Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

2

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

3

Louisiana - South Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

4

Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

5

California - Coastal Region Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

6

California - San Joaquin Basin Onshore Coalbed Methane Proved...  

Gasoline and Diesel Fuel Update (EIA)

San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

7

California - Los Angeles Basin Onshore Coalbed Methane Proved...  

Annual Energy Outlook 2012 (EIA)

Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

8

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

9

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

10

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

11

California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

12

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

13

California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386 1,339 1,304 1,494 1,571 1,685 2000's 1,665 1,463 1,400 1,365 1,549 2,041 1,701 1,749 1,632 2,002 2010's 1,949 2,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

14

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

15

The onshore northeast Brazilian rift basins: An early Neocomian aborted rift system  

SciTech Connect

Early Cretaceous rift basins of northeastern Brazil illustrate key three-dimensional geometries of intracontinental rift systems, controlled mainly by the basement structures. These basins were formed and then abandoned during the early extension associated with the north-south-propagating separation of South America and Africa. During the early Neocomian, extensional deformation jumped from the easternmost basins (group 1: Sergipe Alagoas and Gabon basins; group 2: Reconcavo, Tucano, and Jatoba basins) to the west, forming a series of northeast-trending intracratonic basins (group 3: Araripe, Rio do Peixe, Iguatu, Malhada Vermelha, Lima Campos, and Potiguar basins). The intracratonic basins of groups 2 and 3 consist of asymmetric half-grabens separated by basement highs, transfer faults, and/or accommodation zones. These basins are typically a few tens of kilometers wide and trend northeast-southwest, roughly perpendicular to the main extension direction during the early Neocomian. Preexisting upper crustal weakness zones, like the dominantly northeast-southwest-trending shear zones of the Brazilian orogeny, controlled the development of intracrustal listric normal faults. Internal transverse structures such as transfer faults (Reconcavo basin and onshore Potiguar basin) and accommodation zones (onshore Potiguar basin and Araripe basin) were also controlled by the local basement structural framework. Transverse megafaults and lithostructural associations controlled the three main rift trends. The megashear zones of Pernanbuco (Brazil)-Ngaundere (Africa) apparently behaved like a huge accommodation zone, balancing extensional deformation along the Reconcavo-Jatoba/Sergipe Alagoas-Gabon trends with simultaneous extension along the Araripe-Potiguar trend. The Sergipe Alagoas-Gabon trend and the Potiguar basin represent the site of continued evolution into a marginal open basin following early Neocomian deformation.

Matos, R. (Cornell Univ., Ithaca, NY (USA))

1990-05-01T23:59:59.000Z

16

A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China  

SciTech Connect

Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal Grant S.

2013-01-01T23:59:59.000Z

17

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

18

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

SciTech Connect

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

19

Petroleum geochemistry of Lower Indus Basin, Pakistan: I. Geochemical interpretation and origin of crude oils  

Science Journals Connector (OSTI)

Abstract The study focused on the petroleum geochemistry of crude oils produced from Cretaceous reservoirs. Geochemical portrayal of crude oils has been carried out by means of diagnostic biomarker parameters like relative distribution of steranes (C27–C28–C29 ???-20R steranes), C19 and C23 tricyclic terpanes (TT), C24 tetracyclic terpanes (TeT) and hopanes. These parameters suggest that the crude oils contain terrigenous organic matter (OM) mixed with small input of marine OM. The OM of the source rocks was deposited in oxic depositional environment. Maturity parameters, C32 22S/(22S+22R) homohopanes and sterane isomerization ratios [20S/(20S+20R), ???/(???+???) for C29 steranes] indicate that these crude oil are produced from the source rocks at early mature stage to mature stage.

Arif Nazir; Tahira Fazeelat

2014-01-01T23:59:59.000Z

20

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah West Virginia Wyoming Miscellaneous Period:

22

wind onshore | OpenEI  

Open Energy Info (EERE)

onshore onshore Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

23

crude oil | OpenEI  

Open Energy Info (EERE)

crude oil crude oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 132, and contains only the reference case. The data is broken down into Production, lower 48 onshore and lower 48 offshore. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO crude oil EIA prices Data application/vnd.ms-excel icon AEO2011: Lower 48 Crude Oil Production and Wellhead Prices by Supply Region- Reference Case (xls, 54.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

24

Recoverable Resource Estimate of Identified Onshore Geopressured...  

