Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optimal Reliable Retrofit Design of Multiproduct Batch Plants  

Science Journals Connector (OSTI)

The problem of the retrofit design of a multiproduct batch plant arises, for example, when new production targets and market selling prices are specified for one or more products or when there is a need to improve the overall effectiveness of the existing plant by improving its reliability and maintainability characteristics. ... Given (i) a new production target, selling price, unit cycle times, and size factors for each product; (ii) the existing plant configuration, including the size, cost, reliability, and maintainability data for existing units; and (iii) the number, size, reliability, and maintenance characteristics and costs of new equipment available, determine (i) the net expected profit and the revised plant configuration, (ii) the method of grouping parallel units and various processing parameters for each production campaign, and (iii) the optimal inherent availability for selected new equipment. ... Moreover, they express their deep appreciation for the stimulating mix of wit, insight, and creativity that Art always brought to Delft. ...

Harish D. Goel; Margot P. C. Weijnen; Johan Grievink

2004-03-19T23:59:59.000Z

2

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

3

Synthesis of Operating Procedures for Material and Energy Conversions in a Batch Plant  

Science Journals Connector (OSTI)

The problem of operating procedure synthesis for chemical process plants is investigated. The knowledge about plant structure and material-conversion procedures was represented by directed graphs and the subgr...

Yoichi Kaneko; Yoshiyuki Yamashita…

2003-01-01T23:59:59.000Z

4

PDSF Interactive Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin...

5

Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant  

SciTech Connect

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, Connie C.

2013-09-30T23:59:59.000Z

6

Hopper Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Jobs Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Hopper. The batch system on Hopper is known as "Torque." Bare-Bones Batch Script The simplest Hopper batch script will look something like this. #PBS -q regular #PBS -l mppwidth=48 #PBS -l walltime=00:10:00 cd $PBS_O_WORKDIR aprun -n 48 ./my_executable This example illustrates the basic parts of a script: Job directive lines begin with #PBS. These "Torque Directives" tell the batch system how many nodes to reserve for your job and how long to

7

Edison Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Jobs Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Edison. The batch system on Edison is known as "Torque." Bare-Bones Batch Script The simplest Edison batch script will look something like this. #PBS -q regular #PBS -l mppwidth=32 #PBS -l walltime=00:10:00 cd $PBS_O_WORKDIR aprun -n 32 ./my_executable This example illustrates the basic parts of a script: Job directive lines begin with #PBS. These "Torque Directives" tell the batch system how many nodes to reserve for your job and how long to

8

Edison Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Jobs Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Edison. The batch system on Edison is known as "Torque." Bare-Bones Batch Script The simplest Edison batch script will look something like this. #PBS -q regular #PBS -l mppwidth=48 #PBS -l walltime=00:10:00 cd $PBS_O_WORKDIR aprun -n 48 ./my_executable This example illustrates the basic parts of a script: Job directive lines begin with #PBS. These "Torque Directives" tell the batch system how many nodes to reserve for your job and how long to

9

P-Area Reactor 1993 annual groundwater monitoring report  

SciTech Connect

Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in P Area: well P 24A in the eastern section of P Area, the P-Area Acid/Caustic Basin, the P-Area Coal Pile Runoff Containment Basin, the P-Area Disassembly Basin, the P-Area Burning/Rubble Pit, and the P-Area Seepage Basins. During 1993, pH was above its alkaline standard in well P 24A. Specific conductance was above its standard in one well each from the PAC and PCB series. Lead exceeded its 50 {mu}g/L standard in one well of the PDB series during one quarter. Tetrachloroethylene and trichloroethylene were detected above their final primary drinking water standards in one well of the PRP well series. Tritium was consistently above its DWS in the PDB and PSB series. Also during 1993, radium-228 exceeded the DWS for total radium in three wells of the PAC series and one well of the PCB series; total alpha-emitting radium exceeded the same standard in a different PCB well. These results are fairly consistent with those from previous years. Unlike results from past years, however, no halogenated volatiles other than trichloroethylene and tetrachloroethylene exceeded DWS in the PRP well series although gas chromatographic volatile organic analyses were performed throughout the year. Some of the regulated units in P Area appear to need additional monitoring by new wells because there are insufficient downgradient wells, sometimes because the original well network, installed prior to regulation, included sidegradient rather than downgradient wells. No monitoring wells had been installed through 1993 at one of the RCRA/CERCLA units named in the Federal Facilities Agreement, the Bingham Pump Outage Pits.

NONE

1994-11-01T23:59:59.000Z

10

PDSF Interactive Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Batch Jobs Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin or qsh. This can be useful if you are doing something that is potentially disruptive or if the interactive nodes are overloaded. qlogin will give you an interactive session in the same window as your original session on PDSF, however, you must have your ssh keys in place. Due to system limitations there is a small (but important) difference in the user environment you get when you use qlogin. When you receive a shell prompt with qlogin, your CHOS environment is not set up for you. In order to set up the CHOS environment of your choice you will need to manually chos into the chos environment of your choice:

11

SCOPING SUMMARY FOR THE P-AREA OPERABLE UNIT  

SciTech Connect

This scoping summary supports development of the combined Remedial Investigation (RI)/Baseline Risk Assessment (BRA)/Feasibility Study (FS) for the P-Area Operable Unit (PAOU), or Combined document, which will be submitted on or before 09/28/2007. The objective of this Feasibility Study scoping summary meeting is to agree on the likely response actions to be evaluated and developed as alternatives in the combined document and agree on the uncertainties identified and whether they have been adequately managed.

Kupar, J; Sadika Baladi, S; Mark Amidon, M

2007-05-22T23:59:59.000Z

12

Batch Script Examples  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Script Examples Batch Script Examples Batch Script Examples My First Script This is a simple example that you can use to make sure that your settings are correct before submitting more complicated jobs. First, copy the contents of hello.sh into a file. genepool% cat hello.sh #!/bin/bash sleep 120 echo "Hello World" Then submit your job with the qsub command genepool% qsub hello.sh Monitor your job with the qstat command: genepool% qstat -u You can also get more detailed information about your job using: genepool% qstat -j The job id can be found using the qstat -u command. Basic Batch Script Here is an example of a basic script that specifies the working directory, the shell and the queue. The #$ must be used to specify the grid engine

13

Example Edison Batch Scripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Example Batch Scripts Example Batch Scripts Example Batch Scripts The default number of cores per node on Edison is 16, and the default "mppnppn" setting is 16. However, if you run with hyperthreading (HT), Edison compute nodes have 32 cores per node, and the mppnppn value needs to be set to 32. In addition, the "-j 2" option needs to be added to the "aprun" command. In most of the following example batch scripts, the default number of 16 cores per node is used. Basic Scripts Sample Job script This script uses the default 16 cores per node. This job will run on 64 nodes, with 1024 cores. #PBS -q debug #PBS -l mppwidth=1024 #PBS -l walltime=00:10:00 #PBS -N my_job #PBS -j oe #PBS -V cd $PBS_O_WORKDIR aprun -n 1024 ./my_executable Sample job script to run with Hyperthreading (HT)

14

PDSF Batch Job Example  

NLE Websites -- All DOE Office Websites (Extended Search)

PDSF Batch Job Example PDSF Batch Job Example PDSF Batch Job Example On this page we show an example of how to run a simple batch job, monitor it, check its output, and look at the SGE accounting information about it. We start with a simple script named hello.csh, which just sleeps a bit and then writes some output: pdsf4 72% cat hello.csh #!/bin/csh sleep 600 echo "Hello, World" The simplest way to submit it is to just use qsub without any options: pdsf4 74% qsub hello.csh Your job 1787239 ("hello.csh") has been submitted We can check on its status with qstat. Use the -u option to get only your jobs: pdsf4 75% qstat -u hjort job-ID prior name user state submit/start at queue slots ja-task-ID -----------------------------------------------------------------------------------------------------------------

15

Example Edison Batch Scripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Example Batch Scripts Example Batch Scripts Example Batch Scripts Edison has 24 cores (physical cores) per node, so the default "mppnppn" value is set to 24 for all queues. If you run with hyperthreading (HT), Edison has 48 logical cores per node, and the mppnppn value can be set to 48. However, this is not required. The "-j 2" option of the "aprun" command allows you to use all 48 logical cores on the nodes. In most of the following example batch scripts, we assume that jobs are run without Hyperthreading unless explicitly mentioned, therefore the default mppnppn value, 24, is used. Basic Scripts Sample Job script This script uses the default 24 cores per node. This job will run on 64 nodes, with 1536 cores. #PBS -q debug #PBS -l mppwidth=1536 #PBS -l walltime=00:10:00

16

Submitting Batch Jobs on Carver  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitting Batch Jobs Submitting Batch Jobs Submitting Batch Jobs Overview A batch job is the most common way users run production applications on NERSC machines. Carver's batch system is based on the PBS model, implemented with the Moab scheduler and Torque resource manager. Typically, the user submits a batch script to the batch system. This script specifies, at the very least, how many nodes and cores the job will use, how long the job will run, and the name of the application to run. The job will advance in the queue until it has reached the top. At this point, Torque will allocate the requested number of nodes to the batch job. The batch script itself will execute on the "head node" (sometimes known as the "MOM" node). See Queues and Policies for details of batch queues, limits,

17

Parallel Batch Scripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Parallel Batch Scripts Parallel Batch Scripts Parallel Batch Scripts Parallel Environments on Genepool You can run parallel jobs that use MPI or OpenMP on Genepool as long as you make the appropriate changes to your submission script! To investigate the parallel environments that are available on Genepool, you can use Command Description qconf -sp Show the configuration for the specified parallel environment. qconf -spl Show a list of all currently configured parallel environments. Basic Parallel Example If your job requires the default 5GB of memory per slot, you can do the following: #!/bin/bash # # == Set SGE options: # # -- ensure BASH is used # -- run the job in the current working directory (where qsub is called) #$ -cwd # -- run with the environment variables from the User's environment

18

PDSF Batch Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Summaries PDSF Group Batch Summary Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 Partial SGE62...

19

Submitting Batch Jobs on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitting Batch Jobs Submitting Batch Jobs Debug Jobs Short jobs requesting less than 30 minutes and requiring 512 nodes (2,048 cores) or fewer can run in the debug queue. From...

20

Modified coal batch in coking  

Science Journals Connector (OSTI)

The influence of volatile products from low-metamorphic poorly clinkering G coal on plasticmass formation in rammed batch during coking is considered. An experimental batch of modified coke has been produced at P...

A. G. Starovoit; E. I. Malyi; M. S. Chemerinskii; M. A. Starovoit…

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Transferring Data from Batch Jobs at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

22

MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

Skogestad, Sigurd

23

Submitting Batch Jobs on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitting Batch Jobs Submitting Batch Jobs Submitting Batch Jobs Debug Jobs Short jobs requesting less than 30 minutes and requiring 512 nodes (2,048 cores) or fewer can run in the debug queue. From 5am-6pm Pacific Time, 256 nodes are reserved for debugging and interactive use. See also, running Interactive Jobs. Sample Batch Scripts The following batch script requests 8 cores on 2 nodes with a 10 minute wall clock limit in the debug queue. Torque directive lines tell the batch system how to run a job and begin with #PBS. #PBS -q debug #PBS -l mppwidth=8 #PBS -l walltime=00:10:00 #PBS -j eo #PBS -V cd $PBS_O_WORKDIR aprun -n 8 ./a.out Here is another example requesting 8 processors using 4 nodes with only 2 cores per node: #PBS -q debug #PBS -l mppwidth=8 #PBS -l mppnppn=2 #PBS -l walltime=00:10:00

24

Progressing batch hydrolysis process  

DOE Patents (OSTI)

A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

Wright, J.D.

1985-01-10T23:59:59.000Z

25

Progressing batch hydrolysis process  

DOE Patents (OSTI)

A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

Wright, John D. (Denver, CO)

1986-01-01T23:59:59.000Z

26

Using the PDSF Batch System  

NLE Websites -- All DOE Office Websites (Extended Search)

System System Using the PDSF Batch System Submitting PDSF Jobs UGE (Univa Grid Engine) is the batch system used at PDSF. Read More » Scratch Space Use on Compute Nodes Use $TMPDIR and not /scratch or /tmp directly. Read More » I/O Resources I/O resources are in important tool at PDSF and this page describes how to use them. Read More » Running Interactive Batch Jobs This page describes when you should consider working in an interactive batch session and how to do it. Read More » Monitoring and Managing Jobs This page is about what you can do with your jobs after you have submitted them. Read More » Getting Info about Completed Jobs UGE accounting information about all jobs is available and this page describes how to access it. Read More » PDSF Batch Job Example

27

Multivessel Batch Distillation -Potential Energy Savings  

E-Print Network (OSTI)

Multivessel Batch Distillation - Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

28

Batch Queues and Policies on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Cori Edison Hopper Updates and Status Getting Started Configuration Programming Running Jobs Overview Interactive Jobs Batch Jobs Example Batch Scripts Using aprun Queues and...

29

Batch compositions for cordierite ceramics  

DOE Patents (OSTI)

Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

Hickman, David L. (Big Flats, NY)

1994-07-26T23:59:59.000Z

30

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

31

Multivessel Batch Distillation Potential Energy Savings  

E-Print Network (OSTI)

Multivessel Batch Distillation ­ Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

32

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

33

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

34

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SÃ?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

35

Batch Scheduling with Deadlines on Parallel Machines  

E-Print Network (OSTI)

Batch Scheduling with Deadlines on Parallel Machines Peter Brucker Mikhail Y. Kovalyov, Yakov M of scheduling G groups of jobs on m parallel machines is considered. Each group consists of several identical) and to schedule the batches on the machines. It is possible for different batches of the same group

Magdeburg, Universität

36

P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995  

SciTech Connect

During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters.

Chase, J.A.

1995-06-01T23:59:59.000Z

37

P-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1995  

SciTech Connect

During second quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or Savannah River Site (SRS) flagging criteria such as the SRS turbidity standard during the quarter are discussed in this report. During second quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in four of the six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells (PAC 2, 5, and 6). Radium-228 exceeded Level 2 Flagging Criteria in one well (PAC 2); however this was an estimated value because quantitation in the sample did not meet specifications. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters.

NONE

1995-09-01T23:59:59.000Z

38

Adding coal dust to coal batch  

SciTech Connect

The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

V.S. Shved; A.V.Berezin [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

39

Synthesis of azeotropic batch distillation separation systems  

SciTech Connect

The sequencing of batch distillation systems, in particular batch distillation columns, can be complicated by the existence of azeotropes in the mixture. These azeotropes can form batch distillation regions where, depending on the initial feed to the batch column, the types of feasible products and separations are limited. It is very important that these distillation regions are known while attempting to synthesize sequences of batch columns so infeasible designs can be eliminated early on in the design phase. The distillation regions also give information regarding the feasible products that can be obtained when the mixture is separated by using a variety of batch column configurations. The authors will show how a tool for finding the batch distillation regions of a particular mixture can be used in the synthesis of batch distillation column sequences. These sequences are determined by the initial feed composition to the separation network. The network of all possible sequences will be generated by using state-task networks when batch rectifying, stripping, middle vessel, and extractive middle vessel columns are allowed. The authors do not determine which sequence is the best, as the best sequence will depend on the particular application to which one is applying the algorithms. They show an example problem for illustration of this technique.

Safrit, B.T. [Eastman Chemical Co., Kingsport, TN (United States)] [Eastman Chemical Co., Kingsport, TN (United States); Westerberg, A.W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)] [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1997-05-01T23:59:59.000Z

40

Analysis and Control of Heteroazeotropic Batch Distillation  

E-Print Network (OSTI)

Analysis and Control of Heteroazeotropic Batch Distillation S. Skouras and S. Skogestad Dept.interscience.wiley.com). The separation of close-boiling and azeotropic mixtures by heterogeneous azeotropic distillation is addressed. The results show that heteroazeotropic batch distillation exhibits substantial flexibility. The column profile

Skogestad, Sigurd

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS  

E-Print Network (OSTI)

CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS Xiangming Hua, Sohrab Rohani and Arthur Jutan ajutan@uwo.ca Abstract: In this study, a cascade closed-loop optimization and control strategy for batch reactor. Using model reduction a cascade system is developed, which can effectively combine optimization

Jutan, Arthur

42

Batch Upload | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Notices » Automated Protocols Notices » Automated Protocols Batch Upload Print page Print page Email page Email page One option for electronically submitting AN 241.1 data is Batch Upload (Site-to-OSTI). This method allows sites to upload metadata in a batch XML file at any time. The uploaded XML file is formatted according to the requirements of OSTI's XML. The Batch Upload process allows sites to export data from existing databases and upload it to OSTI. The process is customized for the submitting site. Full text documents can also be uploaded. Sites choose how often and how many records each file will contain. Sites also choose whether to include in the metadata a URL to the site-hosted full text or an uploaded full text. Unclassified documents with CUI access limitations MUST be input to E-Link via the Web Announcement Notice 241.1.

43

Heteroazeotropic Batch Distillation Feasibility and Operation  

E-Print Network (OSTI)

Heteroazeotropic Batch Distillation Feasibility and Operation by Efstathios Skouras and distillation is the dominating unit operation for such separations. However, the presence of azeotropes and non distillation as the best suited process. Among, various techniques to enhance distillation, heterogeneous

Skogestad, Sigurd

44

ja_post_advisors_batch Page 1 Posting Advisors in Batch  

E-Print Network (OSTI)

ja_post_advisors_batch Page 1 Posting Advisors in Batch Validate that the student does not have the `new' advisor posted. For example, this student currently has one advisor (Advisor Type = ADVR) Alice Turner. Navigation Path: Records and Enrollment ­ Student Background Information ­ Student Advisor Upload

45

Running Jobs with the UGE Batch System  

NLE Websites -- All DOE Office Websites (Extended Search)

Jobs Jobs Running Jobs Submitting Jobs How to submit your job to the UGE. Read More » Running with Java Solutions to some of the common problems users have with running on Genepool when the JVM is part of their workflow. Read More » Batch Script Examples Sample batch scripts for Genepool/Phoebe highlighting queue selection, setting the run time and requesting large amounts of memory. Read More » Interactive Jobs How to run your workflow on the interactive nodes. Read More » Job Arrays Job arrays are a way to efficiently submit large numbers of jobs. Read More » Parallel Batch Scripts This page has examples of how to run parallel jobs on Genepool. Read More » Best Practices - and Practices to Avoid Things users should do to run jobs efficiently using UGE. Read More »

46

Atlas Sodium Automated Batch Synthesis System  

E-Print Network (OSTI)

Atlas Sodium Automated Batch Synthesis System (Syrris) June 2013 #12;Introduction to the system · The Atlas Sodium system consists of an Atlas base equipped with a 400ºC hotplate, a stacking dry bath systemL) for automated addition and/or removal of solution. · The system is computer controlled by the Atlas software

Subramanian, Venkat

47

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

48

Interaction of low-metamorphic coal components in coking batch  

Science Journals Connector (OSTI)

The interaction of low-metamorphic coal components in coking batch during pyrolysis is studied. The characteristics of the resulting coke are presented, and the partial hydrogenation is...

E. I. Malyi; A. S. Koverya; M. A. Starovoit

2010-08-01T23:59:59.000Z

49

Dynamic Control for Batch Process Systems Using Stochastic Utility Evaluation  

E-Print Network (OSTI)

single turn; 3. once in operation, it is not possible to shut down a furnace, e.g., to take corrective measures; and 4. batching takes approximately 5 to 10 times longer than serial processing. Products can be processed either as a full batch (the... maximum number of products, i.e. the full capacity of the processor) or as a partial batch. The full batch condition poses fewer decision-making problems since management is needed only to determine which product type has priority in processing...

