National Library of Energy BETA

Sample records for basin western wyoming

  1. wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming

  2. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site This fact sheet provides information about the Shirley Basin South, Wyoming, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shirley Basin South, Wyoming, Disposal Site Site Description and History The Shirley Basin South disposal site is located in rural Carbon County about 60 miles south of Casper and 35 miles

  3. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  4. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  5. Geothermal resources of the Laramie, Hanna, and Shirley Basins, Wyoming

    SciTech Connect (OSTI)

    Hinckley, B.S.; Heasler, H.P.

    1984-01-01

    A general discussion of how geothermal resources occur; a discussion of the temperatures, distribution, and possible applications of geothermal resources in Wyoming and a general description of the State's thermal setting; and a discussion of the methods used in assessing the geothermal resources are presented. The discussion of the geothermal resources of the Laramie, Hanna, and Shirley Basins includes material on heat flow and conductive gradients, stratigraphy and hydrology, structure and water movement, measured temperatures and gradients, areas of anomalous gradient (including discussion of the warm spring systems at Alcova and Saratoga), temperatures of the Cloverly Formation, and summary and conclusions. 23 references, 9 figures, 5 tables. (MHR)

  6. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  7. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  8. DOE - Office of Legacy Management -- Wyoming

    Office of Legacy Management (LM)

    Wyoming Wyoming wy_map Riverton Site Shirley Basin South Site Spook Site Last Updated: 12/10

  9. Wyoming - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  10. Wyoming - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  11. Wyoming - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  12. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  13. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  14. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  15. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson

    2006-07-01

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  16. Seismic facies analysis of lacustrine system: Paleocene upper Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect (OSTI)

    Liro, L.M.; Pardus, Y.C.

    1989-03-01

    The authors interpreted seismic reflection data, supported by well control, to reconstruct the stratigraphic development of Paleocene Lake Waltman in the Wind River basin of Wyoming. After dividing the upper Fort Union into eight seismic sequences, the authors mapped seismic attributes (amplitude, continuity, and frequency) within each sequence. Interpretation of the variation in seismic attributes allowed them to detail delta development and encroachment into Lake Waltman during deposition of the upper Fort Union Formation. These deltas are interpreted as high-energy, well-differentiated lobate forms with distinct clinoform morphology on seismic data. Prograding delta-front facies are easily identified on seismic data as higher amplitude, continuous events within the clinoforms. Seismic data clearly demonstrate the time-Transgressive nature of this facies. Downdip of these clinoforms, homogeneous shales, as evidenced by low-amplitude, generally continuous seismic events, accumulated in an interpreted quiet, areally extensive lacustrine setting. Seismic definition of the lateral extent of this lacustrine facies is excellent, allowing them to effectively delineate changes in the lake morphology during deposition of the upper Fort Union Formation. Encasing the upper Fort Union lacustrine deposits are fluvial-alluvial deposits, interpreted from discontinuous, variable-amplitude seismic facies. The authors highlight the correlation of seismic facies data and interpretation to well log data in the Frenchie Draw field to emphasize the accuracy of depositional environment prediction from seismic data.

  17. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect (OSTI)

    Anderson, S.

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  18. Management and Development of the Western Resources Project

    SciTech Connect (OSTI)

    Terry Brown

    2009-03-09

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  19. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  20. The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project

    SciTech Connect (OSTI)

    Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R.

    1998-12-31

    In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

  1. Categorical Exclusion Determinations: Wyoming | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine Bow Substation Control Building Installation Project (Amended) Carbon County, Wyoming CX(s) Applied: B4.11 Date: 01052015 Location(s): Wyoming Offices(s): Western Area ...

  2. Tectonic controls on deposition and preservation of Pennsylvanian Tensleep Formation, Bighorn basin, Wyoming

    SciTech Connect (OSTI)

    Kelly Anne, O.; Horne, J.C.; Wheeler, D.M.; Musgrave, C.E.

    1986-08-01

    During deposition of the Tensleep Formation, a shallow, semirestricted portion of a major seaway that occupied the geosynclinal area to the west extended into the area of the present-day Bighorn basin. Limiting the transgression of this sea was the Beartooth high on the north and the Bighorn high on the east and southeast. On the western side of the area, a southerly extension of the Yellowstone high restricted circulation. The lower Tensleep Formation (Desmoinesian), characterized by extensive marine influence, was deposited as coastal sand dunes and interdunes over subaerially exposed structural highs. These deposits grade basinward into shoreface sandstones, which in turn grade into sandstones and carbonates of the shelf environment. During deposition of upper Tensleep strata (Missourian through Virgilian), marine waters were less widespread. The Greybull arch, a northeast-trending feature in the northern part of the area, was uplifted, dividing the shallow sea into two parts. The upper Tensleep Formation was deposited as a terrestrial sand sea over the Bighorn high. Coastal dunes and interdunes were deposited seaward of the sand seas and over the Beartooth high, the Greybull arch, and the southerly extension of the Yellowstone high. These deposits grade basinward into clastic shoreface deposits. Following Tensleep deposition, the region underwent southward tilting, which caused exposure and erosion of the Tensleep Formation. The resulting unconformity surface was deeply incised by a dendritic drainage system that controlled the thickness of the formation. The Greybull arch and the Bighorn high acted as significant drainage divides, over which very little of the formation was preserved.

  3. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect (OSTI)

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  4. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid ...

  5. Fremont County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arapahoe, Wyoming Atlantic City, Wyoming Boulder Flats, Wyoming Crowheart, Wyoming Dubois, Wyoming Ethete, Wyoming Fort Washakie, Wyoming Hudson, Wyoming Jeffrey City, Wyoming...

  6. Sweetwater County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Acres, Wyoming Eden, Wyoming Farson, Wyoming Granger, Wyoming Green River, Wyoming James Town, Wyoming Little America, Wyoming McKinnon, Wyoming North Rock Springs, Wyoming...

  7. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming??s diverse energy resources. WERIC was established in 2006 by the University of Wyoming??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  8. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    SciTech Connect (OSTI)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  9. Uinta County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Wyoming Mountain Wind Places in Uinta County, Wyoming Bear River, Wyoming Carter, Wyoming Evanston, Wyoming Fort Bridger, Wyoming Lonetree, Wyoming Lyman, Wyoming...

  10. Lincoln County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Barge, Wyoming Oakley, Wyoming Opal, Wyoming Smoot, Wyoming Star Valley Ranch, Wyoming Taylor, Wyoming Thayne, Wyoming Turnerville, Wyoming Retrieved from "http:en.openei.orgw...

  11. Sublette County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Big Piney, Wyoming Bondurant, Wyoming Boulder, Wyoming Calpet, Wyoming Cora, Wyoming Daniel, Wyoming Marbleton, Wyoming Pinedale, Wyoming Retrieved from "http:en.openei.orgw...

  12. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado...

    Broader source: Energy.gov (indexed) [DOE]

    DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of...

  13. Trenton strata in western Illinois Basin, Brown and Schuyler Counties, Illinois

    SciTech Connect (OSTI)

    Pochel, R.M.

    1984-12-01

    Trenton strata in the western Illinois basin are very good prospects for oil exploration. Much drilling has been done in the area but, as yet, no producing wells have been completed. Oil stains and some tars have been found in some samples from most wells. The Trenton in the area of Brown and Schuyler Counties is a fine-grained limestone that underlies the Maquoketa Shale at an average depth of 800 ft (244 m). Because of its position near the edge of the Illinois basin, the stratigraphy varies considerably and inconsistencies are present in most samples viewed.

  14. Western Gas Sands Project: production histories of the Piceance and Uinta basins of Colorado and Utah

    SciTech Connect (OSTI)

    Anderson, S.; Kohout, J.

    1980-11-20

    Current United States geological tight sand designations in the Piceance and Uinta Basins' Western Gas Sands Project include the Mesaverde Group, Fort Union and Wasatch Formations. Others, such as the Dakota, Cedar Mountain, Morrison and Mancos may eventually be included. Future production from these formations will probably be closely associated with existing trends. Cumulative gas production through December 1979, of the Mesaverde Group, Fort Union and Wasatch Formations in the Piceance and Uinta Basins is less than 275 billion cubic feet. This contrasts dramatically with potential gas in place estimates of 360 trillion cubic feet. If the geology can be fully understood and engineering problems surmounted, significant potential reserves can be exploited.

  15. Teton County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    TriLateral Energy LLC Places in Teton County, Wyoming Alta, Wyoming Hoback, Wyoming Jackson, Wyoming Moose Wilson Road, Wyoming Rafter J Ranch, Wyoming South Park, Wyoming Teton...

  16. Laramie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Cheyenne Light Fuel & Power Co Places in Laramie County, Wyoming Albin, Wyoming Burns, Wyoming Cheyenne, Wyoming Fox Farm-College, Wyoming Pine Bluffs, Wyoming Ranchettes,...

  17. Natrona County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Meadow Acres, Wyoming Midwest, Wyoming Mills, Wyoming Powder River, Wyoming Red Butte, Wyoming Vista West, Wyoming Retrieved from "http:en.openei.orgw...

  18. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in

  19. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly

  20. Wyoming Biodiesel Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Wyoming Biodiesel Co Place: Wyoming Product: Wyoming-based biodiesel project developer. References: Wyoming Biodiesel Co1 This article is a...

  1. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  2. Niobrara County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Niobrara County, Wyoming Lance Creek, Wyoming Lusk, Wyoming Manville, Wyoming Van Tassell, Wyoming Retrieved from...

  3. Washakie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Washakie County, Wyoming Airport Road, Wyoming Mc Nutt, Wyoming South Flat, Wyoming Ten Sleep, Wyoming Washakie Ten,...

  4. Late Mesozoic crustal extension and rifting on the western edge of the Parana Basin, Paraguay

    SciTech Connect (OSTI)

    DeGraff, J.M.

    1985-01-01

    Geophysical and geological evidence indicates that the western edge of the Parana basin in Paraguay was a site of NE-SW directed crustal extension during late Mesozoic time. Major zones of normal faulting in south-eastern Paraguay trend northwesterly on average, and mafic dikes of probable late Mesozoic age have similar orientations. At least two NW-trending zones of tectonic subsidence, each over 200 km long, are now recognized in eastern Paraguay. Most alkalic rocks of south-eastern Paraguay are concentrated along this rift, and occur as simple to composite stocks and ring complexes composed of rocks ranging from foid-syenite to essexite. NW-trending, lamprophyric to phonolitic dikes are associated with some alkalic complexes. The southern zone, located about 125 km southwest, is a composite tectonic basin about 60 km wide and nearly devoid of alkalic rocks. The timing of crustal extension and rifting in eastern Paraguay is largely based on isotopic ages of associated alkalic rocks, which cluster between 150 and 100 Ma (latest Jurassic to mid-Cretaceous). Geologic evidence for the age of faulting and subsidence is consistent with this age range; tectonic depressions were being filled in late Cretaceous to early Cenozoic time. The age range of alkalic rocks in Paraguay contain that of the Serra Geral basalts and spans the time when South America Separated from Africa. This suggests that alkalic activity and crustal extension in eastern Paraguay are grossly related to the Serra Geral extrusive event, and were a manifestation of the breakup of South America and Africa far from the site of final separation.

  5. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  6. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  7. Laramie, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming The University of Wyoming Registered Energy Companies in Laramie, Wyoming Blue Sky Batteries Inc Blue Sky Group Inc Nanomaterials Discovery Corporation NDC References ...

  8. Cheyenne, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Cheyenne, Wyoming 3 Utility Companies in Cheyenne, Wyoming 4 References US Recovery Act Smart Grid Projects in Cheyenne, Wyoming Cheyenne Light, Fuel...

  9. BLM Wyoming State Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Logo: BLM Wyoming State Office Name: BLM Wyoming State Office Abbreviation: Wyoming Address: 5353 Yellowstone Place: Cheyenne, WY Zip: 82009...

  10. The University of Wyoming | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Jump to: navigation, search Name: The University of Wyoming Abbreviation: UW Address: 1000 East University Avenue Place: Laramie, Wyoming Zip: 82071 Phone Number:...

  11. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  12. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  13. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect (OSTI)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAMs databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The models databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated technically-recoverable by the USGS roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  14. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  15. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  16. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,622,025 1,544,493 1,442,021 1,389,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Wyoming-Wyoming

  17. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  18. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  19. Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan

    SciTech Connect (OSTI)

    Sagers, M.J.

    1995-05-01

    The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

  20. Problems of intraplate extensional tectonics, Western United...

    Open Energy Info (EERE)

    tectonics, Western United States, with special emphasis on the Great Basin Author G.A. Davis Conference Basin and Range Symposium and Great Basin Field Conference; Denver,...