Office of Scientific and Technical Information (OSTI)

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad...

25

U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Total Lower 48 States Federal Offshore Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico (Louisiana) Federal Offshore, Gulf of Mexico (Texas) Alaska Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC Distict 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah West Virginia Wyoming Miscellaneous Period:

26

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

27

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

28

California--onshore Natural Gas Gross Withdrawals from Shale...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1...

29

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

30

Crude Oil plus Lease Condensate Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

,305 1,766 3,107 2009-2011 ,305 1,766 3,107 2009-2011 Federal Offshore U.S. 159 77 29 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 158 61 29 2009-2011 Texas 1 16 0 2009-2011 Alaska 25 30 40 2009-2011 Lower 48 States 1,280 1,736 3,067 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 6 0 2009-2011 California 30 24 37 2009-2011 Coastal Region Onshore 0 1 1 2009-2011 Los Angeles Basin Onshore 1 1 6 2009-2011 San Joaquin Basin Onshore 22 13 18 2009-2011 State Offshore 7 9 12 2009-2011 Colorado 37 80 96 2009-2011 Florida 0 0 0 2009-2011 Illinois 3 2 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 5 23 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 26 28 21 2009-2011 North 1 2 0 2009-2011 South Onshore 24 25 17 2009-2011 State Offshore

31

Crude Oil plus Lease Condensate Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

,305 1,766 3,107 2009-2011 ,305 1,766 3,107 2009-2011 Federal Offshore U.S. 159 77 29 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 158 61 29 2009-2011 Texas 1 16 0 2009-2011 Alaska 25 30 40 2009-2011 Lower 48 States 1,280 1,736 3,067 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 6 0 2009-2011 California 30 24 37 2009-2011 Coastal Region Onshore 0 1 1 2009-2011 Los Angeles Basin Onshore 1 1 6 2009-2011 San Joaquin Basin Onshore 22 13 18 2009-2011 State Offshore 7 9 12 2009-2011 Colorado 37 80 96 2009-2011 Florida 0 0 0 2009-2011 Illinois 3 2 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 5 23 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 26 28 21 2009-2011 North 1 2 0 2009-2011 South Onshore 24 25 17 2009-2011 State Offshore

32

Crude Oil plus Lease Condensate Revision Increases  

Gasoline and Diesel Fuel Update (EIA)

3,270 3,900 5,096 2009-2011 3,270 3,900 5,096 2009-2011 Federal Offshore U.S. 710 879 1,966 2009-2011 Pacific (California) 33 38 25 2009-2011 Louisiana & Alabama 616 790 1,861 2009-2011 Texas 61 51 80 2009-2011 Alaska 394 397 362 2009-2011 Lower 48 States 2,876 3,503 4,734 2009-2011 Alabama 9 9 2 2009-2011 Arkansas 5 12 31 2009-2011 California 427 276 394 2009-2011 Coastal Region Onshore 105 40 118 2009-2011 Los Angeles Basin Onshore 98 22 23 2009-2011 San Joaquin Basin Onshore 192 204 229 2009-2011 State Offshore 32 10 24 2009-2011 Colorado 28 52 71 2009-2011 Florida 8 10 9 2009-2011 Illinois 12 0 6 2009-2011 Indiana 1 0 1 2009-2011 Kansas 49 52 47 2009-2011 Kentucky 4 1 9 2009-2011 Louisiana 100 139 100 2009-2011 North 15 69 16 2009-2011 South Onshore

33

Crude Oil plus Lease Condensate Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