Park, Hongsuk

2012-10-19T23:59:59.000Z

50

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

51

Batch Queue Configuration and Policies on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

Queues and Policies Queues and Policies Queues and Policies Queues and Job Scheduling Jobs must be submitted to a valid Submit Queue. Upon submission the job is routed to the appropriate Torque execution class. Users can not directly access the Torque execution classes. Submit Queue Execution Queue (Do not use in batch script) Nodes Available Processors Max Wallclock Relative Priority (1 being the highest) Run Limit Queued Limit (eligible to run limit) Queue Charge Factor xfer xfer 1 4 6 hrs 3 3 2 1 interactive interactive 1-128 1-512 30 mins 1 1 1 1 debug debug 1-512 1-2,048 30 mins 2 1 1 1 premium premium 1-4,096 1-16,384 24 hrs 4 2 2 2 regular reg_short 1-511 1-2,044 6 hrs 7 12 8 1 reg_small 1-255 1-1,020 48 hrs 7 7 3 1

52

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements  

E-Print Network (OSTI)

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements S. Skouras and S, Norway SCOPE OF THE PROJECT ·How can we separate ternary mixtures in closed batch distillation-up period is required, followed by a heteroazeotropic distillation step (Figure 3) Modified: The separation

Skogestad, Sigurd

53

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SÃ?RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total reflux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

54

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total re ux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

55

Radionuclide migration laboratory studies for validation of batch sorption data  

SciTech Connect

Advective and diffusive migration experiments (within the Dynamic Transport Column Experiments and Diffusion Studies of the Yucca Mountain Site Characterization Project) involve utilizing crushed material, intact, and fractured tuff in order to test and improve (if necessary) transport models by experimentally observing the migration of sorbing and non-sorbing radionuclides on a laboratory scale. Performing a validation of the sorption data obtained with batch techniques (within the Batch Sorption Study) is an integral part of the mission of the Dynamic Transport Column Experiments and Diffusion Studies. In this paper the work scope of the radionuclide migration laboratory experiments (as they apply to validation of batch sorption data) is reviewed.

Triay, I.R.; Mitchell, A.J.; Ott, M.A.

1991-12-31T23:59:59.000Z

56

E-Print Network 3.0 - activated carbon-sequencing batch Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Information Sciences 58 POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Summary: POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens...

57

Your Unanswered Questions.... Answered - Batch 2 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Unanswered Questions.... Answered - Batch 2 Your Unanswered Questions.... Answered - Batch 2 Your Unanswered Questions.... Answered - Batch 2 February 28, 2011 - 2:46pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Last month, Secretary Chu hosted an online town hall to discuss President Obama's clean energy innovation agenda -- and while he was able to answer about 10 questions submitted online during the event, we received more than 200! For the next fews days, we're answering some of the ones Secretary Chu wasn't able to get to that day. Below is our second batch of questions and answers. From John Fahey over Facebook: How can we create a predictable investment environment for the renewable sector? President Obama's proposal to generate 80 percent of electricity from

58

Optimal Distributed Online Prediction using Mini-Batches  

E-Print Network (OSTI)

In this work we present the distributed mini-batch algorithm, a method of converting ...... even when implemented in a high-latency environment, such as a grid. 7.

2011-02-19T23:59:59.000Z

59

Elegest coal in coking batch at OAO EVRAZ ZSMK  

Science Journals Connector (OSTI)

The coking of batch with different proportions of Elegest coal from the Ulug-Khemsk Basin is investigated ... production conditions. The mechanical strength of the coke is improved when such coal is used in the b...

V. L. Osetkovskii; M. M. Naimark; V. G. Lupenko; A. E. Bazegskiy…

2013-03-01T23:59:59.000Z

60

Improving the preparation of coal batch for coking  

Science Journals Connector (OSTI)

Various methods of preparing coal for coking are analyzed. Laboratory experiments are conducted with a view to obtaining higher-quality coke from batch with a high content of poorly clinkering coal.

M. S. Chemerinskii; A. G. Starovoit; E. I. Malyi

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coking of coal batch with different content of oxidized coal  

Science Journals Connector (OSTI)

The use of oxidized coal in coking batch increases the analytical moisture content and ... increases the oxygen content; reduces the gross coke yield and the yield of tar, benzene ... of carbon dioxide, pyrogenet...

D. V. Miroshnichenko; I. D. Drozdnik; Yu. S. Kaftan; N. B. Bidolenko…

2012-05-01T23:59:59.000Z

62

Coking theory: Internal stress in the coal batch  

Science Journals Connector (OSTI)

The development of local internal stress in the coal batch is analyzed on the basis of ... theoretical and experimental data. Its influence on coke quality is demonstrated. The influence of mineralized ... large ...

V. I. Sukhorukov

2011-09-01T23:59:59.000Z

63

Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors  

Science Journals Connector (OSTI)

Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors ... Amongst many resources, availability and cost economy are the major factors affecting the large scale prodn. of the biodiesels. ...

D. C. Boffito; S. Mansi; J.-M. Leveque; C. Pirola; C. L. Bianchi; G. S. Patience

2013-08-23T23:59:59.000Z

64

SLUDGE BATCH 7B GLASS VARIABILITY STUDY  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

Johnson, F.; Edwards, T.

2011-10-25T23:59:59.000Z

65

Reduction of Hexavalent Chromium in Soil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions  

Science Journals Connector (OSTI)

Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 ...

Débora V. Franco; Leonardo M. Da Silva; Wilson F. Jardim

2009-02-01T23:59:59.000Z

66

Evaluation of Sludge Batch 5 Qualification with ISDP Salt Batch 1 Compliance to DWPF Waste Acceptance Criteria  

SciTech Connect

The purpose of this report is to document the acceptability of Sludge Batch 5 with the initial macrobatch operation of the Interim Salt Disposition Project (ISDP) waste to the Defense Waste Processing Facility (DWPF). This report was prepared to comply with the requirements listed in the Waste Acceptance Criteria for Sludge, Actinide Removal Process (ARP), and Modular Caustic Side Solvent Extraction Unit (MCU) Process Transfers to 512-S and DWPF. The requirements for transfers to 512-S were evaluated during ISDP Salt Batch 1 qualification. The calculations of sludge concentrations are based entirely on the Tank 51 sample processed at SRNL. This is conservative because Tank 51 is blended with the dilute feed in the DWPF Feed Tank (Tank 40). This report documents the acceptability of sludge only as well as Sludge Batch 5 sludge slurry combined with ARP/MCU products for feed to DWPF. All criteria were met for unblended Tank 51 material.

Shafer, A.

2010-05-05T23:59:59.000Z

67

VSched: Mixing Batch And Interactive Virtual Machines Using  

E-Print Network (OSTI)

the user in direct control of scheduling #12;4 Virtuoso: VM-based Distributed Computing User Orders a raw work · Putting the user in direct control of scheduling #12;12 Periodic Real-time Scheduling ModelVSched: Mixing Batch And Interactive Virtual Machines Using Periodic Real-time Scheduling Bin Lin

Kuzmanovic, Aleksandar

68

List of Accepted Summer Interns (2013) May-June Batch  

E-Print Network (OSTI)

) Dr. Tung-Yuan Ho CBMB Nid** Pash*** (INDIA) Dr. Keng-Hui Lin ESS Pong*** Polsom**** (THAILAND) Dr 14 Interns 12 PIs June-July Batch Program Intern Mentor ESS SOU*** KUM** SAH** (INDIA) Dr. Wu* (MALAYSIA) Ko** Yeo** Kha* (MALAYSIA) Dr. Yun-Ru Ruby Chen ESS Yu** Cél** Kita**** (JAPAN) Dr. Danie Mao

69

CATALYST ENHANCED MICRO SCALE BATCHCATALYST ENHANCED MICRO SCALE BATCH ASSEMBLYASSEMBLY  

E-Print Network (OSTI)

CATALYST ENHANCED MICRO SCALE BATCHCATALYST ENHANCED MICRO SCALE BATCH ASSEMBLYASSEMBLY RajashreeCollection/Analysis Capabilities · Parts (800x800x50µmParts (800x800x50µm33 ) and catalysts (2x2x.5mm) and catalysts (2x2x.5mm33 non-participating millimeter scale parts that act as `catalysts'. We present experimental results

70

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total re ux operation of a multivessel column distillation generally is less energy e cient than continuous distillation, it has received increased attention

Skogestad, Sigurd

71

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SÃ?RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total reflux operation of a multivessel column distillation generally is less energy efficient than continuous distillation, it has received increased

Skogestad, Sigurd

72

Dynamic Control of Serial-batch Processing Systems  

E-Print Network (OSTI)

................................................................ 8 1.4 Organization of the dissertation .......................................................... 9 II LITERATURE REVIEW ............................................................................... 11 2.1 Batch process control... .......................................................................................... 31 3.2 Problem definition and notation ........................................................... 33 3.3 Next arrival re-sequencing based control heuristic (NARCH) ............ 35 3.4 Simulation study...

Cerekci, Abdullah

2010-01-14T23:59:59.000Z

73

Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures  

E-Print Network (OSTI)

Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures using Elementary ­ Introducing the concept of elementary topological cells, we illustrate how vapor­liquid equilibrium (VLE with total reflux packed distillation column profiles when all resistance to mass transfer is in the vapor

Skogestad, Sigurd

74

HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

2006-10-02T23:59:59.000Z

75

Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems. Modelling and optimisation of conventional and unconventional batch distillation process: Application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system.  

E-Print Network (OSTI)

??Batch distillation with chemical reaction when takes place in the same unit is referred to as batch reactive distillation process. The combination reduces the capital… (more)

Edreder, Elmahboub A.

2010-01-01T23:59:59.000Z

76

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total re ux is demon- strated

Skogestad, Sigurd

77

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch Distillation Column  

E-Print Network (OSTI)

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch DistillationVersity of Science and Technology, Trondheim, Norway Multivessel batch distillation is a promising alternative to conventional batch distillation. Earlier studies proved the feasibility of temperature control in a closed

Skogestad, Sigurd

78

MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1 The experimental veri cation of the operation of a multivessel batch distillation column, operated under total re vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

Skogestad, Sigurd

79

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA SRENSEN 2  

E-Print Network (OSTI)

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S�RENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total reflux is demon­ strated

Skogestad, Sigurd

80

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal  

E-Print Network (OSTI)

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns sensitivity in batch distillation processes. By considering the effect of small changes in the operating #12; 1 Introduction Batch distillation has become of increasing importance in industry during the last

Skogestad, Sigurd

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Conceptual Model for Production Leveling (Heijunka) Implementation in Batch Production Systems  

E-Print Network (OSTI)

A Conceptual Model for Production Leveling (Heijunka) Implementation in Batch Production Systems for batch production system. The main structure of this model is grounded on three constructs: traditional developed for batch production systems. Then, case study guidelines were applied to define an appropriate

Paris-Sud XI, Université de

82

Rapid Batch Characterization of Coal Utilization By-Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Batch Characterization Batch Characterization of Coal Utilization By-Products Peter A. Hesbach 1 *, Alexander S. P. Abel 2 Ann G. Kim 3 , and Steven C. Lamey 4 1 U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 USA; 2 NETL Site Support Contractor, Parsons, 3610 Collins Ferry Road, Morgantown, WV 26505 USA; 3 U.S. Department of Energy, National Energy Technology Laboratory Post-Doctoral Fellow, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 USA; 4 retired, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV USA (* author for correspondence, phone: 304-285-4443, fax: 304-285-4487, e-mail: peter.hesbach@netl.doe.gov) KEYWORDS: leaching methods, ash characterization, coal utilization by-products

83

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 10, NO. 1, MARCH 2001 25 Batch Transfer of LIGA Microstructures by Selective  

E-Print Network (OSTI)

and Abformung (LIGA), LIGA-like, and micro electrical discharge machining (EDM) processes, batch transfer

Lin, Liwei

84

A New Completion Time Algorithm Considering an Out-of-Phase Policy in Batch Processes  

Science Journals Connector (OSTI)

A New Completion Time Algorithm Considering an Out-of-Phase Policy in Batch Processes ... Product has index i, with campaign g and stage j. ...

Jun-Hyung Ryu; In-Beum Lee

1997-12-01T23:59:59.000Z

85

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

SciTech Connect

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

86

Anaerobic batch co-digestion of Spartina alterniflora and potato  

Science Journals Connector (OSTI)

The potential of mesophilic anaerobic batch digestion for the treatment of Spartina alterniflora, an invasive species widely distributed along Chinese coastlines, through co-digestion with readily biodegradable organics has been assessed. The accumulative biogas yield from S. alterniflora alone was 251 ml/g Total Solid (TS) (at 35°C), at TS of 6%, co-digestion with 80% of S. alterniflora and 20% of potato representing 6% of TS, gave a biogas yield of 383 ml/g TS (at 35°C). This is an increase of 52.5% compared with that obtained from digestion of pure S. alterniflora. In conclusion, using readily biodegradable potato as co-substrate of S. alterniflora can increase its anaerobic digestibility and biogas yield.

Jihong Li; Shiguan Yang; Zheng Zheng; Huamin Song; Zhuo Meng

2011-01-01T23:59:59.000Z

87

Waste-heat recovery in batch processes using heat storage  

SciTech Connect

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

88

The Architectural Implications of Pipeline and Batch Sharing in Scientific Workloads  

E-Print Network (OSTI)

The Architectural Implications of Pipeline and Batch Sharing in Scientific Workloads Douglas Thain of six batch-pipelined scientific work- loads. Whereas other studies focus on the behavior of a sin- gle application, we characterize an emerging type of work- load which consists of pipelines of sequential

Liblit, Ben

89

SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION-DECANTER HYBRID  

E-Print Network (OSTI)

SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION, Trondheim, Norway The feasibility of a novel multivessel batch distillation-decanter hybrid for simultaneous enables us to make direct use of the distillation line (or residue curve) map. Simple rules for predicting

Skogestad, Sigurd

90

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal  

E-Print Network (OSTI)

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns distillation processes. By considering the e ect of small changes in the operating parameters, e.g., initial-mail: jacobsen@elixir.e.kth.se 1 #12;1 Introduction Batch distillation has become of increasing importance

Skogestad, Sigurd

91

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch  

SciTech Connect

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

92

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1  

SciTech Connect

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

93

Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance Models  

E-Print Network (OSTI)

ARTICLES Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance metabolism with dynamic mass balances on key extracellular species. Model-based dynamic optimization concentration profiles, and the final batch time are treated as decision variables in the dynamic optimization

Mountziaris, T. J.

94

Optimal Production Planning Models for Parallel Batch Reactors with Sequence-dependent Changeovers  

E-Print Network (OSTI)

1 Optimal Production Planning Models for Parallel Batch Reactors with Sequence planning of parallel multi-product batch reactors with sequence-dependent changeovers, a challenging of number of products, reactors or length of the time horizon, we propose a decomposition technique based

Grossmann, Ignacio E.

95

Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments  

E-Print Network (OSTI)

Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments for their suitability as hydrological tracers. Sorption is one of the limiting factors for the suitability of a dye tracer. In this study we examined the sorption of four dyes to a sandy soil using batch and column

Flury, Markus

96

Production of Cellulase on Mixtures of Xylose and Cellulose in a Fed-Batch Process  

E-Print Network (OSTI)

saccharification to sugars for ethanol production. In the past decade, enzymatic hydrolysis of cellulose hasProduction of Cellulase on Mixtures of Xylose and Cellulose in a Fed-Batch Process Ali Mohagheghi was studied in a fed-batch system. An initial mixture of 30 g/L xylose and 20 g/L cellulose

California at Riverside, University of

97

SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7A  

SciTech Connect

During processing at the Defense Waste Processing Facility (DWPF), high sulfate concentrations in the feed are a concern to DWPF as it can lead to the formation of a detrimental, sulfate-rich, molten salt phase on the surface of the glass melt pool. To avoid these issues, a sulfate concentration limit was implemented into the Product Composition Control System (PCCS). Related to SB7a frit development efforts, the Savannah River National Laboratory (SRNL) assessed the viability of using the current 0.6 wt % SO{sub 4}{sup 2-} limit set for SB6 (in glass) and the possibility of increasing the SO{sub 4}{sup 2-} solubility limit in PCCS to account for anticipated sulfur concentrations, targeted waste loadings, and inclusion of secondary streams (e.g., Actinide Removal Process (ARP)) with two recommended frits (Frit 418 and Frit 702) for SB7a processing. For a nominal SB7a blend with a 63 inch SB6 heel remaining in Tank 40 (projection SB7a-63), a 0.60 wt% SO{sub 4}{sup 2-} in glass limit was determined for waste loadings of 34 wt% up to 40 wt% with Frit 418 based on crucible melts with batched chemicals. SRNL also examined the inclusion of ARP for the same blending scenario (SB7a-63-ARP) with Frit 418 and at least a 0.6 wt% SO{sub 4}{sup 2-} level, and waste loadings of 34 wt% to 40 wt% were also acceptable. When a visible yellow and/or white sulfate salt layer was visible on the surface of any cooled glass, it was assumed to have surpassed the solubility limit of SO{sub 4}{sup 2-} for that particular composition. All of the glasses fabricated at these concentrations did not exhibit a sulfate rich salt layer on the surface of the glass melt and retained the majority of the batched SO{sub 4}{sup 2-}. At higher levels of SO{sub 4}{sup 2-} 'spiked' into the projected sludge compositions over the aforementioned interval of waste loadings, with Frit 418, low viscosity sulfur layers were observed on the surface of glass melts which confirm exceeding the solubility limit. The same sludge scenarios were also tested with Frit 702 and all glasses did not exhibit sulfur layers on the surfaces of the glass melts at spiking levels up to 0.80 wt% SO{sub 4}{sup 2-}. An ultimate SO{sub 4}{sup 2-} limit was not defined with Frit 702, but if projected SO{sub 4}{sup 2-} concentrations are expected to increase with the onset of SB7a processing, a higher limit is achievable with Frit 702 than is achievable with Frit 418. Given the anticipated concentration of SO{sub 4}{sup 2-} for SB7a, a SO{sub 4}{sup 2-} limit of 0.6 wt % SO{sub 4}{sup 2-} is recommended for processing using Frit 418. Once the confirmed SB7a composition is known and should a higher limit be needed, SRNL can re-evaluate the limit based on the actual composition and provide an updated recommendation. It has been observed that higher levels of SO{sub 4}{sup 2-} in glass can be retained with compositional changes to the frit, as was demonstrated by the glasses fabricated using Frit 702. SRNL also recommends the continuation of studies to define a more 'global' sulfate concentration limit to account for future sludge batch composition uncertainties.

Billings, A.

2011-04-19T23:59:59.000Z

98

SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION  

SciTech Connect

Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

Bannochie, C.; Click, D.; Pareizs, J.

2010-05-21T23:59:59.000Z

99

Evaluation of methods of mixing lime in bituminous paving mixtures in batch and drum plants  

E-Print Network (OSTI)

added directly to the asphalt cement wi 11, of course, significantly increase the effective viscosity of the resulting binder. When lime is added at a rate of 1. 5 percent by weight of total aggregate, it is equivalent to about 30 percent by weight... of asphalt cement. Figure 5 shows the effect of this increase in binder viscosity which caused a corresponding increase in air void content of Mixture LA (dry lime in asphalt cement). That is, when holding constant the compactive effort, compaction...

Button, Joseph Wade

1984-01-01T23:59:59.000Z

100

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improving Energy Efficiency and Cost-Effectiveness of Batch Distillation for Separating Wide Boiling Constituents. 1. Vapor Recompression Column  

Science Journals Connector (OSTI)

Although the direct vapor recompression column (VRC) has been known for its application in continuous distillation since the 1960s, the research on vapor recompressed batch distillation (VRBD) started a couple of years ago. In this contribution, a batch ...

