Generation (megawatthours)",77896588,19 "Electric...

473

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",14321,31 "Electric Utilities",991,42 "IPP & CHP",13330,7 "Net Generation (megawatthours)",36198121,36 "Electric...

474

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",38488,7 "Electric Utilities",29293,3 "IPP & CHP",9195,10 "Net Generation (megawatthours)",122306364,9 "Electric...

475

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",1781,49 "Electric Utilities",8,50 "IPP & CHP",1773,38 "Net Generation (megawatthours)",8309036,48 "Electric...

476

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",32547,9 "Electric Utilities",23615,7 "IPP & CHP",8933,11 "Net Generation (megawatthours)",152878688,6 "Electric...

477

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",39520,6 "Electric Utilities",10739,26 "IPP & CHP",28781,5 "Net Generation (megawatthours)",135768251,7 "Electric...

478

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10476,34 "Electric Utilities",7807,30 "IPP & CHP",2669,34 "Net Generation (megawatthours)",35173263,39 "Electric...

479

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",59139,3 "Electric Utilities",51373,1 "IPP & CHP",7766,15 "Net Generation (megawatthours)",221096136,3 "Electric...

480

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",71329,2 "Electric Utilities",30294,2 "IPP & CHP",41035,3 "Net Generation (megawatthours)",199518567,4 "Electric...

Note: This page contains sample records for the topic "bath electric gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",3357,46 "Electric Utilities",98,47 "IPP & CHP",3259,29 "Net Generation (megawatthours)",8633694,47 "Electric...

482

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",109568,1 "Electric Utilities",28463,4 "IPP & CHP",81106,1 "Net Generation (megawatthours)",429812510,1 "Electric...

483

Implications of Shale Gas Development for Climate Change  

Science Journals Connector (OSTI)

Implications of Shale Gas Development for Climate Change ... Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. ...

Richard G. Newell; Daniel Raimi

2014-04-22T23:59:59.000Z

484

Homeowners: Respond to Natural Gas Disruptions  

Broader source: Energy.gov [DOE]

Because natural gas is distributed through underground pipelines, delivery disruptions occur less often than electrical outages. Severe storms, flooding, and earthquakes can expose and break pipes,...

485

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",25548,15 "..Electric Utilities",16661,18 "..IPP & CHP",8887,13 "Net Generation (megawatthours)",103407706,15...

486

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28...

487

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",4491,43 "..Electric Utilities",19,49 "..IPP & CHP",4472,22 "Net Generation (megawatthours)",14428596,44...

488

Local Leaders: Respond to Natural Gas Disruptions  

Broader source: Energy.gov [DOE]

Because natural gas is distributed through underground pipelines, delivery disruptions occur less often than electrical outages. Severe storms, flooding, and earthquakes can expose and break pipes,...

489

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

490

SCE&G (Gas)- Residential EnergyWise Program  

Broader source: Energy.gov [DOE]

South Carolina Electric and Gas (SCE&G) provides energy efficiency incentives to home owners in its service territory. Natural gas customers are eligible for rebates on water heaters, gas logs,...

491

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

492

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

493

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

494

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

495

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

496

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

497

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

498

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

499

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

500

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47