Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

K Basin sludge treatment process description  

SciTech Connect (OSTI)

The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

Westra, A.G.

1998-08-28T23:59:59.000Z

2

Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions  

SciTech Connect (OSTI)

The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

2007-03-30T23:59:59.000Z

3

Summary - K Basins Sludge Treatment Process  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR Center | ETR-19 UnitedK Basin

4

K Basins Sludge Treatment Process | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergyLowJoelProcess K Basins Sludge

5

K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585  

SciTech Connect (OSTI)

Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of the subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and oth

Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20211, Piedmont, CA 94620 (United States)] [Fogwell Consulting, P.O. Box 20211, Piedmont, CA 94620 (United States); Honeyman, James O. [CH2M HILL Plateau Remediation Company, P.O. Box 1600 H7-30, Richland, WA (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600 H7-30, Richland, WA (United States); Stegen, Gary [Lucas Engineering and Management Services, Inc., 1201 Jadwin Avenue, Suite 102, Richland, WA 99352 (United States)] [Lucas Engineering and Management Services, Inc., 1201 Jadwin Avenue, Suite 102, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

6

K East Basin sludge volume estimates for integrated water treatment system  

SciTech Connect (OSTI)

Estimates were made of the volume of sludge expected from Integrated Process Strategy (IPS) processing fuel elements and in the fuel storage canisters in K East Basin, These were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. The estimates, made in early 1997, are reviewed and the basic assumptions used discussed.

Pitner, A.L.

1998-08-12T23:59:59.000Z

7

K Basins Sludge Treatment Project Phase 1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergyLowJoelProcess K Basins

8

K Basin sludge treatment project chemical procesing baseline time diagram study  

SciTech Connect (OSTI)

This document provides an initial basis for determining the duration of operating steps and the required resources for chemically treating K Basin sludge before transporting it to Tank Farms. It was assumed that all operations would take place within a TPA specified 13-month timeframe.

KLIMPER, S.C.

1999-06-07T23:59:59.000Z

9

Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project  

SciTech Connect (OSTI)

Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2008-07-08T23:59:59.000Z

10

Supplementary information on K-Basin sludges  

SciTech Connect (OSTI)

Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

MAKENAS, B.J.

1999-03-15T23:59:59.000Z

11

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

12

CRAD, Management - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

13

Independent Activity Report, Hanford Sludge Treatment Project...  

Broader source: Energy.gov (indexed) [DOE]

Sludge Treatment Project - February 2012 Independent Activity Report, Hanford Sludge Treatment Project - February 2012 February 2012 Hanford Sludge Treatment Project Operational...

14

Independent Oversight Activity Report, Hanford Sludge Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sludge Treatment Project - September 2013 Independent Oversight Activity Report, Hanford Sludge Treatment Project - September 2013 November 2013 Hanford Sludge Treatment Project...

15

SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS  

SciTech Connect (OSTI)

In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

ERPENBECK EG; LESHIKAR GA

2011-01-13T23:59:59.000Z

16

Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms  

SciTech Connect (OSTI)

This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

Vail, T.S.

1997-05-29T23:59:59.000Z

17

K Basin sludge polychlorinated biphenyl removal technology assessment  

SciTech Connect (OSTI)

The two Hanford K Basins are water-filled concrete pools that contain over 2,100 metric tons of N Reactor fuel elements stored in aluminum or stainless steel canisters. During the time the fuel has been stored, approximately 50 m3 of heterogeneous solid material have accumulated in the basins. This material, referred to as sludge, is a mixture of fuel corrosion products, metallic bits of spent fuel and zirconium clad iron and metal corrosion products and silica from migrating sands. Some of the sludges also contain PCBs. The congener group of PCBs was identified as Aroclor 1254. The maximum concentration of sludge PCBS was found to be 140 ppm (as settled wet basis). However, the distribution of the PCBs is non-uniform throughout the sludge (i.e., there are regions of high and low concentrations and places where no PCBs are present). Higher concentrations could be present at various locations. Aroclors 1016/1242, 1221, 1248, 1254, and 1260 were identified and quantified in K West (KW) Canister sludge. In some of these samples, the concentration of 1260 was higher than 1254. The sludge requires pre-treatment to meet tank farm waste acceptance criteria, Among the numerous requirements, the sludge should be retreated so that it does not contain regulated levels of Toxic Substances Control Act (TSCA) compounds. Because of their stable chemistry and relative insolubility in water, PCBs are difficult to treat. They also resist degradation from heat and electrical charges. This stability has resulted in environmental persistence which has prompted the development of a variety of new cleanup processes including supercritical processes, advanced oxidation, dehalogenation and others. Hopefully, most of the new processes are discussed herein. Information on new processes are being received and will be evaluated in a future revision.

Ashworth, S.C.

1998-08-25T23:59:59.000Z

18

Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer  

SciTech Connect (OSTI)

Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction and dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.

Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2011-12-06T23:59:59.000Z

19

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2001-03-14T23:59:59.000Z

20

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

SciTech Connect (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Site Visit Report, Hanford Sludge Treatment Project 105-KW -...  

Broader source: Energy.gov (indexed) [DOE]

Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 August 2011 Hanford Sludge...

22

Characteristics of KE Basin Sludge Samples Archived in the RPL - 2007  

SciTech Connect (OSTI)

Samples of sludge were collected from the K East fuel storage basin (KE Basin) floor, contiguous pits (Weasel Pit, North Load Out Pit, Dummy Elevator Pit, and Tech View Pit), and fuel storage canisters between 1995 and 2003 for chemical and radionuclide concentration analysis, physical property determination, and chemical process testing work. Because of the value of the sludge in this testing and because of the cost of obtaining additional fresh samples, an ongoing program of sludge preservation has taken place with the goals to track the sludge identities and preserve, as well as possible, the sludge composition by keeping the sludge in sealed jars and maintaining water coverage on the sludge consistent with the controlling Fluor Hanford (FH) Sampling and Analysis plans and FH contracts with the Pacific Northwest National Laboratory (PNNL). This work was originally initiated to provide material for planned hydrothermal treatment testing in accordance with the test plan for the Sludge Treatment Project (STP) corrosion process chemistry follow on testing (Delegard et al. 2007). Although most of the planned hydrothermal testing was canceled in July 2007 (as described in the forward of Delegard et al. 2007), sample consolidation and characterization was continued to identify a set of well-characterized sludge samples that are suited to support evolving STP initiatives. The work described in the letter was performed by the PNNL under the direction of the Sludge Treatment Project, managed by Fluor Hanford.

Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2011-11-22T23:59:59.000Z

23

PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE  

SciTech Connect (OSTI)

This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.

KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.

2006-01-30T23:59:59.000Z

24

Functions and requirements for 105-KE Basin sludge retrieval and packaging  

SciTech Connect (OSTI)

Sludge, and the clouding due to sludge, interferes with basin operation and maintenance activities. This document defines the overall functions and requirements for sludge retrieval and packaging activities to be performed in the 105-KE Basin.

Feigenbutz, L.V.

1994-12-16T23:59:59.000Z

25

Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume  

SciTech Connect (OSTI)

Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal ? uraninite ? metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume might decrease because of decreases in the water-volume fraction caused by sludge solid reactions, compaction, or intergrowth and recrystallization of metaschoepite. In that case, fewer STSCs may be needed, but the shear strength would increase, and this could challenge recovery by water jet erosion and require more aggressive retrieval methods. Overall, the tests described herein indicate that the settled solids volume remains the same or decreases with time. The only case for which the sludge solids volumes increase with time is for the expansion factor attendant upon the anoxic corrosion of uranium metal to produce UO2 and subsequent reaction with oxygen to form equimolar UO2.25 and UO3•2H2O.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

2011-01-04T23:59:59.000Z

26

STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency for future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging

Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

2014-06-01T23:59:59.000Z

27

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2004-04-26T23:59:59.000Z

28

SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY  

SciTech Connect (OSTI)

This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

CARRO CA

2011-07-15T23:59:59.000Z

29

Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins  

SciTech Connect (OSTI)

This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic background logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.

BAKER, R.B.

1998-11-20T23:59:59.000Z

30

Formation of aerobic granular sludge biofilms for sustainable wastewater treatment  

E-Print Network [OSTI]

ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G Research, Microbiology of Interfaces, Magdeburg (Germany) EDCE 2011 / From activated sludge flocs

31

K Basin Sludge Conditioning Testing Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing  

SciTech Connect (OSTI)

This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with {approximately}2.5 g of sludge (dry basis). The high solids loading test was conducted with {approximately}7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale.

Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

1999-04-02T23:59:59.000Z

32

Sludge drying reed beds: a full and pilot-scales study for activated sludge treatment  

E-Print Network [OSTI]

Sludge drying reed beds: a full and pilot-scales study for activated sludge treatment S. Troesch.troesch@cemagref.fr, dirk.esser@sint.fr Abstract Sludge drying reed beds have been used for dewatering and mineralization of sludge since the beginning of the 90's, but their insufficient performances in terms of Dry Matter [DM

Paris-Sud XI, Université de

33

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network [OSTI]

irradiated fuel prior to Spent Nuclear Fuel (SNF) processing. In 1980, irradiated N-Reactor fuel was placed products and uranium. This sludge must be removed and disposed as part of the basin decommissioning) and the definition of High Level Waste (HLW) and Spent Nuclear Fuel (SNF) from the Nuclear Waste Policy Act of 1982

34

Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions  

SciTech Connect (OSTI)

This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to the Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.

Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

2006-08-01T23:59:59.000Z

35

PROPERTIES OF TREATMENT SLUDGE DURING SEDIMENTATION AND CONSOLIDATION TESTS1  

E-Print Network [OSTI]

PROPERTIES OF TREATMENT SLUDGE DURING SEDIMENTATION AND CONSOLIDATION TESTS1 Lincar Pedroni2 , Jean on sludge produced from an acid mine drainage (AMD) treatment plant. The testing program involved test, physical and geotechnical properties of the resulting sludge were measured. In this paper

Aubertin, Michel

36

Microsoft Word - 2010 Hanford Sludge Treatment Project Visit...  

Broader source: Energy.gov (indexed) [DOE]

being considered, before the next attempts, in order to provide the maximum assurance of success. HSS toured the facility where the equipment and conditions for the K-Basin Sludge...

37

SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS  

SciTech Connect (OSTI)

The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

GEUTHER J; CONRAD EA; RHOADARMER D

2009-08-24T23:59:59.000Z

38

SLUDGE TREATMENT PROJECT ALTERNATIVES ANALYSIS SUMMARY REPORT [VOLUME 1  

SciTech Connect (OSTI)

Highly radioactive sludge (containing up to 300,000 curies of actinides and fission products) resulting from the storage of degraded spent nuclear fuel is currently stored in temporary containers located in the 105-K West storage basin near the Columbia River. The background, history, and known characteristics of this sludge are discussed in Section 2 of this report. There are many compelling reasons to remove this sludge from the K-Basin. These reasons are discussed in detail in Section1, and they include the following: (1) Reduce the risk to the public (from a potential release of highly radioactive material as fine respirable particles by airborne or waterborn pathways); (2) Reduce the risk overall to the Hanford worker; and (3) Reduce the risk to the environment (the K-Basin is situated above a hazardous chemical contaminant plume and hinders remediation of the plume until the sludge is removed). The DOE-RL has stated that a key DOE objective is to remove the sludge from the K-West Basin and River Corridor as soon as possible, which will reduce risks to the environment, allow for remediation of contaminated areas underlying the basins, and support closure of the 100-KR-4 operable unit. The environmental and nuclear safety risks associated with this sludge have resulted in multiple legal and regulatory remedial action decisions, plans,and commitments that are summarized in Table ES-1 and discussed in more detail in Volume 2, Section 9.

FREDERICKSON JR; ROURK RJ; HONEYMAN JO; JOHNSON ME; RAYMOND RE

2009-01-19T23:59:59.000Z

39

DESIGN OF A SYSTEM TO RETRIEVE SLUDGE FROM THE K EAST SPENT FUEL BASIN AT HANFORD  

SciTech Connect (OSTI)

This paper describes the Sludge Retrieval System (SRS), which was designed to safely remove radioactive sludge from the K East spent fuel basin at the 100 K Area of the Hanford Site. Basin water and sludge have the potential to leak to the environment due to the age and condition of the basins. Since the 100 K Area spent fuel basins are located next to the Columbia River, the Spent Nuclear Fuel Project mission includes the safe removal, containment, and transportation of sludge from the basins to a secure storage location. The scope of the SRS includes: A system capable of retrieving sludge from the K East basin floor, pits, and fuel canisters; Separation of debris from sludge, where debris is defined as any material greater than 0.64 cm (0.25 in.) in diameter; Collection of sludge particles in a container that can be transported away from the basin; Modifications to the K East basin to allow installation of the SRS. The SRS was designed by Fluor Federal Services. Changes to the designed system were made by Fluor Hanford as a result of full-scale testing performed after design. This paper discusses this testing, as well as operation and control of the system. Construction and startup testing was initially scheduled to be complete by the end of December 2002. Startup of the system is now expected in April 2003.

Twitchell, A.L.; MacLean, G.T.; Ho, Q.T.; Fort, D.L.

2003-02-27T23:59:59.000Z

40

Sludge Treatment Evaluation: 1992 Technical progress  

SciTech Connect (OSTI)

This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

Silva, L J; Felmy, A R; Ding, E R

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength  

SciTech Connect (OSTI)

K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it is important to compare the measured shear strength to penetrometer measurements and to develop a correlation (or correlations) between UCS measured by a pocket penetrometer and direct shear strength measurements for various homogeneous and heterogeneous simulants. This study developed 11 homogeneous simulants, whose shear strengths vary from 4 to 170 kPa. With these simulants, we developed correlations between UCS measured by a Geotest E-280 pocket penetrometer and shear strength values measured by a Geonor H-60 hand-held vane tester and a more sophisticated bench-top unit, the Haake M5 rheometer. This was achieved with side-by-side measurements of the shear strength and UCS of the homogeneous simulants. The homogeneous simulants developed under this study consist of kaolin clay, plaster of Paris, and amorphous alumina CP-5 with water. The simulants also include modeling clay. The shear strength of most of these simulants is sensitive to various factors, including the simulant size, the intensity of mixing, and the curing time, even with given concentrations of simulant components. Table S.1 summarizes these 11 simulants and their shear strengths.

Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

2011-02-20T23:59:59.000Z

42

System design description for the consolidated sludge sampling system for K Basins floor and fuel canisters  

SciTech Connect (OSTI)

This System Design Description describes the Consolidated Sludge Sampling System used in the gathering of sludge samples from K Basin floor and fuel canisters. This document provides additional information on the need for the system, the functions and requirements of the systems, the operations of the system, and the general work plan used in its' design and development.

HECHT, S.L.

1999-02-18T23:59:59.000Z

43

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

44

Low temperature thermal treatment for petroleum refinery waste sludges  

SciTech Connect (OSTI)

Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

Ayen, R.J.; Swanstrom, C.P. (Geneva Research Center, IL (United States))

1992-05-01T23:59:59.000Z

45

E-Print Network 3.0 - alkaline sludge treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Cooperative Extension Land Application of Sewage Summary: . These wastewater treatment solids are commonly referred to as sewage sludge. "Sewage sludge" or...

46

Chemical and Radiochemical Analysis of Consolidated Sludge Samples from the K East Basin  

SciTech Connect (OSTI)

Consolidated sludge samples described in this report were collected from the Hanford K East Basin fuel storage pool in March and April 1999. Material for the samples was collected from both the basin floor and fuel canisters within the basin. Analyses persented include weight percent solids determination, uranium analysis by kinetic phosphorescence (KPA), plutonium isotope analysis by alpha energy analysis (AEA), gross beta analysis, gamma energy analysis (GEA), and metals analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Elmore, Monte R.; Schmidt, Andrew J.; Silvers, Kurt L.; Thornton, Brenda M.; Gano, Susan R.

2000-10-31T23:59:59.000Z

47

Final Report - Gas Generation Testing of Uranium Metal in Simulated K Basin Sludge and in Grouted Sludge Waste Forms  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is being considered for the disposal of K Basin sludge as RH-TRU. Because the hydrogen gas concentration in the 55-gallon RH-TRU sealed drums to be transported to WIPP is limited by flammability safety, the number of containers and shipments likely will be driven by the rate of hydrogen generated by the uranium metal-water reaction (U + 2 H{sub 2}O {yields} UO{sub 2} + 2 H{sub 2}) in combination with the hydrogen generated from water and organic radiolysis. Gas generation testing was conducted with uranium metal particles of known surface area, in simulated K West (KW) Basin canister sludge and immobilized in candidate grout solidification matrices. This study evaluated potential for Portland cement and magnesium phosphate grouts to inhibit the reaction of water with uranium metal in the sludge and thereby permit higher sludge loading to the disposed waste form. The best of the grouted waste forms decreased the uranium metal-water reaction by a factor of four.

Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Sinkov, Sergei I.; Bryan, Samuel A.; Gano, Sue; Thornton, Brenda M.

2004-08-19T23:59:59.000Z

48

K Basins Sludge Treatment Project Phase 1  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585on notice ofThe5 Webinar to1776KK

49

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

50

BEHAVIOR CANOLA (BRASSICA NAPUS) FOLLOWING A SEWAGE SLUDGE TREATMENT  

E-Print Network [OSTI]

. INTRODUCTION In Tunisia, the amount of sludge produced by wastewater treatment stations is constantly waste water treatment stations, in other words, most of it is wastewater from domestic sources. The second type is obtained from the treatment of industrial wastewater or partly from industrial wastewater

Boyer, Edmond

51

Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing  

SciTech Connect (OSTI)

This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

2007-08-17T23:59:59.000Z

52

DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN,  

E-Print Network [OSTI]

i DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN, CHAOPRAYA Sludge (FS) management and lacking of data on FS collection, treatment and disposal. Nevertheless, FS

Richner, Heinz

53

Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel  

SciTech Connect (OSTI)

CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

2012-10-22T23:59:59.000Z

54

Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges  

SciTech Connect (OSTI)

This report discusses particle size and calorimetry analyses performed on single-pull sludge samples collected from the Hanford K East Basin floor and pits. This study was conducted by the Pacific Northwest National Laboratory (PNNL) in support of the baseline sludge management plan, which calls for the sludge to be packaged, shipped and stored at T Plant in the Hanford 200 West Area until final processing as a future date. These analyses were needed to better understand the K Basin sludge inventory and chemical reactivity.

Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Delegard, Calvin H. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Silvers, Kurt L. (BATTELLE (PACIFIC NW LAB)); Thornton, Brenda M. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2000-10-31T23:59:59.000Z

55

CRAD, Occupational Safety & Health- Office of River Protection K Basin Sludge Waste System  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System.

56

CRAD, Conduct of Operations- Office of River Protection K Basin Sludge Waste System  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Conduct of Operations program at the Office of River Protection, K Basin Sludge Waste System.

57

Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica  

E-Print Network [OSTI]

for rural wastewater treatment. However, there are serious environmental and human health effects associ for wastewater treatment. Fecal sludge FS is defined as the sludge of variable consistency collected from onOptimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha

Vogel, Richard M.

58

Assessment of Jet Erosion for Potential Post-Retrieval K-Basin Settled Sludge  

SciTech Connect (OSTI)

Packaged K-Basin sludge will be transported to the T Plant on the Hanford Site where it will be interim stored. The sludge will be retrieved from the storage containers and processed for disposal. A sample of high uranium content canister sludge, designated 96-13, "self-cemented" during laboratory storage. This sample was uncharacteristically strong compared to expected K-Basin material. The purpose for this work is to evaluate the potential retrieval of such sludge after storage at the T Plant via jet erosion. The specific objectives of this report are to determine the modes of erosion and the methods used to measure/assess the erodibility parameters of sludge and identify those parameters applicable to jet erosion. The erodibility parameters of sample 96-13 are characterized to the extent possible. These objectives have been met based on literature review, past experience at Pacific Northwest National Laboratory, and observation of sample 96-13 video during hot-cell activities.

Wells, Beric E.; Enderlin, Carl W.; Gauglitz, Phillip A.; Peterson, Reid A.

2009-09-29T23:59:59.000Z

59

Land treatment of contaminated sludge with wastewater irrigation  

SciTech Connect (OSTI)

A large-scale field experiment was conducted to test the feasibility of land application of sludge from industrial and domestic wastewater treatment to determine the fate and environmental impact of the contaminants. The sludge contained 13 organic priority pollutants, 16 additional environmentally significant organic compounds, and high concentrations of several metals (zinc, copper, lead, nickel, and cadmium). Each compound was monitored as the irrigation water percolated through the soil and the groundwater over time. Most of the organic compounds diminished to non-detectable levels by the end of the study, and the metals proved harmless to the environment. The effectiveness of land application of sludge with wastewater irrigation was clearly demonstrated. 1 figure, 11 tables.

Demirjian, Y.A.; Westman, T.R.; Joshi, A.M.; Rop, D.J.; Buhl, R.V.; Clark, W.R.

1984-04-01T23:59:59.000Z

60

Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing  

SciTech Connect (OSTI)

The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer (''blanket'') on the uranium metal corrosion rates were also evaluated.

Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A nonlinear observer design for an activated sludge wastewater treatment process  

E-Print Network [OSTI]

A nonlinear observer design for an activated sludge wastewater treatment process B. Boulkrounea , M : Activated sludge, wastewater treatment process, Lyapunov function, Lips- chitz singular discrete the recent results of [2] and [5]. In the last decades, the modeling of the activated sludge wastewater

Paris-Sud XI, Université de

62

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

63

15th International Conference Ramiran, May 3-6, 2013, Versailles Accounting GHG emissions from sludge treatment and disposal routes  

E-Print Network [OSTI]

% of sewage sludge is directly land spreading or composted before land spreading. Sludge application sludge treatment and disposal routes ­ methodological problems focused on sludge land spreading this tool can be used to quantify GHG emissions of sludge land spreading of a 380 000 per captia equivalent

Paris-Sud XI, Université de

64

Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials  

SciTech Connect (OSTI)

Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on solvent extraction of PCB surrogates from simulant K Basin sludge is also given.

Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

1999-04-10T23:59:59.000Z

65

Technical Issues and Characterization for Fuel and Sludge in Hanford K Basins  

SciTech Connect (OSTI)

Technical Issues for the interim dry storage of N Reactor Spent Nuclear Fuel (SNF) are discussed. Characterization data from fuel, to support resolution of these issues, are reviewed and new results for the oxidation of fuel in a moist atmosphere and the drying of whole fuel elements are presented. Characterization of associated K basin sludge is also discussed in light of a newly adopted disposal pathway.

MAKENAS, B.J.

2000-06-01T23:59:59.000Z

66

Fermentation and chemical treatment of pulp and paper mill sludge  

DOE Patents [OSTI]

A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

Lee, Yoon Y; Wang, Wei; Kang, Li

2014-12-02T23:59:59.000Z

67

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL  

E-Print Network [OSTI]

.pradel@irstea.fr EXECUTIVE SUMMARY In 2007, 1 100 000 tons of sewage sludge were produced in France. This figure is constantly increasing and sludges have to be eliminated. Four disposal routes are currently possible: landASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES ­ THE METHOD BEHIND GESTABOUES

Boyer, Edmond

68

ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di  

E-Print Network [OSTI]

digestion, aerobic digestion, dewatering, al composting, drying) and sludge disposal route (land applicationORBIT2012 G ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di-laure.reverdy@irstea.fr EXECUTIVE SUMMARY Sewage sludge production increases continuously reaching almost 20% (946 700 t 1 118 795

Paris-Sud XI, Université de

69

Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds  

E-Print Network [OSTI]

Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds S. Troesch***, A systems by local authorities. This will result in a large increase of the quantity of sludge from septic to treat this sludge because they may have reached their nominal load or they are not so numerous in rural

Paris-Sud XI, Université de

70

Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies  

SciTech Connect (OSTI)

This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

1994-03-01T23:59:59.000Z

71

LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07  

SciTech Connect (OSTI)

Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

KNOLLMEYER PM

2007-08-31T23:59:59.000Z

72

SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1  

SciTech Connect (OSTI)

This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

FRANZ GR; MEICHLE RH

2011-07-18T23:59:59.000Z

73

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone  

E-Print Network [OSTI]

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated

Barthelat, Francois

74

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network [OSTI]

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

75

Improvement of the activated sludge treatment by its combination with electro Fenton for the mineralization of sulfamethazine  

E-Print Network [OSTI]

1 Improvement of the activated sludge treatment by its combination with electro Fenton and quantified intermediates are proposed. In a second part, biological treatments with fresh activated sludge the relevance of the proposed combined process. Keywords: Activated sludge; Combined process; Degradation

Paris-Sud XI, Université de

76

Operational Awareness Review of the Hanford Sludge Treatment...  

Energy Savers [EERE]

Level 6 for the sludge retrieval system. HSS observed interlock testing using the seismic switch signal simulator, which was satisfactorily performed. The seismic safety...

77

LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS  

SciTech Connect (OSTI)

In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer via the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.

PERES MW

2008-01-07T23:59:59.000Z

78

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

SciTech Connect (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

79

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

80

Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL  

E-Print Network [OSTI]

CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL STEFAN treatment plants, consists basically of a biological reactor followed by a sedi- mentation tank, which has. 1. Introduction The need for efficient wastewater treatment plants in terms of low effluent con

Diehl, Stefan

82

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect (OSTI)

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

83

K-Basin sludge treatment facility pump test report  

SciTech Connect (OSTI)

Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems.

SQUIER, D.M.

1999-06-02T23:59:59.000Z

84

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect (OSTI)

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

85

Evaluation of Shear Strength Threshold of Concern for Retrieval of Interim-Stored K-Basin Sludge in the Hanford Site  

SciTech Connect (OSTI)

K-Basin sludge will be recovered into the Sludge Transport and Storage Containers (STSCs) and will be stored in the T Plant for interim storage (at least 10 years). Long-term sludge storage tests conducted by Pacific Northwest National Laboratory show that high uranium content K Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has "paste" and "chunks" with shear strengths of approximately 3~5 kPa and 380 ~ 770 kPa, respectively. High uranium content sludge samples subjected to hydrothermal testing (e.g., 185°C, 10 h) have been observed to form agglomerates with a shear strength up to 170 kPa. After interim storage at T Plant, the sludge in the STSCs will be mobilized by water jets impinging the sludge. The objective of the evaluation was to determine the range of sludge shear strength for which there is high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from STSCs. The shear strength at which the sludge can be retrieved is defined as the "shear strength threshold of concern." If the sludge shear strength is greater than the value of the shear strength threshold of concern, a water-jet retrieval system will be unlikely to mobilize the sludge up to the container’s walls. The shear strength threshold of concern can be compared with the range of possible shear strengths of K-Basin stored sludge to determine if the current post interim-storage, water-jet retrieval method is adequate. Fourteen effective cleaning radius (ECR) models were reviewed, and their validity was examined by applying them to Hanford 241-SY-101 and 241-AZ-101 Tanks to reproduce the measured ECR produced by the mixer pumps. The validation test identified that the Powell-3 and Crowe-2 ECR models are more accurate than other ECR models reviewed. These ECR models were used to address a question as to whether the effective cleaning radius of a water jet is sufficient or if it can be readily expanded to cover the range of possible shear strengths. These results will assist CH2M HILL Plateau Remediation Company (CHPRC) to establish the technical basis of the feasibility of the sludge retrieval and storage plan and to develop an adequate water jet system to retrieve the stored K-Basin sludge in the STSCs. The STSCs are 2:1 elliptical-head vessels, 58 inches in diameter and 105 inches tall. Each STSC will contain 0.5 to 2.1 m3 of settled sludge with the specific loading dependent upon sludge type.

Onishi, Yasuo; Yokuda, Satoru T.; Schmidt, Andrew J.

2010-11-01T23:59:59.000Z

86

A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats  

SciTech Connect (OSTI)

This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other.

Dickerson, K.S.

1995-12-31T23:59:59.000Z

87

STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT  

SciTech Connect (OSTI)

The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

CROWE RD; APTHORPE R; LEE SJ; PLYS MG

2010-04-29T23:59:59.000Z

88

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford  

SciTech Connect (OSTI)

This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-10-18T23:59:59.000Z

89

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption  

E-Print Network [OSTI]

for stratospheric ozone [1]. In biological wastewater treatment, microbial processes such as hydroxylamine oxidationAeration control in a full-scale activated sludge wastewater treatment plant: impact strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant

Paris-Sud XI, Université de

90

Effectiveness of irradiation in killing pathogens. [Treatment of sewage sludge for land application  

SciTech Connect (OSTI)

United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges.

Yeager, J.G.; Ward, R.L.

1980-01-01T23:59:59.000Z

91

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

92

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy Savers [EERE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

93

Innovative sludge stabilization method  

SciTech Connect (OSTI)

Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

Riggenbach, J.D.

1995-06-01T23:59:59.000Z

94

SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230  

SciTech Connect (OSTI)

The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

DEARING JI; EPSTEIN M; PLYS MG

2009-07-16T23:59:59.000Z

95

Characteristics of STP Pre-2004 Archived KE Basin Sludge Samples Before and After Re-Jarring in the RPL - April 2012  

SciTech Connect (OSTI)

This report describes results of work performed in the Shielded Analytical Laboratory (SAL) at the Pacific Northwest National Laboratory’s (PNNL) Radiochemical Processing Laboratory (RPL) with archive K East (KE) Basin sludge samples obtained before the year 2004, with some of them composited and initially characterized five years ago (Delegard et al. 2011). The previously performed testing included the physical properties determinations for selected samples (settled and particle densities, water and solids concentrations), the pH, as well as identification of crystalline phases by X-ray diffractometry (XRD) for selected samples. Another objective of the previous characterization and testing campaign was to transfer some sludge composites and individual samples into new storage containers to overcome the embrittlement effect which develops in original glass containers as a result of extended exposure to high radiation fields and which increases probability of sample loss.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2012-09-28T23:59:59.000Z

96

XRF and leaching characterization of waste glasses derived from wastewater treatment sludges  

SciTech Connect (OSTI)

Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

Ragsdale, R.G., Jr

1994-12-01T23:59:59.000Z

97

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect (OSTI)

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

98

Properties and potential uses of water treatment sludge from the Neches River of southeast Texas  

E-Print Network [OSTI]

sludge due to its huge amount and increasing public concern. However, only a few studies were focused on potential use of WTP sludge. The characteristics and potential use of WTP sludge are still not well understood. Previous studies of WTP alum sludge... plants that coagulate, filter, and oxidize a surface water for removal of turbidity, color, bacteria, algae, organic compounds, and iron or manganese. These plants generally use alum Al~(SO4) or iron FeC13 salts for coagulation and produce alum or iron...

Kan, Weiqun

1995-01-01T23:59:59.000Z

99

Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility  

SciTech Connect (OSTI)

This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

Not Available

1989-04-04T23:59:59.000Z

100

Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices  

SciTech Connect (OSTI)

This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

Delegard, Calvin H.; Schmidt, Andrew J.

2008-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices  

SciTech Connect (OSTI)

This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

Delegard, Calvin H.; Schmidt, Andrew J.

2009-05-27T23:59:59.000Z

102

E-Print Network 3.0 - activated sludge deflocculation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects on Waste Activated Sludge Digestion Thomas... activated sludge (WAS) from wastewater treatment plants (WWTP) demands extensive sludge dewatering... structure and are...

103

E-Print Network 3.0 - activated sludge flocs Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects on Waste Activated Sludge Digestion Thomas... activated sludge (WAS) from wastewater treatment plants (WWTP) demands extensive sludge dewatering... structure and are...

104

E-Print Network 3.0 - aerobic activated sludge Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects on Waste Activated Sludge Digestion Thomas... activated sludge (WAS) from wastewater treatment plants (WWTP) demands extensive sludge dewatering... structure and are...

105

Concentrations of Heavy Metals in Soil and Cassava Plant on Sewage Sludge Dump  

E-Print Network [OSTI]

JM. (1989). Assessment of sludge regulation assumptions: AMunicipal Wasteland and Sludge on Land. Univ. of California,1998). Effects of sewage sludge pre-treatment on microbial

Igbozuruike, Chris Washington Ifeanyi Mr.; Opara-Nadi, Achilihu Oliver Prof; Okorie, Ikechukwu Kennedy DR

2009-01-01T23:59:59.000Z

106

Activated-sludge process: Waste treatment. January 1985-July 1989 (Citations from the Biobusiness data base). Report for January 1985-July 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning the use of the activated sludge process in waste and waste-water treatment. Biochemistry of the activated sludge process, the effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, nutrient requirements of microorganisms employed in activated-sludge processes, and the application of the process to specific wastes such as pharmaceuticals, halocarbons, metallic wastes, dairy wastes, coke-plant waste waters, and petrochemical effluents are among the topics discussed. Operating experiences at large plants are included. (Contains 154 citations fully indexed and including a title list.)

Not Available

1989-08-01T23:59:59.000Z

107

Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask  

SciTech Connect (OSTI)

This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

SMITH, R.J.

1998-11-17T23:59:59.000Z

108

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

2008. “Utilization of sewage sludge in EU application of old2007. “Cost evaluation of sludge treatment options andwastewater treatment plant sludge treating leather tanning

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

109

Wastewater sludge management options for Honduras  

E-Print Network [OSTI]

Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

2009-01-01T23:59:59.000Z

110

The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges  

SciTech Connect (OSTI)

An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J. [Clemson Univ., SC (United States); Bickford, D.F.; Cicero, C.A. [Savannah River Technology Center, Aiken, SC (United States)

1995-01-25T23:59:59.000Z

111

FIELD PERFORMANCE OF GEOTEXTILE REINFORCED SLUDGE CAPS AHMET H. AYDILEK  

E-Print Network [OSTI]

589 FIELD PERFORMANCE OF GEOTEXTILE REINFORCED SLUDGE CAPS AHMET H. AYDILEK UNIVERSITY OF WISCONSIN the filtration performance of sludge-geotextile systems and investigate their durability, ten sludge lagoon test be effectively used in filtering contaminated wastewater treatment sludges. Considering the constructability

Aydilek, Ahmet

112

Sludge drying reed beds for septage treatment: towards design and operation recommendations  

E-Print Network [OSTI]

: the future of the septage. The aim of this paper is to assess the feasibility of septage treatment by SDRB). Nowadays, septic tank facilities have a widespread distribution, providing a first treatment to household effluent consisting of a solid/liquid separation. Operation efficiency of these systems is subject

Paris-Sud XI, Université de

113

Radioactive air emissions notice of construction debris removal 105-KE basin  

SciTech Connect (OSTI)

The 105-KE Basin contains 1,150 Metric Tonnes of Uranium (MTU) of N Reactor fuel, along with less than half a MTU of single pass reactor (SPR) fuel. In addition to the spent nuclear fuel (SNF) in the 105-KE Basin, extensive quantities of debris and a substantial amount of sludge have accumulated in the basin. The 105-KE Basin fuel and sludge are not encapsulated and, as a result, corroding fuel has produced contamination products that are deposited on the basin walls, floor, and equipment. contamination products produce radiation dose exposures to the workers. To decrease worker exposures, this Notice of Construction (NOC) describes dose reduction modifications under consideration to mitigate worker radiation exposure from the basin walls and exposed piping. The major equipment egress paths from the basin (the dummy elevator pit and the south loadout pit) are blocked completely with debris and/or empty canisters. Therefore in addition to dose reduction, this NOC also describes debris removal activities and equipment. Recently, the primary water treatment system has been without mechanical filtration capabilities. This NOC describes planned modifications to the primary water treatment system to restore mechanical filtration by restarting the cartridge filters. The proposed modifications described in this NOC are expected to commence in the Fall of 1995. Finally, the NOC describes two other basin activities, fuel and sludge movement, that are expected to be routine in the future.

HAYS, C.B.

1999-10-06T23:59:59.000Z

114

Assessment of sludge management options in a waste water treatment plant  

E-Print Network [OSTI]

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

115

Preliminary design report for the K basins integrated water treatment system  

SciTech Connect (OSTI)

This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

Pauly, T.R., Westinghouse Hanford

1996-08-12T23:59:59.000Z

116

K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations  

SciTech Connect (OSTI)

Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

RITTMANN, P.D.

1999-10-07T23:59:59.000Z

117

Sludge sampler  

DOE Patents [OSTI]

The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

Ward, R.C.

1981-06-25T23:59:59.000Z

118

Sludge sampler  

DOE Patents [OSTI]

The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

Ward, Ralph C. (Los Alamos, NM)

1983-01-01T23:59:59.000Z

119

Water supply and sludge metals  

SciTech Connect (OSTI)

Ultimate sludge disposal is one of the major tasks facing wastewater treatment facilities today. Where adequate farmland exists in proximity to the treatment facility and where sludge characteristics are suitable, land application is often the most economical method. In some cases, however, metal concentrations in the sludge either limit the site life or the application rate to the point where land application is not economical. When metals are above regulatory limits, land application may become impossible. The origin of the metals has largely been credited to industrial users and stormwater runoff and have, in fact, often represented significant sources of metals. Another potentially significant source of metals that has been frequently overlooked is the water supply system (including the distribution and home piping systems). Data from some treatment facilities suggest that the water supply system is the major source of metals and is the reason that sewage sludge metal levels are above allowable land application limits.

Brown, W.E. (Wright-Pierce Engineers, Topsham, ME (USA))

1988-04-01T23:59:59.000Z

120

Sewage Sludge (Maryland)  

Broader source: Energy.gov [DOE]

Sewage sludge utilization permits are required prior to the use, processing, and disposal of sewage sludge in Maryland.

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of Composite K East Canister Sludge  

SciTech Connect (OSTI)

Laboratory tests were performed to examine mixed nitric/hydrofluoric acid leach treatments for decontaminating dissolver residual solids (KECDVSR24H-2) produced during a 20- to 24-hr dissolution of a composite K East (KE) Basin canister sludge in 95 C 6 M nitric acid (HNO{sub 3}). The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KECDVSR24H-2, contains radionuclides at concentrations which exceed the ERDF Waste Acceptance Criteria for TRU by about a factor of 70, for {sup 239}Pu by a factor of 200, and for {sup 241}Am by a factor of 50. The solids also exceed the ERDF criterion for {sup 137}Cs by a factor of 2 and uranium by a factor of 5. Therefore, the radionuclides of greatest interest in this leaching study are first {sup 239}Pu and {sup 241}Am (both components of TRU) and then uranium and {sup 137}Cs.

Delegard, C.H.; Rinehart, D.E.; Soderquist, C.Z.; Fadeff, S.K.

1999-04-02T23:59:59.000Z

122

E-Print Network 3.0 - activated sewage sludge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Geosciences ; Environmental Sciences and Ecology 66 Advanced Wastewater Treatment Processes Summary: Treatment Plant Conventional Activated Sludge Process...

123

E-Print Network 3.0 - activated sludge microorganisms Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Computer Science, Texas Woman's University Collection: Mathematics 8 Advanced Wastewater Treatment Processes Summary: Treatment Plant Conventional Activated Sludge Process...

124

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07T23:59:59.000Z

125

Cold test data for equipment acceptance into 105-KE Basin  

SciTech Connect (OSTI)

This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

Packer, M.J.

1994-11-09T23:59:59.000Z

126

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

Sludge treatment to increase biogas production. Available atal. , no date) Use of biogas from anaerobic sludge digestionsludge are mass reduction, biogas production, and improved

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

127

Use and disposal of waste-water sludge in Illinois. Final report  

SciTech Connect (OSTI)

The United States Environmental Protection Agency (USEPA) proposed Part 503 Rules on sludge were first published in February 1989. Part 503 proposed sludge regulations address five categories of sludge use or disposal: land application, distribution and marketing, monofills, surface disposal sites, and incineration. The report on sludge management in Illinois examines the probable effects that the proposed federal rules on use and disposal of sewage sludge will have on current practices by Illinois publicly owned treatment works outside the City of Chicago.

John, S.F.; Kane, D.N.; Hinesly, T.D.

1992-02-01T23:59:59.000Z

128

Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment  

E-Print Network [OSTI]

constructed wetland for municipal wastewater treatment B. Kim1,2 , M. Gautier*1 , P. Michel2 and R. Gourdon1 1, Society of design and production engineering for wastewater purification, 5 Allée Alban Vistel, F-69110 Wetlands (VFCW) is well developed in France and other countries for the treatment of wastewaters from small

Boyer, Edmond

129

Pretreatment of microbial sludges  

DOE Patents [OSTI]

Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

Rivard, C.J.; Nagle, N.J.

1995-01-10T23:59:59.000Z

130

Pretreatment of microbial sludges  

DOE Patents [OSTI]

Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

Rivard, Christopher J. (Lakewood, CO); Nagle, Nicholas J. (Louisville, CO)

1995-01-01T23:59:59.000Z

131

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

132

Integrating BES in the wastewater and sludge  

E-Print Network [OSTI]

, denitrification, and anaerobic digester treatment systems, while chemical methods include phosphate removal, dye of WAS, including treatment of influent or the accumulated sludge with anaerobic digesters (Rulkens 2008; Seghezzo et al. 1998). This is a more sustainable treatment method because methane in biogas can partly

Angenent, Lars T.

133

Management of sewage sludge and ash containing radioactive materials.  

SciTech Connect (OSTI)

Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

2007-01-01T23:59:59.000Z

134

Sludge organics bioavailability  

SciTech Connect (OSTI)

Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. Available data, however, show that concentrations of priority organics in normal sludges are low. Sludges applied at agronomic rates yield chemical concentrations in soil-sludge mixtures 50 to 100 fold lower. Plant uptake at these pollutant concentrations (and at much higher concentrations) is minimal. Chemicals are either (1) accumulated at extremely low levels (PCBs), (2) possibly accumulated, but then rapidly metabolized within plants to extremely low levels (DEHP), or (3) likely degraded so rapidly in soil that only minor contamination occurs (PCP and 2,4-DNP).

Eiceman, G.E.; Bellin, C.A.; Ryan, J.A.; O'Connor, G.A.

1991-01-01T23:59:59.000Z

135

ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS  

SciTech Connect (OSTI)

The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

NELSEN LA

2009-01-30T23:59:59.000Z

136

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation  

E-Print Network [OSTI]

for treatment in EU, followed by spreading on land, which accounted for 37% of the sewage sludge produced allow recycling of nutrients. Hence, bioprocessed sewage sludge application on agricultural soilRemoval of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N

137

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT)  

E-Print Network [OSTI]

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT) Najla LASSOUED1@emse.fr Abstract We are testing the impact of heavy metals in sludge from urban and industrial wastewater treatment> Cu> Ni> Co> Cd The contents of heavy metals in the sludge is made very high and exceed European

Paris-Sud XI, Université de

138

Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge  

E-Print Network [OSTI]

and aerobic granular sludge A. Mañasa,b,c,e , M. Spérandioa,b,c , F. Deckerd and B. Biscanse aINSA, UPS, INP X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated

Boyer, Edmond

139

The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials  

E-Print Network [OSTI]

1 The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, process reliable flow properties to simulate the process, this work is an attempt to approach sludge rheological

Paris-Sud XI, Université de

140

K Basin safety analysis  

SciTech Connect (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Selective hydrolysis of wastewater sludge Part 1, September 2007  

E-Print Network [OSTI]

Report Selective hydrolysis of wastewater sludge Part 1, September 2007 Model calculations and cost "Selective hydrolysis of wastewater sludge" is supported by EnergiNet.DK under the PSO-F&U projects having National Laboratory, Rambøll, the Estate of Overgaard and SamRas. The wastewater treatment plant Esbjerg

142

Selective hydrolysis of wastewater sludge Part 1, December 2008  

E-Print Network [OSTI]

Report Selective hydrolysis of wastewater sludge Part 1, December 2008 Revised Model calculations and cost benefit analysis for Esbjerg Vest wastewater treatment plant, Denmark PSO-F&U project nr. 2006 This project "Selective hydrolysis of wastewater sludge" is supported by EnergiNet .DK under the PSO

143

Residuals, Sludge, and Composting (Maine)  

Broader source: Energy.gov [DOE]

The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

144

Survivorship of meadow voles, Microtus pennsylvanicus, from sewage sludge-treated fields  

SciTech Connect (OSTI)

A long-term field study was begun in 1977 at Miami University to evaluate the effects of land application of sewage sludge on experimental old-field communities. The effects of sludge application on toxic metal concentrations in meadow vole (Microtus pennsylvanicus) organs during the first two years of the study have been reported. During the first two years of sludge application, no detrimental effects were observed in vole survivorship as a result of sludge treatment.