Md. Malik Nawaz Khan; G. Uday Bhaskar Babu; Amiya K. Jana

2012-11-05T23:59:59.000Z

102

Power Plant Power Plant  

E-Print Network (OSTI)

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

103

Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30  

SciTech Connect

The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.

Edwards, T.B.

1999-04-06T23:59:59.000Z

104

Optimal production and rationing policies of a make-to-stock production system with batch demand and backordering  

Science Journals Connector (OSTI)

In this paper, we consider the stock rationing problem of a single-item make-to-stock production/inventory system with multiple demand classes. Demand arrives as a Poisson process with a randomly distributed batch size. It is assumed that the batch demand ... Keywords: Batch demand, Inventory, Markov decision process, Production, Rationing

Jianjun Xu; Shaoxiang Chen; Bing Lin; Rohit Bhatnagar

2010-05-01T23:59:59.000Z

105

Please use "gres" settings in your batch scripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Please use "gres" settings in your batch scripts Please use "gres" settings in your batch scripts Please use "gres" settings in your batch scripts September 4, 2012 by Helen He (0 Comments) We would like to encourage you to use the generic resources ("gres") setting for various file systems that your batch jobs use. This feature is currently available on Hopper and Carver. The advantage of this setting is that your jobs won't start (thus won't fail) during a scheduled file system maintenance. The syntax for the "gres" setting is: #PBS -l gres=filesystem1[%filesystem2%filesystem3...] (new recommendation) or #PBS -l gres=filesystem1:1[%filesystem2:1%filesystem3:1...] (as announced before) Note that the "%" character means "and". Therefore, if multiple file

106

Gas holdup in a gas-liquid-fiber semi-batch bubble column.  

E-Print Network (OSTI)

??A 4-m high, 15.24-cm diameter semi-batch bubble column connected to one of three perforated plate gas distributors with open area ratios A = 0.57%, 0.99%,… (more)

Su, Xuefeng

2005-01-01T23:59:59.000Z

107

Influence of petroleum coking additive on the quality of coal batch, coke, and tar  

Science Journals Connector (OSTI)

Given the shortage of coal with good coking properties, a petroleum coking additive is introduced in coal batch so as to expand the range of plasticity. This additive improves coke quality in every respect, excep...

I. I. Mel’nikov; V. M. Kryachuk; D. A. Mezin; A. A. Gorbunov…

2011-12-01T23:59:59.000Z

108

Influence of the coking properties of coal batch on coke properties  

Science Journals Connector (OSTI)

At OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK), research is undertaken to improve the optimization of coking batch. The basic approach, proposed by...K opt..., which characterizes the ...

D. A. Zavalishin; L. S. Belaya; G. R. Gainieva; V. G. Lupenko

2009-10-01T23:59:59.000Z

109

Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 9193, 2001  

E-Print Network (OSTI)

Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 91­93, 2001 Copyright Biochemistry and Biotechnology Vol. 91­93, 2001 pretreatment represents the most expensive single step

California at Riverside, University of

110

Industrial experience with the thermal preparation of coal batch before coking  

Science Journals Connector (OSTI)

The basic industrial results obtained with thermal preparation of batch, followed by bed coking in horizontal furnaces, are briefly reviewed. Precarbon technology, which, in various forms, has been successfull...

Yu. S. Vasil’ev; A. I. Gordienko; G. V. Dolgarev

2008-07-01T23:59:59.000Z

111

Using coke-battery flue gas to dry coal batch before coking  

Science Journals Connector (OSTI)

The utilization of heat from coke-battery flue gases and other potential secondary energy resources in drying coal batch prior to coking is considered. The main factors that influence ... . The reduction in moist...

A. Ya. Eremin; V. G. Mishchikhin; S. G. Stakheev; R. R. Gilyazetdinov…

2011-03-01T23:59:59.000Z

112

Glass-batch composition monitoring by laser-induced breakdown spectroscopy  

Science Journals Connector (OSTI)

Laser-induced breakdown spectroscopy is an almost ideal technique for the in situ monitoring of the composition of a glass batch before it enters the glass-melting furnace, saving a...

Lal, Bansi; Yueh, Fang-Yu; Singh, Jagdish P

2005-01-01T23:59:59.000Z

113

COTS FPGA/SRAM Irradiations Using a Dedicated Testing Infrastructure for Characterization of Large Component Batches  

E-Print Network (OSTI)

This paper introduces a new testing platform for irradiation of large batches of COTS FPGA and SRAMs. The main objective is measurement of component radiation response and assessment of component-to-component variability within one batch. The first validation and test results using the testing platform are presented for 150nm TFT SRAM (Renesas) and different sizes of the 130nm ProASIC3 FPGA (Microsemi).

Slawosz, Uznanski; Johannes, Walter; Andrea, Vilar-Villanueva

2015-01-01T23:59:59.000Z

114

Microsoft PowerPoint - S08-02_Rios-Armstrong_SRS Experience Preparing Salt Batches.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River Site (SRS) Experience Savannah River Site (SRS) Experience with Preparing Salt Batches Presentation to: EM Waste Processing Technical Exchange Date: November 17 th , 2010 Author: Maria A. Rios-Armstrong Position: Small Column Ion Exchange (SCIX) Process Engineering Lead Savannah River Remediation SRR-SPT-2010-00222 Print Close 2 Agenda * SRS Composite Inventory * Salt Processing * SRS Liquid Waste System * Background * Interim Salt Disposition Project (ISDP) Salt Batches - ISDP Salt Batch 1 - ISDP Salt Batch 2 - ISDP Salt Batch 3 - ISDP Salt Batch 4 * Future Salt Batches * Summary * Questions Print Close 3 SRS Composite Inventory Saltcake Sludge Volume 37.1 Million Gallons (Mgal) Curies 183 MCi (52%) 169 MCi (48%) 352 Million Curies (MCi) 171 MCi (49%) Sludge 34.2 Mgal (92%) 2.9 Mgal (8%) 18.4 Mgal (49%) Inventory values as of 2010-06-30

115

Optimal design and operation of multivessel batch distillation with fixed product demand. Modelling, simulation and optimisation of design and operation parameters in multivessel batch distillation under fixed product demand scenario and strict product specifications using simple dynamic model in gPROMS.  

E-Print Network (OSTI)

??Increased interest in unconventional batch distillation column configurations offers new opportunities for increasing the flexibility and energy efficiency of batch distillation. One configuration of particular… (more)

Mahmud, Mohamed Taher Mustafa

2010-01-01T23:59:59.000Z

116

Predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch  

Science Journals Connector (OSTI)

Mathematical models are developed for predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch.

M. B. Golovko; I. D. Drozdnik; D. V. Miroshnichenko; Yu. S. Kaftan

2012-06-01T23:59:59.000Z

117

Energy Saving in Conventional and Unconventional Batch Reactive Distillation: Application to Hydrolysis of Methyl Lactate System  

Science Journals Connector (OSTI)

Abstract In this work, energy consumption in a middle vessel batch reactive distillation (MVBRD) column is considered for the production of lactic acid via hydrolysis of methyl lactate. A dynamic optimization problem incorporating a process model is formulated to minimize the batch time which consequently minimizes the total energy consumption. The problem is subject to constraints on the amount and purity of lactic acid. The optimisation variables are reflux ratio and/or reboil ratio which are treated as piecewise constant. The earlier work of the authors on energy consumption in conventional batch reactive distillation column (CBRD) for the same reaction system is used for comparative analysis with the energy consumption in MVBRD. As an example, for a given separation task, the optimization results show that MVBRD is capable of saving over 23 % energy compared to energy consumption in CBRD column for the same task.

Elmahboub A. Edreder; Mansour Emtir; Iqbal M. Mujtaba

2014-01-01T23:59:59.000Z

118

Dynamic simulation of batch freezing tunnels for fish using Modelica  

Science Journals Connector (OSTI)

Fish products are frozen to preserve quality and extend shelf-life. However, freezing processes in the industry are typically very energy demanding and seldom optimized with regard to energy usage. During freezing, the operating conditions for the refrigeration cycle, as well as the driving temperature difference over the product changes significantly from start to finish. A complete transient model including a refrigeration plant, an air blast freezing tunnel and food products has been built, based on the Modelica programming language. The product model is discretized into uniform layers, described with equations for temperature dependent properties such as thermal conductivity and heat capacity. Normally, fan power represents about 25 – 30% of the total refrigeration requirement, but at the end of the freezing process, heat from the fans can represent up to 95-99% of the refrigeration load. The results from this model indicates that a 33% reduction in total power consumption, with a penalty of 14% longer freezing time is possible with better operation of the fan. In general, this model can be a useful tool for visualization of energy saving measures. It combines a product model with a refrigeration system, demonstrating the effect of process modification on both single components and overall process performance.

Harald Taxt Walnum; Trond Andresen; Kristina Widell

2011-01-01T23:59:59.000Z

119

Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment  

E-Print Network (OSTI)

Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment on the Enzymatic understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased

California at Riverside, University of

120

CATALYST ENHANCED MICRO SCALE BATCH ASSEMBLY Rajashree Baskaran1,2  

E-Print Network (OSTI)

CATALYST ENHANCED MICRO SCALE BATCH ASSEMBLY Rajashree Baskaran1,2 , Ji Hao Hoo1 , Bowen Cheng1 with the addition of a few non-participating millimeter scale parts that act as `catalysts'. We present experimental increase in concentration of parts in motion due to addition of catalysts. We adapt a model from chemical

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chemical Reduction of PCE by Zero Valent Iron Colloids Batch and Column Experiments  

E-Print Network (OSTI)

Chemical Reduction of PCE by Zero Valent Iron Colloids ­ Batch and Column Experiments Motivation nm NAPASAN Particle - nZVI / PCE-Solution 0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16 18 20 22 24H[-] PCE - Inflow PCE - Outflow TCE - Inflow TCE - Outflow Chloride - Outflow Blank Value Chloride pH Value

Cirpka, Olaf Arie

122

Batch Effects and Pathway Analysis: Two Potential Perils in Cancer Studies Involving DNA Methylation Array Analysis  

Science Journals Connector (OSTI)

...dry ice, first to Dhaka by car, then to Columbia University...members of the first having water As concentrations between 50...members of the second having water As concentrations over 100 mug...if they are not aware of the power of batch effects, they may...

Kristin N. Harper; Brandilyn A. Peters; and Mary V. Gamble

2013-06-01T23:59:59.000Z

123

Production Leveling (Heijunka) Implementation in a Batch Production System: a Case Study  

E-Print Network (OSTI)

of Production Leveling outside automotive networks. Additionally, one can question whether Lean Manufacturing, Department of Manufacturing, GETEQ Research Group, Caixa Postal 476, Campus Universit�rio, Trindade, 88040 on a subsidiary of a multinational enterprise located on Brazil, which manufacturing processes comprise batch

Boyer, Edmond

124

HIGH YIELD BATCH PACKAGING OF MICRO DEVICES WITH UNIQUELY ORIENTING SELF-ASSEMBLY  

E-Print Network (OSTI)

HIGH YIELD BATCH PACKAGING OF MICRO DEVICES WITH UNIQUELY ORIENTING SELF-ASSEMBLY Jiandong Fang of uniquely orienting self-assembly with 2mm square diced silicon parts. Each silicon part has one hydrophobic shape-directed self-assembly assigns parts to complementary trenches in parallel [2]; (3) capillary

125

Sorption of Eu(III) on Attapulgite Studied by Batch, XPS and EXAFS Techniques  

E-Print Network (OSTI)

Sorption of Eu(III) on Attapulgite Studied by Batch, XPS and EXAFS Techniques Q.H. FAN,, , X.L. TANH, ionic strength and temperature on sorption of Eu(III) on attapulgite were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The results indicated that the sorption of Eu

Boyer, Edmond

126

Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers  

E-Print Network (OSTI)

Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers Baris on using immediately available green energy to supplement the non- renewable, or brown energy at the cost of canceling and rescheduling jobs whenever the green energy availability is too low [16]. In this paper we

Simunic, Tajana

127

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate  

E-Print Network (OSTI)

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given 20­30% due to the low biodegradability of organic matter in the leach- ate from old landfills

128

Three-Dimensional Flow and Thermal Structures in Glass Melting Furnaces. Part II: Effect of Batch and Bubbles.  

E-Print Network (OSTI)

) the wall heat losses, and (v) the thickness of glass melt containing gas bubbles under the batch. The study indicates that the partially submerged batch and heat losses through the refractories have a strong impact by adjusting the fuel firing in the combustion space. The heat flux distribution resulting from combustion

Pilon, Laurent

129

A Fast Batched Cholesky Factorization on a GPU Tingxing Dong, Azzam Haidar, Stanimire Tomov, and Jack Dongarra  

E-Print Network (OSTI)

of the three algorithms described above, along with the comparison to an optimized par- allel batched Cholesky algorithms ­ non- blocked, blocked, and recursive blocked ­ were examined. The left-looking version to update the trailing matrix in the recursive blocked algorithm. Our batched Cholesky achieves up to 1

Dongarra, Jack

130

SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED  

SciTech Connect

This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

Cercy, M.; Peeler, D.; Stone, M.

2013-09-25T23:59:59.000Z

131

Sorption Speciation of Nickel(II) onto Ca-Montmorillonite: Batch, EXAFS Techniques and Modeling  

E-Print Network (OSTI)

1 Sorption Speciation of Nickel(II) onto Ca-Montmorillonite: Batch, EXAFS Techniques and Modeling, 44307 Nantes cedex 03, France The sorption speciation of Ni(II) on Ca-montmorillonite was evaluated(II) sorption as well as the local atomic structure of the adsorbed Ni(II) ions. At 0.001 mol/L Ca(NO3)2 and low

Paris-Sud XI, Université de

132

Over Batch Analysis for the LLNL Plutonium Packaging System (PuPS)  

SciTech Connect

This document addresses the concern raised in the Savannah River Site (SRS) Acceptance Criteria (Reference 1, Section 6.a.3) about receiving an item that is over batched by 1.0 kg of fissile materials. This document shows that the occurrence of this is incredible. Some of the Department of Energy Standard 3013 (DOE-STD-3013) requirements are described in Section 2.1. The SRS requirement is discussed in Section 2.2. Section 2.3 describes the way fissile materials are handled in the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (B332). Based on the material handling discussed in Section 2.3, there are only three errors that could result in a shipping container being over batched. These are: incorrect measurement of the item, selecting the wrong item to package, and packaging two items into a single shipping container. The analysis in Section 3 shows that the first two events are incredible because of the controls that exist at LLNL. The third event is physically impossible. Therefore, it is incredible for an item to be shipped to SRS that is more than 1.0 kg of fissile materials over batched.

Riley, D; Dodson, K

2007-11-19T23:59:59.000Z

133

Over Batch Analysis for the LLNL DOE-STD-3013 Packaging System  

SciTech Connect

This document addresses the concern raised in the Savannah River Site (SRS) Acceptance Criteria about receiving an item that is over batched by 1.0 kg of fissile materials. This document shows that the occurrence of this is incredible. Some of the Department of Energy Standard 3013 (DOE-STD-3013) requirements are described in Section 2.1. The SRS requirement is discussed in Section 2.2. Section 2.3 describes the way fissile materials are handled in the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (B332). Based on the material handling discussed in Section 2.3, there are only three errors that could result in a shipping container being over batched. These are: incorrect measurement of the item, selecting the wrong item to package, and packaging two items into a single shipping container. The analysis in Section 3 shows that the first two events are incredible because of the controls that exist at LLNL. The third event is physically impossible. Therefore, it is incredible for an item to be shipped to SRS that is more than 1.0 kg of fissile materials over batched.

Riley, D C; Dodson, K

2009-07-02T23:59:59.000Z

134

Analysis Of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples  

SciTech Connect

The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed.

Johnson, F. C.; Pareizs, J. M.

2012-10-24T23:59:59.000Z

135

runManySections.py - Easy Interface to CMSLPC Condor CAF and CERN's Batch  

NLE Websites -- All DOE Office Websites (Extended Search)

runManySections.py - Easy Interface to CMSLPC Condor CAF and CERN's LSF runManySections.py - Easy Interface to CMSLPC Condor CAF and CERN's LSF Batch System Introduction Quick Overview Setup Basic Idea Including a Tarball Using runManySections.py to Create Command File Running Compiled Root Macros Debugging Jobs Locally CERN (LSF) versus FNAL (Condor) Differences Introduction runManySections.py is designed to make it easy to run many different sections (or jobs) at once on the CMSLPC CAF or CERN's batch system. It is designed to complement CRAB as runManySections.py is designed to be used with non-cmsRun executables. The general idea is that you pass in a list of commands you would like run and you get the output of these commands back. It is currently configured to run for the Condor system at CMSLPC CAF and CERN's LSF batch system. It is very easy to configure to run on other

136

Influence of the batch's coke-ore ratio and distribution on the porosity of the melting zone  

SciTech Connect

The variation in gas permeability in the melting zone is considered as a function of the height and configuration of the coke packing and the ore component of the batch.

V.P. Tarasov; L.V. Bykov; P.V. Tarasov [Priazovsk State Technical University, Mariupol (Ukraine)

2008-09-15T23:59:59.000Z

137

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

138

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

139

Batch-processed melt-textured YBCO with improved quality for motor and bearing  

Science Journals Connector (OSTI)

Results on an established batch process preparing melt-textured YBCO of high quality and in large quantities are reported. We used a standard composition Y1.5Ba2Cu3O7?x+1 wt % CeO2 without further doping to fabricate single domain YBCO monoliths in different sizes and shapes (cylindrical, quadratic) as well as rectangular multi-seeded YBCO monoliths. Up to 2–3 kg of melt-textured YBCO blocks were grown, reproducible in one box furnace run. Top seeding by a self-made SmBCO was improved and rationalized. Optimization of an oxygen annealing treatment led to macro-crack free YBCO monoliths. Each YBCO monolith was characterized by integral levitation force and field mapping. In a single domain, a quadratic monolith with a edge length of 38 mm, a maximum induction of 1.44 T at 77 K and a distance of 0.5 mm was frozen. The reproducibility of the batch process is guaranteed. Mean maximum induction from 1.1 to 1.2 T at 77 K per batch was reached. A trapped magnetic field of 2.5 T was achieved between two single domain monoliths in a gap of 1.5 mm at 77 K. Depending on the application, function elements with different sizes, designs and more or less complex geometry are constructed in several working steps by cutting, machining, bonding and passivation. Selected function elements were checked with field mapping at 77 K. The results of our function elements in HTSC reluctance motors with an output power of up to 200 kW using single domain material are shown. We report on a fly wheel system DYNASTORE and a system to levitate people.

W Gawalek; T Habisreuther; M Zeisberger; D Litzkendorf; O Surzhenko; S Kracunovska; T A Prikhna; B Oswald; L K Kovalev; W Canders

2004-01-01T23:59:59.000Z

140

Computational Fluid Dynamics of a Semi Batch Reactor for Heavy Oil Hydroconversion  

Science Journals Connector (OSTI)

This work presents the numerical results of the computational fluid dynamics of a semi batch reactor used for hydroconversion of heavy oil. The reactor is a multicomponent system and it is modeled as a pseudo two phase system ( gas + slurry ). The equations used are the continuity equations the momentum equation (Navier?Stokes) and the k?? for turbulence. The numerical method used to solve the mathematical method was the finite volume where the problem was divided in two domains in order to account for the moving part of the impeller. The numerical results indicated convergence of the procedure for the velocity profiles.