  1. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  2. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Wyoming Department of Agriculture Address: 2219 Carey Avenue Place: Cheyenne, Wyoming Zip: 82002 Phone Number: 307-777-7321 Website:...

  3. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

  5. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Wyoming Region Middle School Regional Wyoming Wyoming Regional Middle School...

  6. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Wyoming Regions High School Regional Wyoming Wyoming...

  7. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  8. Natural CO2 accumulations in the western Williston Basin: A mineralogical analog for CO2 injection at the Weyburn site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryerson, F. J.; Lake, John; Whittaker, Steven; Johnson, James W.

    2013-01-17

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO2, and may have done so for as long as 50 million years. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That long-term isolation of natural CO2 can be accomplished within carbonate strata has motivated themore » investigation of the Duperow rocks as a potential natural analog for storage of anthropogenic CO2 in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Here we compare lithofacies, whole rock compositions, mineralogy and mineral compositions from both locales. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite, quartz and celestine (strontium sulfate) are also observed. Dawsonite, a potential CO2-trapping mineral, is not observed within the CO2-bearing horizons of the Duperow Formation, however. The distribution of porosity in the Midale Vuggy units is similar to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance (<3%) within the analyzed Duperow samples, with quartz and K-feldspar the only silicates observed petrographically or in X-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations (Durocher et al., 2003), but the paucity of mono- and divalent cations that can be derived from dissolution of these silicate minerals likely precludes significant carbonate mineral formation. Therefore physical and solution trapping are likely to be the primary CO2 trapping mechanisms at both sites.« less

  9. Energy Incentive Programs, Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wyoming Energy Incentive Programs, Wyoming Updated February 2015 Wyoming utilities budgeted over $6 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? Wyoming has no statewide public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? PacifiCorp/Rocky Mountain Power has consolidated its incentives for commercial, industrial, and

  10. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K.

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  11. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    SciTech Connect (OSTI)

    Dunn, T.L.

    1996-10-01

    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  12. Wyoming Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Conservation Commission Jump to: navigation, search Name: Wyoming Oil and Gas Conservation Commission Address: 2211 King Blvd Place: Wyoming Zip: 82602 Website:...

  13. Wyoming Office of State Lands and Investments | Open Energy Informatio...

    Open Energy Info (EERE)

    Investments Jump to: navigation, search Name: Wyoming Office of State Lands and Investments Abbreviation: OSLI Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82001...

  14. Albany County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    The University of Wyoming Registered Energy Companies in Albany County, Wyoming Blue Sky Batteries Inc Blue Sky Group Inc Nanomaterials Discovery Corporation NDC Places in...

  15. Wyoming State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Office Jump to: navigation, search Name: Wyoming State Historic Preservation Office Abbreviation: SHPO Address: 2301 Central Avenue Place: Cheyenne, Wyoming...

  16. Wyoming Game and Fish Department | Open Energy Information

    Open Energy Info (EERE)

    Game and Fish Department Jump to: navigation, search Name: Wyoming Game and Fish Department Abbreviation: WGFD Address: 5400 Bishop Boulevard Place: Cheyenne, Wyoming Zip: 82006...

  17. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves ... AM" "Back to Contents","Data 1: Wyoming Crude Oil + Lease Condensate Proved Reserves ...

  18. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  19. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  20. Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBRI...

  1. Jackson, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jackson, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4799291, -110.7624282 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Wyoming/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program...

  3. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Wyoming Infrastructure Authority Abbreviation: WIA Address: 200 E. 17th Street, Unit B Place: Cheyenne, WY Zip: 82001 Year Founded: 2004 Phone Number: (307) 635-3573...

  4. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. Riverton, Wyoming, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    The former Riverton, Wyoming, Processing Site is in Fremont County, 2 miles southwest of the town of Riverton and within the boundaries of the Wind River Indian Reservation ...

  7. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  8. Alternative Fuels Data Center: Wyoming Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Wyoming Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Wyoming

  9. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  10. Wyoming Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wyoming Primary Renewable Energy Capacity Source Wind ... Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood...Landfill Gas - - Other Biomass - - - No data reported. ...

  11. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

  12. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Cheyenne, Wyoming Zip: 82009 Phone Number: 777-4486 Website: www.dot.state.wy.ushome.html This article is a stub. You can help OpenEI by expanding it. References Retrieved from...

  13. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-Based Wildlife Mitigation in Wyoming Abstract Covers the basics of mitigation...

  14. Vista West, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Vista West is a census-designated place in Natrona County, Wyoming. It falls under Wyoming's...

  15. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Butte is a census-designated place in Natrona County, Wyoming. It falls under Wyoming's...

  16. Wyoming Game and Fish Department Geospatial Data | Open Energy...

    Open Energy Info (EERE)

    Wyoming Game and Fish Department Geospatial Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Wyoming Game and Fish Department Geospatial DataInfo...

  17. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  18. Western Wind and Solar Integration Study: Executive Summary | Department of

    Energy Savers [EERE]

    Energy Western Wind and Solar Integration Study: Executive Summary Western Wind and Solar Integration Study: Executive Summary This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming. PDF icon western_wind_solar_integration More Documents & Publications Eastern Wind Integration and

  19. Western Kentucky thrives

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2005-10-01

    Independents and big boys struggle to keep up with increasing demand and a lack of experienced workers in the Illinois Basin. This is the second of a two part series reviewing the coal mining industry in the Illinois Basin which also includes Indiana and Western Kentucky. It includes a classification/correction to Part 1 of the article published in the September 2005 issue (see Coal Abstracts Entry data/number Dec 2005 00204). 4 photos.

  20. Wyoming Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 1 0 216 856 380 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Wyoming Shale Gas Proved Reserves, Reserves

  1. Wyoming Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 7...

  2. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  3. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wyoming Regions Wyoming Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School ...

  4. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  5. Montana Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Montana Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 785 656 622 631 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Montana-Wyoming

  6. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  7. South Park, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501, -110.793261 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Chapter 1 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    of the Wyoming Public Service Commission Regulations: Rules of Practice and Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  9. Chapter 9 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    9 of the Wyoming Public Service Commission Regulations: General Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  10. Wyoming Department of State Parks and Cultural Resources and...

    Open Energy Info (EERE)

    and Historic Sites - Rules and Regulations, Chapter 1Legal Abstract This chapter sets forth the rules and regulations of the Wyoming Department of State Parks and Cultural...

  11. Chapter 2 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    2 of the Wyoming Public Service Commission Regulations: General Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  12. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  13. Weston County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weston County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9270224, -104.4723301 Show Map Loading map... "minzoom":false,"mappi...

  14. Greater Sage-Grouse Populations and Energy Development in Wyoming...

    Open Energy Info (EERE)

    development affects greater sage-grouse populations in Wyoming. Authors Renee C. Taylor, Matthew R. Dzialak and Larry D. Hayden-Wing Published Taylor, Dzialak and...

  15. Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248, -110.79844 Show Map Loading map... "minzoom":false,"mapping...

  16. Wyoming Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    in 1973 after passage of the Environmental Quality Act. DEQ contributes to Wyoming's quality of life through a combination of monitoring, permitting, inspection, enforcement...

  17. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. RAPID/BulkTransmission/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    infrastructure to facilitate the consumption of Wyoming energy in the form of wind, natural gas, coal and nuclear, where applicable." WIA can participate in planning, financing,...

  19. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  20. Rules and Regulations of the Wyoming Industrial Siting Council...

    Open Energy Info (EERE)

    Document- RegulationRegulation: Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 1Legal Abstract Industrial development information and siting rules and...

  1. Rules and Regulations of the Wyoming Industrial Siting Council...

    Open Energy Info (EERE)

    Document- RegulationRegulation: Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 2Legal Abstract Rules of practice and proceedures of the Industrial Siting...

  2. Wyoming's At-large congressional district: Energy Resources ...

    Open Energy Info (EERE)

    River Energy Corporation Retrieved from "http:en.openei.orgwindex.php?titleWyoming%27sAt-largecongressionaldistrict&oldid184571" Feedback Contact needs updating Image...

  3. Guide to Permitting Electric Transmission Lines in Wyoming |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guide to Permitting Electric Transmission Lines in WyomingPermitting...

  4. Wyoming Department of Environmental Quality Website | Open Energy...

    Open Energy Info (EERE)

    Quality Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Wyoming Department of Environmental Quality Website Abstract This page links to...

  5. Bar Nunn, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nunn, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9135767, -106.3433606 Show Map Loading map... "minzoom":false,"mappingservice...

  6. Wyoming Department of State Parks and Cultural Resources | Open...

    Open Energy Info (EERE)

    Cultural Resources Jump to: navigation, search Name: Wyoming Department of State Parks and Cultural Resources Abbreviation: SPCR Address: 2301 Central Avenue Place: Cheyenne,...

  7. Wyoming Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are ...

  8. Casper Mountain, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Casper Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199, -106.3266921 Show Map Loading map... "minzoom":false,"map...

  9. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 48,119 100.0 Total Renewable Net Generation 4,271 8.9

  10. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7986,100 "Total Net Summer Renewable Capacity",1722,21.6 " Geothermal","-","-" " Hydro Conventional",307,3.8 " Solar","-","-"

  11. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  12. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  13. Wyoming coal mining. A wage and employment survey, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    The Wyoming Department of Labor and Statistics initiated a wage and employment survey of the State's coal mining industry during the first quarter of 1982. The survey was designed to update the statistics obtained in the 1979 survey of Wyoming's coal mines. Specifically, data were collected to: (1) estimate the number of workers in selected occupational categories; (2) determine the average straight-time hourly wage in each occupational category; (3) determine the number of workers covered by a collective bargaining agreement in each occupational category; (4) review the employer contributions to employee fringe benefit programs; (5) establish bench mark data for Wyoming's underground coal mines.

  14. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  15. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  16. Park County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park County is a county in Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE...

  17. Johnson County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Wyoming. Its FIPS County Code is 019. It is classified as...

  18. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  19. Big Horn County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Horn County is a county in Wyoming. Its FIPS County Code is 003. It is classified as...

  20. Campbell County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in Wyoming. Its FIPS County Code is 005. It is classified as...

  1. Wyoming Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    Rules of Civil Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Wyoming Rules of Civil ProcedureLegal Abstract...

  2. Lower Valley Energy Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc Place: Wyoming Phone Number: 800 882 5875 Website: www.lvenergy.com Facebook: https:www.facebook.comLowerValleyEnergy Outage Hotline: 800 882 5875 References:...

  3. City of Powell, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Powell Place: Wyoming Phone Number: (307) 754-9537 Website: www.cityofpowell.comassetspa Outage Hotline: (307) 754-9537 References: EIA Form EIA-861 Final Data File for 2010 -...

  4. Market-based Wildlife Mitigation in Wyoming: A Primer | Open...

    Open Energy Info (EERE)

    A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-based Wildlife Mitigation in Wyoming: A Primer Abstract Covers the basics of...

  5. Hot Springs County, Wyoming: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hot Springs County is a county in Wyoming. Its FIPS County Code is 017. It is classified as...

  6. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. Carbon County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Wyoming. Its FIPS County Code is 007. It is classified as ASHRAE...

  8. Airport Road, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Airport Road is a census-designated place in Washakie County, Wyoming. It falls under...

  9. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  10. Wyoming Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087

  11. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  12. Wyoming Interagency Spatial Database & Online Management | Open...

    Open Energy Info (EERE)

    Western Governors' Association, WY Game and Fish Department, WY Geographic Information Science Center (WyGISC), WY Natural Diversity Database, The Nature Conservancy, WY Department...

  13. Wyoming/Transmission | Open Energy Information

    Open Energy Info (EERE)

    Lower Valley Energy, High West Energy, Western Area Power Administration, Bonneville Power Administration, Tri-State Generation and Transmission Association, Inc., and Rocky...

  14. Environmental assessment: Warren Air Force Base 115-kV transmission line, Cheyenne, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1986-03-01

    The Western Area Power Administration (Western), is propsoing to construct a new electrical tranmission line and substation in southeastern Wyoming. This proposed line, called the Warren Air Force Base Tranmission Line, will supply power for Western's system to Francis E.Warren Air Force Base (F.E. Warren AFB) near Cheyenne. It would allow for increased tranmission capacity to the air base. F.E. Warren AFB currently is served electrically be Western via a 13.8-kv line. It is a wood-pole, double-circuit line without an overhead ground wire, which extends from Western's Cheyenne Substation, through an urban area, and onto the air base. The Cheyenne Substation is located on the south side of the city of Cheyenne. The electrical load on the base is increasing from 4 megawatts (MW) to 11 or 12 MW, an approximate three-fold increase. Voltage problems occasionally occur at the base due to the present electrial loads and to the age and inadequacy of the 13.8-kv line, which was placed in service in 1941. The existing line has served beyond its designed service life and requires replacement. Replacement would be necessary even without an increasing load. F.E. Warren AFB has several new and expanding programs, including additional housing, shopping centers, and the Peacekeeper Missile Program. Part of this expansion already has occured; the remainder is expected by early 1988. This expansion has created the need for additional electrical service. The present 13.8-kV line is not capable of supporting the additional load. 28 refs., 4 figs., 2 tabs.