Maly, M.S.

1984-06-01T23:59:59.000Z

145

Technical aspects associated with the disposal of domestic sludge into the Gulf of Mexico  

E-Print Network [OSTI]

the Marine Environment. . 147 Discussion. 155 LITERATURE CITED. 157 VITA. 165 LIST OF TABLES Table Page Typical Chemical Composition of Raw and Digested Sludge (after Metcalf and Eddy, 1972) 38 Chemical Composition of Representative Sewage... and concentration of the digested sludge. It also allows for the formation of a supernatant, which is drawn off. The function of aerobic digestion is to stabilize a waste sludge through long term aeration. The process is similar to the activated sludge treatment...

Baskin, Charles Henry

1979-01-01T23:59:59.000Z

146

Metagenomic analysis of phosphorus removing sludge communities  

E-Print Network [OSTI]

kinase from activated sludge performing enhanced biologicalbetween flocculation of activated sludge and composition oforganisms from activated sludge systems. Wat Res 31,

2008-01-01T23:59:59.000Z

147

Deep Sludge Gas Release Event Analytical Evaluation  

SciTech Connect (OSTI)

Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.

Sams, Terry L.

2013-08-15T23:59:59.000Z

148

E-Print Network 3.0 - acid tar sludges Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of diethylphosphorodithioic acid in the production of phorate. K040 Wastewater treatment sludge from the production of phorate... of facilities within the iron and steel...

149

E-Print Network 3.0 - activated sludge treating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. This analysis indicates that all the sludge produced by the proposed wastewater treatment plant at McMurdo could Source: United States Army Corps of Engineers, Cold Regions...

150

E-Print Network 3.0 - amended sludge projects Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or experiment... and forest residues, mixed municipal solid waste, and sludge from wastewater treatment. "Renewable energy Source: Reich, Peter B. - Department of Forest...

151

E-Print Network 3.0 - aeration activated sludge Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Sciences 3 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

152

E-Print Network 3.0 - activated sludge micro-organism Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 8 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

153

E-Print Network 3.0 - acclimated activated sludge Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 5 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

154

E-Print Network 3.0 - activated sludge aeration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Sciences 3 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

155

E-Print Network 3.0 - activated sludge performing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

156

E-Print Network 3.0 - activated sludge exposed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Civil... : A study of the filtration behaviour of contaminated wastewater treatment sludges was ... Source: Aydilek, Ahmet - Department of Civil and...

157

E-Print Network 3.0 - aerated active sludge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Sciences 3 Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Summary: , Dominic Frigon Department of Civil...

158

Solidification of low-volume power plant sludges. Final report  

SciTech Connect (OSTI)

A literature review was conducted to obtain information on the status of hazardous waste solidification technology and application of this technology to low-volume power plant waste sludges. Because of scarcity of sludge composition data, anticipated major components were identified primarily by chemical reactions that are known to occur during treatment of specific wastewaters. Chemical and physical properties of these sludges were critically analyzed for compatibility with several types of commercially available solidification processes. The study pointed out the need for additional information on the nature of these sludges, especially leaching characteristics and the presence of substances that will interfere with solidification processes. Laboratory studies were recommended for evaluation of solidification process which have the greatest potential for converting hazardous low-volume sludges to non-hazardous waste forms.

Bell, N.E.; Halverson, M.A.; Mercer, B.M.

1981-12-01T23:59:59.000Z

159

Mutagenic potential of plants grown on a soil amended with mutagenic municipal sewage sludge  

E-Print Network [OSTI]

and industrial firms contributing to this system, The sludge from the Houston, Texas, Sims Bayou treatment plant was aerobically digested, chemically precipitated with ferric chloride (FeC13) and flash dried in a C. E. Raymond cage mill flash dryer... the edible crop by flaking off of dried sludge or washing off with precipitation and allows for plant regrowth and pathogen die off. CHEMICALS Chemicals entering a wastewater treatment plant will become constituents of sewage sludge unless volatilized...

Fiedler, Daniel Alain

1988-01-01T23:59:59.000Z

160

Biofiltration vs. conventional activated sludge plants: what about priority and emerging1 pollutants removal?2  

E-Print Network [OSTI]

performances of two complete wastewater treatment plants (WWTP) for all priority19 substances listed solids elimination and possible coagulant impact on soluble compounds. For biological27 treatments; biofiltration; conventional activated sludge; physico-chemical lamellar settling;42 wastewater treatment plant

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chemical analysis of distribution and marketing (D and M) municipal sludges  

SciTech Connect (OSTI)

The land application of municipal wastewater treatment sludges is widely practiced both as an economic treatment or disposal method and to provide an economic soil nutrient amendment for agricultural use. Recent studies have shown that municipal sewage sludge effluents derived from both domestic and industrial wastewater elicited mutagenic activity as determined by the Ames test. Biological treatment processes remove some degradable organic chemicals but many persistent chemicals remain in the sludge and are hence applied to soils. This study was conducted to determine the occurrence of chemicals in D and M sludges to provide a data base of priority pollutant trace metals and organics from sludges produced at facilities in 26 cities across the US. In addition to priority pollutant analysis, efforts were made to characterize non-target organic chemicals that predominated in sample extracts from each city using GC/MS. A total of 67 composite samples were analyzed. This paper discusses the results of chemical analyses of the sludge products.

Coleman, W.E. (Environmental Protection Agency, Cincinnati, OH (USA)); Baird, R.; Gabrielian, S.M. (County Sanitation Districts of Los Angeles County, Whittier, CA (USA))

1988-09-01T23:59:59.000Z

162

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network [OSTI]

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

163

Spreading lagooned sewage sludge on farm land: A case history  

SciTech Connect (OSTI)

This report describes the development of a project involving the application of approximately 265,000 cubic meters of lagooned sewage sludge from a metropolitan area on privately-owned farm land in an adjacent, rural county. The sludge application project was initiated to enable use of the land occupied by the lagoons for expansion of the sewage treatment plant. The procedures developed will be valuable to those proposing to practice land disposal of stabilized sludge as part of the Nation`s resource conservation program.

Robson, C.M.; Sommers, L.E.

1995-06-01T23:59:59.000Z

164

Final sludge rules consolidate options  

SciTech Connect (OSTI)

Final federal regulations for use and disposal of waste water sludge were signed in 1992. Now states must adopt standards that are at least as stringent to maintain sludge disposal permitting authority. The regulations define specific limits for 12 sludge contaminants while the organic contaminants listed have been eliminated. The regulations recognize three basic methods of sludge use and disposal: land application, surface disposal, and incineration.

Walsh, T.K. [Metcalf & Eddy Inc., Wakefield, MA (United States)

1993-02-01T23:59:59.000Z

165

Land application of sludge  

SciTech Connect (OSTI)

This book is the proceedings of a workshop held in Las Vegas, NV in 1985 entitled Effects of Sewage Sludge Quality and Soil Properties on Plant Uptake of Sludge-Applied Trace Constituents. The workshop was in response to the need to utilize the most current available information in the development of regulations and criteria to safely apply and manage the land application of municipal sewage sludge. The participants were undoubtedly the most knowledgeable of this subject matter, and were divided into five separate but related task groups. The groups addressed the following sludge-related topics: (1) role of soil properties on accumulation of trace element by crops; (2) role of sludge properties on accumulation of trace elements by crops; (3) influence of long-term application on accumulation of trace elements by crops; (4) transfer of trace elements to the food chain, and (5) effects of trace organics in agroecosystems and their risk assessment to humans. The text, therefore, parallels those of the results of the task groups. The five main chapters followed a similar format, i.e., having an introduction section, a comprehensive literature review, discussion of recent and current data, and synthesis of the most relevant information.

Page, A.L.; Logan, T.J.; Ryan, J.A. (eds.)

1987-01-01T23:59:59.000Z

166

Viscous sludge sample collector  

DOE Patents [OSTI]

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A [Richland, WA

1983-01-01T23:59:59.000Z

167

Landfarming of municipal sewage sludge at Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The City of Oak Ridge, Tennessee, has been applying municipal sanitary sludge to 9 sites comprising 90 ha on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) since 1983. Approximately 13,000,000 L are applied annually by spraying sludge (2 to 3% solids) under pressure from a tanker. Under an ongoing monitoring program, both the sludge and the soil in the application areas are analyzed for organic, inorganic, and radioactive parameters on a regular basis. Organic pollutants are analyzed in sludge on a semiannual basis and in the soil application areas on an annual basis. Inorganic parameters are analyzed daily (e.g., pH, total solids) or monthly (e.g., nitrogen, manganese) in sludge and annually in soil in application areas. Radionuclides (Co-60, Cs-137, I-131, Be-7, K-40, Ra-228, U-235, U-238) are scanned daily during application by the sewage treatment plant and analyzed weekly in composite sludge samples and annually in soil. Additionally, data on radioactive body burden for maximally exposed workers who apply the sludge show no detectable exposures. This monitoring program is comprehensive and is one of the few in the United States that analyzes radionuclides. Results from the monitoring program show heavy metals and radionuclides are not accumulating to levels in the soil application areas.

Tischler, M.L.; Pergler, C.; Wilson, M.; Mabry, D.; Stephenson, M.

1995-12-01T23:59:59.000Z

168

Sludge application and monitoring program on the Oak Ridge Reservation, 1986 through 1993  

SciTech Connect (OSTI)

Municipal sewage sludge has been applied to forests and pastures on the DOE (U.S. Department of Energy) Oak Ridge Reservation (ORR) since 1983 as a method of both disposal and beneficial reuse. Application was carried out under State of Tennessee permits issued to the City of Oak Ridge for land disposal of. sewage sludge. In conjunction with these applications, information has been collected concerning sludge quantity and characteristics, soil parameters, soil water constituents, groundwater quality, surface runoff water quality, and various chemical constituents in vegetation on application sites. This information provides (1) a record of sludge application on the DOE ORR, and (2) documentation of changes in soil parameters following sludge application. The information also provides a basis for evaluating the implications of the land application of municipal sewage sludge for soil and water quality and for evaluating the fate of sludge constituents when sludge is either sprayed onto or injected into pasture sites or applied to the surface of forested sites. This report covers in detail sludge applications conducted from 1986 through 1993, with some data from the period between 1983 and 1986. Land application has been recommended by the U.S. Environmental Protection Agency as a desirable alternative for disposal of ORR waste. Municipal sewage sludge is in many ways similar to dilute animal manure fertilizer, but it also contains metals, organic chemicals, human pathogens, and other constituents reflective of inputs into the municipal sewage treatment plant. When applied to land, nutrients in the sludge improve soil fertility, and minerals and organic matter in the sludge improve soil structure. Under optimal conditions, metals are immobilized, and organic chemicals and pathogens are immobilized or destroyed. If the sludge is not managed effectively, however, sludge constituents have the potential to affect human health and the environment.

Gunderson, C.A.; Boston, H.L.; Van Miegroet, H., Morris, J.L.; Larsen, I.L.; Walzer, A.E.; Adler, T.C.; Bradburn, D.M.; Huq, M.

1995-08-01T23:59:59.000Z

169

Pretreatment of neutralized cladding removal waste sludge: Results of the second design basis experiment  

SciTech Connect (OSTI)

For several years, the Pacific Northwest Laboratory (PNL) has been investigating methods to pretreat Hanford neutralized cladding removal waste (NCRW) sludge. In the past, Zircaloy-clad metallic U fuel was chemically decladded using the Zirflex process; NCRW sludge was formed when the decladding solution was neutralized for storage in carbon-steel tanks. This sludge, which is currently stored in Tanks 103-AW and 105-AW on the Hanford Site, primarily consists of insoluble Zr hydroxides and/or oxides and NaF. Significant quantities of Al, La, U, as well as other insoluble minor constituents are present in the sludge, along with sodium and potassium nitrates, nitrites, and hydroxides in the interstitial liquid. The sludge contains about 2,000 nCi of transuranic (TRU) material per gram of dry sludge, and mixed fission products. Therefore, the sludge must be handled as high-level waste (HLW). The NCRW sludge must be pretreated before treatment (e.g., vitrification) and disposal, so that the overall cost of disposal can be minimized. The NCRW pretreatment flowsheet was designed to achieve the following objectives: (a) to separate Am and Pu from the major sludge constituents (Na, Zr). (b) to separate Am and Pu from U. (c) to concentrate Am and Pu in a small volume for immobilization in borosilicate glass, based on Hanford Waste Vitrification Plant (HWVP). The flowsheet involves: (1) sludge washing, (2) sludge dissolution, (3) extraction of U with tributyl phosphate (TBP), and (4) extraction of TRUs with octyl(phenyl)-N,N-diisobutlycarbamoylmethyl-phosphine oxide (CMPO). As presented in the flowsheet, the NCRW sludge is first washed with 0.I M NaOH to remove interstitial liquid and soluble salts from the sludge including sodium and potassium fluorides, carbonates, hydroxides, nitrates, and nitrites. The washed sludge is then subjected to two dissolution steps to achieve near complete dissolution of Zr.

Lumetta, G.J.

1994-05-01T23:59:59.000Z

170

Influence of rainfall on the retention of sludge trace metals by the leaves of forage crops  

E-Print Network [OSTI]

suspension containing I-IOZ of various organic and inorganic solids. The material is viscous and may be transported by tank vehicles or pipelines. The chemical composition of liquid digested sludge is highly variable. Digested sludge generally contains..., the Bermudagrass and Rhodesgrass were trimmed to heights of 23 cm and 36 cm respectively to achieve a uniform vegetative surface in preparation for treatment. Leaf area was measured on both grasses with an area meter. Aerobically digested liquid sludge...

Jones, Stephen Grady

1977-01-01T23:59:59.000Z

171

Modelling and Control of Activated Sludge Processes  

E-Print Network [OSTI]

Modelling and Control of Activated Sludge Processes Michela Mulas Dottorato di Ricerca of Activated Sludge Processes Michela Mulas Supervisors: Prof. Roberto Baratti Ing. Stefania Tronci Dottorato . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 ASP Models and Simulations 7 2.1 The Activated Sludge Process

Skogestad, Sigurd

172

Study of two sampling procedures for the valorization of metal hydroxide sludge as pollutant trapper  

E-Print Network [OSTI]

treatment, CrVI 1 Introduction Industrial aqueous pollution (heavy metals) accounts for 30 to 40% of all1 Study of two sampling procedures for the valorization of metal hydroxide sludge as pollutant@emse.fr Abstract: For the valorisation of metal hydroxide sludge as adsorbent of pollutant, it is necessary to make

Boyer, Edmond

173

Effect of initial physical characteristics on sludge compost performance Anne Trmier1,2,*  

E-Print Network [OSTI]

and Conseil, 2006). In this context, biological treatments such as composting are promoted to transform of wastewater sludge, the bulking agent (BA) plays a major role in establishing the recipe structure, exposed to wastewater sludge dry mass ratio of 1/ 6, the ten (10) recipes were repeated using two BA, residues recycled

Paris-Sud XI, Université de

174

Water Clarity Simulant for K East Basin Filtration Testing  

SciTech Connect (OSTI)

This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

Schmidt, Andrew J.

2006-01-20T23:59:59.000Z

175

Steam generator sludge pile model boiler testing: sludge characterization. [PWR  

SciTech Connect (OSTI)

As part of a program to understand the thermal and hydraulic transport process that can lead to chemical concentration in sludge piles on the tubesheet in a steam generator, the chemical composition and physical properties of eight sludges and several simulants were determined. Analyses performed by emission and x-ray fluorescence spectroscopy indicated that most of the sludges were mainly composed of iron oxides, copper, and other elements at trace levels. X-ray diffraction measurements identified iron to exist in the form of magnetite and copper to exist in the form of a metal. The densities, porosity, particle size, surface area, pore size distribution, and hydrodynamic permeabilities were determined on all plant sludges and selected simulants. Wide variations were observed in the physical measurements of the different plant sludges.

Becker, L.F. Jr.; Esposito, J.N.

1981-09-01T23:59:59.000Z

176

Environmental Assessment for the new sanitary sludge land application sites at the Savannah River Site  

SciTech Connect (OSTI)

Action is necessary to allow the Savannah River Site (SRS) to provide for efficient disposal of sanitary sludge for SRS as forecast by the latest site projections (WSRC, 1991) and modified by the latest US Department of Energy (DOE) planning guidance for SRS (Stello, 1993). From 1986 to 1992, sanitary wastewater sludge was applied on SRS lands in accordance with a South Carolina Department of Health and Environmental Control (SCDHEC) permit as part of the reclamation of SRS`s F- and H-Area borrow pits (disturbed land). This reclamation is essentially complete and, if land disposal of sludge is to continue, new land application sites on SRS must be selected as the extended permit for applying sludge to the borrow pits expired in 1992. Currently, sludge is being trucked offsite for disposal by a subcontractor to a Publicly Owned Treatment Works (POTW) near Augusta, Georgia (WSRC, 1992a). This Environmental Assessment (EA) has been prepared by DOE to assess the potential environmental impacts of onsite land disposal of treated sanitary sewage sludge from SRS. The proposed action is to replace the present offsite disposal of the treated sanitary sludge from existing SRS wastewater treatment plants with onsite reuse through land application. The proposed action is independent of SRS production operations and is necessary for more efficient disposal of SRS sanitary sludge at lower costs. The proposed land application at SRS is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement (EIS) ``No Action`` alternative (DOE, 1991). The sludge from SRS sanitary wastewater treatment plants is nonhazardous. Onsite disposal of this sludge allows SRS to comply with current DOE policies to keep any DOE wastes onsite where possible and to eliminate any potential accidents due to continuing offsite transportation of sanitary wastes (DOE, 1990a).

Not Available

1994-02-01T23:59:59.000Z

177

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

178

Oxygen-enriched multiple-hearth sewage sludge incineration demonstration. Final report  

SciTech Connect (OSTI)

Oxygen-enhanced multiple-hearth sludge incineration was the focus of a five-month joint study by Praxair and the New York State Energy Research and Development Authority. Testing and demonstration were conducted in Rochester NY, at Monroe County`s Frank E. Van Lare Sewage Treatment Plant. A simple retrofit of high-momentum oxygen lances created a convection hearth in which convective heat and mass transfer with the drying sludge were greatly enhanced, while hearth temperatures were moderated by the wet sludge to prevent overheating. Based on the results of short- and long-term controlled tests discussed in this report, oxygen enhancement of multiple-hearth sludge incinerators can be economically viable, with a savings between $30 and $60 per hour at Van Lare based upon increased sludge throughput and reduced fuel consumption.

NONE

1998-07-01T23:59:59.000Z

179

Availability and distribution of heavy metals, nitrogen, and phosphorus from sewage sludge in the plant-soil-water continuum  

SciTech Connect (OSTI)

Research was conducted during 1984 and 1985 to determine Cd, Cu, N, Ni, P, and Zn availabilities to barley (Hordeum vulgare) and corn (Zea mays) grown on four sludge-amended soils. An aerobically digested sewage sludge, which was dewatered for approximately 2 years on sandbeds, was obtained from a sewage-treatment plant with major industrial inputs. A 14-day anaerobic N incubation study indicated that mineralization of sludge organic N varied from 9.2% at the 42 Mg ha(-1) sludge rate to 4.2% at the 210 Mg ha(-1) rate. This relatively low percentage of N mineralized from the sludge may reflect the inhibitory effects of the high sludge-metal levels on N transformations and the changes in sludge composition during long-term dewatering on sandbeds. Sludge application increased crop yields, except where the amounts of N mineralized from the sludge was inadequate to supply the N requirement of the crop. Crop yields were not decreased by either metal phytotoxity or P deficiency on the four sludge-amended soils.

Rappaport, B.D.; Scott, J.D.; Martens, D.C.; Reneau, R.B.; Simpson, T.W.

1987-01-01T23:59:59.000Z

180

Pretreatment of high solid microbial sludges  

DOE Patents [OSTI]

A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.

Rivard, Christopher J. (Lakewood, CO); Nagle, Nicholas J. (Broomfield, CO)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pretreatment of high solid microbial sludges  

DOE Patents [OSTI]

A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.

Rivard, C.J.; Nagle, N.J.