T. S. Yamada; R. Guirardello

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigation of Rheological Impacts on Sludge Batch 3 as Insoluble Solids and Wash Endpoints are Adjusted  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently processing and immobilizing radioactive sludge slurry into a durable borosilicate glass. The DWPF has already processed three sludge batches (Sludge Batch 1A, Sludge Batch 1B, and Sludge Batch 2) and is currently processing the fourth sludge batch (Sludge Batch 3). A sludge batch is defined as a single tank of sludge slurry or a combination of sludge slurries from different tanks that has been or will be qualified before being transferred to DWPF. As a part of the Sludge Batch 3 (SB3) qualification task, rheology measurements of the sludge slurry were requested at different insoluble solids loadings. These measurements were requested in order to gain insight into potential processing problems that may occur as the insoluble solids are adjusted up or down (by concentration or dilution) during the process. As a part of this study, a portion of the ''as received'' SB3 sample was washed with inhibited water (0.015 M NaOH and 0.015 M NaNO2) to target 0.5M Na versus a measured 1M Na in the supernate. The purpose of the ''washing'' step was to allow a comparison of the SB3 rheological data to the rheological data collected for Sludge Batch 2 (SB2) and to determine if there was a dependence of the yield stress and consistency as a function of washing. The ''as received'' SB3 rheology data was also compared to SB3 simulants prepared by the Simulant Development Program in order to provide guidance for selecting a simulant that is more representative of the rheological properties of the radioactive sludge slurry. A summary of the observations, conclusions are: (1) The yield stress and plastic viscosity increased as the weight percent insoluble solids were increased for the ''as received'' and ''washed'' SB3 samples, at a fixed pH. (2) For the same insoluble solids loading, the yield stress for the SB2 sample is approximately a factor of three higher than the ''as received'' SB3 sample. There also appears to be small difference in the plastic viscosity. This difference is probably due to the different Na concentrations of the slurries. (3) The yield stress for the SB2 sample at 17.5 wt. % insoluble solids loading is four times higher than the ''washed'' SB3 sample at 16.5 wt. % insoluble solids. There also appears to be small difference in the plastic viscosity. The differences for the yield stress and consistency can be explained by the differences in the Fe and Na concentrations of the sludge slurry and the anion concentrations of the resulting supernates. (4) The rheological properties (i.e. yield stress and plastic viscosity), as the insoluble solids are adjusted, for the ''as received'' and ''washed'' SB3 samples are different. The plastic viscosity curve for the ''as received'' SB3 sample was higher than the plastic viscosity curve for SB3 ''washed'' sample. The yield stress curve for the ''washed'' SB3 sample is slightly lower than the ''as received'' SB3 sample up until {approx}19 wt. % insoluble solids. The ''washed'' SB3 sample then exceeds the yield stress curve for the ''as received'' SB3 sample. This rheological behavior is probably due to the difference in the Na concentration of the supernate for the samples. (5) No unusual behavior, such as air entrainment, was noted for the ''as received'' SB3 sample. (6) The observed physical properties of the SB3 sample changed after washing. The ''washed'' SB3 sample entrained air readily at higher insoluble solids loadings (i.e. 14.1, 16.5, 19.5 wt. %) as it did for SB2. The air entrainment appeared to dissipate for the SB3 sample at the lower insoluble solids loadings (i.e. 9.7 and 11.7 wt. %). (7) The physical behavior of SB3 can be influenced by controlling the Na concentration in the supernate and the wt. % insoluble solids. The cause for the air entrainment in the ''washed'' SB3 sample could be due to a change in the particle size during the washing step. (8) The SB3 simulants prepared for the Simulant Development Program were approximately a factor of 1.6 to 4 times higher for yield stress and 2.6 to 4 times higher

Fellinger, T. L.

2005-07-12T23:59:59.000Z

142

Batch methods for enriching trace impurities in hydrogen gas for their further analysis  

DOE Patents (OSTI)

Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

2014-07-15T23:59:59.000Z

143

Selective batch crushing in the coal-preparation shop at OAO NTMK  

SciTech Connect

In September 2004, after reconstruction at OAO Nizhnetagil'skii Metallurgicheskii Kombinat (NTMK), blast furnace 6 went into operation for the production of vanadium from hot metal. At the startup of furnace 6, besides optimising its composition; it was decided to restore selective crushing of the coal batch using pneumatic and mechanical separation in the third unit of the coal preparation shop. Additional increase in the mechanical strength of coke by 1.5-2.0% was predicted with a 0.5-1.0% decrease in wear.

N.A. Berkutov; Yu.V. Stepanov; P.V. Shtark; L.A. Makhortova; N.K. Popova; D.A. Koshkarov; N.V. Tsarev [OAO Nizhnetagil'skii Metallurgicheskii Kombinat (NTMK)(Russian Federation)

2007-05-15T23:59:59.000Z

144

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

145

Metadata Provided to OSTI via Batch Upload (Site-to-OSTI) | Scientific and  

Office of Scientific and Technical Information (OSTI)

Batch Upload (Site-to-OSTI) Batch Upload (Site-to-OSTI) Print page Print page Email page Email page STI Metadata Elements Required (R), Required, but allows for default value (RWD), or Optional (O). Element Description Requirements Author(s) Include all author names; the primary author should be listed first. Allows for "Not Available" as an option for few cases where necessary. R E-mail Address(es) Provide in same order as author names. Will not be available to the end-user. This data is used by OSTI to automate author notification. O Country of Publication Include if country of publication is not United States; defaults to United States RWD Description/ Abstract Defined as the abstract for STI Products. Provide if available (it can be excerpted from the technical report). Text should be publicly releasable information (not personal, financial, or sensitive). Text should be spell-checked, limited in length to 5000 characters, and follow input standards for special characters.

146

SULFATE RETENTION IN HIGH LEVEL WASTE SLUDGE BATCH 4 GLASSES: A PRELIMINARY ASSESSMENT  

SciTech Connect

Early projections of the Sludge Batch 4 (SB4) composition predicted relatively high concentrations of alumina (Al{sub 2}O{sub 3}, 23.5 wt%) and sulfate (SO{sub 4}{sup 2-}, 1.2 wt%) in the sludge. A high concentration of Al{sub 2}O{sub 3} in the sludge, combined with Na{sub 2}O additions in the frit, raises the potential for nepheline crystallization in the glass. However, strategic frit development efforts at the Savannah River National Laboratory (SRNL) have shown that frits containing a relatively high concentration of B{sub 2}O{sub 3} can both suppress nepheline crystallization and improve melt rates. A high sulfate concentration is a concern to the DWPF as it can lead to the formation of sulfate inclusions in the glass and/or the formation of a molten, sulfate-rich phase atop the melt pool. To avoid these issues, a sulfate concentration limit of 0.4 wt% SO{sub 4}{sup 2-} in glass was originally set in the Product Composition Control System (PCCS) used at DWPF. It was later shown that this limit could be increased to 0.6 wt% SO{sub 4}{sup 2-} in glass for the Frit 418, Sludge Batch 3 (SB3) system.

Fox, K; Tommy Edwards, T; David Peeler, D

2006-12-11T23:59:59.000Z

147

Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)  

SciTech Connect

The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. Twenty-seven radionuclides have been identified as reportable for DWPF SB7b. Each of these radionuclides has a half-life greater than ten years and contributes more than 0.01% of the radioactivity on a Curie basis at some point from production through the 1100 year period between 2015 and 3115. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. The radionuclide measurements made for SB7b are the most extensive conducted to date. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible.

Crawford, C. L.; Diprete, D. P.

2012-12-17T23:59:59.000Z

148

INTERPRETATION OF AT-LINE SPECTRA FROM AFS-2 BATCH #3 FERROUS SULFAMATE TREATMENT  

SciTech Connect

Spectra from the “at-line” spectrometer were obtained during the ferrous sulfamate (FS) valence adjustment step of AFS-2 Batch #3 on 9/18/2013. These spectra were analyzed by mathematical principal component regression (PCR) techniques to evaluate the effectiveness of this treatment. Despite the complications from Pu(IV), we conclude that all Pu(VI) was consumed during the FS treatment, and that by the end of the treatment, about 85% was as Pu(IV) and about 15% was as Pu(III). Due to the concerns about the “odd” shape of the Pu(IV) peak and the possibility of this behavior being observed in the future, a follow-up sample was sent to SRNL to investigate this further. Analysis of this sample confirmed the previous results and concluded that it “odd” shape was due to an intermediate acid concentration. Since the spectral evidence shows complete reduction of Pu(VI) we conclude that it is appropriate to proceed with processing of this the batch of feed solution for HB-Line including the complexation of the fluoride with aluminum nitrate.

Kyser, E.; O'Rourke, P.

2013-12-10T23:59:59.000Z

149

Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch  

SciTech Connect

The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter.

Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel R.

2013-07-24T23:59:59.000Z

150

Determination of Reportable Radionuclides for DWPF Sludge Batch 3 (Macrobatch 4)  

SciTech Connect

The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, IAEA Safeguards Reporting for HLW, requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The Defense Waste Processing Facility (DWPF) is receiving radioactive sludge slurry from High Level Waste Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 2) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Macrobatch 4 (also referred to as Sludge Batch 3). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-03-0005, Revision 1 entitled Sludge Batch 3 SRTC Shielded Cells Testing. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2003-00249, Rev. 1 and Analytical Study Plan (ASP), WSRC-RP-2004-00262. In order to determine the reportable radionuclides for Sludge Batch 3 (Macro Batch 4), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations.

Bannochie, C

2005-05-01T23:59:59.000Z

151

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

152

Microsoft PowerPoint - S08-06_Peters_Result of Salt Batch Qualifications.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Batch Qualification Testing Salt Batch Qualification Testing Tom Peters, Samuel Fink; E&CPT Research Programs, Savannah River National Laboratory Mark Geeting, Steven Brown, David Martin, Brent Gifford; Tank Farm Engineering, Savannah River Remediation November 17, 2010 SRNL-MS-2010-00250 Print Close 2 This presentation..... Results of Salt Batch Qualification Testing * Describes the Integrated Salt Disposition Project (ISDP), the newest operating facilities at the Savannah River Site for treating stored radioactive waste. * Reviews the past campaigns of salt disposition (Macrobatch 1 and 2). * Reviews current operations (Macrobatch 3) * Outlines the next qualification (Macrobatch 4) * Discusses the limiters in operations. Print Close 3 Introduction In 2001, the Department of Energy (DOE) identified Caustic-Side Solvent

153

Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample  

SciTech Connect

This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

2013-03-18T23:59:59.000Z

154

ANALYSIS OF DWPF SLUDGE BATCH 7A (MACROBATCH 8) POUR STREAM SAMPLES  

SciTech Connect

The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental Assessment (EA) glass. (5) The measured density of the SB7a pour stream glass was 2.7 g/cm{sup 3}. (6) The Fe{sup 2+}/{Sigma}Fe ratios of the SB7a pour stream samples were in the range of 0.04-0.13, while the MFT sample glasses prepared by SRNL were in the range of 0.02-0.04.

Johnson, F.

2012-05-01T23:59:59.000Z

155

Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample  

SciTech Connect

The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7b (SB7b), also referred to as Macrobatch 9 (MB9), in January 2012. SB7b is a blend of the heel of Tank 40 from Sludge Batch 7a (SB7a) and the SB7b material that was transferred to Tank 40 from Tank 51. SB7b was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Form Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two pour stream glass samples were collected while processing SB7b. The samples were transferred to the Savannah River National Laboratory (SRNL) where one was analyzed and the other was archived. The following conclusions were drawn from the analytical results provided in this report: The sum of oxides for the official SB7b pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%); The average calculated Waste Dilution Factor (WDF) for SB7b is 2.3. In general, the measured radionuclide content of the official SB7b pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7b Waste Acceptance Program Specification (WAPS) sample; As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the SB7b pour stream sample; The Product Consistency Test (PCT) results indicate that the official SB7b pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.8 g/L, which is an order of magnitude less than the Environmental Assessment (EA) glass; The measured density of the SB7b pour stream glass was 2.70 g/cm{sup 3}; The Fe{sup 2+}/?Fe ratio of the SB7b pour stream samples was 0.07.

Johnson, F. C.; Crawford, C. L.; Pareizs, J. M.

2013-11-18T23:59:59.000Z

156

ANALYSIS OF DWPF SLUDGE BATCH 6 (MACROBATCH 7) POUR STREAM GLASS SAMPLES  

SciTech Connect

The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 6 (SB6), also referred to as Macrobatch 7 (MB7), in June 2010. SB6 is a blend of the heel of Tank 40 from Sludge Batch 5 (SB5), H-Canyon Np transfers and SB6 that was transferred to Tank 40 from Tank 51.1 SB6 was processed using Frit 418. Sludge is received into the DWPF Chemical Processing Cell (CPC) and is processed through the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator Tank (SME). The treated sludge slurry is then transferred to the Melter Feed Tank (MFT) and fed to the melter. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP) and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. The DWPF requested various analyses of radioactive glass samples obtained from the melter pour stream during processing of SB6 as well as reduction/oxidation (REDOX) analysis of MFT samples to determine the impact of Argon bubbling. Sample analysis followed the Task Technical and Quality Assurance Plan (TTQAP) and an Analytical Study Plan (ASP). Four Pour Stream (PS) glass samples and two MFT slurry samples were delivered to the Savannah River National Laboratory (SRNL) from the DWPF. Table 1-1 lists the sample information for each pour stream glass sample. SB6 PS3 (S03472) was selected as the official pour stream sample for SB6 and full analysis was requested. This report details the visual observations of the as-received SB6 PS No.3 glass sample as well as results for the chemical composition, Product Consistency Test (PCT), radionuclide content, noble metals, and glass density. REDOX results will be provided for all four pour stream samples and vitrified samples of MFT-558 and MFT-568A. Where appropriate, data from other pour stream samples will be provided.

Johnson, F.

2012-01-20T23:59:59.000Z

157

Pressurized fluidized-bed hydroretorting of Indiana New Albany shale in batch and continuous units  

SciTech Connect

Work is being conducted at the Institute of Gas Technology (IGT) to develop a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The PFH process, using smaller particle sizes than the moving-bed hydroretorting process, offers higher oil yields and greater reactor mass fluxes through higher selectivity of organic carbon to oil and shorter residence times, respectively. Batch PFH tests have been conducted to study the effects of shale preheat time (15 to 30 min) and temperature (25{degree} to 320{degree}C), retorting temperature (450{degree} to 710{degree}C), hydrogen pressure (2.8 to 7.0 MPa), particle size (65 to 330 microns), and residence time (5 to 30 min) on the product yields from Indiana New Albany shale. Oil yield has been found to increase with increasing hydrogen pressure. Results are discussed. 10 refs., 14 figs., 3 tabs.

Roberts, M.J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA)); Roosmagi, C. (USDOE Laramie Energy Technology Center, WY (USA))

1989-01-01T23:59:59.000Z

158

Correction of Wall Adhesion Effects in Batch Settling of Strong Colloidal Gels  

E-Print Network (OSTI)

The batch settling test is widely used to estimate the compressive rheology of strongly flocculated colloidal suspensions, in particular the compressive yield strength and hydraulic permeability. Recently it has been discovered that wall adhesion effects in these tests may be significantly greater than previously appreciated, which can introduce unbounded errors in the estimation of these rheological functions. Whilst a methodology to solve the underlying static problem and correct for wall adhesion effects has been developed, this method is quite complex and unwieldy, involving solution of a 2D hyper-elastic constitutive model for strong colloidal gels. In this paper we develop a highly simplified 1D visco-plastic approximation to the hyper-elastic model which admits analytic expressions for the equilibrium solids concentration profile and bed height. These expressions facilitate robust estimation of the compressive yield and wall adhesion strength via nonlinear regression of experimental data in the presence of small measurement errors.

Daniel R. Lester; Richard Buscall

2014-09-30T23:59:59.000Z

159

Validity of batch sorption data to describe selenium transport through unsaturated tuff  

SciTech Connect

As part of project for characterizing Yucca Mt. as a potential site for high-level nuclear waste respository, we used UFA {trademark} technology (centifuge-induced flow) to directly measure selenite retardation coefficients and hydraulic conductivity under unsaturated conditions on two tuff samples from Yucca Mt. Retardation factor for the selenite species was 2.5 in both Yucca Mt. vitric tuff at 62.6% saturation and zeolitic nonwelded tuff from G-tunnel at 52.8% saturation. For these column experiments, we prepared a solution, using J-13 well water from NTS, with a Se conc. of 1.31 mg/L(ppM). The retardation factor of 2.5 measured for both tuffs translates into a sorption distribution coefficient K{sub d} of 0.9 mL/g for the vitric tuff and 0.8 mL/g for the zeolitic tuff. For batch sorption experiments, using the same zeolitic tuff as for the column experiments and solutions of J-13 well water with a Se conc. of 1.1 mg/L(ppM), the average K{sub d} was determined to be 0.1{+-}0.2 mL/g. Given the small K{sub d} values for Se sorption, general agreement between batch and column measurements (obtained under unsaturated conditions) was observed. Unsaturated hydraulic conductivities during the experiments were 2.5x10{sup -8} cm/s for the Yucca Mt. vitric tuff and 1.2x10{sup -8} cm/s for the zeolitic nonwelded tuff from G- tunnel.

Conca, J.L. [Tri-Cities Univ. Center, Richland, WA (United States); Triay, I.R.

1996-08-01T23:59:59.000Z

160

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE  

SciTech Connect

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

2011-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tag-based Web Photo Retrieval Improved by Batch Mode Re-Tagging Lin Chen Dong Xu Ivor W. Tsang  

E-Print Network (OSTI)

Tag-based Web Photo Retrieval Improved by Batch Mode Re-Tagging Lin Chen Dong Xu Ivor W. Tsang Web photos in social media sharing websites such as Flickr are generally accompanied by rich but noisy textual descriptions (tags, captions, categories, etc.). In this pa- per, we proposed a tag-based photo

Tsang Wai Hung "Ivor"

162

Query PreExecution and Batching in Paradise: ATwoPronged Approach to the Efficient Processing of  

E-Print Network (OSTI)

of Queries on Tape­Resident Raster Images 1 JieBing Yu David J. DeWitt Department of Computer Sciences­ structured organization for tape volumes. Second, the Paradise query processing engine was modified to in tape scheduling, and query batching. A per­ formance evaluation on a working prototype demon­ strates

Liblit, Ben

163

SJSU Information Support Services Run Batch Contracts for Temporary Faculty info-support@sjsu.edu, 408-924-1530 Page 1  

E-Print Network (OSTI)

page displays. 5. Term: Use the lookup button to search the appropriate term. 6. Due Date: (optional data that exists in the system for the temporary faculty will appear on the Contract Appointment letter/Terms. 2. Click Batch Contracts for T. Faculty. The Batch Process for TF Contract search page displays. 3

Su, Xiao

164

Pipeline and Batch Sharing in Grid Workloads Douglas Thain, John Bent, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny  

E-Print Network (OSTI)

Pipeline and Batch Sharing in Grid Workloads Douglas Thain, John Bent, Andrea C. Arpaci Abstract We present a study of six batch-pipelined scientific workloads that are candidates for execution characterizes workloads composed of pipelines of sequential processes that use file storage for communication

Wisconsin at Madison, University of

165

Batch and Flow Synthesis of 5-Hydroxymethylfurfural (HMF) from Fructose as a Bioplatform Intermediate: An Experiment for the Organic or Analytical Laboratory  

Science Journals Connector (OSTI)

Batch and Flow Synthesis of 5-Hydroxymethylfurfural (HMF) from Fructose as a Bioplatform Intermediate: An Experiment for the Organic or Analytical Laboratory ... In this laboratory experiment students synthesize 5-hydroxymethylfurfural (HMF) by dehydration of fructose in either batch or flow chemistry conditions. ...