  15. Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 285 1980's 341 384 2000's 1,032 1,121 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Wyoming Natural Gas Liquids Proved

  16. Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,780 1,845 772 333 865 139 3,239 337 286 174 2010's 1,278 1,145 536 695 3,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Wyoming Dry Natural Gas

  17. Wyoming coal mining: a wage and employment survey, 1984

    SciTech Connect (OSTI)

    Wessel, L.E.

    1984-05-01

    The Wyoming Department of Labor and Statistics initiated a wage and employment survey of the State's coal mining industry during the first quarter of 1984. The survey was designed to update the statistics obtained in the 1982 survey of Wyoming's coal mines. Specifically, data were collected to: (1) estimate the number of workers in selected occupational categories; (2) determine the average straight-time hourly wage in each occupational category; (3) determine the number of workers covered by a collective bargaining agreement in each occupational category; and (4) review the employer contributions to employee fringe benefit programs. 11 references, 5 figures, 6 tables.

  18. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  20. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming

  1. Cumulative hydrologic impact assessments on surface-water in northeastern Wyoming using HEC-1; a pilot study

    SciTech Connect (OSTI)

    Anderson, A.J.; Eastwood, D.C.; Anderson, M.E.

    1997-12-31

    The Surface Mining Control and Reclamation Act of 1977 requires that areas in which multiple mines will affect one watershed be analyzed and the cumulative impacts of all mining on the watershed be assessed. The purpose of the subject study was to conduct a cumulative hydrologic impact assessment (CHIA) for surface-water on a watershed in northeastern Wyoming that is currently being impacted by three mines. An assessment of the mining impact`s affect on the total discharge of the watershed is required to determine whether or not material damage to downstream water rights is likely to occur as a result of surface mining and reclamation. The surface-water model HEC-1 was used to model four separate rainfall-runoff events that occurred in the study basin over three years (1978-1980). Although these storms were used to represent pre-mining conditions, they occurred during the early stages of mining and the models were adjusted accordingly. The events were selected for completeness of record and antecedent moisture conditions (AMC). Models were calibrated to the study events and model inputs were altered to reflect post-mining conditions. The same events were then analyzed with the new model inputs. The results were compared with the pre-mining calibration. Peak flow, total discharge and timing of flows were compared for pre-mining and post-mining models. Data were turned over to the State of Wyoming for assessment of whether material damage to downstream water rights is likely to occur.

  2. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Great Basin Oil and Gas Fields 2004 BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are

  3. Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet

    SciTech Connect (OSTI)

    2011-05-10

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  4. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  5. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect (OSTI)

    Keyser, D.; Lantz, E.

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  6. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov, Oleg 01 COAL, LIGNITE, AND PEAT Under the cooperative agreement program of DOE and funding from...

  7. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology... Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal ...

  8. Moving to the Powder River Basin in search of the American dream

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-03-15

    As the Big Three American automakers cut jobs in Michigan, Wyoming's booming but isolated coal mining industry in the Powder River Basin is trying to lure some of these dissatisfied workers. DRM has attracted workers to the benefaction plant and P & H MinePro Services working on surface mining equipment has been successful, as have Peabody's Powder River coal subsidiary and Kiewitt's Buckshin mine. 2 photos.

  9. Eolian evidence for climatic fluctuations during the Late Pleistocene and Holocene in Wyoming

    SciTech Connect (OSTI)

    Gaylord, D.R.

    1985-01-01

    Evaluation of eolian features, particularly sand dunes, in the Ferris-Lost Solider area of south-central Wyoming demonstrates the dynamic character of late Pleistocene and Holocene climatic fluctuations in a high altitude, intermontane basin. Directly- and indirectly-dated stratigraphic, sedimentary, and geomorphic evidence documents recurrent late Quaternary eolian activity as well as the timing and severity of episodic aridity during the Altithermal. Eolian activity in the Ferris-Lost Solider area began under cool and arid conditions by the late Pleistocene. Radiocarbon-dated dune and interdune strata reveal that Holocene sand dune building at Ferris-Lost Solider peaked between ca. 7660 and 4540 years b.p. The first phase of dune building was the most extensive and lasted until ca. 6460 years b.p. Warm, persistently arid conditions during this time favored active dunes with slipfaces, even in historically well-vegetated locales subject to high water tables. Increased effective moisture from ca. 6460 to 5940 years b.p. promoted dune stabilizing vegetation; but renewed dune building, lasting until ca. 4540 years b.p., followed this climatic moderation. Subsequent dune and interdune deposits reveal a return to climatic conditions where only sporadic and localized dune reactivations have interrupted overall dune stability. The most significant recent reactivation, probably associated with a regional decrease in effective moisture, occurred ca. 290 years b.p.

  10. Parana basin

    SciTech Connect (OSTI)

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  11. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  12. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,720 2,026 850 406 811 470 3,372 647 170 54 2010's 1,308 1,205 619 679 4,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  15. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -3 53 -284 1980's 918 -1,083 10 -206 -37 -331 -93 38 -285 160 1990's -629 445 568 -113 -31 -38 -122 207 -76 171 2000's -20 306 164 132 50 115 36 -6 27 1,158 2010's 521 -209 692 2,058 -1,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  17. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 855 2010's 823 919 932 955 1,137 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  18. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 31 52 2000's 63 74 69 61 45 249 258 208 162 144 2010's 152 188 233 219 362 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  19. Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 211 234 272 2010's 256 259 226 232 184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved

  20. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  1. Wyoming Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",843,729,835,967,1024 "Solar","-","-","-","-","-" "Wind",759,755,963,2226,3247 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  2. Wyoming Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural Gas",501,594,495,488,459 " Other Gases",310,312,289,284,279 "Nuclear","-","-","-","-","-" "Renewables",1602,1484,1798,3193,4271 "Pumped

  3. History of western oil shale

    SciTech Connect (OSTI)

    Russell, P.L.

    1980-01-01

    The history of oil shale in the United States since the early 1900's is detailed. Research on western oil shale probably began with the work of Robert Catlin in 1915. During the next 15 years there was considerable interest in the oil shales, and oil shale claims were located, and a few recovery plants were erected in Colorado, Nevada, Utah, Wyoming, and Montana. Little shale soil was produced, however, and the major oil companies showed little interest in producing shale oil. The early boom in shale oil saw less than 15 plants produce a total of less than 15,000 barrels of shale oil, all but about 500 barrels of which was produced by the Catlin Operation in Nevada and by the US Bureau of Mines Rulison, Colorado operation. Between 1930 and 1944 plentiful petroleum supplies at reasonable prices prevent any significant interest in shale oil, but oil shortages during World War II caused a resurgence of interest in oil shale. Between 1940 and 1969, the first large-scale mining and retorting operations in soil shale, and the first attempts at true in situ recovery of shale oil began. Only 75,000 barrels of shale oil were produced, but major advancements were made in developing mine designs and technology, and in retort design and technology. The oil embargo of 1973 together with a new offering of oil shale leases by the Government in 1974 resulted in the most concentrated efforts for shale oil production to date. These efforts and the future prospects for shale oil as an energy source in the US are discussed.

  4. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  5. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  6. EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

  7. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  9. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood

    Broader source: Energy.gov [DOE]

    A team representing two Federal agencies—the U.S. Department of Energy (DOE) Office of Legacy Management and the U.S. Geological Survey—is evaluating redistribution of contaminants at the Riverton, Wyoming, Processing Site

  10. Wyo. Stat. 35-12-101 et seq.: The Wyoming Industrial Development...

    Open Energy Info (EERE)

    35-12-101 et seq.: The Wyoming Industrial Development Information and Siting Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  11. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  12. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  13. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  14. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,540 2,297 2,371 2,759 2,085 2,446 2,448 2,738 2,781 2,328 2010's 2,683 2,539 1,736 1,810 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved

  16. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  17. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 165 492 648 1980's 683 541 546 503 634 391 2,354 425 617 619 1990's 543 893 437 523 1,026 505 569 1,368 1,774 2,910 2000's 753 1,488 1,161 2,704 3,586 1,822 2,281 1,818 4,383 3,535 2010's 5,540 3,033 6,715 1,737 6,530 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 220 637 1980's 760 749 632 1,205 553 598 1,631 771 1,410 1,237 1990's 743 934 996 907 1,146 2,369 1,193 1,191 1,918 3,857 2000's 1,339 1,860 1,295 2,072 2,853 2,160 1,339 4,832 5,316 5,281 2010's 4,880 3,271 1,781 3,800 2,235 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 124 222 518 373 271 316 339 303 291 167 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  1. Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,438 18,274 17,619 16,966 25,122 23,252 20,541 1990's 29,233 20,988 27,382 7,592 4,676 4,570 4,252 4,099 3,477 3,125 2000's 3,236 4,032 4,369 4,590 4,823 5,010 5,279 33,309 35,569 36,290 2010's 34,459 39,114 33,826 32,004 21,811 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  5. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 27,935 25,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Wyoming Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Wyoming Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100,950 109,188 96,726 2000's 101,314 98,569 112,872 115,358 107,060 108,314 108,481 140,912 142,705 142,793 2010's 150,106 156,455 153,333 149,820 135,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  7. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760

  8. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,540 2,297 2,371 2,759 2,085 2,446 2,448 2,738 2,781 2,328 2010's 2,683 2,539 1,736 1,810 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed

  9. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,305 7,211 7,526 1980's 9,100 9,307 9,758 10,227 10,482 10,617 9,756 10,023 10,308 10,744 1990's 9,944 9,941 10,826 10,933 10,879 12,166 12,320 13,562 13,650 14,226 2000's 16,158 18,398 20,527 21,744 22,632 23,774 23,549 29,710 31,143 35,283 2010's 35,074 35,290 30,094 33,618 27,553 - = No Data

  10. Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's

  11. Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266

  12. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect (OSTI)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  13. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  14. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  15. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  16. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    p q - o o f - - 2 3 - % 8 Overview of the Structural Geology and Tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico T ...

  17. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  18. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  19. Western Interconnection Synchrophasor Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...

  20. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 2 1 2 2 2 2 2 2 2 2 2 2 2012 2 2 2 2 2 2 2 2 2 2 2 2 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 2 2 2 2 2 2 2 2 2 2 2 2 2016 2 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.66 5.74 5.66 4.62 5.34 5.24 5.56 6.30 6.17 2000's

  1. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 1,031 1,031 1,030 1,033 1,036 2015 1,043 1,041 1,042 1,043 1,045 1,045 1,042 1,044 1,041 1,040 1,046 1,054 2016 1,056 1,052

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  2. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,993 11,390 12,540 1970's 12,863 12,802 16,228 16,093 14,072 13,224 14,669 15,625 14,363 14,056 1980's 13,582 15,160 15,482 19,668 29,169 31,871 25,819 24,827 29,434 29,247 1990's 28,591 31,470 31,378 29,118 33,486 36,058 48,254 49,333 44,358 50,639 2000's 65,085 65,740 74,387 69,817 70,831 67,563 67,435

  4. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808 83,269 82,768 83,325 84,578 85,786 88,481 93,162 94,241 91,519 89,490 1991 88,736 88,074 88,116 88,232 88,856 90,844 93,067 94,814 95,931 96,017 94,024 91,897 1992 89,501 87,487 86,672 86,591 86,973 87,552 88,718 88,823 89,685 88,636 86,873 83,311 1993 79,912 77,520 77,152 77,647 78,635 80,704 82,755 84,356 85,549

  5. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  6. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  7. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  8. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ,v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ <p< ^^i~oeii ^' Western Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's

  9. CEMI Western Regional Summit

    Broader source: Energy.gov [DOE]

    Please Join Assistant Secretary of Energy Dr. David Danielson for the Clean Energy Manufacturing Initiative's Western Regional Summit. Register now for this free event.

  10. CX-008786: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lovell, Basin, and Buffalo Bill Substations, Control Building Rehabilitation Projects Big Horn and Park Counties, Wyoming CX(s) Applied: B1.3, B1.4 Date: 07/02/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H.; Boswell, R.

    1993-12-31

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  12. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  13. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  14. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  15. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    et al., 2004). In addition, we have created contoured crustal thickness maps based on literature cited from the comprehensive Braile et al. (1989) study. These maps provide a...

  16. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L.

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  17. Secretary Moniz to Discuss Western Energy Landscape at Western...

    Broader source: Energy.gov (indexed) [DOE]

    -586-4940 Secretary Moniz to Discuss Western Energy Landscape at Western Governors' Association Annual Meeting WASHINGTON - On Saturday, December 6, U.S. Secretary of Energy Ernest...