1998-07-28T23:59:59.000Z

182

Forest land application of sewage sludge on the Savannah River Plant  

SciTech Connect (OSTI)

In 1980, a sewage sludge application study was initiated on the Savannah River Plant to evaluate the effects of sludge additions on nutrient cycling processes in loblolly pine (Pinus taeda L.) forest ecosystems and to determine whether or not such additions beneficially enhance forest productivity. Sewage sludge, either as a liquid anaerobic sludge at 0, 402, or 804 kg N/ha (360 and 720 lb/ac) containing approximately 7% N (oven dry) or a solid aerobic material at 632 kg N/ha (560 lb/ac) with approximately 1.3% N (oven dry), was applied to 1-, 3-, 8-, and 28-year-old loblolly pine stands on sandy and clayey upper coastal plain soils. A total of 525,000 gallons of liquid sludge and 560 tons of solid sludge was applied on 11.6 hectares (28.7 acres) of loblolly pine forest plots. Sludge additions were monitored to determine availability and movement so that potential impacts could be evaluated on water quality, nutrient and heavy metal cycling, soil and forest floor, understory vegetation, tree foliage, stand growth, biomass production, and wood quality. This study concluded that using liquid sludge at rates of 400 kg N/ha or less as a silvicultural treatment to fertilize pulp and sawtimber loblolly pine stands resulted in increased forest productivity without environmental or wood quality degradation. Application recommendations for stand age and loading rates for management purposes are addressed.

Davis, C.E. (comp.)

1989-05-31T23:59:59.000Z

183

Preference of the green peach aphid, Myzus persicae, for plants grown in sewage sludges  

SciTech Connect (OSTI)

Since passage of the Clean Water Act in the 1970s, disposal of the millions of tonnes of sewage sludge generated annually has become a major concern of municipalities throughout the United States. With the range of other disposal options having narrowed in recent years, application of sludge to land is increasingly viewed as a practical and economical means to recycle this waste material. However, sludges from large cities with industries may be contaminated with various toxic chemicals, including polychlorinated biphenyls (PCBs), other organic chemicals, such as pesticides, and heavy metals. Sludge application to land thus has the potential adversely to affect biota and the functioning of terrestrial ecosystems. The authors previously demonstrated marked reductions in fecundity and survival of green peach aphids, Myzus persicae, on collard plants, Brassica oleracea var. sabellica, growing in soil treated with chemically contaminated sludge as compared to aphids on plants growing either in soil treated with uncontaminated sludge of soil conventionally fertilized. Reduced plant growth and increased restlessness in aphids in the contaminated sludge treatment were also observed. The purpose of the present study was to examine more closely the influence of sludge contaminants on aphid settling behavior as indicated by differential preference of M. persicae for leaves of its collard host grown under different soil conditions.

Culliney, T.W.; Pimentel, D.

1987-08-01T23:59:59.000Z

184

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece  

SciTech Connect (OSTI)

Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

2014-02-15T23:59:59.000Z

185

Stabilization of a mixed waste sludge for land disposal  

SciTech Connect (OSTI)

A solidification and stabilization technique was developed for a chemically complex mixed waste sludge containing nitrate processing wastes, sewage sludge and electroplating wastewaters, among other wastes. The sludge is originally from a solar evaporation pond and has high concentrations of nitrate salts; cadmium, chromium, and nickel concentrations of concern; and low levels of organic constituents and alpha and beta emitters. Sulfide reduction of nitrate and precipitation of metallic species, followed by evaporation to dryness and solidification of the dry sludge in recycled high density polyethylene with added lime was determined to be a satisfactory preparation for land disposal in a mixed waste repository. The application of post-consumer polyethylene has the added benefit of utilizing another problem-causing waste product. A modified Toxicity Characteristic Leaching Procedure was used to determine required treatment chemical dosages and treatment effectiveness. The waste complexity prohibited use of standard chemical equilibrium methods for prediction of reaction products during treatment. Waste characterization followed by determination of thermodynamic feasibility of oxidation and reduction products. These calculations were shown to be accurate in laboratory testing. 13 refs., 3 figs., 2 tabs.

Powers, S.E.; Zander, A.K. [Clarkson Univ., Potsdam, NY (United States)

1996-12-31T23:59:59.000Z

186

A STUDY OF ACTIVATED SLUDGE DEWATERING IN EXPERIMENTAL REED-PLANTED OR UNPLANTED SLUDGE  

E-Print Network [OSTI]

94/0169 A STUDY OF ACTIVATED SLUDGE DEWATERING IN EXPERIMENTAL REED-PLANTED OR UNPLANTED SLUDGE of the reeds in bed 2 died in spite of the influent sludge dose of 70 g. of SS.m"2.d~l. During the second phase (917 days) the 3 beds were aerated from the bottom and fed with sludge, directly extracted from

Paris-Sud XI, Université de

187

Long-term investigation of microbial fuel cells treating primary sludge or digested sludge  

E-Print Network [OSTI]

. Biogas production was produced from primary sludge and quantified. Total energy production in MFCs could: Microbial fuel cell Primary sludge Digested sludge Energy Biogas a b s t r a c t The long-term performance. Digested sludge can be further composted for agriculture uses, and biogas can be con- verted

188

Construction materials as a waste management solution for cellulose sludge  

SciTech Connect (OSTI)

Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

Modolo, R., E-mail: regina.modolo@ua.pt [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Ferreira, V.M. [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Machado, L.M. [RAIZ - Forest and Paper Research Institute, Portucel-Soporcel, Eixo (Portugal); Rodrigues, M.; Coelho, I. [CIMIANTO - Sociedade Tecnica Hidraulica, S.A., Alhandra (Portugal)

2011-02-15T23:59:59.000Z

189

Laser removal of sludge from steam generators  

DOE Patents [OSTI]

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

190

Adaptive k-tracking control of activated sludge processes PETIA GEORGIEVA{ and ACHIM ILCHMANN{*  

E-Print Network [OSTI]

of coarse solid material, primary treatment for separation of decantable material and biological treatment (activated sludge pro- cess and recirculation). The treatment of solid material includes anaerobic digestion in the presence of oxygen. The tank is equipped with a surface aeration turbine which supplies oxygen

Knobloch,Jürgen

191

Radioactive air emissions notice of construction fuel removal for 105-KW Basin  

SciTech Connect (OSTI)

This document serves as a Notice of Construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KW Basin. The purpose of the activities described in this NOC is to enable the eventual retrieval and transport of the fuel for processing. The fuel retrieval and transport will require an integrated water treatment system for which performance specifications have been developed. These specifications are currently in the procurement process. Following procurement (and before installation of this system and the handling of fuel) design details will be provided to Washington State Department of Health (WDOH). The 105-K West Reactor (105-KW) and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. Although the 105-KW Basin has not been known to leak, the discharge chute and associated construction joint have been isolated from the rest of the basin by metal isolation barriers. This was a precautionary measure, to mitigate the consequences of a seismic event. The proposed modifications described are scheduled to begin in calendar year 1997.

Hays, C.B.

1997-05-29T23:59:59.000Z

192

Multi-step process for concentrating magnetic particles in waste sludges  

DOE Patents [OSTI]

This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

Watson, J.L.

1990-07-10T23:59:59.000Z

193

Characterization of Settler Tank, KW Container and KE Container Sludge Simulants  

SciTech Connect (OSTI)

The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL in February 2009: Settler Tank Simulant and KW Container Sludge Simulant. A third simulant, KE Container Sludge Simulant was received by PNNL in December 2010. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

Burns, Carolyn A.; Luna, Maria L.; Schmidt, Andrew J.

2011-04-01T23:59:59.000Z

194

Multi-step process for concentrating magnetic particles in waste sludges  

DOE Patents [OSTI]

This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

Watson, John L. (Rolla, MO)

1990-01-01T23:59:59.000Z

195

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect (OSTI)

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

196

CRAD, Emergency Management - Office of River Protection K Basin Sludge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, JuneDid y ou QualityandofWaste

197

The mechanisms and relative importance of abiotic and biological processes for VOC loss from sludge amended soils  

SciTech Connect (OSTI)

The presence of volatile organic compounds (VOCs) in sewage sludge has been a cause of increasing concern due to the possible risk to human health and the environment when sludge is applied to agricultural soils. Sludge application to agricultural land in the UK is expected to increase as a result of restrictions on alternative disposal routes and also increasingly stringent wastewater treatment requirements. Few studies have examined the fate and behavior of VOCs in sewage sludge amended soils and those reported have used spiked sludge rather than investigating the behavior of VOCs resident in the sludge itself. This study was designed to evaluate the behavior of aromatic VOCs (namely toluene, xylene and ethyl benzene) in unspiked sewage sludge amended soils and assess the relative importance and mechanisms of abiotic and biological loss processes. This was undertaken by adding sewage sludge to sterilized and unsterilized soil in closed and open systems. Results indicated that abiotic loss processes, primarily volatilization, were most important for the removal of VOCs. Initial rate of VOC loss was similar in all systems. After 65 days a residual VOC soil concentration remained which was apparently dependent on the conditions within the system.

Wilson, S.C.; Jones, K.C. [Lancaster Univ. (United Kingdom). Inst. of Environmental and Biological Sciences

1994-12-31T23:59:59.000Z

198

Sewage sludge dewatering using flowing liquid metals  

DOE Patents [OSTI]

A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

199

Qualification testing and full-scale demonstration of titanium-treated zeolite for sludge wash processing  

SciTech Connect (OSTI)

Titanium-treated zeolite is a new ion-exchange material that is a variation of UOP (formerly Union Carbide) IONSIV IE-96 zeolite (IE-96) that has been treated with an aqueous titanium solution in a proprietary process. IE-96 zeolite, without the titanium treatment, has been used since 1988 in the West Valley Demonstration Project`s (WVDP) Supernatant Treatment System (STS) ion-exchange columns to remove Cs-137 from the liquid supernatant solution. The titanium-treated zeolite (TIE-96) was developed by Battelle-Pacific Northwest Laboratory (PNL). Following successful lab-scale testing of the PNL-prepared TIE-96, UOP was selected as a commercial supplier of the TIE-96 zeolite. Extensive laboratory tests conducted by both the WVDP and PNL indicate that the TIE-96 will successfully remove comparable quantities of Cs-137 from Tank 8D-2 high-level radioactive liquid as was done previously with IE-96. In addition to removing Cs-137, TIE-96 also removes trace quantities of Pu, as well as Sr-90, from the liquid being processed over a wide range of operating conditions: temperature, pH, and dilution. The exact mechanism responsible for the Pu removal is not fully understood. However, the Pu that is removed by the TIE-96 remains on the ion-exchange column under anticipated sludge wash processing conditions. From May 1988 to November 1990, the WVDP processed 560,000 gallons of liquid high-level radioactive supernatant waste stored in Tank 8D-2. Supernatant is an aqueous salt solution comprised primarily of soluble sodium salts. The second stage of the high-level waste treatment process began November 1991 with the initiation of sludge washing. Sludge washing involves the mixing of Tank 8D-2 contents, both sludge and liquid, to dissolve the sulfate salts present in the sludge. Two sludge washes were required to remove sulfates from the sludge.

Dalton, W.J.

1997-06-30T23:59:59.000Z

200

Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies  

SciTech Connect (OSTI)

The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. (Oak Ridge K-25 Site, TN (United States)); Kucsmas, D. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

202

Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. [Oak Ridge K-25 Site, TN (United States); Kucsmas, D. [Oak Ridge National Lab., TN (United States)

1991-10-01T23:59:59.000Z

203

SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.  

SciTech Connect (OSTI)

The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

2002-10-01T23:59:59.000Z

204

Interim Storage of Hanford Spent Fuel & Associated Sludge  

SciTech Connect (OSTI)

The Hanford site is currently dealing with a number of types of Spent Nuclear Fuel. The route to interim dry storage for the various fuel types branches along two different paths. Fuel types such as metallic N reactor fuel and Shippingport Core 2 Blanket assemblies are being placed in approximately 4 m long canisters which are then stored in tubes below grade in a new canister storage building. Other fuels such as TRIGA{trademark} and Light Water Reactor fuel will be relocated and stored in stand-alone casks on a concrete pad. Varying degrees of sophistication are being applied with respect to the drying and/or evacuation of the fuel interim storage canisters depending on the reactivity of the fuel, the degree of damaged fuel and the previous storage environment. The characterization of sludge from the Hanford K Basins is nearly complete and canisters are being designed to store the sludge (including uranium particles from fuel element cleaning) on an interim basis.

MAKENAS, B.J.

2002-07-01T23:59:59.000Z

205

RESEARCH ARTICLE Algae production on pig sludge  

E-Print Network [OSTI]

RESEARCH ARTICLE Algae production on pig sludge Attila Bai & László Stündl & Péter Bársony & Milán- ied an economical method of algae production on pig sludge that can be operated on animal farms in Hungary with modest levels of investment. We analyzed four algae spe- cies, Chlorella vulgaris

Boyer, Edmond

206

Sewage sludge dewatering using flowing liquid metals  

DOE Patents [OSTI]

This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

Carlson, L.W.

1985-08-30T23:59:59.000Z

207

Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066  

SciTech Connect (OSTI)

The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)

Carlisle, Derek; Adamson, Kate [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

2012-07-01T23:59:59.000Z

208

Plant uptake of sludge-borne PCBs  

SciTech Connect (OSTI)

Plant uptake of sludge-borne polychlorinated biphenyls (PCBs) (similar to Aroclor 1248) was evaluated in a greenhouse study with two food-chain crops and a grass species. Polychlorinated biphenyl loading to two soils was varied in one experiment by adding different rates of a municipal sewage sludge heavily contaminated (52 mg/kg) with PCBs. In a second experiment, Aroclor 1248 was spiked into unamended soils or soils amended with another sludge containing <1mg/kg PCBs. Analysis of PCBs was by GC/MS with a reliable detection limit in plants of 20 microg/kg for individual chlorinated classes (tri, tetra-, and pentachlorobiphenyls) and total PCBs. Only carrots (Daucus carota) were contaminated with PCBs, and contamination was restricted to carrot peels. Current USEPA guidelines for land application of sludges based on sludge PCB content are shown to be extremely conservative.

O'Connor, G.A.; Kiehl, D.; Eiceman, G.A.; Ryan, J.A.

1990-01-01T23:59:59.000Z

209

Disposable sludge dewatering container and method  

DOE Patents [OSTI]

A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

Cole, Clifford M. (1905 Cottonwood Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

210

IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS  

E-Print Network [OSTI]

1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

Wells, Scott A.

211

EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN  

SciTech Connect (OSTI)

The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

DUNCAN JB

2006-09-28T23:59:59.000Z

212

Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing  

E-Print Network [OSTI]

and Management, United States (2008)" #12;2 1 Introduction Industrial aqueous pollution (heavy metals) accounts sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small for 30 to 40% of industrial pollution. Metal finishing is one of the sectors which contributes mostly

Paris-Sud XI, Université de

213

Sewage sludge application effects on runoff water quality in a semiarid grassland  

SciTech Connect (OSTI)

One of the concerns of land application of sewage sludge (also referred to as biosolids) to rangeland is its effect on the amount and quality of runoff water. In this study, we applied three treatments consisting of 0, 22, and 41 Mg ha{sup -1} of municipal sewage sludge to Larim gravelly sandy loam (Ustollic Argiustoll) and Altvan sandy loam (Aridic Argiustoll) soils in paired plots on two slope gradients (8 and 15%). We used a one-time application of simulated rainfall for 30 min at a rate of 100 mm h{sup -1} and collected and analyzed the runoff. Results are described. 22 refs., 1 fig., 5 tabs.

Harris-Pierce, R.L.; Redente, E.F.; Barbarick, K.A. [Colorado State Univ., Fort Collins, CO (United States)

1995-01-01T23:59:59.000Z

214

K Basins isolation barriers summary report  

SciTech Connect (OSTI)

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

215

Sewage sludge as an amendment for calcareous bauxite mine spoils reclamation  

SciTech Connect (OSTI)

Dried aerobically digested sewage sludge applied at seven rates (0, 10, 20, 40, 60, 80, and 120 Mg ha{sup {minus}1}) in a field experiment on calcareous bauxite mine spoils significantly increased the available water capacity, concentrations of organic matter, total N, extractable P (Olsen), exchangeable Mg{sup 2+}, and diethylenetriaminepentaacetic acid (DTPA)-extractable Cu, Mn, Zn, and Pb of mine spoils. Total N and extractable P concentrations decreased with time after sludge application. The DTPA-extractable Cu concentration was high 4 yr after application at sludge rates of 80 and 120 Mg Ha{sup {minus}1}. Extractable Cu and Zn concentrations correlated significantly and positively with Cu and Zn concentrations in burnet (Sanguisorba minor subsp. minor) and fiddleneck (Phacelia tanacetifolia Benth) tissue. Sludge application depressed plant Mn uptake. Plant biomass, plant density, and foliar cover significantly increased with treatment rates in the first and fourth growing seasons but decreased with time. Fiddleneck and burnet were the species favored by the high rate of sludge application.

Brofas, G.; Michopoulos, P.; Alifragis, D.

2000-06-01T23:59:59.000Z

216

Modeling of the reburning process using sewage sludge-derived syngas  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.

Werle, Sebastian, E-mail: sebastian.werle@polsl.pl [Institute of Thermal Technology, Silesian University of Technology at Gliwice, 44-100 Gliwice, Konarskiego 22 (Poland)

2012-04-15T23:59:59.000Z

217

Thermochemical processing of digested sludge and its implications in the United States Jennifer Lawrence, Ruth Reed, Sara Tischhauser, Casey Zak  

E-Print Network [OSTI]

Lawrence, Ruth Reed, Sara Tischhauser, Casey Zak ABSTRACT Currently, the majority of wastewater treatment, methane emissions from anaerobically digested sludge in landfills is a potential threat to climate change analyze the use of thermochemical processing as an addendum to current wastewater treatment plants using

Iglesia, Enrique

218

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network [OSTI]

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

219

REMOVAL OF TECHNETIUM 99 FROM THE EFFLUENT TREATMENT FACILITY (ETF) BASIN 44 USING PUROLITE A-530E & REILLEX HPQ & SYBRON IONAC SR-7 ION EXCHANGE RESINS  

SciTech Connect (OSTI)

This report documents the laboratory testing and analyses as directed under the test plan, RPP-20407. The overall goal of this task was to evaluate and compare candidate anion exchange resins for their capacity to remove Technetium-99 from Basin 44 Reverse Osmosis reject stream. The candidate resins evaluated were Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7.

DUNCAN JB

2004-10-29T23:59:59.000Z

220

Application for Approval of Modification for the 105-KE Basin Encapsulation Activity  

SciTech Connect (OSTI)

This application is being submitted to US EPA pursuant to Title 40, Code of Federal Regulations, Part 61.07, amended. The encapsulation activity will consist of the activities necessary to complete encapsulation of the fuel elements and sludge in 105-KE basin, a storage basin for irradiated N Reactor fuel in Hanford 100-K Area; it currently stores 1,150 MTU of N Reactor irradiated fuel elements transferred to the basin from 1975 through 1989. The application presents the chemical and physical processes relating to the encapsulation activity, source term, expected annual emissions, radionuclide control and monitoring equipment, and projected dose to the maximally exposed individual.

Not Available

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy recovery from sewage sludge by means of fluidised bed gasification  

SciTech Connect (OSTI)

Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.

Gross, Bodo [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany); Eder, Christian [CET, Christian Eder Technology, Eduard-Didion Strasse, D-66539 Neunkirchen (Germany); Grziwa, Peter [BISANZ Anlagenbau GmbH, Scheidter Strasse 2, D-66123 Saarbruecken (Germany); Horst, Juri [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)], E-mail: horst@izes.de; Kimmerle, Klaus [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)

2008-07-01T23:59:59.000Z

222

Development of risk assessment methodology for municipal sludge incineration  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by the series include land application practices, distribution and marketing programs, landfilling, surface disposal, incineration and ocean disposal. In particular, these reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with incineration of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The procedures are structured to allow calculation of technical criteria for sludge disposal/reuse options based on the potential for adverse health or environmental impacts. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1990-10-01T23:59:59.000Z

223

COMPARATIVE HEALTH IMPACT ASSESSMENTS ON FECAL SLUDGE MANAGEMENT PRACTICES  

E-Print Network [OSTI]

i COMPARATIVE HEALTH IMPACT ASSESSMENTS ON FECAL SLUDGE MANAGEMENT PRACTICES: A CASE STUDY OF KLONG Fecal sludge (FS) is widely acknowledged as a major source of infectious pathogens. However, the proper

Richner, Heinz

224

ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS  

SciTech Connect (OSTI)

This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

WILLIAMS, J.C.

2003-11-15T23:59:59.000Z

225

Phase Chemistry of Tank Sludge Residual Components  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

J.L. Krumhansl

2002-04-02T23:59:59.000Z

226

Volatile organic compound losses from sewage sludge-amended soils  

SciTech Connect (OSTI)

Volatile organic compounds (VOCs) applied to soil in sludge have been assumed to disappear quickly and completely. The VOC behavior in sludge-amended soils has been studied previously only in laboratory systems where the sludged soil has been spiked with compounds of interest. Behavior in these systems may not necessarily represent compound behavior in field soils to which contaminated sludge is added. A series of laboratory microcosm experiments were designed therefore to investigate the behavior of toluene, ethyl benzene, o-, m-, and p-xylene applied to soil in contaminated sludge, and factors influencing loss processes. The VOC loss from sludge-amended soil was well described by a simple one step pseudo-first-order model but in certain soils was better described by a two step first-order model. Volatilization was the predominant loss process. Rates of loss depended on sludge application rate, method of sludge application, soil properties, and on compound characteristics. Experiments indicated that spiking sludge-amended soils gave a reasonable indication of VOC loss rates from systems amended with contaminated sludge at least over a period of 23 d. The majority of VOCs applied to soils in sludge volatilizes quickly to the atmosphere over a few to 10s of days with a small fraction lost more slowly. Potential for VOC crop uptake, livestock ingestion, and contamination of ground water is low under routine, managed applications of sewage sludge to agricultural land.

Wilson, S.C.; Jones, K.C.