Svilen P. Simeonov; Carlos A. M. Afonso

2013-09-25T23:59:59.000Z

166

DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5  

SciTech Connect

The Waste Acceptance Product Specifications (WAPS)1 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP)2 and Waste Form Qualification Report (WQR)3. However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 3) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Sludge Batch 4 (also referred to as Macrobatch 5 (MB5)). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-2005-0034; Rev. 0 entitled Sludge Batch 4 SRNL Shielded Cells Testing4. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2006-00310, Rev. 15 and Analytical Study Plan (ASP), WSRC-RP-2006-00458, Rev. 16. In order to determine the reportable radionuclides for Sludge Batch 4 (SB4) (Macro Batch 5 (MB5)), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-nine radionuclides have been identified as reportable for DWPF SB4 (MB5) as specified by WAPS 1.2. The 29 reportable nuclides are: Ni-59; Ni-63; Se-79; Sr-90; Zr-93; Nb-93m; Tc-99; Sn-126; Cs-137; Sm-151; U-233; U-234; Np-237; U-238; Pu-238; Pu-239; Pu-240; Am-241; Pu-241; Pu-242; Am-242m; Am-243; Cm-244; Cm-245; Cm-246; Cm-247; Bk-247; Cm-248; and Cf-251. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB4 (MB5), all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time through the calendar year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes and other U isoto

Bannochie, C; Ned Bibler, N; David Diprete, D

2008-05-30T23:59:59.000Z

167

THE SLUDGE BATCH 7A GLASS VARIABILITY STUDY WITH FRIT 418 AND FRIT 702  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing of Sludge Batch 7a (SB7a) in May 2011. To support qualification of SB7a, the Savannah River National Laboratory (SRNL) was requested to execute a variability study (VS) to assess the applicability of the current Product Composition Control System (PCCS) durability models for the Frit 418-SB7a compositional region of interest. The objective of this study was to demonstrate applicability of the current durability models to the SB7a compositional region of interest and acceptability of the SB7a glasses with respect to the Environmental Assessment (EA) glass in terms of durability as defined by the Product Consistency Test (PCT). To support programmatic objectives, twenty-eight SB7a glasses were selected based on the nominal sludge projections used to support the frit recommendation. Twenty-three of the SB7a VS glasses were based on the use of Frit 418, while 5 glasses were based on the use of Frit 702. Frit 702 was also identified as a viable candidate for SB7a, especially if SO{sub 4} concentrations are found to be higher than anticipated. Frit 702 has shown a higher SO{sub 4} retention capability as compared to Frit 418. With respect to acceptability, the PCT results of the SB7a-VS glasses are acceptable relative to the EA glass regardless of thermal history (quenched or canister centerline cooled) or compositional view (target or measured). More specifically, all of the SB7a glasses have normalized boron release values (NL [B]) less than 0.9 g/L as compared to the benchmark NL [B] value for EA of 16.695 g/L. With respect to the applicability of the current durability models to the SB7a VS compositional region of interest, all of the study glasses (based on target compositions) lie within the 95% confidence intervals of the model predictions. When model applicability is based on the measured compositions, all of the SB7a VS glasses are predictable with the exception of SB7aVS-02 and SB7aVS-06. Although the NL [B] values of these two glasses range from 0.66 to 0.73 g/L (considered very acceptable), the PCT responses are not considered predictable by the current durability models. The current durability models are conservative for these glasses since they are more durable than predicted by the models. These two glasses are extreme vertices (EV) based compositions coupled with Frit 418 at 36% WL and target the maximum Na{sub 2}O content (15.01 wt% Na{sub 2}O) of the SB7a VS glasses. Higher alkali glasses for which the model overpredicts the PCT response have been observed previously in the Sludge Batch 3 (SB3) Phase 1 VS and the Sludge Batch 6 (SB6) VS.

Peeler, D.; Edwards, T.

2011-03-24T23:59:59.000Z

168

PRELIMINARY FRIT DEVELOPMENT AND MELT RATE TESTING FOR SLUDGE BATCH 6 (SB6)  

SciTech Connect

The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled with a lower concentration of Na{sub 2}O relative to Frit 418, melt rate did not appear to improve. It is expected that a SB6 composition projection with less uncertainty will be received during analysis of the Tank 51 E-1 sample, which will be pulled after the completion of aluminum dissolution in August 2009. At that time, additional frit development work will be performed to seek improved melt rates while maintaining viable projected operating windows. This later work will ultimately lead to a frit recommendation for SB6.

Fox, K.; Miller, D.; Edwards, T.

2009-07-21T23:59:59.000Z

169

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

170

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

171

Production of silica aerogel microparticles loaded with ammonia borane by batch and semicontinuous supercritical drying techniques  

Science Journals Connector (OSTI)

Abstract Silica aerogel microparticles were prepared by supercritical drying and used as support for hydrogen-storing ammonia borane (AB). The formation of aerogel microparticles was done using two different processes: batch supercritical fluid extraction and a semicontinuous drying process. Silica aerogel microparticles with a surface area ranging from 400 to 800 m2/g, a volume of pores of 1 cm3/g, and a mean particle diameter ranging from 12 to 27 ?m were produced using the two drying techniques. The particle size distribution (PSD) of the microparticles was influenced by shear rate, amount of catalyst, hydrophilic–hydrophobic solvent ratio and hydrophobic surface modification. In particular, irregular aerogel particles were obtained from hydrophilic gels, while regular, spherical particles with smooth surfaces were obtained from hydrophobic gels. AB was loaded into silica aerogel microparticles in concentrations ranging from 1% till 5% wt. Hydrogen release kinetics from the hydride-loaded aerogel was analyzed with a volumetric cell at 80 °C. By stabilization of AB into the silica aerogel microparticles, an improvement of the release rate of hydrogen from AB was observed.

Miriam Rueda; Luis Miguel Sanz-Moral; Antonio Nieto-Márquez; Pablo Longone; Facundo Mattea; Ángel Martín

2014-01-01T23:59:59.000Z

172

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

173

Influence of Tangent Pinch Points on the Energy Demand of Batch Distillations: Development of a Conceptual Model for Binary Mixtures  

Science Journals Connector (OSTI)

Influence of Tangent Pinch Points on the Energy Demand of Batch Distillations: Development of a Conceptual Model for Binary Mixtures ... The algorithm requires the evaluation of a series of points (x0,f0), (x1,f1), ..., (xn,fn), and it demands the smallest number of function evaluations in comparison with other methods as a consequence of using the information from previous iterations to generate greater order estimations of the inverse function (lineal, quadratic, etc.). ...

Karina Andrea Torres; Jose? Espinosa

2011-04-08T23:59:59.000Z

174

UTILIZING STATISTICS TO DETERMINE HOW MUCH SAMPLING AND ANALYSISIS WARRANTED TO SUPPORT SAVANNAH RIVER SITEHIGH LEVEL WASTE SLUDGE BATCH PREPARATION  

SciTech Connect

Accelerated cleanup initiatives at the SRS include expediting radioactive sludge processing. Sludge is the highest risk component of waste since it contains the highest concentrations of long-lived radionuclides. The sludge is staged into ''batches'' that are then the feed material to the Defense Waste Processing Facility (DWPF) which vitrifies the waste into a safe form for permanent disposal. The preparation of each batch includes sampling and analysis of the slurried material. The results of the characterization are used as the bases for batch blending and processing decisions. Uncertainty is inherent in the information used for planning. There is uncertainty in the quantity of sludge contained in a tank, the waste composition, and the waste physical properties. The goal of this analysis is to develop the basis for the number of physical samples that should be taken from the slurried waste tank and the number of replicates of laboratory measurements that should be performed in order to achieve a specified uncertainty level. Recommendations for sampling and analysis strategies are made based on the results of the analysis.

Hamm, B

2007-05-17T23:59:59.000Z

175

NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4: PHASE 3 EXPERIMENTAL RESULTS  

SciTech Connect

This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies1, 2 by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend 1.3 Four different frits were included, based on previous assessments of projected operating windows and melt rate,4, 5 with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40%) and were prepared and analyzed to contribute needed data to the ComPro database6 to support a potential variability study for SB4.

Fox, K

2006-05-01T23:59:59.000Z

176

DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)  

SciTech Connect

The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2011-0004; Rev. 0 entitled Sludge Batch 7b Qualification Studies. Specifically, this report details results from performing Subtask II, Item 2 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00247, Rev. 0 and Analytical Study Plan (ASP), SRNL-RP-2011-00248, Rev. 0. In order to determine the reportable radionuclides for SB7b (MB9), a list of radioisotopes that may meet the criteria as specified by the Department of Energy’s (DOE) WAPS was developed. All radioactive U- 235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 27 radionuclides have been identified as reportable for DWPF SB7b as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB7b to 29. The radionuclide measurements made for SB7b are similar to those performed in the previous SB7a MB8 work. Some method development/ref

Crawford, C. L.; Diprete, D. P.

2014-05-01T23:59:59.000Z

177

DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 5 (MACROBATCH 6)  

SciTech Connect

The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Tank 40 (Sludge Batch 4 (SB4)), Sludge Batch 5 (SB5) that was transferred to Tank 40 from Tank 51, and H-Canyon Np transfers completed after the start of processing. The blend of sludge in Tank 40 is also referred to as Macrobatch 6 (MB6). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2008-0010; Rev. 2 entitled Sludge Batch 5 SRNL Shielded Cells Testing. Specifically, this report details results from performing Subtask II, 5 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), WSRC-RP-2008-00137, Rev. 2 and Analytical Study Plan (ASP), WSRC-RP-2008-00138, Rev. 2. In order to determine the reportable radionuclides for SB5 (MB6), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-six radionuclides have been identified as reportable for DWPF SB5 as specified by WAPS 1.2. The 26 reportable radionuclides are: Cl-36, Ni-59, Ni-63, Sr-90, Zr-93, Nb-93m, Tc-99, Sn-126, Cs-137, Sm-151, U-233, U-234, Np-237, U-238, Pu-238, Pu-239, Pu-240, Am-241, Pu-241, Pu-242, Am-242m, Am-243, Cm-244, Cm-245, Cm-246, Cf-251. Chlorine-36 is reported for the first time based on the upper bounding activity determined from the aqua regia digested sludge slurry. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB5 (MB6), all of the radionuclides in the Design Basis glass are reportable except for four radionuclides: Se-79, Pd-107, Cs-135, and Th-230. At no time through the year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to

Bannochie, C.; Bibler, N.; Diprete, D.

2010-02-04T23:59:59.000Z

178

DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 6 (MACROBATCH 7)  

SciTech Connect

The Waste Acceptance Product Specifications (WAPS) 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 5 (SB5) with H-Canyon Np transfers completed after the start of processing SB5, and Sludge Batch 6 (SB6) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 7 (MB7). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2009-0014; Rev. 2 entitled Sludge Batch 6 SRNL Shielded Cells Testing. Specifically, this report details results from performing Subtask III, Item 2 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2009-00473, Rev. 15 and Analytical Study Plan (ASP), SRNL-RP-2009-00474, Rev. 1. In order to determine the reportable radionuclides for SB6 (MB7), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 30 radionuclides have been identified as reportable for DWPF SB6 as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB6, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100-year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB6 to 32. The radionuclide measurements made for SB6 are the most extensive condu

Bannochie, C.; Diprete, D.

2011-06-01T23:59:59.000Z

179

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

180

A mathematical model of batch and continuous microbial cultures exhibiting sequential removal characteristics  

E-Print Network (OSTI)

&M University Directed by: Dr. Donald J. Schaezler The treatment of liquid wastes is receiving more attention daily, and the states are revising the treatment requirements up- ward for both new and existing waste treatment plants. One of the major problems... and on the type of waste. The type of waste stream is very important in determinir;g the treat- ment process. The organic chemicals industry is one of the major industries in the United States. The majority of the waste treatment plants for this industry...

Catchings, Ronald Curtis

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Predicting CSR and CRI of coke on the basis of the chemical and petrographic parameters of the coal batch and the coking conditions  

Science Journals Connector (OSTI)

A model is developed for predicting the postreactive strength CSR and reactivity CRI of coke. The model adequately reflects the dependence of ... on the chemical and petrographic parameters of the coal batch, tak...

A. S. Stankevich; R. R. Gilyazetdinov; N. K. Popova; D. A. Koshkarov

2008-09-01T23:59:59.000Z

182

Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor  

E-Print Network (OSTI)

efficient and the recycling more widespread. On the other hand, it is found in excess in wastewater to contribute to phosphorus removal during wastewater treatment. Whereas hydroxyapatite (HAP) is proven effluents, damaging aquatic ecosystems and the quality of water. In a wastewater treatment plant, biological

Mailhes, Corinne

183

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

184

The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows  

SciTech Connect

As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B203 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B203 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT.

Peeler, D. K.; Edwards, T. B.

2013-06-26T23:59:59.000Z

185

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

186

Modeling On-Grate MSW Incineration with Experimental Validation in a Batch Incinerator  

Science Journals Connector (OSTI)

This knowledge cannot be readily obtained from direct experimental studies on industrial-scale incinerators; in contrast, mathematical modeling and numerical simulation appear to be an attractive approach for quantitative insight into the mechanisms and variables of waste-bed incineration. ... This approach was successfully employed for grate(6) or rotary kiln(7) plants. ... Gasification of carbon (char or coke) by steam is a well-known process for producing syngas. ...

Abhishek Asthana; Yannick Me?nard; Philippe Sessiecq; Fabrice Patisson

2010-07-12T23:59:59.000Z

187

The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows  

SciTech Connect

As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 – SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 – SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B2O3 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B2O3 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT. The impact on CPC processing of a 0.01M boric acid solution for elution of cesium during Modular Caustic Side Solvent Extraction Unit (MCU) processing has previously been evaluated by the Savannah River National Laboratory (SRNL). Increasing the acid strength to 0.0125M boric acid to account for variations in the boric acid strength has been reviewed versus the previous evaluation. The amount of acid from the boric acid represented approximately 5% of the total acid during the previous evaluation. An increase from 0.01 to 0.0125M boric acid represents a change of approximately 1.3% which is well within the error of the acid calculation. Therefore, no significant changes to CPC processing (hydrogen generation, metal solubilities, rheological properties, REDOX control, etc.) are expected from an increase in allowable boric acid concentration from 0.01M to 0.0125M.

Peeler, D. K.; Edwards, T. B.; Stone, M. E.

2013-08-14T23:59:59.000Z

188

TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM  

SciTech Connect

As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass transition temperature measurement and TTT diagram development. The glass transition temperature (Tg) was measured using differential scanning calorimetry (DSC) and was recorded to be 443 {+-} 3 C. Using the previous TTT diagrams as guidance, subsamples of the glass were isothermally heat treated for 0.5 to 768 hours at temperatures between 400 C to 1100 C. Each of the 56 heat treated samples, along with quenched and centerline canister cooled (CCC) treated samples, were analyzed using Xray diffraction (XRD) and the PCT. Crystallization was detected only in samples treated at 600 C for more than 192 hours, and 700, 800, and 900 C for more than 48 hours. Phases crystallized were similar in composition if not the same as those found in the previous TTT studies. Six different crystalline phases were detected, including nepheline, acmite, lithium silicate, trevorite, krinovite, and albite. Overall, phases were spinel (iron) based, lithium metasilicate, sodium aluminosilicate or sodium transition metal silicate in composition. No new crystalline families were detected. Durability, as measured by the PCT, decreased when lithium silicate or nepheline crystals were present. Only one heat treated sample had a measured PCT response exceeding the benchmark EA glass, which was a sample treated at 600 C for 768 hours. During normal processing at the DWPF these conditions would be highly unlikely to occur, even in an extreme accident scenario. In order to continue to meet the requirements of the WCP, a simplified strategy is suggested for the generation of future TTT diagrams. A strategy has been developed that would require completing two more TTT diagrams for two averaged, future, predicted waste types. By creating diagrams for the resulting glass compositions of encompassing waste types, it will give insight to the crystallization regions possible for those averages. As discussed in the report, 'Initial MAR Assessments to Access the Impact of Al-Dissolution on DWPF Operating Windows' (WSRC-STI 2007-00688), the majority of waste compositions could be grouped into two futu

Billings, A; Tommy Edwards, T

2009-03-03T23:59:59.000Z

189

Estimation and Analysis of Energy Utilities Consumption in Batch Chemical Industry through Thermal Losses Modeling  

Science Journals Connector (OSTI)

A hot water distribution system is mainly used for heating the infrastructure (i.e., keeping the building and pipes at a desired temperature) and is fed by steam condensates. ... As a result, the three-parameters model, whose functional form already integrates this feature, was preferred to calibrate valves distributing liquid utilities both in the multiproduct and the monoproduct plant. ... However, an additional assumption for heat losses is necessary or a detailed and complicated analytical calculation for all components of the heating/cooling utility system. ...

Claude Rérat; Stavros Papadokonstantakis; Konrad Hungerbühler

2012-06-29T23:59:59.000Z

190

Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor  

Science Journals Connector (OSTI)

...with synthetic wastewater eventually containing...the clarified plant effluent (Fig...Using synthetic wastewater. A typical profile...A carbon mass balance based on existing...phosphorus removal in wastewater treatment plants. Antonie Leeuwenhoek...

Johwan Ahn; Sarah Schroeder; Michael Beer; Simon McIlroy; Ronald C. Bayly; John W. May; George Vasiliadis; Robert J. Seviour

2007-02-09T23:59:59.000Z

191

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION  

SciTech Connect

Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

2010-10-01T23:59:59.000Z

192

INITIAL SLUDGE BATCH 4 TANK 40 DECANT VARIABILITY STUDY WITH FRIT 510  

SciTech Connect

Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during the DWPF March outage. Based on the results of the preliminary assessment issued by the Savannah River National Laboratory (SRNL), the Liquid Waste Organization (LWO) issued a Technical Task Request (TTR) for SRNL to (1) perform a more detailed evaluation using updated SB4 compositional information and (2) assess the viability of Frit 510 and determine any potential impacts on the SB4 system. As defined in the TTR, LWO requested that SRNL validate the sludge--only SB4 flowsheet and the coupled operations flowsheet using the 100K gallon decant volume as well as the addition of 3 wt% sodium on a calcined oxide basis. Approximately 12 historical glasses were identified during a search of the ComProTM database that are located within at least one of the five glass regions defined by the proposed SB4 flowsheet options. While these glasses meet the requirements of a variability study there was some concern that the compositional coverage did not adequately bound all cases. Therefore, SRNL recommended that a supplemental experimental variability study be performed to support the various SB4 flowsheet options that may be implemented for future SB4 operations in DWPF. Eighteen glasses were selected based on nominal sludge projections representing the current as well as the proposed flowsheets over a WL interval of interest to DWPF (32-42%). The intent of the experimental portion of the variability study is to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Cases No.1-5) are both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current DWPF process control models for durability. Frit 510 is a viable option for the processing of SB4 after a Tank 40 decant and the addition of products from the Actinide Removal Process (ARP). The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. The results of the variability study indicate that all of the study glasses (both quenched and centerline canister cooled (ccc)) have normalized releases for boron that are well below the reference EA glass (16.695 g/L). The durabilities of all of the study glasses are predictable using the current Product Composition Control System (PCCS) durability models with the exception of SB4VAR24ccc (Case No.2 at 41%). PCCS is not applicable to non-homogeneous glasses (i.e. glasses containing crystals such as acmite and nepheline), thus SB4VAR24ccc should not be predictable as it contains nepheline. The presence of nepheline has been confirmed in both SB4VAR13ccc and SB4VAR24ccc by X-ray diffraction (XRD). These two glasses are the first results which indicate that the current nepheline discriminator value of 0.62 is not conservative. The nepheline discriminator was implemented into PCCS for SB4 based on the fact that all of the historical glasses evaluated with nepheline values of 0.62 or greater did not contain nepheline via XRD analysis. Although these two glasses do cause some concern over the use of the 0.62 nepheline value for future DWPF glass systems, the impact to the current SB4 system is of little concern. More specifically, the formation of nepheline was observed in glasses targeting 41 or 42% WL. Current processing of the Frit 510-SB4 system in DWPF has nominally targeted 34% WL. For the SB4 variability study glasses targeting these lower WLs, nepheline formation was not observed and the minimal differe

Raszewski, F; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

2008-05-27T23:59:59.000Z

193

Seafood Plant Sanitation  

Science Journals Connector (OSTI)

A hygienically designed plant can improve the wholesomeness of seafood and the sanitation program. The location of the seafood plant can contribute to the sanitation of...