  18. Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-00-005 RPT(TWP)-010.006 LA-UR-004434 Tropical Western Pacific Site Science Mission Plan July - December 2000 Prepared for the U.S. Department of Energy under Contract W-7405-ENG-36 Tropical Western Pacific Project Office Atmospheric and Climate Sciences Group (EES-8) Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 This report and previous versions are available electronically at the following web sites:

  19. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  20. Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesTropical Western Pacific TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Tropical Western Pacific-Inactive Manus, Papua New Guinea: 2° 3' 39.64" S, 147° 25' 31.43" E Nauru Island: 0° 31' 15.6" S, 166° 54' 57.60" E Darwin, Australia: 12° 25' 28.56" S,

  1. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    SciTech Connect (OSTI)

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

  2. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  3. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  4. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  5. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  6. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  7. Paleogeographic and structural setting of Miocene strata in central western Nevada

    SciTech Connect (OSTI)

    Stewart, J.H. )

    1993-04-01

    Late Cenozoic sedimentary rocks as old as 19 Ma are widely distributed in central western Nevada. They are greatly more abundant than older Cenozoic strata and are commonly interpreted to have formed in fault-bounded basins that mark the onset of widespread extension in the Basin and Range Province. Miocene strata are largely coeval with a magmatic arc that extended south southeast near the boundary of the Basin and Range and Sierra Nevada Provinces. This arc produced voluminous andesitic flows and lahars that locally interfinger with the Miocene strata. Miocene depositional basins apparently varied greatly in size. The largest that can be defined clearly is the Esmeralda Basin that was at least 65 km long and 45 km wide. Other basins may have been larger but are difficult to reconstruct; still other basins may be small and isolated, particularly within the magmatic arc. Lacustrine deposits and minor interfingering deltaic and distal fluvial units predominate; near-source, coarse alluvial-fan and megabreccia landslide deposits are locally conspicuous. coarse near-source deposits, particularly landslide deposits, are interpreted to be adjacent to basin-bounding normal faults. The Esmeralda, Coal Valley, and Gabbs Valley-Stewart Valley-Tonopah Basins are interpreted to be related to large-scale Miocene extension. Other basins may be (1) pull-apart structures related to strike-slip faults, (2) downdropped blocks in areas of cross-cutting normal and/or strike-slip faults related to changes in the extension direction or (3) grabens or half-grabens related to uniform extension. Younger Cenozoic basins, including present-day basins, overprint and cut across the Miocene basins.

  8. Western Gulf Coast Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsWestern Gulf Coast Analysis content top Western Gulf Coast Analysis One focus area for NISAC is the importance of local and regional infrastructures-understanding their interactions and importance to our overall national economic health. In 2004 and 2005, NISAC evaluated the western Gulf Coast region. NISAC developed a National Petroleum System Simulator to evaluate the potential short-term effects of disruptions in the western Gulf Coast petroleum infrastructure operations on the rest of

  9. Western Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Western Power Corporation Place: Perth, Western Australia, Australia Zip: 6000 Product: Western Australian electricity provider. Coordinates: -31.95302, 115.857239 Show Map...

  10. Case Study - Western Electricity Coordinating Council

    Energy Savers [EERE]

    Smart Grid Strategy for Assuring Reliability of the Western Grid The Western Electricity ... and promoting bulk electric system reliability in the Western Interconnection. ...

  11. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  13. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect (OSTI)

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  14. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  15. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect (OSTI)

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  16. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  17. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  18. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Wyoming Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. ,"Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290wy2m.xls"

  5. ,"Wyoming Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Wyoming Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. New interpretations of Paleozoic stratigraphy and history in the northern Laramie Range and vicinity, Southeast Wyoming

    SciTech Connect (OSTI)

    Sando, W.J.; Sandberg, C.A.

    1987-01-01

    Biostratigraphic and lithostratigraphic studies of the Paleozoic sequence in Southeast Wyoming indicate the need for revision of the ages and nomenclature of Devonian, Mississippian, and Pennsylvanian formations. The Paleozoic sequence begins with a quartzarenite of Devonian age referred to the newly named Fremont Canyon Sandstone, which is overlain by the Englewood Formation of Late Devonian and Early Mississippian age. The Englewood is succeeded by the Madison Limestone of Early and Late Mississippian age, which is overlain disconformably by the Darwin Sandstone Member (Pennsylvanian) of the Casper and Hartville formations. This sequence represents predominantly marine deposition in near-shore environments marginal to the ancient Transcontinental Arch.

  11. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 391 332 123 1980's 130 287 85 42 27 87 17 5 9 2 1990's 4 16 6 0 17 21 0 39 7 18 2000's 8 44 15 32 8 11 2 2 1 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. Wyoming Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  13. Wyoming Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " Coal",5847,5847,5932,5929,6035 " Petroleum",6,7,7,7,7 " Natural Gas",160,120,120,120,120 " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" "Renewables",590,590,983,1408,1722 "Pumped

  14. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  15. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  16. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Broader source: Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  17. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  18. Western Power Customer Services Manager

    Broader source: Energy.gov [DOE]

    This position is located in the Western Power Services organization (PSW) of Northwest Requirements Marketing, Power Services, and Bonneville Power Administration (BPA). Northwest (NW) Requirements...

  19. Western Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine Jump to: navigation, search Name: Western Turbine Place: Aurora, Colorado Zip: 80011 Sector: Wind energy Product: Wind Turbine Installation and Maintainance. Coordinates:...

  20. Western Solargenics | Open Energy Information

    Open Energy Info (EERE)

    Solargenics Place: Coquitlam, British Columbia, Canada Zip: V3J 2L7 Sector: Solar, Wind energy Product: Subsidiary firm of Western Wind, to develop solar projects in...

  1. Flow of formation waters in the cretaceous-miocene succession of the Llanos basin, Colombia

    SciTech Connect (OSTI)

    Villegas, M.E.; Ramon, J.C.; Bachu, S.; Underschultz, J.R.

    1994-12-01

    This study presents the hydrogeological characteristics and flow of formation waters in the post-Paleozoic succession of the Llanos basin, a mainly siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyanan Precambrian shield. The porosity of the sandy formations is generally high, in the range of 16-20% on average, with a trend of decreasing values with depth. Permeabilities are also relatively high, in the 10{sup 2} and 10{sup 3} md range. THe salinity (total dissolved solids) of formation waters is generally low, in the 10,000-20,000 mg/L range, suggesting that at least some strata in the basin have been flushed by metoeoric water. The shaly units in the sedimentary succession are weak aquitards in the eastern and southern parts of the basin, but are strong in the central-western part. The pressure in the basin is close to or slightly subdepth, particularly in the central-western area. The flow of formation waters in the upper units is driven mainly by topography from highs in the southwest to lows in the northeast. Local systems from the foothills and from local topographic highs in the east feed into this flow system. The flow of formation waters in the lower units is driven by topography only in the southern, eastern, and northern parts of the basin. In the central-western part, the flow is downdip toward the thrust-fold belt, driven probably by pore-space rebound induced by erosional unloading, which also is the cause of underpressuring. Hydrocarbons generated in the Cretaceous organic-rich, shaly Gacheta Formation probably have migrated updip and to the north-northeast, driven by buoyancy and entrained by the topography-driven flow of formation waters in Cretaceous-Oligocene strata in the central-western part of the basin could have created conditions for hydrodynamic entrapment of hydrocarbons.

  2. Valve, compressor contracts awarded for Western Hemisphere projects

    SciTech Connect (OSTI)

    1998-01-19

    Major valve and compressor contracts have been let for projects in the Western Hemisphere. Petrobras has awarded Nuovo Pignone, Florence, a $10.5 million contract to supply 400 valves for the 1,975-mile natural-gas pipeline being constructed from Bolivia into Brazil. Additionally, Brazilian company Maritima Petroleo and TransCanada PipeLines Ltd., Calgary, have awarded Nuovo Pignone separate contracts to supply turbocompressor packages. The Brazilian contract is for offshore Campos Basin; the Canadian, for a major expansion of TCPL`s system delivering natural gas out of Alberta. The paper discusses the Bolivia-Brazil pipeline, compressor orders, and the companies.

  3. Wyoming Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Wyoming Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 7 1990's 21 89 160 207 358 632 1,370 1,705 987 1,070 2000's 974 1,291 5,338 4,824 4,816 4,657 4,963 4,788 3,501 3,581 2010's 3,857 4,210 3,920 4,456 4,772 - = No Data Reported; -- = Not Applicable;

  4. Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.66 5.74 5.66 4.62 5.34 5.24 5.56 6.30 6.17 2000's 5.17 8.55 6.84 7.83 8.75 9.48 10.81 5.79 6.51 5.79 2010's 10.08 11.96 14.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  5. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219

  6. Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa

    SciTech Connect (OSTI)

    Tiercelin, J.J.; Lezzar, K.E. ); Richert, J.P. )

    1994-07-01

    Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

  7. Tropical Western Pacific CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific CART Site This month we will visit an ARM CART site with a pleasant climate: the Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. The TWP locale lies between 10 degrees North latitude and 10 degrees South latitude and extends from Indonesia east- ward beyond the international date line (Figure 1). This area was selected because it is in and around the Pacific warm pool, the area of warm sea- surface temperatures that determine El

  8. Basin development, petrology, and paleogeography - Early Permian carbonates, northwestern Bolivia

    SciTech Connect (OSTI)

    Canter, K.L.; Isaacson, P.E. )

    1990-05-01

    Early Permian carbonate rocks of the Yaurichambi Formation in northwestern Bolivia demonstrate in-situ, low-paleolatitude development within a complexly interbedded sequence punctuated by siliciclastics apparently derived from a western source. The Yaurichambi Formation (Copacabana Group) occurs above a regional caliche surface that caps Upper Carboniferous quartzarenites. Lower beds of the formation are characterized by interbedded carbonate and quartz-rich lithologies. This interval is gradationally overlain by a shallowing-upward, carbonate-dominated sequence. Mud-rich wackestones and packstones grade upward to bioclastic packstones and grainstones. Common allochems in bioclastic-rich lithologies include echinoderms, brachiopods, fenestrate bryozoans, intraclasts, and less common corals. Uppermost beds contain abundant siliciclastic interbeds. Where exposed, this carbonate sequence is terminated by the Tiquina Sandstone. Permian rocks were deposited in a northwest-southeast-oriented basin. Siliciclastic flooding from the western and southwestern margin of the basin dominated throughout the Carboniferous and occurred intermittently during the Permian, with apparent shallowing to the south. A low-latitude paleogeographic setting for these rocks is indicated by the carbonate lithologies dominating the Lower Permian sequence. Sedimentary and diagenetic features diagnostic of semi-arid warm-water deposition include penecontemporaneous dolomites, fenestral fabric, and calcretes. Furthermore, the faunas are similar to those found in equivalent strata of the Permian basin area of west Texas, indicating that deposition occurred at relatively low latitudes.

  9. Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

    SciTech Connect (OSTI)

    Haase, S.; Billman, L.; Gelman, R.

    2012-01-01

    The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

  10. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  11. Case Western University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name Case Western University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  12. Western Area Power Administration | Open Energy Information

    Open Energy Info (EERE)

    Western Area Power Administration Jump to: navigation, search Name: Western Area Power Administration Place: Colorado Phone Number: 720-962-7000 Website: ww2.wapa.govsites...

  13. Western Electricity Coordinating Council Smart Grid Project ...

    Open Energy Info (EERE)

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 Western Electricity Award2 Western Electricity Coordinating Council, located in Salt Lake City, Utah,...

  14. Western Cooling Efficiency Center | Open Energy Information

    Open Energy Info (EERE)

    Cooling Efficiency Center Jump to: navigation, search Name: Western Cooling Efficiency Center Place: Davis, CA Website: http: References: Western Cooling Efficiency Center 1...

  15. Western Area Power Administration's Control and Administration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Alert Western Area Power Administration's Control and Administration of ... THE ADMINISTRATOR, WESTERN AREA POWER ADMINISTRATION FROM: Gregory H. Friedman Inspector ...

  16. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  17. The petroleum geologic characteristics of Sichuan basin, central China

    SciTech Connect (OSTI)

    Sheng, Li De )

    1991-03-01

    Sichuan basin is the main gas producer of China. It covers an area of 230,000 km{sup 2}. The evolution of this basin since Meso-Cenozoic was influenced by both trans-Eurasia Tethys tectonism from the west and the circum-Pacific tectonism from the east. So it has dual characteristics, compressional and tensional. The northward-moving Indian Plate resulted in a series of thrust fault zones along the Longmenshan western margin of Sichuan basin. Jurassic oil pools and Triassic, Permian, Carboniferous, and Sinian gas pools are present, where a series of box-like anticlines, comblike anticlines, and gentle slope dome anticlines, and gentle slope dome anticline, carbonate reef buildups are the main trap types. Significant role of fractures and caves of carbonate reservoir formations in Sichuan basin affects the production capacity of gas/oil wells and abundances of gas/oil reserves. Three-dimensional seismic methods are used to predict the unconformities and the paleokarst and fracture zones. Acidizing treatments were used for well completions.