1999-08-01T23:59:59.000Z

227

Incineration of biological sludge in a fluidized bed  

SciTech Connect (OSTI)

Incineration rate, ash properties, and percentage destruction of the combustible material were evaluated under different operating conditions. Experimental measurements were made for temperature, air flow rate, sludge size, ash size and sludge composition. A model based on the heat transfer consideration was derived to describe the drying and devolatilization process during sludge incineration. The model assumes that the drying and devolatilization of a sludge particle is manly caused by the heat flowing into the sludge particle from the bed. Parameters affecting the simulation results included sludge size, inert particle size, sludge heat capacity, sludge heat conductivity, operating flow rate and incinerator temperature. A model developed to simulate a batch type air-sand fluidized bed considered the incineration process as being composed of three consecutive operations, namely, drying, devolatilization, and char combustion. The simulation model predicted the dynamic characteristics of sludge incineration in the bed including its percentage completion and the incinerator temperature. The effects of sludge moisture level, sludge size and incinerator operating conditions on the incinerator behavior were also evaluated. The model developed to simulate the behavior of a fluidized bed incinerator under continuous operation was capable of predicting the time to reach steady state, the stack gas composition, the percentage combustion and the auxiliary heat required under various operating conditions, including sludge feed rate and size, air feed rate, and incinerator temperature.

Ku, W.C.P.

1988-01-01T23:59:59.000Z

228

Review article The use of urban sewage sludge on pastures  

E-Print Network [OSTI]

Review article The use of urban sewage sludge on pastures: the cysticercosis threat Jacques appears to be one of the major pathological threats when sewage sludge is used to fertilise cattle highly prevalent) and Asia (Taenia saginata-like are prevalent). The processing of sludge and the delay

Paris-Sud XI, Université de

229

Temperature Modeling in Activated Sludge Systems: A Case Study  

E-Print Network [OSTI]

Temperature Modeling in Activated Sludge Systems: A Case Study Jacek Makinia, Scott A. Wells, Piotr Zima ABSTRACT: A model of temperature dynamics was developed as part of a general model of activated-sludge biochemical-energy inputs and other activated-sludge, heat-balance terms. All the models were tested under

Wells, Scott A.

230

Sensitivity of Optimal Operation of an Activated Sludge Process Model  

E-Print Network [OSTI]

Sensitivity of Optimal Operation of an Activated Sludge Process Model Antonio Araujo, Simone sensitivity analysis of optimal operation conducted on an activated sludge process model based on the test.[7] applied a systematic procedure for control structure design of an activated sludge process

Skogestad, Sigurd

231

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil  

E-Print Network [OSTI]

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes In situ bioremediation of oily sludge- contaminated soil by biostimulation of indigenous microbes through. Keywords Bioremediation Á Biostimulation Á In situ Á Microbial community Á Oily sludge Introduction

Ma, Lena

232

Sludge utilization and disposal in Virginia  

SciTech Connect (OSTI)

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

233

Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2013-01-15T23:59:59.000Z

234

Characterization Data Package for Containerized Sludge Samples Collected from Engineered Container SCS-CON-210  

SciTech Connect (OSTI)

This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additional core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.

Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.; Daniel, Richard C.; Bos, Stanley J.; Burns, Carolyn A.; Carlson, Clark D.; Coffey, Deborah S.; Delegard, Calvin H.; Edwards, Matthew K.; Greenwood, Lawrence R.; Neiner, Doinita; Oliver, Brian M.; Pool, Karl N.; Schmidt, Andrew J.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.; Soderquist, Chuck Z.; Thompson, Christopher J.; Trang-Le, Truc LT; Urie, Michael W.

2013-09-10T23:59:59.000Z

235

Risk to animal health from pathogens in municipal sludge  

SciTech Connect (OSTI)

Public and legislative concerns directed toward resource and materials recycling have stimulated widespread interest in the use of sewage sludge to improve the fertility and water-holding capacity of soil. The use of sludge on land to grow crops for human or animal consumption has raised concerns over the health hazards from the sludge pathogens. Relatively little attention has been focused on the risks to the health of animals that may graze on sudge-amended pastures or consume feedstuffs grown on these lands. Concern about the animal health risks is justified because economic losses from animal disease that may be associated with the use of sewage sludge could be quite large. In fact, these losses may exceed poential economic losses from human disease associated with sludge use. This review emphasizes the risk to animal health from zoonotic and human pathogens in sludge and from specific animal pathogens that may be found in sludge.

Yeager, J.G.

1980-01-01T23:59:59.000Z

236

Acceptance Test Plan for the Sludge Pickup Adaptor  

SciTech Connect (OSTI)

This test plan documents the acceptance testing of the sludge pickup adapter for potential use during PSI Phases 3 and 4 fuel cleanliness inspection activities. The adaptex is attached to the strainer tip of the vacuum wand and used to suction up residual sludge captured in a sludge collection tray. The material is vacuumed into a chamber of known volume in the sludge pickup adapter. The device serves as an aid in helping to determine whether the observed quantity of sludge is within allowable limits (1.4 cm{sup 3} per fuel assembly). This functionality test involves underwater testing in the 305 Building Cold Test Facility to verify that sludge can be successfully vacuumed from a collection tray. Ancillary activities in this acceptance test include demonstration that the sludge pickup adapter CM be successfully attached to and detached from the vacuum wand underwater.

PITNER, A.L.

2000-03-29T23:59:59.000Z

237

CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES  

SciTech Connect (OSTI)

In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

Nash, Kenneth L.

2008-11-20T23:59:59.000Z

238

Sludge processors have wide choice of solutions for waste ammonia problems  

SciTech Connect (OSTI)

The Ocean Dumping Act of 1988 phased out dumping of sewage sludge into the ocean. To use sewage sludge beneficially, facilities treat and process it using such techniques as digestion, dewatering, composting, thermal drying and chemical stabilization. All of these processes create waste discharges containing high concentrations of nitrogen, mainly in the form of ammonia. When nitrification occurs in receiving waters, ammonia is oxidized to nitrate and can lower dissolved oxygen levels in the water. Excess ammonia also is toxic to fish and other aquatic life. Nitrogen reduction alternatives for sludge dewatering and processing waste discharges include the following: air stripping; steam stripping; breakpoint chlorination; selective ion exchange; reverse osmosis; and chemical precipitation. To remove wastewater nitrogen using biological processes, ammonia and organic nitrogen first are oxidized aerobically (nitrification) to nitrate nitrogen, which then is converted biologically to nitrogen gas (denitrification) under zero or low dissolved oxygen (anoxic) conditions. Because sludge treatment discharges contain valuable quantities of ammonia, they may be considered for reuse as supplemental fertilizer for land application or for reclamation through spraying or injection into soil. Such discharges also may be used in combustion processes.

Chen, Y.S.R.; Samela, D. (Stone and Webster Engineering Corp., Boston, MA (United States). Environmental Technology and Services Div.); Kaylor, F.

1994-09-01T23:59:59.000Z

239

Guidance for writing permits for the use or disposal of sewage sludge. Draft report  

SciTech Connect (OSTI)

Section 405(d) of the Clean Water Act (CWA) directs the U.S. Environmental Protection Agency (EPA) to develop regulations containing guidelines for the use and disposal of sewage sludge. On February 19th, 1993, EPA published final regulations at 40 Code of Federal Regulations (CFR) Part 503 as the culmination of a major effort to develop technical standards in response to Section 405(d). These regulations govern three sewage sludge use and disposal practices: land application, surface disposal, and incineration. A key element in EPA's implementation of the Part 503 regulations is educating Agency and State personnel about these new requirements. Although the regulations are generally directly enforceable against all persons involved in the use and disposal of sewage sludge, they will also be implemented through permits issued to treatment works treating domestic sewage as defined in 40 CFR 122.22. Thus, the primary focus of the manual is to assist permit writers in incorporating the Part 503 requirements into permits; it serves as an update to the Guidance for Writing Case-by-Case Permit Conditions for Municipal Sewage Sludge (PB91-145508/HDM).

Not Available

1993-03-01T23:59:59.000Z

240

SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury. (3) The sludge is high in noble metals. (4) The sludge is high in U and Pu--components that are not added in sludge simulants. Two SB5 processing issues were noted during testing. First, high hydrogen generation rates were measured during experiments with both the blend and batch simulant at high acid stoichiometry. Also, the reflux time was extended due to the high mercury concentration in both the batch and blend simulant. Adding ARP will extend processing times in DWPF. The ARP caustic boil took approximately six hours. The boiling time during the experiment with added MCU was 14 hours at the maximum DWPF steam flux rate. This is comparable to the DWPF processing time for dewatering plus reflux without MCU at a 5000 lbs/hr boil-up rate, but would require significantly more time at boiling at 2000-2500 lbs/hr boil-up rate. The addition of ARP and MCU did not cause any other processing issues, since foaming, rheology and hydrogen generation were less of an issue while processing with ARP/MCU.

Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

2008-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

DeVore, J.R.; Herrick, T.J.; Lott, K.E.

1994-12-01T23:59:59.000Z

242

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Dissolution in Tank Waste Sludges Brian A. Powell 1 ,to produce a clay-like sludge layer, a slurry phase, and anto be concentrated in the sludge phase, which is primarily

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

243

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

Powell, Brian A.

2008-01-01T23:59:59.000Z

244

Use of nutrients of sewage sludge in the initial development of Copaifera langsdorffii  

E-Print Network [OSTI]

under the 20 t ha -1 of sludge rate. Figure 1: CopaibaSupl. K) and sewage sludge doses (2.5, 5, 10, 15 e 20 t ha -dm Fe Mn Zn Table 2: Sewage sludge chemical characteristics.

Sampaio, Thalita Fernanda; Guerrini, Iraê Amaral; Croce, Ciro; de Toledo, Maria Angélica; Morales, Marina

2009-01-01T23:59:59.000Z

245

Field-Measured Oxidation Rates of Biologically Reduced Selenium in Sludge  

E-Print Network [OSTI]

Reduced Selenium in Sludge Sally M. Benson, John Daggett andCalifornia 94720 U.S.A. Sludge generated during surface-Finding safe and economical sludge disposal methods requires

Benson, Sally M.; Daggett, John; Zawislansi, Peter

1999-01-01T23:59:59.000Z

246

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

speciation in Hanford waste tank sludge simulants. J. Nucl.and Sr(II) from simulated tank waste sludges. Sep. Sci.Promoted Dissolution of Waste Tank Sludge Surrogates. In

Powell, Brian A.

2008-01-01T23:59:59.000Z

247

Temperature effects on seawater batch activated sludge systems  

E-Print Network [OSTI]

of salinity of shipboard waste on the activated sludge process and anaerobic digestion, found no detectable changes in the continuous per- formance of the activated sludge units with chloride concentra- tion of up to 8, 000 mg/1; although temporary... different values of a were required to describe the reaction rates within the range of 50'C to 40'C. Zanoni (20) reported that incubation temperatures had little significance on the ultimate demand of carbon and nitrogen for oxygen in an activated sludge...

Wigley, Henry Albert

1972-01-01T23:59:59.000Z

248

Computer program design for land treatment systems  

SciTech Connect (OSTI)

Municipal Sludge Land Application expert System (MuSLAXS)is as expert system developed for site assessment and design analysis of municipal sludge application on agricultural land. The system has knowledge on the technical and regulatory aspects of sludge land application and understanding of soil-plant systems for South Carolina. It can be effectively used outside South Carolina with modifications to incorporate specific regulations on land treatment and soil and crop database. A database supports this expert system and provides appropriate default values for sludge and soil characteristics, and fertilizer recommendations for crops commonly grown in South Carolina. Information on the sludge characteristics is gathered from the user, if it is available, or it is retrieved from the sludge database. Based on the recommendations by the EPA and the expert, a list of 22 constituents, for which the sludge should be analyzed is developed. This list includes: total solids, volatile solids, total nitrogen (TNK), ammonia-nitrogen, organic-nitrogen, phosphorus, potassium, sulfur, cadmium, copper, lead, nickel, zinc, PCBs, calcium, magnesium, chromium, boron, arsenic, aluminum, cobalt, and molybdenum.

White, R.K. (Clemson Univ. SC (USA)); Jantrania, A.

1989-10-01T23:59:59.000Z

249

Using sludge on land raises more than crops  

SciTech Connect (OSTI)

Applying sludge to croplands has been one solution to the dilemma of accumulating sewage. At the present time, approximately 25 percent of all sludge disposal programs are conducted as land application, specifically land reclamation and agricultural utilization. The application of sludge to croplands is developing from a small and scattered program into a large-scaled program because of the prohibition of ocean dumping of sludge, increased costs for incineration of sludge and its pollution control, and an increasing national production of over 280 million tons/yr of wet sludge. Agricultural utilization of sewage sludge has several notable benefits including the recycling of essential and trace nutrients, improvement of marginal soil with organic matter, increased crop yield, and direct costs comparable to commercial fertilizers. However, cropland utilization of sewage sludge may involve risks if proper management is not followed. Besides the risk of metal contamination of soil and plants which has received considerable notoriety, the overall environmental impact of sludge application programs must also consider the public health hazards of nitrate (Ntheta/sub 3/) pollution and the spread of pathogenic (disease-causing) organisms, and any odor nuisance which may be associated with these programs.

Gerardi, M.H.

1982-09-01T23:59:59.000Z

250

The proposed fixation of sludge in cement at the Feed Materials Production Center  

SciTech Connect (OSTI)

The Feed Materials Production Center (FMPC), located near Cincinnati, Ohio, is a government-owned facility. Westinghouse Materials Company of Ohio (WMCO) is the prime contractor to the United States Department of Energy (DOE) at the FMPC. DOE has entered into a Consent Agreement with the United States Environmental Protection Agency (US EPA) to remediate the FMPC site. A project known as the Environmental Remedial Action (ERA) Project was created to accomplish the task of remediating the site. The majority of the estimated $2-billion ERA Project was broken into five smaller manageable subtasks called operable units.'' Each operable unit is handled as a project with its own project manager/engineer. Due to the project's complexity and stringent completion dates, DOE and WMCO have devised a project management philosophy to ensure the successful completion of the ERA Project. This paper will discuss the ERA project and the development needs to accomplish this project. In particular, development of processes for the treatment of waste sludges for Operable Units 1 and 4 will be discussed. Operable Units 2 sludges will be treated in a similar fashion to Operable Unit 1 if it is determined these sludges need treatment. 4 refs., 5 figs., 9 tabs.

Gimpel, R.F.

1990-12-01T23:59:59.000Z

251

E-Print Network 3.0 - anaerobic sludge bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was selected be cause of its (a) prior successful application in municipal sludge incineration, (b... LEWIS Mountain View, California ABSTRACT Municipal sewage sludge can be...

252

SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE  

SciTech Connect (OSTI)

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

2011-11-16T23:59:59.000Z

253

Finding of no significant impact: Changes in the sanitary sludge land application program on the Oak Ridge Reservation, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1042) that evaluates potential impacts of proposed changes in the sanitary sludge land application program on the DOE Oak Ridge Reservation (ORR), Oak Ridge, Tennessee. Changes in lifetime sludge land application limits and radionuclide loading are proposed, and two new sources of sewage sludge from DOE facilities would be transported to the City of Oak Ridge Publicly Owned Treatment Works (COR POTW). Lifetime sludge land application limits would increase from 22 tons/acre to 50 tons/acre, which is the limit approved and permitted by the Tennessee Department of Environment and Conservation (TDEC). With the approval of TDEC, the permissible radiological dose from sludge land application would change from the current limit of 2x background radionuclide concentrations in receiving soils to a risk-based dose limit of 4 millirem (mrem) per year for the maximally exposed individual. Sludge land application sites would not change from those that are currently part of the program. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI). 70 refs., 2 figs., 17 tabs.

NONE

1996-10-01T23:59:59.000Z

254

Water Basins Civil Engineering  

E-Print Network [OSTI]

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

255

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites  

SciTech Connect (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-03-02T23:59:59.000Z

256

Assessment of the KE Basin Sand Filter Inventory In Support of Hazard Categorization  

SciTech Connect (OSTI)

In 1978, the water cleaning system for the KE Basin was upgraded by adding a sand filter and ion exchange columns. Basin water containing finely divided solids is collected by three surface skimmers and pumped to the sand filter. Filtrate from the sand filter is further treated in the ion exchange modules. The suspended solids accumulate in the sand until the pressure drop across the filter reaches established operating limits, at which time the sand filter is backwashed. The backwash is collected in the NLOP, where the solids are allowed to settle as sludge. Figure 2-1 shows a basic piping and instrumentation diagram depicting the relationship among the basin skimmers, sand filter, and NLOP. During the course of deactivation and decommissioning (D&D) of the K-Basins, the sand filter and its media will need to be dispositioned. The isotopic distribution of the sludge in the sand filter has been estimated in KE Basin Sand Filter Monolith DQO (KBC-24705). This document estimates the sand filter contribution to the KE hazard categorization using the data from the DQO.

Ross, Steven B.; Young, Jonathan

2005-09-28T23:59:59.000Z

257

SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT  

SciTech Connect (OSTI)

This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

CARRO CA

2010-03-09T23:59:59.000Z

258

Independent Activity Report, Hanford Sludge Treatment Project - February  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe full text of what isAnalysisMeeting2012 |

259

Independent Oversight Activity Report, Hanford Sludge Treatment Project -  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment2011 | Department ofofSeptember

260

Enterprise Assessments, Review of the Hanford Site Sludge Treatment Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporationLaboratory - FebruaryEngineered

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Growth of chrysanthemums in sewage sludge amended media  

E-Print Network [OSTI]

of seedlings of Lironden- d ~tl' 'f, L. d C fl d, L. g t tt screened compost (224 metric tons/ha) made from degested sewage sludge and woodchips. However, Kirkham and Emino (50) found with increasing rates of liquid sewage sludge (50 ml...

Schlutt, Edward Frederick

1979-01-01T23:59:59.000Z

262

Caustic Leaching of Hanford Tank S-110 Sludge  

SciTech Connect (OSTI)

This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM?50).

Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.

2001-10-31T23:59:59.000Z

263

Utilizing Divers in Support of Spent Fuel Basin Closure Subproject  

SciTech Connect (OSTI)

A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

Allen Nellesen

2005-01-01T23:59:59.000Z

264

High Level Waste System Impacts from Acid Dissolution of Sludge  

SciTech Connect (OSTI)

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

265

Combined process for 2,4-Dichlorophenoxyacetic acid treatment Coupling of an electrochemical system with a biological treatment.  

E-Print Network [OSTI]

system with a biological treatment. Jean-Marie Fontmorina,b *, Florence Fourcadea,b Florence Genestec-made electrochemical flow cell was used for the pre-treatment and a biological treatment was then carried out using activated sludge supplied by a local wastewater treatment plant. 2,4-D was used as a target compound

Paris-Sud XI, Université de

266

SLUDGE BATCH 7B GLASS VARIABILITY STUDY  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

Johnson, F.; Edwards, T.

2011-10-25T23:59:59.000Z

267

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect (OSTI)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

268

Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation  

SciTech Connect (OSTI)

Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

2014-05-01T23:59:59.000Z

269

Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions  

E-Print Network [OSTI]

Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic in activated sludge from a standard activated sludge WWTP equipped with enhanced biological phosphorus removal) and anaerobic conditions rather low removal rates were determined. In a laboratory-scale activated sludge

Kolaei, Alireza Rezania

270

Ecosystem Diagnosis and Treatment Planning Model as Applied to Supplementation : Model Description, User Guide, and Theoretical Documentation for the Model Introduced in the Summary Report Series on Supplementation in the Columbia Basin.  

SciTech Connect (OSTI)

This document describes the formulation and operation of a model designed to assist in planning supplementation projects. It also has application in examining a broader array of questions related to natural fish production and stock restoration. The model is referred to as the Ecosystem Diagnosis and Treatment (EDT) Model because of its utility in helping to diagnose and identify possible treatments to be applied to natural production problems for salmonids. It was developed through the Regional Assessment of Supplementation Project (RASP), which was an initiative to help coordinate supplementation planning in the Columbia Basin. The model is operated within the spreadsheet environment of Quattro Pro using a system of customized menus. No experience with spreadsheet macros is required to operate it. As currently configured, the model should only be applied to spring chinook; modifications are required to apply it to fall chinook and other species. The purpose of the model is to enable managers to consider possible outcomes of supplementation under different sets of assumptions about the natural production system and the integration of supplementation fish into that system. It was designed to help assess uncertainty and the relative risks and benefits of alternative supplementation strategies. The model is a tool to facilitate both planning and learning; it is not a predictive model. This document consists of three principal parts. Part I provides a description of the model. Part II is a guide to running the model. Part III provides theoretical documentation. In addition, a sensitivity analysis of many of the model's parameters is provided in the appendix. This analysis was used to test whether the model produces consistent and reasonable results and to assess the relative effects of specific parameter inputs on outcome.

Lestelle, Lawrence C.; Lichatowich, James A.; Mobrand, Lars E.; Cullinan, Valerie I.

1994-03-01T23:59:59.000Z

271

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION  

SciTech Connect (OSTI)

Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF.

Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

2008-11-10T23:59:59.000Z

272

Idaho Cleanup Project CPP-603A basin deactivation waste management 2007  

SciTech Connect (OSTI)

The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

Croson, D.V.; Davis, R.H.; Cooper, W.B. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho National Laboratory, Idaho Falls, ID (United States)

2007-07-01T23:59:59.000Z

273

Safety evaluation of the ESP sludge washing baselines runs. Revision 2  

SciTech Connect (OSTI)

Purpose is to provide the technical basis for evaluation of unreviewed safety question for the Extended Sludge Processing (ESP) Sludge Washing Baseline Runs, which are necessary to resolve technical questions associated with process control (sludge suspension, sludge settling, heat transfer, temperature control). The sludge is currently stored in below-ground tanks and will be prepared for processing at the Defense Waste Processing Facility as part of the Integrated Waste Removal Program for Savannah River Site.

Gupta, M.K.