344 1,470 1,561 2009-2011 344 1,470 1,561 2009-2011 Federal Offshore U.S. 16 108 56 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 14 102 52 2009-2011 Texas 2 6 4 2009-2011 Alaska 0 0 79 2009-2011 Lower 48 States 344 1,470 1,482 2009-2011 Alabama 0 0 20 2009-2011 Arkansas 0 0 3 2009-2011 California 20 156 40 2009-2011 Coastal Region Onshore 2 154 0 2009-2011 Los Angeles Basin Onshore 0 1 9 2009-2011 San Joaquin Basin Onshore 18 1 16 2009-2011 State Offshore 0 0 15 2009-2011 Colorado 2 38 4 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 9 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 8 19 2009-2011 Kentucky 0 6 4 2009-2011 Louisiana 11 52 53 2009-2011 North 1 12 31 2009-2011 South Onshore 7 26 17 2009-2011 State Offshore 3 14 5 2009-2011

34

Crude Oil plus Lease Condensate Reserves Sales  

Gasoline and Diesel Fuel Update (EIA)

249 803 1,024 2009-2011 249 803 1,024 2009-2011 Federal Offshore U.S. 20 56 42 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 20 54 42 2009-2011 Texas 0 2 0 2009-2011 Alaska 7 0 17 2009-2011 Lower 48 States 242 803 1,007 2009-2011 Alabama 0 3 11 2009-2011 Arkansas 3 3 28 2009-2011 California 3 1 7 2009-2011 Coastal Region Onshore 0 1 0 2009-2011 Los Angeles Basin Onshore 0 0 2 2009-2011 San Joaquin Basin Onshore 3 0 0 2009-2011 State Offshore 0 0 5 2009-2011 Colorado 17 3 19 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 15 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 6 6 2009-2011 Kentucky 0 0 5 2009-2011 Louisiana 9 23 63 2009-2011 North 2 5 28 2009-2011 South Onshore 7 7 34 2009-2011 State Offshore 0 11 1 2009-2011

35

Crude Oil plus Lease Condensate Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

46 188 207 2009-2011 46 188 207 2009-2011 Federal Offshore U.S. 0 -6 -1 2009-2011 Pacific (California) -1 -2 1 2009-2011 Louisiana & Alabama 2 -3 -2 2009-2011 Texas -1 -1 0 2009-2011 Alaska 0 0 1 2009-2011 Lower 48 States 46 188 206 2009-2011 Alabama 1 12 2 2009-2011 Arkansas 2 3 -2 2009-2011 California -17 14 32 2009-2011 Coastal Region Onshore 1 0 -3 2009-2011 Los Angeles Basin Onshore 10 15 19 2009-2011 San Joaquin Basin Onshore -30 1 16 2009-2011 State Offshore 2 -2 0 2009-2011 Colorado -9 25 -1 2009-2011 Florida -1 2 -2 2009-2011 Illinois 3 10 -10 2009-2011 Indiana -7 1 0 2009-2011 Kansas 20 61 22 2009-2011 Kentucky 4 -11 1 2009-2011 Louisiana -1 7 -8 2009-2011 North -4 -7 1 2009-2011 South Onshore 4 13 -6 2009-2011 State Offshore

36

Crude Oil plus Lease Condensate Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

344 1,470 1,561 2009-2011 344 1,470 1,561 2009-2011 Federal Offshore U.S. 16 108 56 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 14 102 52 2009-2011 Texas 2 6 4 2009-2011 Alaska 0 0 79 2009-2011 Lower 48 States 344 1,470 1,482 2009-2011 Alabama 0 0 20 2009-2011 Arkansas 0 0 3 2009-2011 California 20 156 40 2009-2011 Coastal Region Onshore 2 154 0 2009-2011 Los Angeles Basin Onshore 0 1 9 2009-2011 San Joaquin Basin Onshore 18 1 16 2009-2011 State Offshore 0 0 15 2009-2011 Colorado 2 38 4 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 9 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 8 19 2009-2011 Kentucky 0 6 4 2009-2011 Louisiana 11 52 53 2009-2011 North 1 12 31 2009-2011 South Onshore 7 26 17 2009-2011 State Offshore 3 14 5 2009-2011

37

CA, San Joaquin Basin Onshore Proved Nonproducing Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

117 146 210 163 226 214 1996-2013 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2013 Total Gas (billion cu ft) 233 401 359 319 81 96 1996-2013 Nonassociated Gas (billion cu ft)...