  18. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  19. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power...

  20. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  1. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.

  3. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  4. Overview of Western's Interconnected Bulk Electric System

    Energy Savers [EERE]

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  5. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  6. Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205 31,205 31,205 31,353 31,205 31,501 31,638 31,735 31,754 30,652 30,652 1991 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 1992 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,127 59,382 1993 59,382 59,382 59,382 59,382 59,382 59,382 59,382 59,427 59,427 59,427

  7. EIS-0477: San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado

    Broader source: Energy.gov [DOE]

    The Department of the Interior’s Bureau of Land Management is preparing an EIS to evaluate the potential environmental impacts of a proposal to construct a 230-kilovolt transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado, to relieve transmission constraints, serve new loads, and offer economic development through renewable energy development in the San Juan Basin. DOE’s Western Area Power Administration is a cooperating agency; the proposed transmission line would require an interconnection with Western's Shiprock Substation, near Farmington, and a new Three Rivers Substation on Western's reserved lands.

  8. 2,"Laramie River Station","Coal","Basin Electric Power Coop"...

    U.S. Energy Information Administration (EIA) Indexed Site

    6,"Wyodak","Coal","PacifiCorp",332 7,"Top of the World Windpower Project","Wind","Duke Energy Top Of the World WindPower",200 8,"TransAlta Wyoming Wind","Wind","NextEra ...

  9. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  10. Structure and geologic history of late Cenozoic Eel River basin, California

    SciTech Connect (OSTI)

    Clarke, S.H. Jr.

    1988-03-01

    The Eel River basin formed as a late Cenozoic forearc basin floored by late Mesozoic and early Cenozoic allochthonous terranes (central and coastal belts of the Franciscan complex). Regionally, basement rocks are unconformably overlain on land by a sedimentary sequence as much as about 4200 m thick that comprises the Bear River Formation (early and middle Miocene) and the Wildcat Group (late Miocene to middle Pleistocene) and offshore by broadly coeval upper Tertiary and Quaternary deposits as much as 3300 m thick. Offshore, the southern part of the basin is typified by the seaward extensions of youthful northeast-dipping thrust and reverse faults and northwest-trending anticlines. The latest period of deformation in this part of the basin began during the middle Pleistocene and probably reflects north-northwestward migration of the Mendocino triple junction and encroachment of the Pacific plate. Farther north, the western basin margin and adjacent upper continental slope are separated from the axial part of the offshore basin by a narrow zone of north-northwest-trending, right-stepping en echelon folds. These folds indicate that northeast-southwest compression characteristic of the southern part of the basin is accompanied toward the north by right-lateral shear between the accretionary complex to the west and the basin to the east. The northeastern margin of the offshore basin is cut by north to north-northwest-trending high-angle reverse faults that vertically offset basement rocks as much as 1300 m, west side down. These faults, which may merge northward, coincide with older terrane boundaries and locally show evidence of late Cenozoic reactivation with possible right-lateral slip.

  11. Savery Project, preference right coal lease applications, Carbon County, State of Wyoming, Moffat and Routt counties, State of Colorado

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    An abstract of the draft environmental impact statement (EIS) describes a rejected mining plan of the Gulf Oil Corp. to remove subsurface coal in Wyoming, with tunneling under the Little Snake River into Colorado. Rejection by the Federal Energy Regulatory Commission will permit competitive leasing on neighboring tracts, which would have become undervalued if the proposed plan were to proceed. This would have had negative economic and social impacts on the surrounding area. A negative impact from the rejection is the loss of employment and the unmined coal associated with the project. The Federal Coal Leasing Amendments Act of 1975 and the Mineral Leasing Act of 1920 provide legal mandates for the EIS.

  12. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  14. ,"Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  15. Western NY Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Western NY Energy LLC Place: Mount Morris, New York Zip: 14510 Product: Bioethanol producer. References: Western NY Energy LLC1 This article is a stub. You can help...

  16. Western Iowa Energy | Open Energy Information

    Open Energy Info (EERE)

    Western Iowa Energy Place: Iowa Product: Biodiesel producer which raised USD 22m from Iowa residents to construct a further plant at Wall Lake. References: Western Iowa Energy1...

  17. NorthWestern Energy | Open Energy Information

    Open Energy Info (EERE)

    Number: (800) 245-6977 Website: www.northernelectric.coop Twitter: @NorthWesternSD Facebook: https:www.facebook.comNorthWesternEnergy Outage Hotline: (800) 245-6977...

  18. Categorical Exclusion Determinations: Western Area Power Administration |

    Energy Savers [EERE]

    Department of Energy Administration Categorical Exclusion Determinations: Western Area Power Administration Categorical Exclusion Determinations issued by Western Area Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  19. Western Renewable Energy Generation Information System | Open...

    Open Energy Info (EERE)

    Renewable Energy Generation Information System Jump to: navigation, search Name: Western Renewable Energy Generation Information System Place: Sacramento, California Zip:...

  20. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  1. Case Study - Western Electricity Coordinating Council

    Energy Savers [EERE]

    Smart Grid Strategy for Assuring Reliability of the Western Grid The Western Electricity Coordinating Council (WECC) is the Regional Entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. WECC and its members manage the operation and planning of the vast interconnected transmission system connecting generators and loads across almost 1.8 million square miles of territory. The Western Interconnection Synchrophasor Program (WISP), led by

  2. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Hemisphere Oil Products Balance Ramón Espinasa, Ph.D. / Lead Specialist July 2014 The Energy Innovation Center Energy Division 3 The views expressed by the author do not reflect the views of the Inter- American Development Bank, its Management, its Board of Executive Directors or its member Governments. DISCLAIMER www.iadb.org Copyright © 2014 Interamerican Development Bank. All rights reserved; This document may be freely reproduced for non-commercial purposes. 4 United States Oil

  3. EA-098 Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-098 Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA- 98 Western Systems Power Pool More Documents & ...

  4. US Geological Survey publications on western tight gas reservoirs

    SciTech Connect (OSTI)

    Krupa, M.P.; Spencer, C.W.

    1989-02-01

    This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Trends Report Examines Effects of CBM Drilling in Powder River Basin. The Bureau of Land Managements (BLM) Wyoming Office and the Wyoming State Geological Survey released a...

  6. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  7. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  8. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  9. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  10. Stormwater detention basin sediment removal

    SciTech Connect (OSTI)

    Gross, W.E.

    1995-12-31

    In the past, stormwater runoff from landfills has been treated mainly by focusing on reducing the peak storm discharge rates so as not to hydraulically impact downstream subsheds. However, with the advent of stricter water quality regulations based on the Federal Clean Water Act, and the related NPDES and SPDES programs, landfill owners and operators are now legally responsible for the water quality of the runoff once it leaves the landfill site. At the Fresh Kills Landfill in New York City, the world`s largest covering over 2000 acres, landfilling activities have been underway since 1945. With the main objective at all older landfill sites having focused on maximizing the available landfill footprint in order to obtain the most possible airspace volume, consideration was not given for the future siting of stormwater basin structures. Therefore, when SCS Engineers began developing the first comprehensive stormwater management plan for the site, the primary task was to locate potential sites for all the stormwater basins in order to comply with state regulations for peak stormwater runoff control. The basins were mostly constructed where space allowed, and were sized to be as large as possible given siting and subshed area constraints. Seventeen stormwater basins have now been designed and are being constructed to control the peak stormwater runoff for the 25-year, 24-hour storm as required by New York State. As an additional factor of safety, the basins were also designed for controlled discharge of the 100-year, 24 hour storm.

  11. EA-98-F, Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F, Western Systems Power Pool EA-98-F, Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA-98-F, Western Systems ...

  12. EA-98-K Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K Western Systems Power Pool EA-98-K Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada. PDF icon EA-98-K Western Systems ...

  13. EA-98-G WESTERN SYSTEMS POWER POOL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G WESTERN SYSTEMS POWER POOL EA-98-G WESTERN SYSTEMS POWER POOL Order authorizing Western System Power Pool to export electric energy to Canada PDF icon EA-98-G WESTERN SYSTEMS ...

  14. EA-98-C Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C Western Systems Power Pool EA-98-C Western Systems Power Pool Order authorizing Western Systems Power Pool to export electricity to Canada PDF icon EA-98-C Western Systems Power ...

  15. EA-98-L Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L Western Systems Power Pool EA-98-L Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA-98-L Western Systems ...

  16. EA-098-D Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D Western Systems Power Pool EA-098-D Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA- 98-D Western Systems ...

  17. EA-98-H Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H Western Systems Power Pool EA-98-H Western Systems Power Pool Order Authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA-98-H Western Systems ...

  18. Source rock screening studies of Ordovician Maquoketa shale in western Illinois

    SciTech Connect (OSTI)

    Autrey, A.; Crockett, J.E.; Dickerson, D.R.; Oltz, D.F.; Seyler, B.J.; Warren, R.

    1987-09-01

    Rock-Eval (pyrolysis) studies of Ordovician Maquoketa Shale samples (cuttings and cores) from the shallow subsurface (500-800 ft deep) in western Illinois indicate that facies within the Maquoketa have potential as hydrocarbon source rocks. Dark, presumably organic-rich zones within the Maquoketa Shale were selected and analyzed for total organic carbon (TOC), Rock-Eval (pyrolysis), and bulk and clay mineralogy using x-ray diffraction. Preliminary results from six samples from Schuyler, McDonough, and Fulton Counties show TOC values ranging from 4.70% to as high as 12.90%. Rock-Eval parameters, measured by heating organic matter in an inert atmosphere, indicate source rock maturity and petroleum-generative potential. Screening studies, using the Rock-Eval process, describe very good source rock potential in facies of the Maquoketa Shale. Further studies at the Illinois State Geological Survey will expand on these preliminary results. This study complements a proposed exploration model in western Illinois and further suggests the possibility of source rocks on the flanks of the Illinois basin. Long-distance migration from more deeply buried effective source rocks in southern Illinois has been the traditional mechanism proposed for petroleum in basin-flank reservoirs. Localized source rocks can be an alternative to long-distance migration, and can expand the possibilities of basin-flank reservoirs, encouraging further exploration in these areas.

  19. Rhythmic bedding patterns for locating structural features, Niobrara Formation, United States western interior

    SciTech Connect (OSTI)

    Laferriere, A.P.; Hattin, D.E.

    1989-05-01

    Milankovitch-type bedding cycles are well developed in the Upper Cretaceous Fort Hays Limestone Member, Niobrara Formation. These time-equivalent cycles can be correlated across much of Colorado, Kansas, and northeastern New Mexico by combining subsurface and outcrop data. Documentation of thickness variations within the regionally persistent Fort Hays bedding sequences furnishes a basis for fine-scale analysis of Late Cretaceous crustal movements within the eastern ramp region of the Western Interior foreland basin. Regional thickness changes in groups of shale-limestone couplets were correlated and mapped in outcrop and in the subsurface to locate structural elements that influenced Fort Hays deposition. In the Denver-Julesburg basin of Colorado and western Kansas, up to 6.1 m (20 ft) of thinning of the section occurs dominantly along northeastwardly trending belts formed during Late Cretaceous reactivation of the Transcontinental arch. Mapping of these small-scale thickness changes in the Fort Hays demonstrates that Cretaceous reactivation of the Transcontinental arch was not restricted to the northern part of the Denver-Julesburg basin. Additional structures may occur as far south as the Colorado-New Mexico border. A northwestwardly thinning trend is also apparent and may have resulted from increased compaction and diagenesis, reduction of sediment input during transgression, or from uplift in the vicinity of the Colorado Front Range. 8 figures.

  20. EA-64 Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada PDF icon EA-64 Basin Electric Power Cooperative More Documents & Publications EA-64-A

  1. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada PDF icon EA-64-A Basin Electric Power Cooperative More Documents & Publications EA-64

  2. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect (OSTI)

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  3. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  4. EA-98-J Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J Western Systems Power Pool EA-98-J Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA-98-J Western Systems Power Pool More Documents & Publications EA-098 Western Systems Power Pool EA-98-I Western Systems Power Pool EA-98-K

  5. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Broader source: Energy.gov [DOE]

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Grand Coulee & Hungry Horse SCADA Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Valley load area is located in eastern Idaho and western Wyoming and includes Jackson, Wyoming as well as a number of smaller communities. Customers served are Lower...