2006-01-01T23:59:59.000Z

194

SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 7A (MACROBATCH 8) DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03619  

SciTech Connect

In order to comply with the Waste Acceptance Specifications in Sludge Batch 7a (Macrobatch 8), Savannah River National Laboratory personnel characterized the Defense Waste Processing Facility (DWPF) pour stream glass sample collected while filling canister S03619. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides, and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass. Results and further details are documented in 'Analysis of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples,' SRNL-STI-2012-00017.

Johnson, F.

2012-05-01T23:59:59.000Z

195

SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 6 (MACROBATCH 7) DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03472  

SciTech Connect

In order to comply with the Waste Acceptance Specifications in Sludge Batch 6 (Macrobatch 7), Savannah River National Laboratory personnel performed characterization analyses on the Defense Waste Processing Facility (DWPF) pour stream glass sample collected while filling canister S03472. This report summarizes results of the characterization, which indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass. Results and further details are documented in 'Analysis of DWPF Sludge Batch 6 (Macrobatch 7) Pour Stream Glass Samples,' SRNL-STI-2011-00555.

Johnson, F.

2012-01-23T23:59:59.000Z

196

Conservation, An In-Plant Energy Resource  

E-Print Network (OSTI)

annealing and continuous or batch type heat treating. Improvements discussed include skid and support pipe insulation for under fired furnaces, positive and adequate controls, recuperation, and combustion equipment....

Skudneski, L. A.

1980-01-01T23:59:59.000Z

197

CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3  

SciTech Connect

The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

Kenneth D. Wright

1997-07-29T23:59:59.000Z

198

Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments  

SciTech Connect

The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

Brubaker, Tonya M.; Stewart, Brian W.; Capo, Rosemary C.; Schroeder, Karl T.; Chapman, Elizabeth C.; Spivak-Birndorf, Lev J.; Vesper, Dorothy J.; Cardone, Carol R.; Rohar, Paul C.

2013-05-01T23:59:59.000Z

199

Polyhydroxyalkanoate synthesis in plants  

DOE Patents (OSTI)

Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

2000-01-01T23:59:59.000Z

200

Ethylene insensitive plants  

SciTech Connect

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Savannah River Site - P-Area Groundwater Operable Unit | Department...  

Office of Environmental Management (EM)

SVOCs Present?: Yes VOC Name Concentration (ppb) Regulatory Driver Cleanup Requirement PCE 300 Yes 5 TCE 16,000 Yes 5 DCE 1,300 Yes 70 VC 10 Yes 2 Fuel Present? No Metals...

202

Characterization of Contaminant Levels in the P-Area Wetland...  

NLE Websites -- All DOE Office Websites (Extended Search)

18.2 ha in one of the smaller wetlands within DB known as Bay 96. Note: On the SRS GIS wetlands layer, Bay 96 includes additional area that did not receive CCW. For the...

203

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

204

Plant Phenotype Characterization System  

SciTech Connect

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

205

Technology Data for Energy Plants June 2010  

E-Print Network (OSTI)

............................................................................................... 79 13 Centralised Biogas Plants

206

Plant Biology 2001  

Science Journals Connector (OSTI)

...Park, PA b Graduate Research Assistant Michigan...University-Department of Energy Plant Research Laboratory East Lansing...complete listing of abstracts can be found at http...University-Department of Energy Plant Research Laboratory, East...

Nancy A. Eckardt; Hyung-Taeg Cho; Robyn M. Perrin; Matthew R. Willmann

207

Types of Hydropower Plants  

Energy.gov (U.S. Department of Energy (DOE))

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

208

kansas city plant  

National Nuclear Security Administration (NNSA)

0%2A en Kansas City Plant http:nnsa.energy.govaboutusourlocationskansas-city-plant

Page...

209

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

210

Plant design: Integrating Plant and Equipment Models  

SciTech Connect

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

211

Power Plant Cycling Costs  

SciTech Connect

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

212

NUCLEAR PLANT AND CONTROL  

E-Print Network (OSTI)

for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety

213

Reducing the sulfur content of coke by increasing the content of thermally conditioned g coal in the batch  

Science Journals Connector (OSTI)

In periods of economic growth, Ukrainian coke plants face a shortage of Zh and K coal, because of the high demand. In periods of economic stagnation, conversely, there is an excess of Zh coal, on account of the d...

E. I. Malyi

2014-05-01T23:59:59.000Z

214

RESORCINOL-FORMALDEHYDE ADSORPTION OF CESIUM (Cs+) FROM HANFORD WASTE SOLUTIONS-PART I: BATCH EQUILIBRIUM STUDY  

SciTech Connect

Batch equilibrium measurements were conducted with a granular Resorcinol-Formaldehyde (RF) resin to determine the distribution coefficients (Kds) for cesium. In the tests, Hanford Site actual waste sample containing radioactive cesium and a pretreated waste sample that was spiked with non-radioactive cesium were used. Initial concentrations of non-radioactive cesium in the waste sample were varied to generate an equilibrium isotherm for cesium. Two additional tests were conducted using a liquid to solid phase ratio of 10 and a contact time of 120 hours. The measured distribution coefficient (Kd) for radioactive cesium (137Cs) was 948 mL/g; the Kd for non-radioactive cesium (133Cs) was 1039 mL/g. The Kd for non-radioactive cesium decreased from 1039 to 691 mL/g as the initial cesium concentration increased. Very little change of the Kd was observed at initial cesium concentrations above 64 mg/mL. The maximum sorption capacity for cesium on granular RF resin was 1.17 mmole/g dry resin. T his value was calculated from the fit of the equilibrium isotherm data to the Dubinin-Radushkevich equation. Previously, a total capacity of 2.84 mmole/g was calculated by Bibler and Wallace for air-dried RF resin.

HASSAN, NEGUIBM

2004-03-30T23:59:59.000Z

215

Feasibility of bioengineered two-stages sequential batch reactor and filtration–adsorption process for complex agrochemical effluent  

Science Journals Connector (OSTI)

Abstract In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration–adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration–adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m3 m?2 h?1, respectively. The treatment scheme comprising air stripper, BTSSBR and filtration–adsorption process showed a great promise for treating the agrochemical effluent.

Pravin Manekar; Rima Biswas; Chaitali Urewar; Sukdeb Pal; Tapas Nandy

2013-01-01T23:59:59.000Z

216

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

217

Prep plant population rebounds  

SciTech Connect

Demand and higher prices allows more operators to build and upgrade plants. The 2005 US Prep Plant Census found that the number of coal preparation plants has grown from 212 to 265 in five years - a 53 plant gain or a 20% increase over that reported by Coal Age in 2000. The number of bituminous coal washing facilities grew by 43 to 250. The article discusses the survey and the companies involved and presents a table giving key details of plants arranged by state. 6 tabs.

Fiscor, S.

2005-10-01T23:59:59.000Z

218

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped into this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases and from the Index of Plant Diseases in the ...

R. Kenneth Horst Ph.D.

2001-01-01T23:59:59.000Z

219

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped in this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases, and the Index of Plant Diseases in the United...

R. Kenneth Horst Ph.D.

1990-01-01T23:59:59.000Z

220

Improvement of cloned [alpha]-amylase gene expression in fed-batch culture of recombinant Saccharomyces cerevisiae by regulating both glucose and ethanol concentrations using a fuzzy controller  

SciTech Connect

The effect of ethanol concentration on cloned gene expression in recombinant Saccharomyces cerevisiae strain 20B-12 containing one of two plasmids, pNA3 and pNA7, was investigated in batch cultures. Plasmids pNA3 and pNA7 contain the [alpha]-amylase gene under the control of the SUC2 or PGK promoter, respectively. When the ethanol concentration was controlled at 2 to 5 g/L, the gene expressions were two times higher than those at 20 g/L ethanol. To increase the gene expression by maintaining both the ethanol and glucose concentrations at low levels, a fuzzy controller was developed. The concentrations of glucose and ethanol were controlled simultaneously at 0.15 and 2 g/L, respectively, in the production phase using the fuzzy controller in fed-batch culture. The synthesis of [alpha]-amylase was induced by the low glucose concentration and maintained at a high level of activity by regulating the ethanol concentration at 2 g/L. The secretory [alpha]-amylase activities of cells harboring plasmids pNA3 and pNA7 in fed-batch culture were 175 and 392 U/mL, and their maximal specific activities 7.7 and 12.4 U/mg dry cells, respectively. These values are two to three times higher in activity and three to four times higher in specific activity than those obtained when glucose only was controlled.

Shiba, Sumihisa; Nishida, Yoshio; Park, Y.S.; Iijima, Shinji; Kobayashi, Takeshi (Nagoya Univ. (Japan). Dept. of Biotechnology)

1994-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Towards the Integration of Dark- and Photo-Fermentative Waste Treatment. 4. Repeated Batch Sequential Dark- and Photofermentation using Starch as Substrate  

SciTech Connect

In this study we demonstrated the technical feasibility of a prolonged, sequential two-stage integrated process under a repeated batch mode of starch fermentation. In this durable scheme, the photobioreactor with purple bacteria in the second stage was fed directly with dark culture from the first stage without centrifugation, filtration, or sterilization (not demonstrated previously). After preliminary optimization, both the dark- and the photo-stages were performed under repeated batch modes with different process parameters. Continuous H{sub 2} production in this system was observed at a H{sub 2} yield of up to 1.4 and 3.9 mole mole{sup -1} hexose during the dark- and photo-stage, respectively (for a total of 5.3 mole mole{sup -1} hexose), and rates of 0.9 and 0.5 L L{sup -1} d{sup -1}, respectively. Prolonged repeated batch H{sub 2} production was maintained for up to 90 days in each stage and was rather stable under non-aseptic conditions. Potential for improvements in these results are discussed.

Laurinavichene, T. V.; Belokopytov, B. F.; Laurinavichius, K. S.; Khusnutdinova, A. N.; Seibert, M.; Tsygankov, A. A.

2012-05-01T23:59:59.000Z

222

Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF  

SciTech Connect

The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

Edwards, T. B.

2013-03-14T23:59:59.000Z

223

SLUDGE BATCH 6 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB6 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Six (SB6) for processing in the Defense Waste Processing Facility (DWPF). The SB6 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB5. The radionuclide concentrations were measured or estimated in the Tank 51 SB6 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry (HTF-51-09-110) taken on October 8, 2009. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of the Liquid Waste Organization it was then modified by eight washes, nine decants, an addition of Pu from Canyon Tank 16.3, and an addition of NaNO{sub 2}. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB6 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2009-0014. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task II.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB6 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB6 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. The sample is the same as that on which the chemical composition was reported. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 99% of the Tc-99 and at least 90% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

Bannochie, C.; Bibler, N.; Diprete, D.

2010-05-21T23:59:59.000Z

224

Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies  

SciTech Connect

Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

Morley, M.C.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1999-03-01T23:59:59.000Z

225

prairie restoration plant ident  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

226

Crystals and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

227

Poisonous Plant Management.  

E-Print Network (OSTI)

are relatively unpalatable and must be consumed in substantial quantities to be lethal. Generally, animals do not graze poisonous plants by choice and are rarely poisoned if other forage is readily available. Plants do not always fall into easily defined... quickly. Control may be accomplished using mechanical, biological, chemical or prescribed burning methods. Most poisonous plants are herbaceous in growth form; thus, mechanical control methods are rarely used. There are a few exceptions. Whitebrush, a...

McGinty, Allan

1985-01-01T23:59:59.000Z

228

CX-000830: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Categorical Exclusion Determination 30: Categorical Exclusion Determination CX-000830: Categorical Exclusion Determination Construct Rail Spur to Concrete Batch Plant, P-Area CX(s) Applied: B1.13 Date: 08/31/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office Install railroad spurs into P-Area Facility to new batch plant (see EEC ARRA-P-2009-033) to support the closure activities of P and R Operable Units. Revision 1 includes the use of pesticide/herbicide. Herbicide will be applied to existing vegetation in the planned railroad bed area. No endangered species will be impacted. Herbicide will be applied in accordance with the Site Herbicide program. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000830.pdf More Documents & Publications CX-000500: Categorical Exclusion Determination

229

Plant Growth and Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

230

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

231

Plant pathogen resistance  

DOE Patents (OSTI)

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27T23:59:59.000Z

232

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network (OSTI)

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

233

Modulating lignin in plants  

SciTech Connect

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

234

Ethylene in Plants  

Science Journals Connector (OSTI)

... as the master controller of all plant growth and developmental processes. It now seems that ethylene, whose dramatic effects on plants have been known for more than 70 years, is ... 10 years there has been a veritable explosion of research into the physiological actions of ethylene directed towards assessing its significance as a 'natural' hormone.

L. J. AUDUS

1973-11-23T23:59:59.000Z

235

Plant Ecology An Introduction  

E-Print Network (OSTI)

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

236

Purdue extension Toxic Plants  

E-Print Network (OSTI)

Service PLANTS Database/N.L.Britton,and A.Brown's An Illustrated Flora of the Northern United States Poisonous to Live- stock and Pets.See References (page 23) and Online Resources (page 24) for details is as safe as possible is to keep these plants out of your fields and pastures. To do this,proper weed

Holland, Jeffrey

237

SLUDGE BATCH 7 (SB7) WASHING DEMONSTRATION TO DETERMINE SULFATE/OXALATE REMOVAL EFFICIENCY AND SETTLING BEHAVIOR  

SciTech Connect

To support Sludge Batch 7 (SB7) washing, a demonstration of the proposed Tank Farm washing operation was performed utilizing a real-waste test slurry generated from Tank 4, 7, and 12 samples. The purpose of the demonstration was twofold: (1) to determine the settling time requirements and washing strategy needed to bring the SB7 slurry to the desired endpoint; and (2) to determine the impact of washing on the chemical and physical characteristics of the sludge, particularly those of sulfur content, oxalate content, and rheology. Seven wash cycles were conducted over a four month period to reduce the supernatant sodium concentration to approximately one molar. The long washing duration was due to the slow settling of the sludge and the limited compaction. Approximately 90% of the sulfur was removed through washing, and the vast majority of the sulfur was determined to be soluble from the start. In contrast, only about half of the oxalate was removed through washing, as most of the oxalate was initially insoluble and did not partition to the liquid phase until the latter washes. The final sulfur concentration was 0.45 wt% of the total solids, and the final oxalate concentration was 9,900 mg/kg slurry. More oxalate could have been removed through additional washing, although the washing would have reduced the supernatant sodium concentration.The yield stress of the final washed sludge (35 Pa) was an order of magnitude higher than that of the unwashed sludge ({approx}4 Pa) and was deemed potentially problematic. The high yield stress was related to the significant increase in insoluble solids that occurred ({approx}8 wt% to {approx}18 wt%) as soluble solids and water were removed from the slurry. Reduction of the insoluble solids concentration to {approx}14 wt% was needed to reduce the yield stress to an acceptable level. However, depending on the manner that the insoluble solids adjustment was performed, the final sodium concentration and extent of oxalate removal would be prone to change. As such, the strategy for completing the final wash cycle is integral to maintaining the proper balance of chemical and physical requirements.

Reboul, S.; Click, D.; Lambert, D.

2010-12-10T23:59:59.000Z

238

SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

Pareizs, J.; Hay, M.

2011-02-22T23:59:59.000Z

239

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

240

BNL | Plant Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Top 10 plant pathogenic bacteria in molecular plant pathology.  

E-Print Network (OSTI)

plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

2012-01-01T23:59:59.000Z

242

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

243

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

244

Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023  

SciTech Connect

In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

Johnson, F. C.

2013-11-18T23:59:59.000Z

245

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

246

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

247

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

248

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

249

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

250

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

251

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

252

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

253

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

254

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

255

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

256

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

257

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

258

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

259

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

260

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

262

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

263

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

264

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

265

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

266

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

267

Fermilab Prairie Plant Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more Â…. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

268

prairie restoration planting  

NLE Websites -- All DOE Office Websites (Extended Search)

Planting Planting The most common method of planting is to broadcast spread your seeds. This is usually done by hand, but you can also use a lawn-type spreader. After you have spread your seeds, rake the area over lightly. For seeds to germinate correctly they need to have good seed to soil contact, but you also don't want to bury the seeds too deeply. The general rule is to cover seeds to a depth no deeper than twice the seed's size. For example, if a seed is 4 mm in size, you would not want to bury it any deeper than 8 mm. The seeds commonly found in a prairie matrix are usually small enough, that raking over the spread seed to mix and cover them with a thin layer of soil, is adequate. If you are involving large numbers of people in the planting, a plastic cup

269

Pollution adn Plant Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution adn Plant Growth Pollution adn Plant Growth Name: Virdina Location: N/A Country: N/A Date: N/A Question: What are the effcts off water polltuion on plant growth? Are there any good websites where I can find current or on going research being done by other scientist? Replies: Dear Virdina, Possibly helpful: http://www.ec.gc.ca/water/en/manage/poll/e_poll.htm http://www.epa.vic.gov.au/wq/info/wq987.htm Sincerely, Anthony R. Brach This is a very complicated question, there are so many different types of water pollution and different species of plants react very differently. Good places to start are the U.S. environmental protection agency, the office of water is at: http://www.epa.gov/ow/ and there is a link to a kid's page from there: http://www.epa.gov/OST/KidsStuff/ You might also try state EPA's, Illinois is at:

270

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

271

Economics of Hydropower Plants  

Science Journals Connector (OSTI)

The feed-in tariff scheme, as its name suggests is based ... plant. The most important aspect of a feed-in tariff system is that the grid operator cannot ... stations must reduce their power generation. The feed-in

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

272

Plant Vascular Biology 2010  

SciTech Connect

This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

Ding, Biao

2014-11-17T23:59:59.000Z

273

Plant Operations Executive Director  

E-Print Network (OSTI)

Campus North Campus Recycling Operations Materials Human Resources Payroll Misc Svs Special Projects Planning Spray Shop Glass Shop Upholstery Shop Plant IT Painting Services G. Weincouff Human Resources Business Services Estimating Shutdown Coordination Scheduling L. Rastique Human Resources 67398 M

Awtar, Shorya

274

Plant indicators in Iraq  

Science Journals Connector (OSTI)

Native plants of Iraq have shown considerable variation in their ability...Seidlitzia rosmarinus andHalocnemum strobilaceum indicate very high soil sodium contents, and others high magnesium and sulphate contents...

T. A. Al-Ani; I. M. Habib; A. I. Abdulaziz; N. A. Ouda

1971-08-01T23:59:59.000Z

275

Better Buildings, Better Plants:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 1,800 plants and about 8% of the U.S. manufacturing energy footprint 2012 average energy intensity improvement 2.7% Cumulative Energy Savings 190 TBtus ...