1993-12-31T23:59:59.000Z

274

Bioavailability to plants of sludge-borne toxic organics  

SciTech Connect (OSTI)

Large numbers of man-made organic chemicals occur in sewage sludge and many are thought to represent an environmental hazard. This is particularly true of the compounds classified as priority pollutants (TOs) which typically occur in sludges in the mg/kg concentration range. Concerns about their environmental fate, specifically their bioavailability to food-chain crops, have disrupted land application of sludges. A review of the pertinent literature (especially field studies utilizing sludge-amended soils and confirmational analysis for parent compound) suggest the concern is largely groundless. The vast majority of TOs in sludge occur at low concentrations and when applied to soil are strongly sorbed in the soil-sludge matrix, degraded, or are otherwise lost from the soil during the cropping season. Plant bioconcentration factors for most TOs are less 0.01 DW. Even if taken up by plants the TOs may be metabolized within the plant or accumulate in plant parts that are usually not consumed. In contrast a second general group of man-made organics (aromatic surfactants) exist in sludge at much greater concentrations (g/kg).

O'Connor, G.A.; Chaney, R.L.; Ryan, J.A.

1992-01-01T23:59:59.000Z

275

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

276

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

277

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

278

Origin of cratonic basins  

SciTech Connect (OSTI)

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

279

241-Z-361 Sludge Characterization Sampling and Analysis Plan  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

BANNING, D.L.

1999-07-29T23:59:59.000Z

280

241-Z-361 Sludge Characterization Sampling and Analysis Plan  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

BANNING, D.L.

1999-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Composition of Fertilizing Value of Sewage Sludge.  

E-Print Network [OSTI]

to be definitely shed (5, 8, 12) ; so the work on the availability of nitrogen in sewage here reported has been directed chiefly to that in digested sludge. r EXPERIMENTS TO ESTIMATE THE AVAILABILITY OF NITROGEN IN SEWAGE SLUDGES efficiency of the nitrogen... case it was better than that of cottonseed meal, whi other cases is was nearly as good. The average of all the experimenl digested sewage sludge, gives an availability of 19 for its nitrogen colny with 100 for nitrate of soda, and 47 for cottonseed...

Fraps, G. S. (George Stronach)

1932-01-01T23:59:59.000Z

282

HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K-AREA  

SciTech Connect (OSTI)

This paper discusses selecting and Implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water, sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal. The U. S. Department of Energy's (DOE) Hanford Site is considered the world's largest environmental cleanup project. The site covers 1,517 Km{sup 2} (586 square miles) along the Columbia River in an arid region of the northwest United States (U.S.). Hanford is the largest of the US former nuclear defense production sites. From the World War II era of the mid-1940s until the late-1980s when production stopped, Hanford produced 60 percent of the plutonium for nuclear defense and, as a consequence, produced a significant amount of environmental pollution now being addressed. Spent nuclear fuel was among the major challenges for DOE's environmental cleanup mission at Hanford. The end of production left Hanford with about 105,000 irradiated, solid uranium metal fuel assemblies--representing approximately 2,100 metric tons (80 percent of DOE's spent nuclear fuel). The fuel was ultimately stored in the K Basins water-filled, concrete basins attached to Hanford's K East (KE) and K West (KW) reactors. K Basin's fuel accounted for 95 percent of the total radioactivity in Hanford's former reactor production areas. Located about 457 meters (500 yards) from the Columbia River, the K Basins are two indoor, rectangular structures of reinforced concrete; each filled with more than 3.8 million liters (one million gallons) of water that has become highly contaminated with long-lived radionuclides. At the KW Basin, fuel was packaged and sealed in canisters. At the KE Basin, fuel was stored in open canisters that were exposed to water in the basin. The irradiated spent nuclear fuel corroded during long-term, wet storage; resulting in thousands of fuel assemblies becoming severely corroded and/or damaged. Corrosion, especially in the KE Basin, contributed to the formation of a layer of radioactive sludge in the basins. Sludge removal is now progressing and will be followed by dewatering and dispositioning the concrete structures. The DOE Richland Operations Office (RL) has given Fluor Hanford Inc./Fluor Government Group (Fluor) the task of preparing Hanford's K Basins for decontamination and disposal. Prior to dewatering, hydrolasing will be used to decontaminate the basin surfaces to prepare them for disposal. By removing highly contaminated surface layers of concrete, hydrolasing will be used to meet the dose objectives for protecting workers and complying with regulations for transporting demolition debris. Fluor has innovated, tested, and planned the application of the hydrolasing technology to meet the challenge of decontaminating highly radioactive concrete surfaces underwater. Newly existing technology is being adapted to this unique challenge.

CHRONISTER, G.B.

2005-06-14T23:59:59.000Z

283

The long-term and the short-term at a cropping municipal sewage sludge disposal facility  

SciTech Connect (OSTI)

The City of Raleigh, NC, chose land application of municipal sewage sludge as a means of reducing pollution to the Neuse River. The Neuse River Waste Water Treatment Plant (NRWWTP) is located in the Piedmont Province of North Carolina. The soils at the facility are derived largely from the Rolesville Granite. Sewage sludge is applied to over 640 acres of cropland, owned in fee or leased. In making the policy decision for use of the sludge land application method 20 or so years ago, the City had to evaluate the potential for heavy metal accumulation in the soils and plants as well as the potential for ground-water contamination from the nitrate-nitrogen. The city also had to make a policy decision about limiting the discharge of heavy metals to the sewer system. Study of data from monitoring wells demonstrate that well position is a key in determining whether or not nitrate-nitrogen contamination is detected. Data from a three-year study suggest that nitrate-nitrogen moves fairly rapidly t the water table, although significant buildup in nitrogen-nitrogen may take a number of years. Evidence exists suggesting that the time between application of sewage sludge and an increase of nitrate-nitrogen at the water table may be on the order of nine months to a year. It is apparent that in the case of municipal sewage sludge application one can anticipate some nitrate-nitrogen buildup and that the public policy on drinking water standards must recognize this fact.

Welby, C.W. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth and Atmospheric Sciences)

1994-03-01T23:59:59.000Z

284

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS  

E-Print Network [OSTI]

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2.j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce

Boucherie, Richard J.

285

Proper Lagoon Management to Reduce Odor and Excessive Sludge Accumulation  

E-Print Network [OSTI]

Proper management techniques to reduce odor and excessive sludge accumulation include maintaining pH and salt levels, pumping regularly, maintaining adequate bacteria levels, and designing for efficiency. Definitions of key words are boxed for easy...

Mukhtar, Saqib

1999-10-19T23:59:59.000Z

286

Sludge application program at the Savannah River Plant  

SciTech Connect (OSTI)

Since 1980 a research program has been conducted at the Savannah River Plant to evaluate the use of domestic sewage sludge to enhance forest productivity. The objectives of the program have been to determine the cost effectiveness and environmental impact of using sewage sludge as a soil conditioner and slow-release fertilizer. The potential impacts of sludge application on nutrient cycling, organic carbon budgets, forest wildlife, and biomass production have been studied. Soil, soil water, groundwater, and stand biomass samples have been analyzed to monitor the availability and movement of nutrients and metals. Remote sensing techniques have been applied to the plots to see if they have large scale application to biomass determinations. Results of the study have been used to develop guidelines for land application of domestic sewage sludge.

Corey, J C; Lower, M W; Davis, C E

1985-01-01T23:59:59.000Z

287

Rules and Regulations for Sewage Sludge Management (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

288

Preparing sewage sludge for land application or surface disposal: A guide for preparers of sewage sludge on the monitoring, record keeping, and reporting requirements of the federal standards for the use of disposal of sewage sludge, 40 CFR part 503  

SciTech Connect (OSTI)

The document focuses on the monitoring, recordkeeping, and reporting requirements that apply to persons who prepare sewage sludge or a material derived from sewage sludge. It defines persons who prepare sewage sludge and then summarizes their general responsibilities. USEPA promulgated at 40 CFR Part 503 Phase 1 of the risk-based regulations that govern the final use or disposal of sewage sludge. The intent of the Federal program is to ensure that the use or disposal of sewage sludge occurs in a way that protects both human health and the environment. The Part 503 regulation establishes general requirements, pollutant limits, operational standards, and management practices, as well as monitoring, recordkeeping, and reporting requirements. These requirements apply to sewage sludge that is land applied, placed on a surface disposal site, or incinerated in a sewage sludge-only incinerator.

Not Available

1993-08-01T23:59:59.000Z

289

SLUDGE HEEL REMOVAL BY ALUMINUM DISSOLUTION AT SAVANNAH RIVER SITE 12390  

SciTech Connect (OSTI)

High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.

Keefer, M.

2012-01-12T23:59:59.000Z

290

Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238  

SciTech Connect (OSTI)

Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections include (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to quickly provide settling correlations to project settled heights for other conditions. These tools improve the accuracy and adaptability of short and mid-range planning for sludge batch preparation. (authors)

Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T. [Savannah River Remediation LLC, Aiken SC 29808 (United States)] [Savannah River Remediation LLC, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

291

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

292

Sludge application and monitoring program on the Oak Ridge Reservation, 1986--1993  

SciTech Connect (OSTI)

Municipal sewage sludge has been applied to forests and pastures on the Oak Ridge Reservation since 1983 as a method of both disposal and beneficial reuse. Application was carried out under Tennessee permits issued to the city of Oak Ridge for land disposal of sewage sludge. In conjunction with these applications, information has been collected concerning sludge quantity and characteristics, soil parameters, soil water constituents, groundwater quality, surface runoff water quality, and various chemical constituents in vegetation on application sites. This information provides (1) a record of sludge application on the DOE reservations and (2) documentation of changes in soil parameters following sludge application. The information also provides a basis for evaluating the implications of the land application of municipal sewage sludge for soil and water quality and for evaluating the fate of sludge constituents when sludge is either sprayed or injected on pasture sites or surface applied in forested sites. This report covers in detail sludge applications conducted from 1986 through 1993, with some data from the period between 1983 and 1986. Anaerobically digested liquid sludge (2% to 4% solids) from the city of Oak Ridge had a relatively high nitrogen content (8% dry weight) and average to low concentrations of potentially problematic metals, compared with typical municipal sludges. Few potentially hazardous organic chemicals were detected in the sludge, and when found, these were at very low concentrations. Oak Ridge sludge is somewhat unique in that it contains radionuclides ({sup 137}Cs, {sup 60}Co, {sup 131}I, uranium isotopes, {sup 90}Sr, and occasionally {sup 99}Tc) at concentrations much higher than typical municipal sludges. Land application of sewage sludge can dilute or destroy problematic sludge constituents while improving soil fertility. Correct management has made these sludge applications a model of environmentally responsible waste management.

Gunderson, C.A.; Larsen, I.L.; Boston, H.L.; Bradburn, D.M. [Oak Ridge National Lab., TN (United States); Van Miegroet, H. [Utah State Univ., Logan, UT (United States). Dept. of Forest Resources; Morris, J.L. [Jaycor, Inc., Oak Ridge, TN (United States); Walzer, A.E. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States). Central Environmental Compliance; Adler, T.C. [Bechtel National, Inc., Oak Ridge, TN (United States); Huq, M. [Oak Ridge Associated Universities, TN (United States)

1995-09-01T23:59:59.000Z

293

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION  

SciTech Connect (OSTI)

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.

Pareizs, J.; Billings, A.; Click, D.

2011-07-08T23:59:59.000Z

294

Data Quality Objectives Process for Designation of K Basins Debris  

SciTech Connect (OSTI)

The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO process and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.

WESTCOTT, J.L.

2000-05-22T23:59:59.000Z

295

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

296

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

297

E-Print Network 3.0 - activated sludge bacterial Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: activated sludge bacterial Page: << < 1 2 3 4 5 > >> 1 Selective hydrolysis of wastewater sludge Part 1, September 2007 Summary: is a traditional build plant base don the...

298

Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Anca Maria Nagy,*,  

E-Print Network [OSTI]

Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Model Anca Maria Nagy for analysis or control purpose. This method is applied to an activated sludge reactor model. Introduction

Paris-Sud XI, Université de

299

Environmental regulations and technology: use and disposal of municipal waste-water sludge  

SciTech Connect (OSTI)

The document describes the five major sludge use/disposal options currently available--land application, distribution and marketing of sludge products, land-filling, incineration, and ocean disposal--and factors influencing their selection and implementation. It also provides an initial framework for evaluating sludge use/disposal alternatives, and describes accepted and proven use/disposal technologies and Federal regulations pertinent to sludge management.

Not Available

1984-09-01T23:59:59.000Z

300

Enclosure 2 Additional Information on K-Basins Knock-Out Pot Sludge  

E-Print Network [OSTI]

, the intact fuel elements were re-packed into multi canister overpacks. Damaged fuel and fuel pieces that had canister overpacks and managed as spent nuclear fuel scrap/debris. The Knock-Out Pot strainers limited in the strainers upstream of the Knock-Out Pots was placed into temporary containers to be part of the spent fuel

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CRAD, Training - Office of River Protection K Basin Sludge Waste System |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden SaysEnergy OfficeReduction, and RepackagingDepartment

302

CRAD, Engineering - Office of River Protection K Basin Sludge Waste System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, JuneDid y ouRev. 0) |

303

CRAD, Occupational Safety & Health - Office of River Protection...  

Broader source: Energy.gov (indexed) [DOE]

K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste...

304

SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES: PHASE II RESULTS  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

Stone, M; David Best, D

2006-09-12T23:59:59.000Z

305

Short Communication Electricity generation from fermented primary sludge using single-chamber  

E-Print Network [OSTI]

Short Communication Electricity generation from fermented primary sludge using single-chamber air Keywords: Microbial fuel cell Electricity Primary sludge Fermentation Power density a b s t r a c t Single sludge. Fermentation (30 °C, 9 days) decreased total suspended solids (26.1­16.5 g/L), volatile suspended

306

A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE VOLUME1  

E-Print Network [OSTI]

1413 A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearlyH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical

307

Improving rheological sludge characterization with electrical measurements1 Dieud-Fauvel E.1  

E-Print Network [OSTI]

1 Improving rheological sludge characterization with electrical measurements1 2 Dieudé-Fauvel E.1 to obtain information on the rheological behaviour of sewage11 sludge by performing electrical resistivity suitable for implementation in the field. The viscosity and resistivity of sludges containing17 between 4

308

Effects of oxygen transport limitation on nitrification in the activated sludge process  

E-Print Network [OSTI]

Effects of oxygen transport limitation on nitrification in the activated sludge process ABSTRACT: Apseudohomogeneous model ofthe nitrifying activated sludge process was developed to investigate the effects ofmass and autotrophic ammonia oxidation within activated sludge flocs were described by an interactive-type, multiple

Stenstrom, Michael K.

309

Total nitrogen removal in a hybrid, membrane-aerated activated sludge process  

E-Print Network [OSTI]

Total nitrogen removal in a hybrid, membrane-aerated activated sludge process Leon S. Downing wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank removal in activated sludge. ª 2008 Elsevier Ltd. All rights reserved. 1. Introduction The removal

Nerenberg, Robert

310

Using water activity measurements to evaluate rheological consistency and structure strength of sludge  

E-Print Network [OSTI]

of sludge G. Agoda-Tandjawa, E. Dieudé-Fauvel*, R. Girault. and J.-C. Baudez Irstea, UR TSCF, Domaine des/solid matter interactions in sewage sludge has been developed, based on both rheological characteristics parameters (G' and G'') of both raw and flocculated sewage sludge at optimal dose of polymer increase

Paris-Sud XI, Université de

311

Effect of Processing Mode on Trace Elements in Dewatered Sludge Products Brian K. Richards1  

E-Print Network [OSTI]

Effect of Processing Mode on Trace Elements in Dewatered Sludge Products Brian K. Richards1 *, John considering the land application of wastewater sludges. The effects of pelletization/drying, composting compared. A single day's production of dewatered anaerobically-digested sludge (Syracuse, NY) was used

Walter, M.Todd

312

Impact of sludge mechanical behaviour on spatial distribution parameters obtained with centrifugal spreader  

E-Print Network [OSTI]

1 Impact of sludge mechanical behaviour on spatial distribution parameters obtained to analyse organic spreading and opens the way to more developments. Keywords: sludge rheological behaviour a large amount of residues which are spread on agricultural fields. This process of sludge reuse is mainly

Paris-Sud XI, Université de

313

A modified Activated Sludge Model No. 3 (ASM3) with two-step nitrificationedenitrification  

E-Print Network [OSTI]

A modified Activated Sludge Model No. 3 (ASM3) with two-step nitrificationedenitrification Ilenia of the Activated Sludge Models (ASM) [Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M., 2000. Ac- tivated Sludge Models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing

314

Assessing nitrogen losses after sewage sludge spreading: A method based on simulation models and spreader  

E-Print Network [OSTI]

1 Assessing nitrogen losses after sewage sludge spreading: A method based on simulation models performances. We define 45 sewage sludge spreading scenarios covering a wide range of situations in France. Several models are used to (i) assess nitrogen losses due to sewage sludge spreading and (ii) calculate

Paris-Sud XI, Université de

315

Water Research 36 (2002) 11811192 Accuracy analysis of a respirometer for activated sludge  

E-Print Network [OSTI]

Water Research 36 (2002) 1181­1192 Accuracy analysis of a respirometer for activated sludge dynamic transfer, pH, and the influence of sludge condition on ``start-up'' behaviour. It is shown to what extent Elsevier Science Ltd. All rights reserved. Keywords: Respirometry; Oxygen uptake rate; Activated sludge

2002-01-01T23:59:59.000Z

316

Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification  

SciTech Connect (OSTI)

The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

Pareizs, J. M.; Crawford, C. L.

2013-04-26T23:59:59.000Z

317

Impacts on groundwater due to land application of sewage sludge  

SciTech Connect (OSTI)

The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

Higgins, A.J.

1984-06-01T23:59:59.000Z

318

EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON  

SciTech Connect (OSTI)

K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

AMBALAM, T.

2004-12-01T23:59:59.000Z

319

Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching  

SciTech Connect (OSTI)

Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and ?-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi, Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.

Lumetta, Gregg J.

2008-03-05T23:59:59.000Z

320

Enhanced integrated nonthermal treatment system study  

SciTech Connect (OSTI)

The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer.

Biagi, C.; Schwinkendorf, B.; Teheranian, B.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION  

SciTech Connect (OSTI)

Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

2010-10-01T23:59:59.000Z

322

PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK  

SciTech Connect (OSTI)

The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

2011-08-02T23:59:59.000Z

323

GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY  

SciTech Connect (OSTI)

Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet. Preliminary results of the initial testing indicate: (1) Hydrogen generation rate was very low throughout all SRAT cycles. (2) The mercury concentration of the SRAT product was below the 0.8 wt% limit in all runs. (3) Nitrite in the SRAT product was <100 mg/kg for all runs. (4) Foaminess was not an issue using the nominal antifoam addition strategy in these tests. (5) The high aluminum sludges (LoFe, HM type sludges) were much more viscous than the Hi Fe sludges. At 100% acid stoichiometry, the SRAT products from the high aluminum sludges were very viscous but at 150% acid stoichiometry, the SRAT products from the high aluminum sludges were very thin. This makes the glycolic acid/formic acid flowsheet an improvement for processing more viscous sludges. (6) The pH of the SRAT products was from 2.7-3.1 for the 150% acid stoichiometry runs and 5.1-6.1 for the 100% acid stoichiometry runs, significantly lower than is typical of the baseline nitric acid/formic acid flowsheet.

Lambert, D.; Koopman, D.

2011-06-30T23:59:59.000Z

324

Development of risk-assessment methodology for municipal-sludge landfilling. Final report  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by this series include land application practices, distribution and marketing programs, landfilling, incineration and ocean disposal. These reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with landfilling of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1989-08-01T23:59:59.000Z

325

APPLICATION OF SEWAGE SLUDGES AND COMPOSTS BPG NOTE 6  

E-Print Network [OSTI]

the nutrients without resulting in damage to the tree stand. Soil pH will be affected by the application or increase pH · Most immobilise metal contamination · Act as slow release fertiliser (nitrogen and phosphorus NOTE 6 PAGE 2 Applications of sewage sludges and composts Forestry Tree growth on nutrient

326

Novel Nanoscale Materials Reduce Electricity Needed for Sludge  

E-Print Network [OSTI]

This project researches the use of nanoscale materials (a broadly defined set of substances that haveNovel Nanoscale Materials Reduce Electricity Needed for Sludge Dewatering Industrial process, requiring up to 6000 kilowatt hours/year per million gallons per day. Project Description

327

SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION  

SciTech Connect (OSTI)

Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

Bannochie, C.; Click, D.; Pareizs, J.

2010-05-21T23:59:59.000Z

328

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

SciTech Connect (OSTI)

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

329

Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil  

SciTech Connect (OSTI)

Mixing coal fly ash (FA) with organic wastes to provide balanced soil amendments offers a potential viable use of this industrial by-product. When such materials are land-applied to supply nutrients for agronomic crops, trace element contaminant solubility must be evaluated. In this study, major and trace element soil solution concentrations arising from application of fly ash, organic wastes, and mixtures of the two were compared in a laboratory incubation. Two fly ashes, broiler poultry litter (PL), municipal sewage sludge (SS), and mixtures of FA with either PL or SS were mixed with a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) at rates of 32.3, 8.1, and 16.1 g kg{sup {minus}1} soil for FA, PL, and SS, respectively. Treatments were incubated at 22 C at 17% moisture content and soil solution was periodically extracted by centrifugation over 33 d. Initial soil solution concentrations of As, Mo, Se, and Cu were significantly greater in FA/OL treatments than the respective FA-only treatments. For Cu, increased solution concentrations were attributable to increased loading rates in FA/PL mixtures. Solution Cu concentrations were strongly correlated with dissolved C (R{sup 2} > 0.96) in all PL treatments. Significant interactive effects for solution Mo and Se concentrations were observed for the FA/PL and may have resulted from the increased pH and competing anion concentrations of these treatments. Solution As concentrations showed a significant interactive effect for one FA/PL mixture. For the individual treatments, As was more soluble in the Pl treatment than either FA treatment. Except for soluble Se from on FA/SS mixture, trace element solubility in the FA/SS mixtures was not significantly different than the respective FA-only treatment.