  7. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  8. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  9. Clean Cities: Western Washington Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies where her studies focused on policies to stimulate the growth of renewable energy. 1904 Third Ave, Ste 105 Seattle, WA 98101 Western Washington Success Stories Watch...

  10. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  11. Western Plains Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Western Plains Energy LLC Place: Oakley, Kansas Zip: 67748 Product: Bioethanol producer using corn as feedstock Coordinates: 40.714855, -111.298899 Show Map...

  12. Western Iowa Power Coop | Open Energy Information

    Open Energy Info (EERE)

    Abbreviation: WIPCO Place: Iowa Phone Number: 515.276.5350 Website: www.wipco.com Facebook: https:www.facebook.compagesWestern-Iowa-Power-Co-Op160024430687171 Outage...

  13. ARM - Lesson Plans: Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  14. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  15. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  16. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins. Final report, June 1989--June 1991

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R&D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ``typical`` well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic.

  17. Western Resource Adequacy: Challenges - Approaches - Metrics | Department

    Energy Savers [EERE]

    of Energy Resource Adequacy: Challenges - Approaches - Metrics Western Resource Adequacy: Challenges - Approaches - Metrics West-Wide Resource Assessment Team. Committee on Regional Electric Power Cooperation. March 25, 2004 San Francisco, California PDF icon Western Resource Adequacy: Challenges - Approaches - Metrics More Documents & Publications Eastern Wind Integration and Transmission Study (EWITS) (Revised) Estimating the Benefits and Costs of Distributed Energy Technologies

  18. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  19. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  20. Stratigraphy and petroleum potential of Trout Creek and Twentymile sandstones (Upper Cretaceous), Sand Wash Basin, Colorado

    SciTech Connect (OSTI)

    Siepman, B.R.

    1985-05-01

    The Trout Creek and Twentymile Sandstones (Mesaverde Group) in Moffat and Routt Counties, Colorado, are thick, upward-coarsening sequences that were deposited along the western margin of the Western Interior basin during Campanian time. These units trend northeast-southwest and undergo a facies change to coal-bearing strata on the northwest. Surface data collected along the southeastern rim of the Sand Wash basin were combined with well-log data from approximately 100 drill holes that have penetrated the Trout Creek or Twentymile in the subsurface. The sandstones exhibit distinctive vertical profiles with regard to grain size, sedimentary structures, and biogenic structures. A depositional model that incorporates the key elements of the modern Nile River (northeast Africa) and Nayarit (west-central Mexico) coastal systems is proposed for the Trout Creek and Twentymile sandstones and associated strata. The model depicts a wave-dominated deltaic, strand-plain, and barrier-island system. Depositional cycles are asymmetrical in cross section as they are largely progradational and lack significant transgressive deposits. Source rock-reservoir rock relationships are ideal as marine shales underlie, and coal-bearing strata overlie sheetlike reservoir sandstones. Humic coal, the dominant source of Mesaverde gas, generates major quantities of methane upon reaching thermal maturity. Existing Mesaverde gas fields are largely structural traps, but stratigraphic and combination traps may prove to be equally important. The sparsely drilled deeper part of the basin warrants testing as large, overpressured-gas accumulations in tight-sandstone reservoirs are likely to be found.

  1. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect (OSTI)

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  2. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.

  3. Kazakhstan's potential provides Western opportunities

    SciTech Connect (OSTI)

    Darnell, R. )

    1993-01-01

    While crude oil production continues to drop in the Russian Federation at a rate of 15% to 20% per year, Kazakhstan's output rose from 440,000 bopd in 1991 to 446,000 bopd, as of November 1992. Much of this increase was exported to the Russian Federation to supplement the latter's declining production. while Kazakhstan received needed Russian goods in exchange for this oil, it isn't getting the hard currency that will be required to upgrade its petroleum industry. This is a serious problem for Kazakh officials, since they are counting on revenues from petroleum exports to invigorate their overall plan for economic growth in this newly independent country. In order to convert Kazakhstan's hydrocarbon potential into economic reality, two critical issues must be addressed immediately. First, Kazakhstan must develop a tax and minerals law that gives multinational petroleum companies an incentive to invest in opening a dedicated crude oil export route through Russia, and at least one alternate export route to the Caspian Sea or Persian Gulf. At present, even the most successful petroleum venture inside Kazakhstan would have to weave its way through the Russian bureaucracy to utilize that existing and inadequate export pipeline system. This quandary, of course, has recently become the undoing of several Western petroleum operations that have managed to actually produce exportable oil inside the Russian Federation itself, but they can't get it out. In addition, three other variables should be considered by any party that is evaluating Kazakhstan as a future area (see map for current fields) of interest for petroleum operations. These are political stability, field operating conditions, and the country's natural gas crisis. Each of these factors, though not as critical as the legal regime and export access, can radically affect how an operator might approach negotiating the terms of its particular project.

  4. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  5. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  6. Hydrogeochemical Indicators for Great Basin Geothemal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon simmonshydrogeochemicalpeer2...

  7. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  8. File:Federal Hydropower - Western Area Power Administration.pdf...

    Open Energy Info (EERE)

    Hydropower - Western Area Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Western Area Power Administration.pdf...

  9. Renewable Energy Network of Entrepreneurs in Western New York...

    Open Energy Info (EERE)

    York Jump to: navigation, search Logo: Renewable Energy Network of Entrepreneurs in Western New York Name: Renewable Energy Network of Entrepreneurs in Western New York Address:...

  10. EA-98-I Western Systems Power Pool | Department of Energy

    Energy Savers [EERE]

    Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada. PDF icon EA-98-I Western Systems Power Pool More Documents & Publications Application...

  11. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determinations: Western Area Power Administration-Upper Great Plains Region Categorical Exclusion Determinations issued by Western Area Power Administration-U...

  12. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determinations: Western Area Power Administration-Sierra Nevada Region Categorical Exclusion Determinations issued by Western Area Power Administration-Sierra ...

  13. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determinations: Western Area Power Administration-Desert Southwest Region Categorical Exclusion Determinations issued by Western Area Power Administration-Des...

  14. Transmission Siting in Western United States: Overview and Recommendat...

    Open Energy Info (EERE)

    Western United States: Overview and Recommendations Prepared as Information to the Western Interstate Energy Board Jump to: navigation, search OpenEI Reference LibraryAdd to...

  15. Notices DEPARTMENT OF ENERGY Western Area Power Administration

    Broader source: Energy.gov (indexed) [DOE]

    Impact Statement and to Conduct a Scoping Meeting; Notice of Floodplain and Wetlands Involvement. SUMMARY: Western Area Power Administration (Western), an agency of the...

  16. Western Renewable Energy Generation Information System ACCOUNT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Renewable Energy Generation Information System ACCOUNT HOLDER REGISTRATION AGREEMENT (Also referred to as the "TERMS OF USE") June 22,2007 Revised May 1,2008 JUL 3 1 REC'D...

  17. Western States Shale Production (Billion Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Western States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 - No Data Reported; -- Not...

  18. Western Electricity Coordinating Council | Open Energy Information

    Open Energy Info (EERE)

    Council Jump to: navigation, search Name: Western Electricity Coordinating Council Place: Salt Lake City, UT References: SGIC1 This article is a stub. You can help OpenEI by...

  19. Estimating Annual Precipitation in the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Previous attempts to create precipitation-elevation functions in western Nevada have been difficult and result in large uncertainty. In the WRD data analysis, the effect of geographic scale on the precipitation-elevation function was overlooked. This contributed to an erroneous Maxey-Eakin recharge estimate.

  20. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  1. Western Area Power Administration Transmission Infrastructure Program

    Energy Savers [EERE]

    Department of Energy Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 _WAPA Borrowing Authority_ Final.docx More Documents & Publications WAPA Recovery Act Implementation Appropriation Microsoft Word - PSRP Updates 6-25-10_v2 Bonneville Power Administration Program Specific Recovery Plan

    TIP Program Overview Craig Knoell, Program Manager November 2009 TIP

  2. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect (OSTI)

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  3. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  4. Tectonic history and analysis of structures in eastern Kansas and western Missouri

    SciTech Connect (OSTI)

    Berendsen, P.; Wilson, F.W. . Kansas Geological Survey)

    1993-03-01

    Orogenic events in and around the midcontinent in Proterozoic time were responsible for the formation of the dominant master set of younger northeast- and older northwest-trending faults that dominate the structure of the area today. Reactivation of these faults throughout geologic time gave rise to tectonic zones consisting of sets of anastomosing faults or other complex patterns. These zones are likely important in helping to determine the configuration of major uplifts and basins that involve the crust. The Nemaha tectonic zone defines the western boundary of both the Forest City and Cherokee basins, while a structural block delineated by the Chesapeake and Bolivar-Mansfield regional faults coincides with the approximate position of the Bourbon Arch, which is reflected in the thickness of Mississippian carbonate rocks. Rocks of the Ozark uplift began to be uplifted by the end of Maquoketa time. The uplift has historically been described as a landform, rather than a geologic structure. Hence, the extent and the boundaries of the uplift are ill-defined. The northeast-trending line forming the contact between Mississippian and Pennsylvanian rocks is commonly regarded as the western boundary. This boundary coincides with a major tectonic zone, extending northeastward from Oklahoma through Kansas and Missouri into at least southern Iowa. In the Tri-State area of Kansas, Oklahoma, and Missouri the zone is referred to as the Miami trough and features prominently in the localization of major ore deposits. This zone may then also be regarded as the eastern boundary of the Forest City and Cherokee basins.

  5. PP-64 Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Basin Electric Power Cooperative to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-64 Basin Electric Power Cooperative More ...

  6. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  7. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  8. Judith Basin County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  9. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  10. Climate Change and the Macroeconomy in the Caribbean Basin: Analysis...

    Open Energy Info (EERE)

    in the Caribbean Basin: Analysis and Projections to 2099 Jump to: navigation, search Name Climate Change and the Macroeconomy in the Caribbean Basin: Analysis and Projections to...

  11. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  12. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  13. Mapping water availability, projected use and cost in the western United States

    SciTech Connect (OSTI)

    Vincent C. Tidwell; Barbara D. Moreland; Katie M. Zemlick; Barry L. Roberts; Howard D. Passell; Daniel Jensen; Christopher Forsgren; Gerald Sehlke; Margaret A. Cook; Carey W. King

    2014-06-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  18. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  19. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  20. DOE - Office of Legacy Management -- Shirley

    Office of Legacy Management (LM)

    Wyoming Shirley Basin South, Wyoming, Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites-Shirley Basin South, Wyoming, Disposal Site July 2015 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site Long-Term Surveillance Plan for the U.S. Department of Energy Shirley Basin South (UMTRCA Title II)

  1. 2012 Annual Report [WESTERN AREA POWER ADMINISTRATION

    SciTech Connect (OSTI)

    2012-01-01

    Fiscal Year 2012 brought some tumultuous and uncertain times to Western. The utility industry and technology continued to evolve, and the demand for constant flow of power and transmission system reliability continued to increase. Western kept pace by continuing to deliver reliable, cost-based hydropower while reviewing and updating business practices that took into account how the energy industry is evolving. During this time of exponential change, Western tackled many challenges, including: Reviewing the Transmission Infrastructure Program processes and procedures; Responding to Secretary of Energy Steven Chu’s memorandum to create a modern, efficient and reliable transmission grid; Weathering record-breaking natural disasters in our service territory; Completing our role in TIP’s flagship project—the Montana Alberta Tie Ltd. transmission line; Incorporating new, far-reaching regulations and industry trends.

  2. Comparison of high-pressure CO2 sorption isotherms on Eastern and Western US coals

    SciTech Connect (OSTI)

    Romanov, V; Hur, T -B; Fazio, J; Howard, B

    2013-10-01

    Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.

  3. K Basins isolation barriers summary report

    SciTech Connect (OSTI)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

  4. K Basins Sludge Treatment Process | Department of Energy

    Energy Savers [EERE]

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download PDF icon K Basins Sludge Treatment Process PDF icon Summary - K Basins Sludge Treatment Process More Documents & Publications Compilation of TRA Summaries K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide

  5. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarters report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  6. Wyoming-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  7. Microsoft Word - 08071744_DocProd.doc

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming Disposal Site January 2009 LMS/SBS/S00808 This page intentionally left blank This page intentionally left blank U.S. Department of Energy DVP-August 2008, Shirley Basin South, Wyoming, Disposal Site January 2009 RIN 08071744 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map

  8. Microsoft Word - 08101885 DVP.doc

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site April 2009 LMS/SBS/S01008 This page intentionally left blank U.S. Department of Energy DVP-October 2009, Shirley Basin, Wyoming April 2009 RIN 08101885 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................2 Data Assessment

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment

  10. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  11. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y–1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  12. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

  13. 183-H Basin sludge treatability test report

    SciTech Connect (OSTI)

    Biyani, R.K.