276

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

277

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

278

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

279

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

280

How do plants grow?  

NLE Websites -- All DOE Office Websites (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Texas Plants Poisonous to Livestock.  

E-Print Network (OSTI)

TEXAS PLANTS POISONOUS TO LIVESTOCK TEXAS A&M UNIVERSITY TEXAS AGRICULTURAL EXPERIMENT STATION TEXAS AGRICULTURAL EXTENSION SERVICE College Station, Texas THE PROBLEM POISONOUS PLANT RESEARCH IN TEXAS TOXIC PLANT CONSTITUENTS TEXAS PLANTS... list includes plants growing in Texas and reported to be poisonous in other areas. Some species described seldom cause trouble but are included since they have been proved toxic and may, under conditions, bring about livestock losses. Poisoning...

Sperry, Omer Edison

1964-01-01T23:59:59.000Z

282

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

283

Plant and Animal Immigrants  

NLE Websites -- All DOE Office Websites (Extended Search)

and Animal Immigrants and Animal Immigrants Nature Bulletin No. 43 December 1, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation PLANT AND ANIMAL IMMIGRANTS When foreign plants and animals are brought to a new country they either become naturalized and thrive, or they cling to their old ways and die out. after they, too, find new freedoms because they leave their enemies, competitors, parasites, and some of their diseases behind them -- much as immigrant people do. The United States now supports about 300 times as many people as it did when Columbus discovered America. This is possible because the domesticated plants and animals that the early settlers brought with them give much higher yields of food and clothing than the Indians got from wild ones.

284

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

285

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

286

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

287

Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

288

Snakes and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

289

Alex Benson Cement Plants  

E-Print Network (OSTI)

with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

Toohey, Darin W.

290

Plants: novel developmental processes  

Science Journals Connector (OSTI)

...J.K., SOYBEAN SEED LECTIN GENE AND FLANKING...EVIDENCE ON THEIR METABOLISM + TOTIPOTENCY, SCIENCE...GENETIC MANIPULATION OF CEREAL CROPS, BIO-TECHNOLOGY...MESSENGER-RNAS FOR SEED LECTIN AND KUNITZ...vascular seedless and seed-producing plants...store glucose as starch in their chloroplasts...

RB Goldberg

1988-06-10T23:59:59.000Z

291

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies tooïç place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

292

Solar Tracking by Plants  

Science Journals Connector (OSTI)

...University of Utah, Salt Lake City 84112...Solar Tracking in Desert Plants In the arid...were coastal sage scrub, which grows during...Mohave and Colorado desert scrub, which grow in...Mohave and Colorado desert scrub communities at sites...

James Ehleringer; Irwin Forseth

1980-12-05T23:59:59.000Z

293

BIOLOGY AND AQUATIC PLANTS  

E-Print Network (OSTI)

Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One

Jawitz, James W.

294

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

295

Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems  

SciTech Connect

This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

1996-04-01T23:59:59.000Z

296

Technology Data for Electricity and Heat Generating Plants  

E-Print Network (OSTI)

.................................................................................63 13 Centralised Biogas Plants

297

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network (OSTI)

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

298

Annual Report 2001 -Plant Research Departme Plant Research Department  

E-Print Network (OSTI)

Organisation DLF-Risø Biotechnology Programme Plant Environment Interactions Programme Plant Nutrition agronomic traits and to engineer high-value plants, which are able to meet the growth conditions of the future environment. The department is divided into six research programmes that are linked through

299

Ecology of Plants and Light CAM plants have thick,  

E-Print Network (OSTI)

orientation to maximize light exposure. Species Adaptations-Sun Solar tracking by leaves increases light1 Ecology of Plants and Light CAM plants have thick, succulent tissues to allow for organic acid and Light Some CAM plants not obligated to just CAM Can use C3 photosynthesis during day if conditions

Cochran-Stafira, D. Liane

300

Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

302

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

303

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

304

Gene encoding plant asparagine synthetase  

DOE Patents (OSTI)

The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

1993-10-26T23:59:59.000Z

305

US prep plant census 2008  

SciTech Connect

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

306

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

307

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

308

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

309

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

310

Jennings Demonstration PLant  

SciTech Connect

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

311

TERRORISM AT THE PLANT LEVEL  

Science Journals Connector (OSTI)

TERRORISM AT THE PLANT LEVEL ... IN THE DAYS FOLLOWING THE Sept. 11 terrorist attacks, chemical plant officials say they have increased security through greater plant surveillance, more guards, intense vehicle inspections, and plans to better coordinate security with similar facilities, fire departments, and police. ...

JEFF JOHNSON

2001-09-24T23:59:59.000Z

312

Special Better Plants Training Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

In-Plant Trainings (INPLTs) are system-specific workshops led by Better Plants experts that train participants on how to identify, implement, and replicate energy-saving projects. Better Plant partners host an on-site, three-day training at one of their facilities, and invite others to attend.

313

ENDING PLANTS’ WASTING WAYS  

Science Journals Connector (OSTI)

Small DOE industrial energy auditing program shows BIG ENERGY EFFICIENCY, financial gains ... FREDERICK FENDT DIDN’T EXPECT too much from a Department of Energy-led, three-day energy audit of Rohm and Haas’s Deer Park, Texas, chemical plant. ... So when Paul Scheihing, who manages the DOE Industrial Technologies Program and coordinates the audits, urged Fendt to take part in a free energy assessment, he agreed. ...

JEFF JOHNSON

2008-01-14T23:59:59.000Z

314

Plants of the Bible  

NLE Websites -- All DOE Office Websites (Extended Search)

Bible Bible Nature Bulletin No. 188-A April 16, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE BIBLE When Jesus suffered on the cross, we are told in the Gospel according to St. Matthew (27:48) that at the ninth hour he thirsted and a sponge, filled with vinegar and put upon a reed, was raised to His lips. It is so related in St. Mark (15:36) but according to St. John (19:29), "they filled a sponge with vinegar, and put it upon hyssop, and put it into his mouth. " What was hyssop. The plant is mentioned frequently in the Bible. The hyssop of our herb gardens is not native to Palestine, Syria or Egypt, but there is evidence that when Solomon "spoke of trees, from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall" (I Kings 4:23), he spoke of the herb we call marjoram. The hyssop dipped in the blood of a sacrificial lamb and used by the Israelites in Egypt to mark their doorways (Exodus 12:22), and the hyssop referred to by St. John but called a reed by St. Matthew and St. Mark, was probably sorghum, a tall cereal plant grown by the Jews for food and also used for brushes and brooms.

315

Poinsettia -- The Christmas Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Poinsettia -- The Christmas Plant Poinsettia -- The Christmas Plant Nature Bulletin No. 699 December 22, 1962 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor POINSETTIA -- THE CHRISTMAS PLANT Christmas is a day of family gatherings. In each home they have their own traditional customs. Some of us cherish those that are peculiar to the region where we were children, or the land from whence our forefathers came. Most of us have also adopted customs -- such as decorating with holly and mistletoe -- that stem from ancient pagan ceremonies or festivals but have lost their original significance. There are many myths and legends about the origin of our Yuletide customs. (See Bulletins No. 135, 173, 211, 326 and 475). In this country most families have a Christmas tree, a custom that was introduced from Germany by Hessian troops in the British army during the Revolutionary War. It prevails in Britain and most of northern Europe but is unusual in Italy, Spain and Latin America. There, the symbol of Christmas and heart of the celebration in a home is not an Evergreen tree but a miniature reproduction of the stable and manger where Christ was born.

316

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site  

SciTech Connect

The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

Gerber, M.S., Fluor Daniel Hanford

1997-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

322

Intimate Alliances: Plants and their Microsymbionts  

Science Journals Connector (OSTI)

...November 2011 other Teaching Tools in Plant Biology Intimate Alliances: Plants and their Microsymbionts www.plantcell.org...the plant and microsymbiont. Collectively these intimate alliances play a major role in nutrient assimilation by plants, and...

323

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

324

DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE  

SciTech Connect

Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

Adu-Wusu, K; Paul Burket, P

2009-03-31T23:59:59.000Z

325

Propagation of Ornamental Plants.  

E-Print Network (OSTI)

is well filled with roots. In the other types of layering, select shooi 1 of young growth that bend easily. It usuall: is advisable to wound the stem where it is covered with soil. This cut limits free movemen: ! of food materials and induces root... cuttings. lecent research findings have taken much of uesswork out of this type of propagation t now can be done for many plants with rlrative ease by the home gardener. Some alants remain difficult to propagate by any ' method, but most...

DeWerth, A. F.

1955-01-01T23:59:59.000Z

326

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

327

Another Nuclear Plant To Close  

Science Journals Connector (OSTI)

The Vermont Yankee Nuclear Power Station in Vernon, Vt., will permanently shut down in 2014, according to plant owner Entergy. ... In the Vermont Yankee case, Entergy’s announcement ends a long-simmering dispute between the utility and state officials and residents over the continued operation of the 620-MW plant. ... The Vermont Yankee plant design nearly mirrors that of the Fukushima reactor facility. ...

JEFF JOHNSON

2013-09-02T23:59:59.000Z

328

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

329

Owners of nuclear power plants  

SciTech Connect

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

330

Development of the merchant plant  

SciTech Connect

The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

Wolfinger, R.; Gilliss, M.B.

1998-07-01T23:59:59.000Z

331

Better Plants Partnership Agreement Form  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings, Better Plants Partnership Agreement Form commits organizations to work with DOE to reduce energy intensity by 25% over ten years.

332

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

333

Next Generation Nuclear Plant Phenomena  

NLE Websites -- All DOE Office Websites (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

334

Quality In-Plant Environment  

E-Print Network (OSTI)

, the Quality of In-plant Envi~onment. How can employees be expected to p~oduce Wo~ld-class quality pa~ts with a "di~ty" plant? Obviously, the wo~k environment has an effect on the attitude of the wo~k force. Quality of In-plant Environment con sists... reduced to .87 years. CONCLUSION The changing business climate can present opportunities for dramatic energy savings. Concepts such as Quality of Work LiEe and Quality In-Plant Environment may initially appear to have a very negative efE~ct on total...

Petzold, M. A.

335

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2013,"6301967" ,"Release Date:","1031...

336

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

337

Better Plants Progress Update 2014  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 Progress Update details Better Buildings, Better Plants Program accomplishments, including new partners, new initiatives, and energy and cost savings experienced by partners.

338

THE SCIOTO ORDNANCE PLANT  

Office of Legacy Management (LM)

' ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas City, MO. He did additional graduate work at Western Reserve University, Kent State University and Florida State University. He has taught in Cleveland and in Morrow County and has been an Occupational Work Adjustment teacher at Harding High School in Marion

339

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

340

(Photosynthesis in intact plants)  

SciTech Connect

Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal electric power plant status  

SciTech Connect

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

342

Batch-to-batch model improvement for cooling crystallization  

E-Print Network (OSTI)

Massachusetts Avenue Cambridge MA 02139, USA c Albemarle Catalysts Company B.V., Nieuwendammerkade 1-3, 1030 consisting of a solute dissolved into a solvent is loaded at high temperature into a vessel called, the desired cooling profile is given as set-point to a feedback temperature control loop. However, even when

Van den Hof, Paul

343

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

344

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

345

Overview of enrichment plant safeguards  

SciTech Connect

The relationship of enrichment plant safeguards to US nonproliferation objectives and to the operation and management of enrichment facilities is reviewed. During the review, the major components of both domestic and international safeguards systems for enrichment plants are discussed. In discussing domestic safeguards systems, examples of the technology currently in use to support nuclear materials accountability are described including the measurement methods, procedures and equipment used for weighing, sampling, chemical and isotopic analyses and nondestructive assay techniques. Also discussed is how the information obtained as part of the nuclear material accountancy task is useful to enrichment plant operations. International material accountancy verification and containment/surveillance concepts for enrichment plants are discussed, and the technologies presently being developed for international safeguards in enrichment plants are identified and the current development status is reported.

Swindle, D.W. Jr.; Wheeler, L.E.

1982-01-01T23:59:59.000Z

346

Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study  

SciTech Connect

The likelihood for the formation of nepheline in Sludge Batch 4 (SB4) glass systems and the potential impact of nepheline on the durability of these systems is part of the frit development efforts for SB4. The effect of crystallization on glass durability is complex and depends on several interrelated factors including the change in residual glass composition, the formation of internal stress or microcracks, and the preferential attack at the glass-crystal interface. Perhaps one of the most significant effects is the type and extent (or fraction) of crystallization and the change to the residual glass composition. A strong increase in glass dissolution (or decrease in durability) has been observed in previous studies in glasses that formed aluminum-containing crystals, such as NaAlSiO{sub 4} (nepheline) and LiAlSi{sub 2}O{sub 6}, and crystalline SiO{sub 2}. Although it is well known that the addition of Al{sub 2}O{sub 3} to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na{sup +}-[AlO{sub 4/2}]{sup -} pairs), the combination of high Al{sub 2}O{sub 3} and Na{sub 2}O can lead to the formation of nepheline (NaAlSiO{sub 4}). Given the projected high concentration of Al{sub 2}O{sub 3} in SB4 and the potential use of a high Na{sub 2}O based frit to improve melt rate and a high Na{sub 2}O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. The most recent compositional projections from the Closure Business Unit (CBU) for SB4 may be framed around three decision areas: the sodium molarity of the sludge (at values of 1M Na and 1.6M Na), the SB3 heel that will be included in the batch (expressed in inches of SB3 sludge with values of 0, 40, and 127''), and the introduction of an ARP stream into the sludge (which is represented by six options: no ARP, ARPa, ARPe, ARPk, ARPm, and ARPv). Candidate frits are being identified for these options via a paper study approach with the intent of downselecting to a set of key frits whose operating windows (i.e., waste loading intervals that meet Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) criteria) are robust to and/or selectively optimal for these sludge options. The primary or key frits that appear attractive on paper (i.e., down selected via the paper study) will be transferred into SRNL's experimental studies supporting SB4; specifically, the melt-rate studies, chemical process cell flowsheet runs and, if needed, a glass variability study.

Peeler, D

2005-08-15T23:59:59.000Z

347

Plant maintenance and plant life extension issue, 2007  

SciTech Connect

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

Agnihotri, Newal (ed.)

2007-03-15T23:59:59.000Z

348

Early Entrance Coproduction Plant  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

349

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2001-02-15T23:59:59.000Z

350

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

351

Aquatic plant control research  

SciTech Connect

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

352

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

353

Dirac Batch Queues and Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Queues and Policies Queues and Policies Queues and Policies Queue Classes Jobs must be submitted to a valid Submit Queue. Upon submission the job is routed to the appropriate Execution Queue. You can not directly submit a job to an Execution Queue. Submit Queue Nodes Available Processors Max Wallclock Relative Priority Run Limit dirac_int 1 1-8 30 mins 1 1 dirac_reg 1-12 1-96 6 hrs 2 2 dirac_small 1 1-8 6 hrs 2 4 dirac_special 1-48 1-384 Contact consult@nersc.gov to arrange Special Queue for higher concurrency jobs For jobs that need more than 32 nodes, please contact consult@nersc.gov with the subject "Special queue request for Dirac". Note that these jobs might take some time to run depending on the load on Dirac. Requesting Special Resources Multi-GPU Nodes

354

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant December 31, 2013 Independent Oversight Review, Pantex Plant, December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant June 6, 2013 Independent Activity Report, Pantex Plant - May 2013 Operational Awareness Oversight of the Pantex Plant [HIAR PTX-2013-05-20] December 11, 2012 Independent Activity Report, Pantex Plant - November 2012 Pantex Plant Operational Awareness Site Visit [HIAR PTX-2012-11-08] November 28, 2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex Plant - July 2012

355

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

356

Valuable Plants Native to Texas.  

E-Print Network (OSTI)

"in the wild" indicates that the. plant may be found growing as a native and should be procured'from such a location. Whenever possible plants should be secured from floriculturists and nurserymen. In Texas there is a large number of small... it on another tree. It is not only a curiosity but a thing of beauty. For demonstrating the recovery power of desert plants this is one of the best organisms. nunda cinnamomea L. Cinnamon Fern. Too well known to need -iption; native to the eastern part...

Parks, Harris Braley

1937-01-01T23:59:59.000Z

357

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers (EERE)

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

358

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

359

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

360

Independent Oversight Assessment, Pantex Plant - November 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oversight Assessment, Pantex Plant - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant This report provides the results of an independent...

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex...

362

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

363

Oversight Reports - Waste Isolation Pilot Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Orientation Visit to the Waste Isolation Pilot Plant HIAR-WIPP-2011-09-07 November 26, 2007 Independent Oversight Inspection, Waste Isolation Pilot Plant - December 2007...

364

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

365

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

366

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

367

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

368

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

369

Independent Oversight Inspection, Waste Isolation Pilot Plant...  

Office of Environmental Management (EM)

Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 August 2002 Inspection of Environment, Safety, and...

370

Independent Oversight Inspection, Pantex Plant - June 2009 |...  

Energy Savers (EERE)

Inspection, Pantex Plant - June 2009 June 2009 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report documents the results of an inspection of the...

371

Camptothecine, a selective plant growth regulator  

Science Journals Connector (OSTI)

Camptothecine, a selective plant growth regulator ... The literature documents several hundred plant products that appear to exhibit growth-regulating activity. ...

J. George Buta; Joseph F. Worley

1976-05-01T23:59:59.000Z

372

Advanced Plant Pharmaceuticals Inc | Open Energy Information  

Open Energy Info (EERE)

Pharmaceuticals Inc Jump to: navigation, search Name: Advanced Plant Pharmaceuticals, Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its...

373

Independent Oversight Inspection, Pantex Plant, Summary Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Pantex Plant, Summary Report - November 2002 November 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Pantex Plant This report...

374

Independent Oversight Inspection, Pantex Plant, February 2005...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, Pantex Plant, February 2005 February 2005 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report provides the results...

375

Waste Treatment and Immobilation Plant Pretreatment Facility...  

Office of Environmental Management (EM)

Treatment and Immobilation Plant Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download...

376

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

377

Better Tools for Better Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

378

Gasification of selected woody plants  

Science Journals Connector (OSTI)

The article contains laboratory data comparing the rate of gasification of five types of woody plants—beech, ... oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon di...

Buryan Petr

2014-07-01T23:59:59.000Z

379

Energy Efficiency in Chilling Plants  

E-Print Network (OSTI)

1 Energy Efficiency in Chilling Plants Xin Wang????PhD. CandidateBuilding Energy Research Centre, Tsinghua University2006.10.11 2 Index ? Improve COP of chillers ? Increase load ratio? Decrease cooling water temperature? Increase chilled water...

Wang, X.

2006-01-01T23:59:59.000Z

380

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule A: Baseline Report " "This report is mandatory under the Federal Energy Administration Act of 1974 (Public...

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

382

Pantex Plant | Department of Energy  

Energy Savers (EERE)

including explosives, at DOE's Pantex Plant. January 7, 2013 Enforcement Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear...

383

Description Plants ESIS ESD FSGD  

E-Print Network (OSTI)

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

384

Computer Control of Unattended Plants  

E-Print Network (OSTI)

Providing a cost-effective and reliable computer monitoring, control, and optimization package is a greater challenge for small, unattended plants than for large energy intensive facilities. This paper describes the successful application of a...

Vinson, D. R.; Chatterjee, N.

1984-01-01T23:59:59.000Z

385

Intercellular Communication during Plant Development  

Science Journals Connector (OSTI)

...metabolic processes; however, levels are tightly regulated as excess ROS can be cytotoxic. Plants also actively produce ROS through...circadian and ultradian clocks, such as their disruption by lithium, suggest that these clocks may share some regulatory mechanisms...