Jackson, B.P.; Miller, W.P.

2000-04-01T23:59:59.000Z

330

Use of wastewater ER sludges for the immobilization of heavy metals  

SciTech Connect (OSTI)

The distribution, mobility, and bioavailability of heavy metals in soils, surface water, and ground water have been of major interest and concern from both environmental and geochemical standpoints. Wastewater sludges represent an important anthropogenic factor whose impact on these processes is not fully understood. In the past, incineration and landfilling were common practices for discarding wastewater sludges. However, as local and state laws governing the disposal of these materials have become more stringent, land application has been used as an alternative. Reported studies have shown that the impact of land application of sludges can vary widely and is influenced by a number of factors, including the source of the sludge; the organic matter content of the sludge; the form in which the sludge is applied; and the prevailing conditions of the receiving soils. It has also been shown that sewage sludge can have solubilizing effects on solid-phase heavy metals, thereby causing geochemical shifts of the insoluble fractions of metals to the more soluble forms. The work presented in this paper utilized synthetic minerals, standard solutions, sludges, and agricultural soils obtained from different sources to determine the mechanisms involved in the mineralization of heavy metals by sludge; the influence of soil conditions; interelemental effects; the influence of natural organic matter; and possible microbial activity that may come into play. Several types of sludge were evaluated for lead binding capacity.

Macha, S.; Murray, D.; Urasa, I.T. [Hampton Univ., VA (United States)

1996-10-01T23:59:59.000Z

331

Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse  

SciTech Connect (OSTI)

Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

2000-06-01T23:59:59.000Z

332

USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15  

SciTech Connect (OSTI)

This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

KETUSKY, EDWARD

2005-10-31T23:59:59.000Z

333

SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499  

SciTech Connect (OSTI)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

2010-01-04T23:59:59.000Z

334

Separation of flue-gas scrubber sludge into marketable products  

SciTech Connect (OSTI)

A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium sulfite/sulfate material can be oxidized into a synthetic gypsum that can be used in several markets which include: wallboard manufacturing, plaster, portland cement, and as a soil conditioner. Single stage water-only cycloning removed nearly 50% of the limestone by weight from the scrubber sludge and maintained a weight recovery of 76%. Froth flotation produced a calcium sulfite/sulfate that contained 4.30% limestone by weight with a 71% weight recovery. These methods were successful in removing some of the limestone impurity, but were not able to meet the specifications needed. However, the combination of water-only cycloning and froth flotation provided a clean, useful calcium sulfite/sulfate material with a limestone grade of 1.70% by weight and a total weight recovery of nearly 66%.

Kawatra, S.K.; Eisele, T.C.

1997-08-31T23:59:59.000Z

335

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

336

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

337

Effect of Cd-Enriched Sewage Sludge on Plant Growth, Nutrients and Heavy Metals Concentrations in the Soil–Plant System  

E-Print Network [OSTI]

from waste-activated sludge, Soil Sci. Soc. Am. J, 60:505-utilization of sewage sludge. A twenty-year study atCd-enriched sewage sludge (SS) and diammonium phosphate (

Rusan, Munir Mohammad; Athamneh, Bayan Mahmoud

2009-01-01T23:59:59.000Z

338

Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast  

SciTech Connect (OSTI)

In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. In all studies, concentrations of total nitrogen in the soil were higher on sludge plots than on control or fertilizer plots, even on good forest sites. In seven of the eight studies, concentrations of phosphorus also were higher on sludge plots than on control or fertilizer plots. Nitrogen and phosphorus tended to be higher in foliage from trees growing on sludge plots. Deep subsoiling was beneficial regardless of soil amendment. Where weeds were plentiful at the outset, they became serious competitors on plots receiving sludge.

Charles R. Berry

1987-09-01T23:59:59.000Z

339

Sludge fertilization of state forest land in Northern Michigan. Final report, June 1980-March 1986  

SciTech Connect (OSTI)

A five-year research-demonstration project to examine the logistic, economic, environmental and sociological aspects of municipal wastewater sludge application was conducted on State Forest land occupied by forest types of major commercial importance in northern Michigan. The procedures utilized for site preparation, sludge transportation and sludge application proved to be cost-effective and made possible uniform distribution of sludge upon the forest floor. As the public comes to recognize the environmental hazards and economic limitations inherent with incineration and the value of sludge as a byproduct resource, forest land application should receive increasing attention as a major sludge management alternative. State regulatory and resource management authorities are committed to use of the newly developed technology in addressing waste management and land management issues.

Brockway, D.G.

1988-04-01T23:59:59.000Z

340

Model of sludge behavior in nuclear plant steam generators. Final report  

SciTech Connect (OSTI)

The accumulation of large amounts of sludge in pressurized water reactor steam generators is thought to be a cause of accelerated corrosion by trace impurities which concentrate in such deposits. Based on fundamental principles, this study develops a mathematical model for predicting the behavior (e.g., deposition and reentrainment) of sludge in steam generators. The calculated sludge behavior shows good agreement with the limited amount of experimental data available. The results suggest that the continued accumulation of sludge on the tubesheet might be preventable, and that if it could be, the incoming sludge would be removed by blowdown. An analysis of the uncertainties in the model led to suggested priorities for further analytical and experimental work to gain a better understanding of sludge behavior. 29 refs., 12 figs., 15 tabs.

Beal, S.K.; Chen, J.H.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oxygen-enriched coincineration of MSW and sewage sludge: Final report  

SciTech Connect (OSTI)

Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

none,

1994-01-01T23:59:59.000Z

342

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

343

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

344

E-Print Network 3.0 - activated sludge microbial Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the soil microbial communities. Sludge... -fold decrease in dehy- drogenase ... Source: Kelly, John J. - Department of Biology, Loyola University Chicago Collection: Environmental...

345

E-Print Network 3.0 - activated sludge unit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of low-metal (EQ') sewage sludge products were made Source: Cornell University, Soil and Water Laboratory Collection: Environmental Sciences and Ecology ; Geosciences 12...

346

Examination of the Potential for Formation of Energetic Compounds in Dry Sludge  

SciTech Connect (OSTI)

This report details initial results from an investigation of the potential formation and fate of energetic compounds in Savannah River Site sludge.

Barnes, M.J.

1998-12-17T23:59:59.000Z

347

An assessment of methyl mercury and volatile mercury in land-applied sewage sludge  

SciTech Connect (OSTI)

In 1993, the US Environmental Protection Agency issued regulations covering the land-application of municipal sewage sludge. These regulations established maximum pollutant concentrations and were based upon a risk assessment of human exposure. Mercury, assumed to be inorganic and non-volatile, was one pollutant evaluated. From April, 1995 through February, 1996, the authors studied the species of mercury contaminating municipal sludge applied to land, and the potential for volatilization of mercury from land-applied sludge. Methyl mercury was found at 0.1% of total mercury concentrations and was emitted from land-applied sludge to the atmosphere. Elemental mercury (Hg) was formed in land-applied sludge via the reduction of oxidized mercury and was also emitted to the atmosphere. Hg emission from land-applied sludge was significantly elevated over background soil emission. Methyl mercury is more toxic and more highly bioaccumulated than inorganic mercury, and warrants assessment considering these special criteria. Additionally, mercury emission from sludge-amended soil may lead to the contamination of other environmental media with significant concentrations of the metal. Although these pathways were not evaluated in the regulatory risk assessment, they are an important consideration for evaluating the risks from mercury in land-applied sludge. This presentation will summarize the results of a re-assessment of US EPA regulations regarding the land-application of municipal sewage sludge using data on methyl mercury toxicity and mercury transport in the atmosphere.

Carpi, A. [Cornell Univ., Ithaca, NY (United States); Lindberg, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

348

Metal uptake by agricultural plant species grown in sludge-amended soil following ecosystem restoration practices  

SciTech Connect (OSTI)

The disposal of municipal sewage sludge is an important environmental problem presently facing society. Because sludge is rich in plant nutrients such as nitrogen and phosphorous, land application as a fertilizer has been proposed as a cost-effective means of disposal. This method of disposal, however, is frequently the subject of public health concern since municipal sludge may contain heavy metals that potentially could be introduced into the human food chain. This study examined metal concentrations in two agricultural species at a study site where ecosystem restoration practices (liming and tilling) had been conducted for 5 years following 11 years of sludge enrichment. 11 refs., 2 tabs.

Peles, J.D.; Barrett, G.W. [Univ. of Georgia, Athens, GA (United States)] [Univ. of Georgia, Athens, GA (United States); Brewer, S.R. [Miami Univ., Oxford, OH (United States)] [Miami Univ., Oxford, OH (United States)

1996-12-01T23:59:59.000Z

349

E-Print Network 3.0 - alternative sewage sludge Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 56 Selective hydrolysis of wastewater sludge Part 1, December 2008 Summary: Report Selective hydrolysis of wastewater...

350

E-Print Network 3.0 - activated sludge oxygen Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Council (WTERT) Collection: Renewable Energy 4 Selective hydrolysis of wastewater sludge Part 1, September 2007 Summary: is a traditional build plant base don the...

351

E-Print Network 3.0 - activated sludge wastewater Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater Search Powered by Explorit Topic List Advanced Search Sample search results for: activated sludge wastewater Page: << < 1 2 3 4 5 > >> 1 The ABC's of EDCs: Endocrine...

352

E-Print Network 3.0 - activated-sludge microbial community Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(biofilm, 95 h; activated sludge... ). Rich sources of microorganisms, such as wastewater, activated ... Source: Logan, Bruce E.- Department of Civil and Environmental...

353

E-Print Network 3.0 - activated sludge bulking Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TECHNICAL INSTITUTE WASHINGTON, D. C. 20008 WRRC REPORT NO. 5 Summary: from a wastewater sludge consisting of organic solids, aluminum hydroxide and powdered activated...

354

E-Print Network 3.0 - activated sludge samples Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Massachusetts at Amherst Collection: Materials Science 6 Selective hydrolysis of wastewater sludge Part 1, September 2007 Summary: is a traditional build plant base don the...

355

E-Print Network 3.0 - activated sludge characteristics Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Council (WTERT) Collection: Renewable Energy 7 Selective hydrolysis of wastewater sludge Part 1, September 2007 Summary: is a traditional build plant base don the...

356

Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges  

SciTech Connect (OSTI)

Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

2004-01-23T23:59:59.000Z

357

Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges  

E-Print Network [OSTI]

order rate constants for americium leaching from sludgeT.V. Hydrolysis of Americium(III). J Radioanal. Nucl.I.G. Hydroxides of Pentavalent Americium. Translated from

Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

2004-01-01T23:59:59.000Z

358

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect (OSTI)

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30T23:59:59.000Z

359

Sociological adaptation among bacterial populations in an activated sludge ecosystem  

E-Print Network [OSTI]

, Nm. B. Davis The predominant heterotrophic bacteria in a butanal adapted, laboratory scale, and batch fed activated sludge culture were mon- itored during substrate removal (as revealed by gas liouid chrom- atography), The changing concentrations...-Brevibacterium coryneforms (804) and Arthrobacter-like organisms (11$). Gram negative bacilli were rarely isolated, and the few observed were members of the genus Pseudomonas. The test culture (500 mg/1 oven dried solids) consistently re- moved up to 600 mg/1 of butanal...

Forrest, Robert George

1970-01-01T23:59:59.000Z

360

Independent Panel Evaluation of Dry Sludge PISA Program  

SciTech Connect (OSTI)

Dr. Kirk Yeager and Mr. Marvin Banks from Energetic Material Research and Technology Center (EMRTC) evaluated the Savannah River Site (SRS) efforts in the Dry Sludge program. They evaluated four program areas: energetic material formation, stability, initiation, and propagation. The panel evaluation included a site visit (July 13, 1999 and July 14, 1999) as well as a review of various reports and presentations by researchers involved in the program.

Fondeur, F.F.

1999-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Removal of fluoride from aqueous solution by using alum sludge  

SciTech Connect (OSTI)

The ability of treated alum sludge to remove fluoride from aqueous solution has been investigated. The studies were carried out as functions of contact time, concentration of adsorbent and adsorbate, temperature, pH, and effect of concentrations of other anions. The data indicate that treated alum sludge surface sites are heterogeneous in nature and that fits into a heterogeneous site binding model. The optimum pH for complete removal of fluoride from aqueous solution was found to be 6. The rate of adsorption was rapid during the initial 5 minutes, and equilibrium was attained within 240 minutes. The adsorption followed first-order rate kinetics. The present system followed the Langmuir adsorption isotherm model. The loading factor (i.e., the milligram of fluoride adsorbed per gram of alum sludge) increased with initial fluoride concentration, whereas a negative trend was observed with increasing temperature. The influence of addition of anions on fluoride removal depends on the relative affinity of the anions for the surface and the relative concentrations of the anions.

Sujana, M.G.; Thakur, R.S.; Rao, S.B. [CSIR, Bhubaneswar (India). Regional Research Lab.] [CSIR, Bhubaneswar (India). Regional Research Lab.

1998-10-01T23:59:59.000Z

362

Plant uptake of pentachlorophenol from sludge-amended soils  

SciTech Connect (OSTI)

A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.

Bellin, C.A.; O'Connor, G.A.

1990-01-01T23:59:59.000Z

363

Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms  

SciTech Connect (OSTI)

The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

1998-03-01T23:59:59.000Z

364

TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION  

SciTech Connect (OSTI)

A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

2009-03-25T23:59:59.000Z

365

Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration  

SciTech Connect (OSTI)

A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

2010-05-05T23:59:59.000Z

366

Ferrocyanide safety program: An assessment of the possibility of ferrocyanide sludge dryout  

SciTech Connect (OSTI)

Much attention has been focused on the Hanford Site radioactive waste storage tanks as a results of problems that have been envisioned for them. One problem is the potential chemical reaction between ferrocyanide precipitate particles and nitrates in the absence of water. This report addresses the question of whether dryout of a portion of ferrocyanide sludge would render it potentially reactive. Various sludge dryout mechanisms were examined to determine if any of them could occur. The mechanisms are: (1) bulk heating of the entire sludge inventory to its boiling point; (2) loss of liquid to the atmosphere via sludge surface evaporation; (3) local drying by boiling in a hot spot region; (4) sludge drainage through a leak in the tank wall; and (5) local drying by evaporation from a warm segment of surface sludge. From the simple analyses presented in this report and more detailed published analyses, it is evident that global loss of water from bulk heating of the sludge to its boiling point or from surface evaporation and vapor transport to the outside air is not credible. Also, from the analyses presented in this report and experimental and analytical work presented elsewhere, it is evident that formation of a dry local or global region of sludge as a result of tank leakage (draining of interstitial liquid) is not possible. Finally, and most importantly, it is concluded that formation of dry local regions in the ferrocyanide sludge by local hot spots or warm surface regions is not possible. The conclusion that local or global dryout is incredible is consistent with four decades of waste storage history, during which sludge temperature have gradually decreased or remained constant and the sludge moisture content has been retained. 54 refs.

Epstein, M.; Fauske, H.K. [Fauske and Associates, Inc., Burr Ridge, IL (United States); Dickinson, D.R.; Crippen, M.D.; McCormack, J.D.; Cash, R.J.; Meacham, J.E. [Westinghouse Hanford Co., Richland, WA (United States); Simmons, C.S. [Pacific Northwest Lab., Richland, WA (United States)

1994-09-01T23:59:59.000Z

367

Essays on Environmental and Resource Economics  

E-Print Network [OSTI]

of variable “activated sludge treatment” in 2006: 0.003.income (soles) activated sludge treatment Table 2.10: Wateractivated septic septic sludge sludge sludge tank tank

Toledo, Chantal Nathalie

2013-01-01T23:59:59.000Z

368

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

369

Greenhouse and laboratory studies on the effects of an anaerobic digester sludge on growth and nutrient uptake of sorghum  

E-Print Network [OSTI]

, however, should have the same impact on the soil environment as other organic wastes that are currently being disposed of by land application, such as composts, sewage sludge, and animal manures. Trace metals contained in municipal sludge may also be a... sewage sludge and sewage compost have also been noted (Epstein et al. , 1978). Mineralization of N from more stable compost was likened to soil organic matter. Other authors have also noted inorganic N accumulations in response to sludge and manure...

Vincent, John Cooper

1989-01-01T23:59:59.000Z

370

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect (OSTI)

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

371

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network [OSTI]

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

372

Journal of Hazardous Materials B132 (2006) 244252 Zeolite synthesis from paper sludge ash at low temperature  

E-Print Network [OSTI]

Journal of Hazardous Materials B132 (2006) 244­252 Zeolite synthesis from paper sludge ash at low 2005 Available online 4 November 2005 Abstract Paper sludge ash was partially converted into zeolites by reaction with 3 M NaOH solution at 90 C for 24 h. The paper sludge ash had a low abundance of Si

Downs, Robert T.

2006-01-01T23:59:59.000Z

373

Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge  

E-Print Network [OSTI]

hydrocarbons (PAHs) in sewage sludge Patryk Oleszczuk a,b, , Sarah E. Hale a , Johannes Lehmann c , Gerard Polycyclic aromatic hydrocarbons Bioavailability Sewage sludge a b s t r a c t The aim of the research of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Two different biochars (MSB and PMW) and two ACs

Lehmann, Johannes

374

Microbial acidification and pH effects on trace element release from sewage sludge  

E-Print Network [OSTI]

Microbial acidification and pH effects on trace element release from sewage sludge Shabnam Qureshia; Trace metals; Mobilization; Land application 1. Introduction Trace elements in land-applied wastewater sludge (sewage biosolids) are potentially phyto- or zoo-toxic if present in sufficient concentration

Walter, M.Todd

375

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection  

E-Print Network [OSTI]

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic operation conducted on an activated sludge process model based on the test-bed benchmark simulation model no structure that leads to optimal economic operation, while promptly rejecting disturbances at lower layers

Skogestad, Sigurd

376

Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered  

E-Print Network [OSTI]

Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Accepted 16 June 2013 Available online 13 July 2013 Keywords: Biohydrogen Escherichia coli Oil palm frond from oil palm frond (OPF) juice and sewage sludge as substrates. Substrate improvement was accomplished

Wood, Thomas K.

377

Washing and alkaline leaching of Hanford tank sludges: A status report  

SciTech Connect (OSTI)

Because of the assumed high cost of high-level waste (HLW) immobilization and disposal, pretreatment methods are being developed to minimize the volume of HLW requiring vitrification. Pacific Northwest Laboratory (PNL) is investigating several options for pretreating the radioactive wastes stored in underground tanks at the Hanford Site. The pretreatment methods under study for the tank sludges include: (1) simply washing the sludges with dilute NaOH, (2) performing caustic leaching (as well as washing) to remove certain wash components, and (3) dissolving the sludges in acid and extracting key radionuclides from the dissolved sludge solutions. The data collected in this effort will be used to support the March 1998 decision on the extent of pretreatment to be performed on the Hanford tank sludges. This document describes sludge washing and caustic leaching tests conducted in FY 1994. These tests were performed using sludges from single-shell tanks (SST) B-201 and U-110. A summary is given of all the sludge washing and caustic leaching studies conducted at PNL in the last few years.

Lumetta, G.J.; Rapko, B.M.

1994-09-01T23:59:59.000Z

378

Optimization of a biological wastewater treatment process at a petrochemical plant using process simulation  

SciTech Connect (OSTI)

A research study was conducted on the activated sludge process treating the wastewater from a petrochemical manufacturing facility in Ontario, Canada. The objective of the study was to improve the level of understanding of the process and to evaluate the use of model-based simulation tools as an aid in the optimization of the wastewater treatment facility. Models such as the IAWQ Activated Sludge Model No. 1 (ASM1) have previously been developed and applied to assist in designing new systems and to assist in the optimization of existing systems for the treatment of municipal wastewaters, However, due to significant differences between the characteristics of the petrochemical plant wastewater and municipal wastewaters, this study required the development of a mechanistic model specifically to describe the behavior of the activated sludge treatment of the petrochemical wastewater. This paper outlines the development of the mechanistic model and gives examples of how plant performance issues were investigated through process simulation.

Jones, R.M.; Dold, P.L.; Baker, A.J.; Briggs, T.

1996-12-31T23:59:59.000Z

379

Guide for revegetation of mined land in Eastern United States using municipal sludge  

SciTech Connect (OSTI)

The use of municipal sewage sludge to reclaim and revegetate land disturbed by mining activity could deal with two major problems (the 60% of land still unreclaimed and the increasing problem of finding landfills for sewage sludge disposal). An alternative to using sludge as an agricultural fertilizer (and possibly introducing heavy metals into the food chain) is to reclaim marginal and disturbed lands. Guidelines for metal loadings in sludge application for reclamation suggest following those developed for agricultural applications. Regulations to date only cover cadmium, but the guidelines include lead, zinc, curium, and niobium. Other regulations cover permit applications, public participation, site investigations, constraints based on the sludge characteristics, and the selection and management of vegetations. A monitoring program is necessary to assure compliance. The appendix identifies appropriate plants for revegetation. 97 references, 12 figures, 12 tables.

Sopper, W.E.; Seaker, E.M.