    1995-12-31

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  14. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish habitat structures was completed on ...

  15. Carderock Maneuvering & Seakeeping Basin | Open Energy Information

    Open Energy Info (EERE)

    6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned...

  16. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  17. Summary - K Basins Sludge Treatment Process

    Office of Environmental Management (EM)

    K Basin DOE is Proces the va at Han subsys oxidati objecti of-fact maturi Eleme Techn The as which seven * M * M * Pr * Pr * As The Ele Site: H roject: K P Report Date: A ited...

  18. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  19. QER- Comment of Western Environmental Law Center

    Broader source: Energy.gov [DOE]

    To whom it may concern, I provided the following comments at the public meeting in Santa Fe, NM on 8/11/14: My name is Thomas Singer, and I am a Senior Policy Advisor at the Western Environmental Law Center.

  20. Honeymoons Lead to Upgrades in Western Vermont

    Broader source: Energy.gov [DOE]

    For homeowners who are hesitant to make energy efficiency upgrades, offering them a honeymoon might just be the motivation they need. NeighborWorks of Western Vermont (NWWVT) created a "honeymoon period" for its loan payments and has seen success by allowing homeowners to experience six months of comfort and energy savings before they begin making loan payments.

  1. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  2. A Calibrated Maxey-Eakin Curve for the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin, which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Recharge rates are estimated on the basis that some fraction of annual precipitation will recharge, and that fraction will increase with increasing elevation. This results in a hypothetical curve relating annual groundwater recharge to annual precipitation. Field validation of recharge rates is critical in order to establish credibility to any estimate. This is due to the fact that the Maxey-Eakin model is empirical. An empirical model is derived from practical experience rather than basic theory. Therefore, a validated Maxey-Eakin model in one groundwater basin does not translate to a different one. In the WRD's Maxey-Eakin model, they used a curve calibrated against three locations in western Nevada and applied it to the Fenner Basin. It is of particular importance to note that all three of the WRD's location are west of longitude 116{sup o}W, where annual precipitation is significantly lower. Therefore, The WRD's Maxey-Eakin curve was calibrated to a drier climate, and its application to the Fenner Basin lacks credibility.

  3. The upper Aptian-Albian succession of the Sergipe basin, Brazil: An integrated paleoenvironmental assessment

    SciTech Connect (OSTI)

    Koutsoukos, E.A.M.; Mello, M.R.; de Azambuja Filho, N.C. ); Hart, M.B. ); Maxwell, J.R. )

    1991-03-01

    A combined micropaleontological, geochemical, and sedimentological study of the upper Aptian-Albian succession from the Sergipe basin, northeastern Brazil, has been undertaken. The paleoenvironmental evolution of the basin from the late Aptian to late Albian can be subdivided into three major depositional phases: (1) late Aptian, (2) early to middle Albian; (3) late Albian. A shallow carbonate compensation depth within upper mesopelagic depths (c. 300-500 m) is inferred for the late Aptian-Albian. Intermittent anoxic events, associated with salinity-stratified water masses, occurred in the basin during the late Aptian to Albian. An oxygen minimum (dysaerobic to anoxic conditions) occurred during the late Aptian to earliest Albian, in middle-outer neritic to upper bathyal settings. Waning dysaerobic to oxic conditions are apparent in the late Albian. The foraminiferal assemblages recovered from the upper Aptian marine deposits have a characteristic Tethyan affinity. The microfaunal evidence suggests that this area of the northern South Atlantic had at least some surface water exchange with low-latitude central North Atlantic-western Tethyan Provinces, even possible at intermediate (epipelagic to mesopelagic) water depths. Contribution of microfaunal elements coming from high-latitude northern (Boreal Realm) and/or southern (Austral) regions is also apparent, although of less significance.

  4. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  5. How Western Does Business: An Explanation of Western's Products and Services

    SciTech Connect (OSTI)

    2012-10-01

    The mission of the Western Area Power Administration is to market and deliver reliable, renewable, cost-based hydroelectric power and related services. This guide provides an overview of Western’s history and how Western carries out that mission and provides electrical, transmission and ancillary services. It also discusses how we develop plans for marketing our most valuable resources—long-term firm capacity and energy.

  6. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  7. Utilities Dist-Western IN REMC | Open Energy Information

    Open Energy Info (EERE)

    Utilities Dist-Western IN REMC Jump to: navigation, search Name: Utilities Dist-Western IN REMC Place: Indiana References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

  8. VEE-0040- In the Matter of Western Star Propane, Inc.

    Broader source: Energy.gov [DOE]

    On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

  9. EA-98-A Western Systems Power Pool | Department of Energy

    Energy Savers [EERE]

    energy to Canada PDF icon EA-98-A Western Systems Power Pool More Documents & Publications EA-364 Noble Americas Gas & Power Corporation EA-098 Western Systems Power Pool EA-98-I...

  10. Western Renewable Energy Zones-Phase 1 Report | Department of...

    Energy Savers [EERE]

    Renewable Energy Zones-Phase 1 Report Western Renewable Energy Zones-Phase 1 Report In June 2006, the Western Governors'Association published "Clean Energy, a Strong Economy and a ...

  11. Western New York Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Western New York Energy LLC Jump to: navigation, search Name: Western New York Energy LLC Place: Medina, New York Zip: 14103 Product: Developed a 50m gallon ethanol plant in...

  12. Western States Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. New Geothermal Prospects in the Western United States Show Promise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Prospects in the Western United States Show Promise New Geothermal Prospects in the Western United States Show Promise February 27, 2013 - 2:21pm Addthis New geothermal ...

  14. The Western Wind and Solar Integration Study Phase 2: Executive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This study fnds that up to 33% wind and solar energy penetration in the United States' portion of the Western grid (which is equivalent to 24%-26% throughout the western grid) ...

  15. EA-098-E Western Systems Power Pool | Department of Energy

    Energy Savers [EERE]

    Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA- 98-E Western Systems Power Pool More Documents & Publications EA-98-G...

  16. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Environmental Management (EM)

    Colorado River Storage Project Management Center Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center ...

  17. Topic B Awardee: Western Governors' Association | Department of Energy

    Energy Savers [EERE]

    Western Governors' Association Topic B Awardee: Western Governors' Association For the Topic A input requirements of the award, the states and provinces in the Western Interconnection have formed a new committee -- the State and Provincial Steering Committee -- to provide input in regional transmission planning and analysis in the interconnection. The Committee will consist of representatives from each state and province in the Western Interconnection. Pending formal announcement, the Committee

  18. 2012 Annual Planning Summary for Western Area Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Western Area Power Administration 2012 Annual Planning Summary for Western Area Power Administration The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Western Area Power Administration. PDF icon APS-2012-WAPA.pdf File APS-2012-WAPA.xlsx More Documents & Publications 2013 Annual Planning Summary for the Western Area Power Administration 2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS AGENCY

  19. 2013 Annual Planning Summary for the Western Area Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Western Area Power Administration 2013 Annual Planning Summary for the Western Area Power Administration The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Western Area Power Administration. PDF icon PMA_WAPA_NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Bonneville Power Administration 2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS AGENCY WESTERN AREA

  20. Western Riverside Council of Governments - Large Commercial PACE...

    Broader source: Energy.gov (indexed) [DOE]

    State California Program Type PACE Financing Summary Western Riverside Council of Governments (WRCOG) is offering business owners in WRCOG participating...

  1. Mapping Water Availability in the Western US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Availability in the Western US - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. Sandian Contributes to Western Electricity Coordinating Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Plant Model Validation Guideline Sandian Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model Validation Guideline - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  3. A communication infrastructure for South Western Electricity

    SciTech Connect (OSTI)

    Newbury, J.

    1996-07-01

    In response to deregulation, many UK Regional Electricity Companies (RECs) are currently considering redesigning their communication infrastructure to meet this and other business requirements. This paper presents a proposed communication infrastructure for South Western Electricity plc. The Company services a wide variety of customers in the South West of England. The supporting technology, REC and customer benefits, together with valued added services (VAS) will be addressed.

  4. Megabreccia deposits in an extensional basin: The Miocene-Pliocene Horse Camp Formation, east-central Nevada

    SciTech Connect (OSTI)

    Schmitt, J.G.; Brown, C.L. )

    1991-06-01

    Three varieties of megabreccia deposits are present in alluvial-lacustrine extensional basin fill of the Miocene-Pliocene Horse Camp Formation of east-central Nevada. Coherent debris sheets (150-300 m thick; up to 1,500 m long) consist of Oligocene-Miocene volcanic rock masses which are internally fractured yet retain their stratigraphic integrity. Fracture zones show variable amounts of displacement (up to 5 cm) and brecciation. These debris sheets overlie horizontally stratified sandstone and laminated claystone interpreted as playa deposits and are overlain by lithified grus. Emplacement of these coherent debris sheets was by landslide or block slide. Associated deposits of large boulders within playa facies suggest gliding of blocks broken from the edges of the landslides across wet playa surfaces. Large (1.6 - 2.4 km-long) allochthonous blocks consist of intact Paleozoic and Tertiary volcanic stratigraphic sequences which are brecciated and attenuated. Brecciation is accompanied in places by incorporation of muddy sand matrix. These blocks may be fragments of the upper plate of low-angle detachment faults which broke away as gravity-driven blocks from the nearby Horse Range and slid along the uplifted former detachment surface into the adjacent Horse Camp basin. Megabreccia deposits characterize Teritary extensional basins in western North America. Detailed analysis of their stratigraphic, sedimentologic, and structural relations can provide a better understanding of the complex tectonosedimentary history of these basins.

  5. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less

  6. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  7. RTG resource book for western states and provinces: Final proceedings

    SciTech Connect (OSTI)

    1994-12-31

    The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.

  8. Regional paleotopographic trends and production, Chesterian and Morrowan strata, Western Interior

    SciTech Connect (OSTI)

    Dolson, J.; Adams, C.; Van Zant, K. )

    1991-06-01

    Late Chesterian (Mississippian) and Morrowan (Pennsylvanian) unconformity-bounded packages in the Western Interior have traditionally been viewed as sequences separated by a regional basal Pennsylvanian unconformity. Analysis of alluvial valley trends and paleontological data suggests that these sequences are related and formed in response to multiple relative sea level fluctuations initiated in the Chesterian which continued throughout the Pennsylvanian. The Darwin, Tyler, Morrowan, and Humbug formations of the Western Interior appear to have formed in retrogradational parasequence sets of alluvial valley fills and marine transgressive systems tracts repeatedly developed around the flanks of the transcontinental arch. Relative sea level rises following each major incisement created a complex intertonguing of marine strata responsible for fluvial aggradation of each valley system. These sequences progressively backstep and grow younger toward the transcontinental arch, where Atokan and Desmoinesan strata cap the oldest preserved surfaces. At least four major paleodrainage basins have been identified, and valley-fill production has been established in three of these. The previously unrecognized age equivalency of these formations provides a new regional sequence stratigraphic interpretation which has hydrocarbon exploration implications in frontier areas of Utah and Colorado. Seismic resolution and an understanding of hydrocarbon migration paths hold the key to developing new exploration trends.

  9. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  10. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  11. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  12. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  13. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to ...

  14. Long-Term Regional Climate Simulations Driven by Two Global Reanalyses and a GCM for the Western United States

    SciTech Connect (OSTI)

    Leung, Lai R.; Bian, Xindi; Qian, Yun

    2002-01-01

    To take advantage of recent development in the NCAR/Penn State Mesoscale Model (MM5), an effort has been organized to develop and evaluate an MM5-based community regional climate model. Several modifications such as the implementation of the PNNL subgrid parameterization of orographic precipitation, representation of cloud-radiation interaction, and additional output capabilities have been made to the recently released MM5 Version 3.4. To evaluate the model, several long-term simulations have been performed over the western U.S. These simulations were driven by the NCEP/NCAR and ECMWF reanalyses respectively for 20 and 13 years beginning at 1980. The western U.S. is marked by diverse topographic features and varied climate conditions such as the maritime climate in the coastal area and the semi-arid climate in the southwest. We will present results based on two domain configurations: a nested domain with a fine domain covering the western U.S. at 40 km resolution, and a single domain at 60 km resolution with the subgrid orographic precipitation scheme applied in the western U.S. Analyses are being performed to evaluate the simulations of the averaged climate and interannual variability and examine the model sensitivity to different boundary conditions. Our analyses focus on the relationships between large-scale circulation and regional climate features, surface energy and water budgets, orographic precipitation, and hydrologic conditions within selected river basins. Regional simulations are also being performed using large-scale conditions simulated by the NCAR/DOE Parallel Climate Model (PCM). The regional model was used to downscale the ensemble PCM climate change scenarios for periods of 10-20 years in the current and future climate. Results will be analyzed to study the impacts of greenhouse warming on regional water resources in the western U.S.