Jaimie M. Van Norman; Natalie W. Breakfield; Philip N. Benfey

2011-03-08T23:59:59.000Z

386

Issues for New Nuclear Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

387

Balancing people, plants, and practices  

SciTech Connect

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

388

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

389

Plant salt-tolerance mechanisms  

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

390

Overview BETTER BUILDINGS, BETTER PLANTS  

Energy Savers (EERE)

1,700 Cumulative Avoided CO 2 Emissions (Million Metric Ton) 18.5 Average Annual Energy Intensity Improvement Rate through 2013 2.4% Better Plants Snapshot, February 2015...

391

A neighborhood alternative energy plant  

E-Print Network (OSTI)

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

392

Mixtec plant nomenclature and classification  

E-Print Network (OSTI)

Capsicum pubescens L. , SOLANACEAE yutu tuya’a kuán: la matade chile amarillo (PIN) tuya’a: chili plants (JAM) chá’a:nika’ndi ya’a: chilar (CAB) tuya’a (COI) Clethra mexicana

de Avila, Alejandro

2010-01-01T23:59:59.000Z

393

Water Filtration Using Plant Xylem  

E-Print Network (OSTI)

Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, ...

Boutilier, Michael Stephen Ha

394

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

395

Researching power plant water recovery  

SciTech Connect

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

396

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

397

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

398

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

399

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

400

Montana State University -College of Agriculture Plant Science & Plant Pathology Department Program of Study for: Biotechnology -Plant Systems Options  

E-Print Network (OSTI)

Program of Study for: Biotechnology - Plant Systems Options 2010-2012 Catalog Student ID #: Required Cr- Intro to Biotechnology 3 F W BIOB 160 - Prin Living Systems (or BIOB 260 F) 4 F,S Q BIOB 375 - Genetics,S,Su BIOB 430 - Plant Biotechnology 3 S even BIOO 433 - Plant Physiology 3 S HORT 447 - Advanced Plant

Lawrence, Rick L.

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

402

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

403

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

404

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

405

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

406

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

407

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

408

Career Map: Site/Plant Manager  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Site/Plant Manager positions.

409

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

410

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

411

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

John Groppo; Thomas Robl

2005-06-01T23:59:59.000Z

412

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

1997-11-18T23:59:59.000Z

413

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliot M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1998-01-01T23:59:59.000Z

414

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliott M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1997-01-01T23:59:59.000Z

415

Cement Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Plant EPI Cement Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

416

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

417

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

418

Juice Processing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Juice Processing Plant EPI Juice Processing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

419

Automobile Assembly Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Automobile Assembly Plant EPI Automobile Assembly Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

420

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network (OSTI)

The Colorado Rare Plant Technical Committee presents: 5th Annual Colorado Rare Plant Symposium September 5, 2008 Montrose, Colorado Sponsored by: Colorado Rare Plant Technical CommitteeColorado Rare Plant Technical Committee Colorado Native Plant Society University of Colorado Herbarium US Fish

422

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant  

E-Print Network (OSTI)

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant Symposium Friday, September 16th, 2005 8am-noon: 2nd Annual Colorado Rare Plant Symposium (Discuss G1 species) 6:30-7:30pm with the Colorado Native Plant Society's Annual Meeting Sponsored by: #12;The Second Annual Colorado Rare Plant

423

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences  

E-Print Network (OSTI)

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences Joshua Paul Baker, Old Dale Wallace, Centerville Master of Science Reginald Jason Millwood, Plant Sciences Kara Lee Warwick, Plant Sciences Undergraduate Degrees, Summer Term 2011 Henry Joseph Cope, III, Plant Sciences David

Tennessee, University of

424

The Iowa Stored Energy Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Systems Annual Peer Review November 2-3, 2006 Progress Report Presented by Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort of municipal utilities in Iowa, Minnesota, and the Dakotas for development of 200 (now 268) MW of compressed air energy storage (CAES) and 75 MW of wind capacity. THE IOWA STORED ENERGY PLANT What is the ISEP Agency? The ISEP Agency is an intergovernmental entity formed under Iowa law in 2005 and governed by a board of directors composed of representatives of participating local governments. Board of Directors: * Dennis Fannin, Osage * John Bilsten, Algona * Sheila Boeckman, Waverly * Scott Tonderum, Graettinger * Niel Ruddy, Carlisle

425

Why sequence Dothideomycetes plant pathogens?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dothideomycetes plant pathogens? Dothideomycetes plant pathogens? The largest and most diverse group of fungi, Dothideomycetes are found on every continent and play key roles in maintaining the local ecosystems by degrading biomass and contributing to regulating the carbon cycle. Many of these fungi are also tolerant of environmental extremes such as heat, humidity and cold. Among the members of this group are pathogens that infect nearly every major crop used for food, fiber or fuel. As crop rotations are being reduced, fewer crops are being grown on larger acreages, making them more susceptible to severe crop losses due to disease. Understanding the plant pathogens of these crops could reduce fertilizer use, which could in turn help reduce greenhouse gas emissions. To better understand the members of this group, the project calls for

426

NETL: Innovations for Existing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

427

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

428

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

429

SUPPLEMENTAL PACKAGE FOR THE SCOPING SUMMARY FOR THE P-AREA OPERABLE UNIT  

SciTech Connect

Arsenic and selenium were tentatively identified as ecological RCOCs for the PAOU Ash Basin (PAOU Post-Characterization/Problem Identification Scoping Meeting, March 2007). Core Team agreed to consider eliminating these constituents as RCOCs based on a revised uncertainty discussion. The ecological risk tables and revised text (in its entirety) for the PAOU Ash Basin are provided in the Supplemental Information Package for the FS Scoping Meeting (June 2007). Arsenic and selenium have been traditionally carried through as ecological RCOCs (D-Area Ash Basin, A-Area Ash Pile).

Kupar, J; Sadika Baladi, S; Mark Amidon, M

2007-05-23T23:59:59.000Z

430

Common Aquatic Plants -- Identification, Control.  

E-Print Network (OSTI)

of leaves: (1) floating and firm textured and (2) submersed, thin linear and membranous. Numerous pencil-like spikes are visible beneath the pond surface in early summer. Stems are jointed and have fibrous roots at the lower nodes. Identification within.... FLOATING PLANTS WATER STAR GRASS Heteranthera sp. (Mud plantain) Water star grass, a submersed or floating rooted plant, usually is found along muddy shores and in water up to 5 ft. deep. The leaves are approximately 2 inches long and 3/16 inch wide...

Klussmann, Wallace G. (Wallace Glenn); Lowman, Fred G.

1964-01-01T23:59:59.000Z

431

Plant and Soil An International Journal on Plant-Soil  

E-Print Network (OSTI)

on growth responses, membrane transport, stomatal function, and paradigms of ion accumulation toxicity. Ion transport . Potassium Introduction Sodium is the sixth most abundant element in earth's crust+ ) is one of the most intensely researched ions in plant biology and has attained a repu- tation for its

Kronzucker, Herbert J.

432

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

433

Design and simulation of a plant control system for a GCFR demonstration plant  

SciTech Connect

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

434

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight and Performance Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ..................................................................................... 1 2.0 RESULTS ................................................................................................... 4 2.1 Positive Program Attributes ............................................................... 4 2.2 Weaknesses and Items Requiring Attention ..................................... 5 3.0 CONCLUSIONS ........................................................................................ 9 4.0 RATING .................................................................................................... 10

435

Plant Peroxisomes: Biogenesis and Function  

Science Journals Connector (OSTI)

...Plant Peroxisomes: Biogenesis and Function Jianping Hu a b 1 Alison Baker c Bonnie Bartel d Nicole Linka e Robert T. Mullen f Sigrun...peroxisomes and/or fuse together in a controlled, step-wise fashion to form a new peroxisome (Trelease and Lingard, 2006...

Jianping Hu; Alison Baker; Bonnie Bartel; Nicole Linka; Robert T. Mullen; Sigrun Reumann; Bethany K. Zolman

2012-06-05T23:59:59.000Z

436

Plants in a cold climate  

Science Journals Connector (OSTI)

...temperature also imposes a dehydrative stress, by lowering water absorption by the root and water transport in the shoot. A direct and...conditions? M. Smallwood. There is some evidence that even chill- ing intolerant plants may use some of the same signalling...

2002-01-01T23:59:59.000Z

437

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network (OSTI)

MEETING, AQUATIC PLANT CONTROL RESEARCH PROGRAM 26-29 NOVEMBER 1984 GALVESTON, TEXAS June 1985 Final report 26-29 NOVEMBER 1984, 6. PERFORMING ORG. REPORT NC:'IBER GALVESTON, TEXAS 7. AU THOR(.) 8 Control Research Program was held in Galveston, Texas, on 26-29 November 1984, to review current research

US Army Corps of Engineers

438

How a Plant Builds Leaves  

Science Journals Connector (OSTI)

...affect many different processes. The theory and technology are now poised to define...M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems...regulate plant meristematic cell fate decisions. Sci. Signal. 1 : pe53. Green, P...

Siobhan A. Braybrook; Cris Kuhlemeier

2010-04-27T23:59:59.000Z

439

Photobiology: Plants Respond to Light  

Science Journals Connector (OSTI)

... EFFECTS of light on the behaviour of plants, and some of the associated techniques were the basis ... were the basis of a meeting of the Photobiology Group held at the Department of Horticulture, University of Reading, on March 27 and 28.

A Correspondent

1969-04-12T23:59:59.000Z

440

Plant Peroxisomes: Biogenesis and Function  

Science Journals Connector (OSTI)

...State University-Department of Energy Plant Research Laboratory...Stavanger, N-4036 Stavanger, Norway h Department of Biology, University...fatty acid degradation lack the energy or metabolites necessary for...insufficient supply of carbon and energy from fatty acid metabolism...

Jianping Hu; Alison Baker; Bonnie Bartel; Nicole Linka; Robert T. Mullen; Sigrun Reumann; Bethany K. Zolman

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Landscape epidemiology of plant diseases  

Science Journals Connector (OSTI)

...1094/PHYTO-96-1027 Gilbert, G.S 2002Evolutionary ecology...phyto.40.021202.110417 Gilbert, G.S , S.P Hubbell...345 Webb, C.O , G.S Gilbert, and M.J Donoghue2006Phylodiversity-dependent...Pesticides Plant Diseases microbiology statistics & numerical data...

2007-01-01T23:59:59.000Z

442

THE ORIGIN OF LAND PLANTS  

Science Journals Connector (OSTI)

...alone remain to remind us of their past glories. The more humble ferns and club-mosses still play an important role in the...seed plants still existing, the conifers-pines, firs, redwood, etc.-are the most nu-merous and familiar. The flowers...

Douglas H. Campbell

1930-08-22T23:59:59.000Z

443

Power Transmission, Distribution and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

444

Selecting Landscape Plants: Shade Trees  

E-Print Network (OSTI)

Selecting Landscape Plants: Shade Trees Diane Relf, Extension Specialist, Horticulture, Virginia for any landscape plan. They set the stage for the entire home grounds design. The type used. Many will live and enhance the landscape for 100 or more years if they are given a chance. Because

Liskiewicz, Maciej

445

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

446

The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado  

E-Print Network (OSTI)

1 The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado September 5, 2008 8 am - 4 pm they shouldn't collect because th

447

Modeling the Impact of Plant Toxicity on Plant–Herbivore Dynamics  

E-Print Network (OSTI)

will not be possible for the selected parameter values if the herbivore pop- ulation is .... plant material can alter equilibrial relationships of 2-species plant com-.

2006-10-04T23:59:59.000Z

448

Plant maintenance and plant life extension issue, 2008  

SciTech Connect

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolf Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation.

Agnihotri, Newal (ed.)

2008-03-15T23:59:59.000Z

449

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

450

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

451

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

452

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

453

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

454

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

455

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

456

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

457

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

458

Sandia National Laboratories: Wind Plant Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy and ClimateRenewable SystemsRenewable EnergyWind EnergyWind Plant Optimization Wind Plant Optimization swift21 swift20 swift19 swift18 swift17 swift16 swift15 swift14...

459

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

460

Specialized Materials and Fluids and Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Interdisciplinary Research and Training Program in the Plant Sciences  

SciTech Connect

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

462

Property:PlantParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Property Name PlantParasiticConsump Property Type Number Description Plant Parasitic Consumption (MWh). Pages using the property "PlantParasiticConsump" Showing 3 pages using this...

463

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

464

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

factors for current parabolic trough systems under development range from 25% for solar only plants to greater than 40% for plants with thermal storage. Such plants provide...

465

Waste Isolation Pilot Plant Needs Assessment | Department of...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Needs Assessment Waste Isolation Pilot Plant Needs Assessment May 2012 This Needs Assessment for former Waste Isolation Pilot Plant production workers...

466

Waste Isolation Pilot Plant Activites | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites More Documents & Publications EIS-0026: 2010 Annual Mitigation...

467

Waste Isolation Pilot Plant Update | Department of Energy  

Office of Environmental Management (EM)

Isolation Pilot Plant Update Waste Isolation Pilot Plant Update Waste Isolation Pilot Plant Update More Documents & Publications TRUPACT-III Quick Facts "TRU" Success: SRS Recovery...

468

Waste Isolation Pilot Plant Status and Plans - 2010 | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Status and Plans - 2010 Waste Isolation Pilot Plant Status and Plans - 2010 Overview of WIPP presented by Dr. Dave Moody. Waste Isolation Pilot Plant...

469

Drizo protects turbo expander plant  

SciTech Connect

A triethylene glycol (TEG) unit using Dow's Drizo technology in front of processes was installed in a turbo expander plant owned by Valero Hydrocarbons, San Antonio, Texas. The TEG unit was placed in the process because methanol consumption had run higher than design conditions had predicted; gas flow rates and water content varied widely; and the gas was found to be contaminated considerably with iron sulfide. The TEG unit optimized gas processing by reducing the water content of gas to the system, accepting variable gas flow and water content to smooth out feed gas quality, removing iron sulfide and other contaminants before processing, and being amenable to conversion from other equipment already in existence at other Valero plant locations. The TEG Drizo process provides an azeotropic agent injected into the hot glycol, and the glycol solution is used to reduce residual water content of gas. Details of the equipment and process conversion are given.

Frazier, C.W.; Force, J.E.

1982-01-01T23:59:59.000Z

470

The Colorado Rare Plant Technical Committee presents  

E-Print Network (OSTI)

The Colorado Rare Plant Technical Committee presents: 3rd Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado and Eastern Colorado (Las Animas, Weld, Kit Carson, Huerfano, Pueblo, Otero, Prowers, Fremont, and El Paso

471

SPECIAL FEATURE FACILITATION IN PLANT COMMUNITIES  

E-Print Network (OSTI)

. Horton2 1 Ecological Farming Systems, Agroscope Reckenholz-Ta¨nikon, Research Station ART, Zurich on seedling species identity, mycorrhizal identity, plant species combinations and study system. We present plant­plant interactions and by supplying and recycling nutrients. Key-words: arbuscular mycorrhizal

Horton, Tom

472

Volvo Trucks Manufacturing Plant in Virginia  

Office of Energy Efficiency and Renewable Energy (EERE)

Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

473

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

474

Morris Plant Energy Efficiency Program  

E-Print Network (OSTI)

optimization, heat transfer improvement, flare gas loss reduction, and compressed air system optimization. Steam System Optimization The data historian has been instrumental in identifying malfunctioning steam letdown (i.e., pressure control) valves... and maintained excellent surface condenser vacuum and heat transfer rates. This has resulted in additional reductions in steam demand for turbine operation. Flare Gas Loss Reduction The Morris plant produces off-gases rich in hydrogen and methane as a by...

Betczynski, M. T.

2004-01-01T23:59:59.000Z

475

Solar thermionic power plant (II)  

SciTech Connect

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

476

B PLANT DOCUMENTED SAFETY ANALYSIS  

SciTech Connect

This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

DODD, E.N.; KERR, N.R.

2003-08-01T23:59:59.000Z

477

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

478

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network (OSTI)

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

479

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

480

Power Plant Analyser -- A computer code for power plant operation studies  

SciTech Connect

This paper describes Power Plant Analyser (PPA), a computer code for power plant dynamic and steady-state performance analysis. Power Plant Analyser simulates fossil power plant systems, such as drum-type, once-through, gas turbine, and combined cycle plants in a user-friendly manner. It provides a convenient tool for power engineers to understand the complex and interrelated thermodynamic processes and operating characteristics of the plant. It can also be used for conceptual training of power plant operators, and as a test bed for control and operating strategies.

Lu, S.; Hogg, B.W. [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering] [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "batch plant p-area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

482

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

483

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

484

Enforcement Documents - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Enforcement Documents - Pantex Plant January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant May 16, 2005 Preliminary Notice of Violation, BWXT Pantex LLC - EA-2005-02 Preliminary Notice of Violation issued to BWXT Pantex LLC, related to High Explosive Cracking during Weapon Disassembly at the Pantex Plant June 21, 2000 Consent Order, Mason & Hanger Corporation - EA-2000-07 Price-Anderson Enforcement Consent Order issued to Mason & Hanger Corporation related to Fire Suppression System Issues at the Pantex Plant,

485

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

486

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

487

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

488

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

489

Geismar TDI Plant Steam Optimization  

E-Print Network (OSTI)

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

490

The Propagation of Ornamental Plants.  

E-Print Network (OSTI)

of the 8-inch pot and pack the rooting medium in between the two pots. Note: If vermiculite is used, fill this space, but do not pack it. Water the medium in well with water containing a few drops of a wetting agent. Then stick cuttings in concentric... ready for planting in permanent location. Materials required for self-watering propagator. Make the cutting. Preparation of self-watering propagator. Insert cutting into rooting medium. :?-de+d self-watering -.:sqgotor filled with cuttings...

DeWerth, A. F.

1970-01-01T23:59:59.000Z

491

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

492

Pantex Plant | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant | National Nuclear Security Administration Plant | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Pantex Plant Pantex Plant http://www.pantex.com/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. The Pantex Plant is

493

Waste Isolation Pilot Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU radioactive elements. Over the next 35 years, WIPP is expected to receive approximately 175,000 cubic meters of waste from various DOE sites. Enforcement September 8, 2006 Enforcement Letter, Washington TRU Solutions - September 8, 2006

494

Performance testing of natural gas plants  

SciTech Connect

Performance testing of natural-gas-extraction plants has become a valuable tool for improving recovery of plants operating below their optimum capabilities or maintaining the optimum recovery once it has been achieved. Many plants, whether turbo-expander, lean oil absorption, or straight refrigeration type, can drift from optimum recovery for one or several of many reasons. Sometimes this drift occurs without the plant operators being aware, or the reduction in recovery may be caused by operating problems of which the operator is aware but feels cannot be solved with the equipment available. A plant performance test may find the unknown problem or the test will show the problem can be solved and recoveries improved with existing equipment. Sometimes a computer simulation of the plant, using the test data, may be required to find or solve the problem.

Herrin, J.P.

1983-01-01T23:59:59.000Z

495

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

496

Paleophysiology of Permian and Triassic Seed Plants  

E-Print Network (OSTI)

characteristics of extinct plants, although many of these studies did not involve the direct study of fossil plants. Raven (1977) used published descriptions of early vascular land plants (e.g., rhyniophytes) and knowledge of water and gas exchange in extant..., it was concluded through the use of fossil leaf modeling that the earliest angiosperms had lower gas exchange capacities than their modern counterparts (Feild et al., 2011b). It has also been demonstrated that the increased hydraulic conductance...