1983-01-01T23:59:59.000Z

380

Williston basin Seislog study  

SciTech Connect (OSTI)

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)  

SciTech Connect (OSTI)

The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently, radiological decay and in-growth were calculated over the time period from 2015 to 3115. This provided a basis for characterizing the radionuclide content of SB7a over time and for identifying the 'reportable radionuclides.' Details of the characterization methodology and the analytical results are the focus of this report. This work was performed at the request of the Waste Solidification Engineering Department of Savannah River Remediation, initiated via Technical Task Request (TTR) HLW-DWPF-TTR-2010-0031. A minor revision in the reporting requirements was requested via a subsequent email communication. The work was conducted in accordance with the protocols identified in Task Technical and Quality Assurance Plan SRNL-RP-2010-01218 and Analytical Study Plan SRNL-RP-2010-01219. All of the raw data related to this scope have been recorded in laboratory notebook SRNL-NB-2011-00061. The overall goal of this task was to characterize the radionuclide content of the SB7a waste sufficiently to meet the WAPS and DWPF reporting requirements. The specific objectives were: (1) Quantify the current concentrations of all radionuclides impacting (or potentially-impacting) the total curie content between calendar years 2011 and 3115. Also quantify the current concentrations of other radionuclides specifically requested in the TTR or required by the WAPS. (2) Calculate future concentrations of decayed and in-grown radionuclides impacting the total curie content between calendar years 2015 and 3115; (3) Identify as 'reportable' all radionuclides contributing {ge} 0.01% of the total curie content from 2015 to 3115 and having half-lives {ge} 10 years.

Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

2011-12-20T23:59:59.000Z

382

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

Used Radionuclides in Sewage Sludge. Water, Air, and Soilin Ground Level Air and Sewage Sludge. Water, Air, and SoilMeans of Measurements on Sewage Sludge. Water, Air, and Soil

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

383

Integrated nonthermal treatment system study  

SciTech Connect (OSTI)

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

384

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network [OSTI]

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

385

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

386

Acceptance testing report of Eductor System to be installed in the 105 K Basins  

SciTech Connect (OSTI)

The Spent Nuclear Fuel (SNF) Project Engineering Support group cold-tested the Eductor System a 15 horsepower multi-stage centrifugal pump manufactured by the Grunfos Corporation with the housing manufactured and sold with the pump by the Tri-Nuclear Corporation and a 3-inch diameter water jet eductor manufactured by the Fox Valve Corporation. The Eductor System was tested to gather and document information to optimize sludge retrieval operations for use in the 105 K Basins. The cold-testing took place during February 12 through February 29, 1996 in the 305 Cold Test Facility basin located in the 300 area. The pump, utilized in conjunction with the eductor, makes up the core of the Eductor System. The pumping unit consists of a 15 hp stainless steel multi-stage centrifugal Grunfos pump which is seated in a stainless steel fabricated housing. Two baskets or filter elements make up part of the housing on the suction side of the pump. The pump can be used independent of the housing but the housing has two identified purposes. The first use is to stabilize the centrifugal pump and give the pneumatic valves and pump discharge piping a solid platform so the Eductor System can be more easily mobilized within the basin as one unit. The second use for the housing presents the option to utilize the suction-side filters for capturing larger fuel pieces after the smaller fines have been removed.

Packer, M.J.

1996-04-25T23:59:59.000Z

387

488-D Ash Basin Vegetative Cover Treatibility Study  

SciTech Connect (OSTI)

The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

2003-01-01T23:59:59.000Z

388

Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H  

SciTech Connect (OSTI)

Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

FONDEUR, FERNANDOF.

2004-03-12T23:59:59.000Z

389

Crop and soil responses to sewage sludge applied to reclaimed prime farmland  

SciTech Connect (OSTI)

Improvements in reclamation of surface mined prime farmland may be obtained by adding sewage sludge to topsoil and subsoil. This prime farmland reclamation study was done in western Kentucky. The experiment was conducted to investigate effects of the sludge amendment to topsoil and subsoil on soil and crop responses. The experiment showed, in most cases at highest application rates, that the sludge addition significantly increased the soil organic matter, total N content, and available P levels. However, water holding capacity, CEC, and exchangeable cations were not significantly affected. Higher microbial populations and activates were also obtained. The wheat biomass, tiller number, tissue N, grain N, grain yield, and N removal in grain were well correlated with application rates of sewage sludge. Corn also responded positively to additions of sewage sludge. The corn ear-leaf N concentration, grain yield, and grain N removal increased with application rates of sewage sludge. Experiments indicated that topsoil and subsoil sewage sludge addition was beneficial practices in terms of increasing crop yield and improving some soil properties.

Zhai, Qiang; Barnhisel, R.I. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

390

Engineering Work Plan for Development of Sludge Pickup Adapter for Fuel Cleanliness Inspections  

SciTech Connect (OSTI)

The plan for developing an adapter to suction up sludge into a calibrated tube for fuel cleanliness inspection activities is described. A primary assessment of fuel cleanliness to be performed after processing through the Primary Cleaning Machine is whether the volume of any remaining canister sludge in or on a fuel assembly exceeds the allowable 14 cm{sup 3} limit. It is anticipated that a general visual inspection of the sludge inventory after fuel assembly separation will usually suffice in making this assessment, but occasions may arise where there is some question as to whether or not the observed quantity of sludge exceeds this limit. Therefore a quantitative method of collecting and measuring the sludge volume is needed for these borderline situations. It is proposed to develop an adapter that fits on the end of the secondary cleaning station vacuum wand that will suction the material from the sludge collection tray into a chamber marked with the limiting volume to permit a direct go/no-go assessment of the sludge quantity.

PITNER, A.L.

2000-01-06T23:59:59.000Z

391

Process-design manual: Land application of municipal sludge. Final report  

SciTech Connect (OSTI)

The manual presents a rational procedure for the design of municipal-sludge land-application systems. The utilization of sludge in agriculture, forestry, the reclamation of disturbed and marginal lands, and dedicated high-rate surface disposal practices are discussed in detail, with design concepts and criteria presented where available. A two-phased planning approach to site identification, evaluation, and selection along with information on field investigations are also presented. The manual includes examples of each land-application option and case studies of sludge utilization in agriculture and for reclamation of disturbed mining lands.

Not Available

1983-10-01T23:59:59.000Z

392

Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data  

SciTech Connect (OSTI)

This report describes the results of testing sludge samples from Hanford tanks 241-AY-102 (AY-102) and 241-BX-101 (BX-101). These tests were conducted to characterize the sludge and assess the water leachability of contaminants from the solids. This work is being conducted to support the tank closure risk assessments being performed by CH2M HILL Hanford Group, Inc. for the U.S. Department of Energy. This is the first report of testing of BX-101 sludge and the second report of testing of AY-102. Lindberg and Deutsch (2003) described the first phase of testing on AY-102 material.

Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Cantrell, Kirk J.; Hess, Nancy J.; Schaef, Herbert T.; Arey, Bruce W.

2004-05-01T23:59:59.000Z

393

The effect of sewage sludge on the physical properties of lignite overburden  

E-Print Network [OSTI]

. 47:770-775. 24. Ryan, J. A. , 0. E. Keeney, and L. M. Walsh. 1973. Nitrogen transformation and availability of an anaerobically digested sewage sludge in soil. J. Environ. Qual. 2:489-492. 32 25. Soppec, W. E. , and S. Kerr. 1981. Revegetation... if water is to penetrate downward. A study using raw and digested sewage sludge added to a Beltsville silt loam soil at 5% by weight resulted in an increase in percent water stable aggregates with the addition of sludge (Epstein, 1975). After 175 days...

Cocke, Catherine Lynn

1985-01-01T23:59:59.000Z

394

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network [OSTI]

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

395

Soil solution chemistry of sewage-sludge incinerator ash and phosphate fertilizer amended soil  

SciTech Connect (OSTI)

The chemical composition of the soil provides useful information on the feasibility of amending agricultural land with municipal and industrial waste, because the soil solution is the medium for most soil chemical reactions, the mobile phase in soils, and the medium for mineral adsorption by plant roots. The soil solutions studies in this research were from plots in a 4-yr field experiment conducted to evaluate the effects of the trace metals and P in sewage-sludge incinerator ash. Treatments compared ash with equivalent P rates from triple-superphosphate fertilizer and a control receiving no P application. Ash and phosphate fertilizer were applied annually at rates of 35, 70, and 140 kg citrate-soluble P ha{sup -1}. Cumulative ash applications during 4 yr amounted to 3.6, 7.2, and 14.4 Mg ash ha{sup -1}. Soil solutions were obtained by centrifugation-immiscible liquid displacement using a fluorocarbon displacing agent. Following chemical analysis, a chemical speciation model was used to determine possible solubility-controlling minerals for trace metals and P, and correlations between solution composition and plant uptake were analyzed. 37 refs., 5 tabs.

Bierman, P.M.; Rosen, C.J.; Bloom, P.R.; Nater, E.A. [Univ. of Minnesota, St. Paul, MN (United States)

1995-03-01T23:59:59.000Z

396

Processing of Oak Ridge B&C pond sludge surrogate in the transportable vitrification system  

SciTech Connect (OSTI)

The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B&C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown.

Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

1997-04-16T23:59:59.000Z

397

Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular biofilmaste ate t eat e t by ae ob c g a u a b o Aeration pulses to improve N eliminationAeration pulses to improve N-eliminationAeration pulses to improve N eliminat  

E-Print Network [OSTI]

Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular wastewater treatment p p denitrification Nitrification is the oxidation from ammonium (NH +) first activated sludge for biological N-elimination is a two step process: aerobic nitrification and anoxicp g g g

398

A study of acid sludge obtained in the refining of petroleum  

E-Print Network [OSTI]

of the sludge with ocustio soda o soda ash, &nd the "mixing" of the neutrul- ised sludge eith fuel oil. Much i&ttentlon h s been:i eu t:& the recover" of tho sludge acid, i. nd but little cr no uttention to thc study of the orgunic c&ntent of the caid sludge... by the distill=-ties cf pe- tr)leum i. re nct in m. . rket bio c, nditi in, but recuire 'chemic:l trei tment tc remove the resinous mutters nd the hydroo; rbons cf the unssturi ted ~nd u. remi tic groups, which import s dork o&ior ~B well as an unpleusont...

Johnson, Albert Sidney

1923-01-01T23:59:59.000Z

399

E-Print Network 3.0 - aerobic granular sludge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

71(11):7523-7527. Delong EF (1992) Archaea in coastal marine... in a Municipal Wastewater Sludge Daniel Williams1 and James W. Brown2* 1 Department of Biology, North...

400

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1998 Studies  

SciTech Connect (OSTI)

Sludge washing and parametric caustic leaching tests were performed on sludge samples tiom five Hanford tanks: B-101, BX-1 10, BX-112, C-102, and S-101. These studies examined the effects of both dilute hydroxide washing and caustic leaching on the composition of the residual sludge solids. ` Dilute hydroxide washing removed from <1 to 25% of the Al, -20 to 45% of the Cr, -25 to 97% of the P, and 63 to 99% of the Na from the Hdord tank sludge samples examined. The partial removal of these elements was likely due to the presence of water-soluble sodium salts of aluminate, chromate, hydroxide, nitrate, nitrite, and phosphate, either in the interstitial liquid or as dried salts.

GJ Lumetta; BM Rapko; J Liu; DJ Temer; RD Hunt

1998-12-11T23:59:59.000Z

402

DEVELOPMENT OF HAZARDOUS SLUDGE SIMULANTS FOR ENHANCED CHEMICAL CLEANING TESTS  

SciTech Connect (OSTI)

An Enhanced Chemical Cleaning (ECC) process is being developed by Savannah River Remediation (SRR) to aid in Savannah River Site (SRS) High-Level Waste (HLW) tank closure. After bulk waste removal, the ECC process can be used to dissolve and remove much of the remaining sludge from HLW tanks. The ECC process uses dilute oxalic acid (1 wt %) with in-line pH monitoring and control. The resulting oxalate is decomposed through hydroxylation using an Advanced Oxidation Process (AOP). Minimizing the amount of oxalic acid used for dissolution and the subsequent oxidative destruction of oxalic acid will minimize the potential for downstream impacts. Initial efficacy tests by AREVA demonstrated that previous tank heel simulants could be dissolved using dilute oxalic acid. The oxalate could be decomposed by an AOP that utilized ozone and ultraviolet (UV) light, and the resultant metal oxides and hydroxides could be separated out of the process.

Eibling, R.

2010-04-12T23:59:59.000Z

403

VOC transport in vented drums containing simulated waste sludge  

SciTech Connect (OSTI)

A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

1994-02-01T23:59:59.000Z

404

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

405

Delaware River Basin Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

406

K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring report, Third quarter 1992  

SciTech Connect (OSTI)

During third quarter 1992, the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) were sampled for analyses required each quarter or annually by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and for base-neutral/acid semivolatile constituents. None of the analytical results exceeded standards.

Thompson, C.Y.

1993-01-01T23:59:59.000Z

407

Review of municipal sludge use as a soil amendment on disturbed lands  

SciTech Connect (OSTI)

The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effective means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.

Brandt, C.A.; Hendrickson, P.L.

1990-08-01T23:59:59.000Z

408

The determination of settling velocities for sewage sludge disposed at 106-Mile Site  

E-Print Network [OSTI]

THE DBTERMZNATZON OF SETTLING VELOCZTZES FOR SEWAGE SLUDGE DZSPOSED AT 106-MILE SITE A Thesis by DANIEL SAUL HERNANDEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Civil Engineering THB DETERMZNATZON OF SBTTLZNG VELOCZTZES FOR SEWAGE SLUDGE DZSPOSBD AT 106-MZLE SZTB A Thesis by DANIEL SAUL HERNANDEZ Approved as to style and content by: James S. Bonner '(Chair...

Hernandez, Daniel Saul

1991-01-01T23:59:59.000Z

409

Dispersion by chemical reaction of Rocky Mountain Arsenal Basin F waste soils  

SciTech Connect (OSTI)

Many military installations have soil contamination problems that range from heavy metals to petroleum products. Rocky Mountain Arsenal (RMA) Basin F contains high concentrations of salts, heavy metals, ammonia, urea, and organics. The Dispersion by Chemical Reaction (DCR) process leads to a reduction in the mobility of the organic and inorganic constituents by first removing volatile constituents via steam stripping and volatilization, then trapping the nonvolatile contaminants in a nonmobile phase (microencapsulation), and finally compacting the treated material into large soil bodies (macroencapsulation). This report summarizes the results of the DCR testing of soil-amended Basin F sludge from RMA. The primary focus of this study is on pesticide leachability. The DCR process used to treat the Basin F waste soil produced a dry, homogeneous, soil-like material with desirable physical properties that on compaction achieved the following remediation goals: reduction of all leachable volatiles to nondetectable levels, confinement of all metals to below RCRA TCLP levels, and a decrease in pesticide leachability to levels approaching RCRA standards. For example, endrin TCLP concentration was reduced from 74 microgram/L to 20-28 microgram/L (regulatory limit = 20 ug/L). In several cases, reductions in pesticide leachability could be attributed to simple dilution with the calcium oxide (CaO) reagent. However in other cases, microencapsulation and/or macroencapsulation also played a role in reducing pesticide leachability. Additional work is necessary to optimize the amounts of lime-milk, hydrophobic CaO, and benign oil used in the processing of RMA Basin F waste soils. Ideally, the optimum design should achieve the regulatory and client goals, while minimizing materials handling, energy, and reagent inputs.

Payne, J.R.; Marion, G.M.

1997-02-01T23:59:59.000Z

410

Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051  

SciTech Connect (OSTI)

In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (?m) to 6350 ?m mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last of the SNF fragments from the 105-K West Basin, ending the long and complex history of the KOP sludge materials. The planning and execution of this project demonstrated how the graded application of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets[1], DOE-STD-1189-2008, Integration of Safety into the Design Process[2], and DOE G 413.3-4, U.S. Department of Energy Technology Readiness Assessment Guide[3], can positively affect the outcome of project implementation in the DOE Complex. Provided herein are relevant information, ideas, and tools for use by other projects facing similar issues in managing high risk waste streams in a complex regulatory environment. Positive aspects are also provided of appropriate time spent in detailed planning, design, and testing in non-hazardous environments to reduce project risks in both cost and safety performance, as well as improving confidence in meeting project goals through predictable and reliable performance. (authors)

Quintero, Roger; Smith, Sahid [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States); Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)] [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

411

Long-term changes in the extractability and bioavailability of zinc and cadmium after sludge application  

SciTech Connect (OSTI)

Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manure or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.

McGrath, S.P.; Zhao, F.J.; Dunham, S.J.; Crosland, A.R.; Coleman, K.

2000-06-01T23:59:59.000Z

412

Atlas of the Columbia River Basin  

E-Print Network [OSTI]

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

413

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

414

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

415

Treatment options for low-level radiologically contaminated ORNL filtercake  

SciTech Connect (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

416

NILE BASIN INITIATIVE Claire Stodola  

E-Print Network [OSTI]

· Climate Change #12;Upstream states · Low water needs Downstream states · High water needs #12;Historical #12;Research Question How has the Nile Basin Initiative influenced the riparian states' management states 1959 ­ Still only BILATERAL 1960s to 1990s - Increasing frustration by upstream states #12;What

New Hampshire, University of

417

Genetic classification of petroleum basins  

SciTech Connect (OSTI)

Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

Demaison, G.; Huizinga, B.J.

1989-03-01T23:59:59.000Z

418

GOLF COURSES FRASER RIVER BASIN  

E-Print Network [OSTI]

practices (BMP's) for golf courses, entitled Greening your BC Golf Course. A Guide to Environmental. It also summarizes conditions and practices in the Fraser Basin, reviews best management practices.C. Prepared by: UMA ENVIRONMENTAL A Division of UMA Engineering Ltd. Burnaby, B.C. March 1996 #12;THIRD PARTY

419

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network [OSTI]

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

420

IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES  

SciTech Connect (OSTI)

The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress ({approx}10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses on the SB3 sludge composition and recipe developed during the previous year as part of the simulant development program. The study examines the impact of a rapid dose of radiation on the physical properties of the SB3 simulant, the effect of temperature and time on the application of heat as a simulant aging mechanism, and the application of crossflow filtration to the production of an all-metals-precipitated SB3 sludge simulant.

Eibling, R; Michael Stone, M

2006-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "basins sludge treatment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization, Washing, Leaching, and Filtration of C-104 Sludge  

SciTech Connect (OSTI)

Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by continuously adding approximately 5 L of 0.01-M NaOH and then removing it through the filter as permeate. The purpose of this washing step with 0.01-MNaOH was to remove water-soluble components that might inhibit dissolution of salts during caustic leaching, while avoiding peptization of the solids that occurs at a pH below 12. After washing the sludge with dilute caustic, it was combined with 3-M caustic, and the slurry was leached in a stainless steel vessel at 85 C for 8 hours. This leaching was followed by two 0.01-M caustic washes, each conducted in a stainless steel vessel to dilute remaining analytes from the interstitial liquids. Each rinse was performed at 85 C for 8 hours. Permeate from each of these process steps was removed using the crossflow filter system. Samples of the permeate from each slurry-washing activity and all intermediate process steps were taken and analyzed for chemical and radiochemical constituents. The fraction of each component removed was calculated. Key results are presented in Table S.1.

KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

2000-06-09T23:59:59.000Z

422

Nutrient leaching following land application of aerobically digested municipal sewage sludge in a northern hardwood forest  

SciTech Connect (OSTI)

Concentrations of selected cations and anions were determined in soil solutions from a forested site in southern New Hampshire during the first growing season after surface application of an aerobically digested, limed, liquid municipal sludge. Sludge was applied in June 1989 at 0, 3.3, 6.9, and 14.5 Mg ha{sup -1}, which corresponded to 199, 396, and 740 kg N ha{sup -1} as total Kjeldahl N (TKN). Porous, suction-cup lysimeters were used to sample soil solutions below the rooting zone ({approximately}60 cm) within subplots designed to include (untrenched) or exclude (trenched) uptake by vegetation. Following sludge application, measured solute concentrations remained low until September 1989, when NO{sub 3}, Cl, Ca, Mg, Na, and K in trenched subplots increased simultaneously to maximum values in October or November 1989, just before the soil froze for the winter. Nitrate was the dominant anion in soil solutions from trenched subplots and averaged in excess of 0.71 mmol L{sup -1} (10 mg L{sup -1} NO{sub 3}-N) at all loading rates. Highest concentrations of NO{sub 3} occurred on subplots with the highest sludge application rates. In the entrenched areas, NO{sub 3} concentrations rarely exceeded 0.001 mmol L{sup -1}; Cl increased in treated areas and was the dominant anion by the end of the season. Soil solution NH{sub 4}, PO{sub 4}, SO{sub 4} K, and pH did not change significantly for any sludge application rate. Comparison of results from trenched and untrenched areas suggests that, at application rates of up to 14.5 Mg ha{sup -1 }(799 kg TKN ha{sup -1}), a combination of physical, chemical, and biological factors (most likely plant uptake) limited the movement of sludge or sludge-derived constituents from the sites of application. 37 refs., 8 figs., 3 tabs.

Medalie, L.; Bowden, W.B.; Smith, C.T. [Univ. of New Hampshire, Durham, NH (United States)

1994-01-01T23:59:59.000Z

423

Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed  

SciTech Connect (OSTI)

The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

Huber, Heinz J.

2013-06-24T23:59:59.000Z

424

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site in Thessaloniki, sending thick black  

E-Print Network [OSTI]

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site to break. This led to sludge flowing into some nearby houses. Authorities are due to begin the cleanup

Columbia University

425

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect (OSTI)

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

426

E-Print Network 3.0 - activated sludge treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Waste-to-Energy Research and Technology Council (WTERT) Collection: Renewable Energy 14 Plant and Soil 262: 7184, 2004. 2004 Kluwer Academic Publishers. Printed in the...

427

Operational Awareness Review of the Hanford Sludge Treatment Project, April 2011  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines |Open SourcefHSS Independent4,HSS

428

Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry  

E-Print Network [OSTI]

Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

Scampini, Amanda C

2010-01-01T23:59:59.000Z

429

Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)

Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States)] [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States); and others

2013-07-01T23:59:59.000Z

430

Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25  

SciTech Connect (OSTI)

Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3} leaching of the W-25 sludge.

Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

1997-10-01T23:59:59.000Z

431