  15. Geothermal Literature Review At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  16. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990. Citation Details In-Document Search Title: Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990. The goal of the Fifteenmile Creek Habitat Improvement project is to improve wild winter steelhead habitat in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2.

  17. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  18. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect (OSTI)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

  19. Low enthalpy convective system in Western Ohio

    SciTech Connect (OSTI)

    Cannon, M.S.; Tabet, C.A.; Eckstein, Y.

    1980-01-01

    A distinct positive anomaly in the temperatures of the shallow (Pleistocene) aquifers along the Cincinnati-Findlay Arch in Western Ohio coincides with a low geothermal gradient. A conceptual model of convective currents associated with a tensional fault and/or fracture system along the crest of the Arch is suggested as an explanation of the anomaly. Hydrochemical information indicates that various quantities of warmer ground water, with the composition characteristics of deep bedrock aquifers, is present as an admixture in the shallow aquifers. This confirms the conceptual model of convection in fractures.

  20. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    SciTech Connect (OSTI)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.; Elcock, D.; Tidwell, V. C.; Hallett, K.; Macknick, J.; Wigmosta, M. S.; Tesfa, T. K.

    2012-02-09

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) and the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectric generation. Texas, conversely, is vulnerable because of its heavy dependence on thermoelectric generation, which relies on surface water for cooling, along with the fact that this basin seems to experience more severe drought events on average. Further modeling analysis will be performed in conjunction with the modeling teams at the participating interconnections (WECC and ERCOT) to explore the transmission implications of the drought scenarios in more detail. Given the first-order nature of this analysis, more detailed study of the potential impacts of drought on electricity generation is recommended. Future analyses should attempt to model the potential impacts of drought at the power-plant level, including potential mitigation strategies; include the effects of drought duration; understand the impacts of climate change; and consider economic impacts.

  1. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  2. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  3. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  4. Innovative secondary support technologies for western mines

    SciTech Connect (OSTI)

    Barczak, T.M.; Molinda, G.M.

    1996-12-01

    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of other support systems. The recent success of cable bolts has engendered much interest from western operators. Several innovative freestanding support systems have been developed recently including: (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems.

  5. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.; Cheshire, M.; Reimus, P.; Heikoop, J.; Conradson, S. D.; Batuk, O.; Havrilla, G.; House, B.; et al

    2014-10-08

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the potential formation of other poorly defined U(IV/VI) species. We also noted a small contribution from Udouble bond; length as m-dashO at 1.79 Å, which indicates that U is partially oxidized. There is no apparent U–S or U–Fe interaction in any of the U spectra analyzed. However, SEM analysis of thin sections prepared from the same core material reveals surficial U associated with pyrite which is probably a minor fraction of the total U present as thin coatings on the surface of pyrite. Our data show the presence of different structurally variable uranium forms associated with the mined cores. U associated with carbonaceous materials is probably from the original U mobilization that accumulated in the organic matter-rich areas under reducing conditions during shallow burial diagenesis. U associated with pyrite represents a small fraction of the total U and was likely deposited as a result of chemical reduction by pyrite. Our data suggest that areas rich in carbonaceous materials had limited exposure to the lixiviant solution, continue to be reducing, and still hold significant U resources. Because of their limited access to fluid flow, these areas might not contribute significantly to post-mining U release or attenuation. Areas with pyrite that are accessible to fluids seem to be more reactive and could act as reductants and facilitate U reduction and accumulation, limiting its migration.« less

  6. Secretary Moniz to Discuss Western Energy Landscape at Western Governors' Association Annual Meeting

    Broader source: Energy.gov [DOE]

    On Saturday, December 6, U.S. Secretary of Energy Ernest Moniz will deliver keynote remarks at the Western Governors’ Association Winter Meeting in Las Vegas, Nevada. Secretary Moniz will discuss the energy landscape in the West and the region's role in leading the nation into a low-carbon future.

  7. Okanogan Basin Spring Spawner Report for 2007.

    SciTech Connect (OSTI)

    Colville Tribes, Department of Fish & Wildlife

    2007-09-01

    The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

  8. Analysis of K west basin canister gas

    SciTech Connect (OSTI)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  9. Analysis Summary of an Assembled Western U.S. Dataset

    SciTech Connect (OSTI)

    Ryall, F

    2005-03-22

    The dataset for this report is described in Walter et al. (2004) and consists primarily of Nevada Test Site (NTS) explosions, hole collapse and earthquakes. In addition, there were several earthquakes in California and Utah; earthquakes recorded near Cataract Creek, Arizona; mine blasts at two areas in Arizona; and two mine collapses in Wyoming. In the vicinity of NTS there were mainshock/aftershock sequences at Little Skull Mt, Scotty's Junction and Hector ere mine. All the events were shallow and distances ranged from about 0.1 degree to regional distances. All of the data for these events were carefully reviewed and analyzed. In the following sections of the report, we describe analysis procedures, problems with the data and results of analysis.

  10. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 168,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  11. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential Price 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Percentage of Total ...

  12. ,"Wyoming Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcuswym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcuswym.htm" ,"Source:","Energy ...

  13. ,"Wyoming Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","22016","1151989" ,"Data 2","Production",10,"Monthly","22016","1151989" ,"Data 3","Underground Storage",7,"Monthly","22016","1151990" ,"Data ...

  14. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Citygate Price 3.89 4.09 3.88 3.89 3.62 3.75 1989-2016 Residential Price 15.37 13.00 8.57 7.11 6.90 7.16 1989-2016 Percentage of Total Residential Deliveries included in Prices 75.3 76.5 75.4 75.7 73.1 74.2 2002-2016 Commercial Price 7.80 7.36 6.65 6.19 6.16 6.23 1989-2016 Percentage of Total Commercial Deliveries included in Prices 51.1 54.8 46.0 53.2 54.2 56.3 1989-2016 Industrial Price 4.85 4.93 5.06 NA 3.97 3.83 2001-2016 Percentage of

  15. Wyoming Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    144 152 188 233 219 362 1996-2014 Lease Condensate (million bbls) 125 86 94 68 73 61 1998-2014 Total Gas (billion cu ft) 12,839 11,628 11,304 7,961 8,938 8,710 1996-2014 Nonassociated Gas (billion cu ft) 12,812 11,593 11,256 7,745 8,658 8,298 1996-2014 Associated Gas (billion cu ft) 27 35 48 216 280 41

  16. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.30 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Commercial 7.13 7.29 6.72 6.81 7.69 NA 1967-2015 Industrial 4.91 5.57 4.87 4.62 5.89 NA 1997-2015 Vehicle Fuel 10.08 11.96 14.15 1991-2012 Electric Power W W W W W 5.18 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 35,074 35,290 30,094 33,618 27,553 1977-2014 Adjustments 521 -209 692 2,058 -1,877 1977-2014

  17. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  18. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Western Wind and Solar Integration Study The Western Wind and Solar Integration Study, one of the largest regional solar and wind integration studies to date, explores the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? Released December 2014-Phase 3 Research Report Says Western Grid Can Weather Disturbances Under High Renewable Penetrations With good system planning, sound engineering practices, and commercially available

  19. 2014 Annual Planning Summary for the Western Area Power Administration |

    Energy Savers [EERE]

    Department of Energy Western Area Power Administration 2014 Annual Planning Summary for the Western Area Power Administration The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Western Area Power Administration. PDF icon WAPA-NEPA-APS-2014.pdf More Documents & Publications 2014 Annual Planning Summary for the Bonneville Power Administration 2014 Annual Planning Summary for the Southeastern Power Administration 2014 Annual

  20. PROJECT PROFILE: Case Western Reserve University (PREDICTS 2) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Case Western Reserve University (PREDICTS 2) PROJECT PROFILE: Case Western Reserve University (PREDICTS 2) CWRU Logo.jpg Funding Opportunity: PREDICTS 2 SunShot Subprogram: PV Location: Cleveland, OH Amount Awarded: $1,350,000 Awardee Cost Share: $348,425 Principal Investigator: Roger French Under their PREDICTS 2 award, researchers at Case Western Reserve University will analyze data sets from over 5 million solar photovoltaic (PV) panels around the world to learn how various

  1. Topic A Awardee: Western Electricity Coordinating Council | Department of

    Energy Savers [EERE]

    Energy Western Electricity Coordinating Council Topic A Awardee: Western Electricity Coordinating Council Regional Transmission Expansion Planning (RTEP) The America Recovery and Reinvestment Act (ARRA) directs the Department of Energy (DOE) to provide assistance for the development of interconnection-based transmission plans for the Eastern and Western Interconnections, and for ERCOT. WECC received notification from the U.S. Department of Energy (DOE) on December 18, 2009 that it has been

  2. Transmission Constraints and Congestion in the Western and Eastern

    Energy Savers [EERE]

    Interconnections, 2009-2012 (January 2014) | Department of Energy Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012 (January 2014) Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012 (January 2014) The "Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012" document, available below, is a compilation of publicly-available data on transmission constraints and

  3. Department of Energy Announces Start of Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Project | Department of Energy Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area

  4. Western New York Nuclear Service Center: History | Department of Energy

    Office of Environmental Management (EM)

    History Western New York Nuclear Service Center: History Presentation made by Paul J. Bembia for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY PDF icon Western New York Nuclear Service Center: History More Documents & Publications Western New York Nuclear Service Center: Geology Overview CX-011236: Categorical Exclusion Determination EIS-0226: Notice of Intent to Prepare an Environmental Impact Statement

  5. Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Fuel Initiative In Western New York Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York February 23, 2006 - 12:23pm Addthis HONEOYE FALLS, NY - Department of Energy (DOE) Secretary Samuel W. Bodman highlighted President Bush's $1.2 billion, five-year commitment to the Hydrogen Fuel Initiative while visiting General Motors Fuel Cell Activities in western New York today. As part of President Bush's Advanced Energy Initiative, the Fiscal Year

  6. Savannah River Site - GSA Western | Department of Energy

    Office of Environmental Management (EM)

    GSA Western Savannah River Site - GSA Western January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River Site Plume Name: GSA Western Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCs/SVOCs Present?: Yes VOC Name Concentration (ppb) Regulatory Driver Cleanup Requirement TCE 34 Yes 5

  7. NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Incentives are available for heating equipment, insulation,...

  8. FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Timber tract operations 113110 Cutting and transporting timber 113310 GEORGIA ...

  9. Case Western Reserve University's Institute for Advanced Materials...

    Open Energy Info (EERE)

    Reserve University's Institute for Advanced Materials Jump to: navigation, search Name: The Institute for Advanced Materials at Case Western Reserve University Address: 2061...

  10. Western New York Sustainable Energy Association | Open Energy...

    Open Energy Info (EERE)

    Sustainable Energy Association Jump to: navigation, search Name: Western New York Sustainable Energy Association Address: 27 St. Catherine's Court Place: Buffalo, New York Zip:...

  11. Western Region Renewable Energy Markets: Implications for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Region Renewable Energy Markets: Implications for the Bureau of Land Management Scott Haase, Lynn Billman, and Rachel Gelman Produced under direction of the Bureau of Land ...

  12. NorthWestern Energy (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. Incentives are available for heating,...

  13. Promotion of Rural Renewable Energy in Western China | Open Energy...

    Open Energy Info (EERE)

    Energy in Western China Place: Beijing Municipality, China Zip: 100026 Sector: Bioenergy Product: A programme launched by China Association of Rural Energy Industry (CAREI)...

  14. OE Releases "Transmission Constraints and Congestion in the Western...

    Broader source: Energy.gov (indexed) [DOE]

    "Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012" document, which is now available for downloading, is a compilation of...

  15. Honeymoons Lead to Upgrades in Western Vermont | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For homeowners who are hesitant to make energy efficiency upgrades, offering them a honeymoon might just be the motivation they need. NeighborWorks of Western Vermont (NWWVT) ...

  16. 2011 Annual Planning Summary for Western Area Power Administration (WAPA)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Western Area Power Administration (WAPA).

  17. Energy Efficiency in Western Utility Resource Plans Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project scope: Comparative analysis of recent resource plans filed by 14 utilities in the Western U.S. and Canada. Analyze treatment of conventional & emerging resource ...

  18. Western Pacific; Gas line plans continue to increase

    SciTech Connect (OSTI)

    Quarles, W.R.; Thiede, K.; Parent, L.

    1990-11-01

    The authors report on pipeline activity in the Western Pacific. They discuss projects underway in Australia, Indonesia, Malaysia, New Zealand, Papua New Guinea, and Singapore.

  19. United Nations Economic and Social Commission for Western Asia...

    Open Energy Info (EERE)

    Background Membership "ESCWA comprises 14 Arab countries in Western Asia: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab...

  20. Energy and Water in the Western and Texas Interconnects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Western and Texas Interconnects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...