38

CA, San Joaquin Basin Onshore Natural Gas Reserves Summary as...  

U.S. Energy Information Administration (EIA) Indexed Site

2,249 2,609 2,447 2,685 1,650 1,574 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 617 607 498 506 269 245 1979-2013 Natural Gas Associated-Dissolved, Wet After...

39

CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

75 84 87 97 93 86 1977-2013 Adjustments 2 5 5 7 11 -9 1977-2013 Revision Increases 1 35 9 11 8 8 1977-2013 Revision Decreases 66 24 5 4 17 2 1977-2013 Sales 1 0 0 0 0 35 2000-2013...

40

CA, San Joaquin Basin Onshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

,632 2,002 1,949 2,179 1,381 1,329 1979-2013 Adjustments -4 -2 2 907 -594 -19 1979-2013 Revision Increases 142 95 467 1,382 319 126 1979-2013 Revision Decreases 217 97 367 1,892...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CA, San Joaquin Basin Onshore Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2012 (EIA)

2,128 2,469 2,321 2,590 1,550 1,460 1977-2013 Adjustments -8 2 4 902 -574 -55 1977-2013 Revision Increases 239 180 488 1,444 379 223 1977-2013 Revision Decreases 327 148 427 1,854...

42

CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 1979-2013 Adjustments 0 0 0 0 0 0 1979-2013 Revision Increases 0 0 0 0 0 0 1979-2013 Revision Decreases 0 0 0 0 0 0 1979-2013 Sales 0 0 0 0 0 0 2000-2013 Acquisitions 0...

43

CA, Los Angeles Basin Onshore Proved Nonproducing Reserves  

Gasoline and Diesel Fuel Update (EIA)

31 29 66 69 55 60 1996-2013 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2013 Total Gas (billion cu ft) 8 12 21 23 16 16 1996-2013 Nonassociated Gas (billion cu ft) 0 0 0 0 0 0...

44

CA, San Joaquin Basin Onshore Nonassociated Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

617 607 498 506 269 245 1979-2013 Adjustments 3 1 -3 -12 58 -20 1979-2013 Revision Increases 111 96 47 116 84 115 1979-2013 Revision Decreases 128 59 84 31 120 73 1979-2013 Sales 1...

45

CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as...  

Annual Energy Outlook 2012 (EIA)

81 91 92 102 98 90 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 81 91 92 102...

46

CA, Los Angeles Basin Onshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

81 91 92 102 98 90 1979-2013 Adjustments 4 4 3 6 12 -9 1979-2013 Revision Increases 1 38 9 12 9 9 1979-2013 Revision Decreases 71 25 5 4 18 3 1979-2013 Sales 1 0 0 0 0 37 2000-2013...

47

,"California Onshore Natural Gas Processed in California (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Onshore Natural Gas Processed in California (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

48

California Onshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade...

49

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

50

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved...

51

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves,...

52

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

53

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

54

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

55

Cement distribution in a carbonate reservoir: recognition of a palaeo oil–water contact and its relationship to reservoir quality in the Humbly Grove field, onshore, UK  

Science Journals Connector (OSTI)

The distribution of mineral cements, total porosity, microporosity and permeability have been determined for the Humbly Grove oolitic carbonate reservoir (Middle Jurassic Great Oolite Formation, Weald Basin, onshore UK) using a combination of optical petrography, electron microscopy, fluid inclusion analysis, quantitative XRD, wireline data analysis and core analysis data. Grainstone reservoir facies have porosities ranging between 5 and 24%, but are mostly between 11 and 24%. Permeabilities vary from Jurassic reservoirs of the Weald Basin.

Emma C Heasley; Richard H Worden; James P Hendry

2000-01-01T23:59:59.000Z

56

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

57

WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu, Salazar, Vilsack to Participate in Onshore Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop February 8, 2011 - 12:00am Addthis WASHINGTON, DC --- On Wednesday, February 9th the Department of Interior will host an onshore renewable energy workshop. The two-day conference will bring together stakeholders from across the government, renewable energy industry, and conservation community to discuss the administration's efforts to rapidly and responsibly stand-up renewable energy projects on our nation's public lands. Secretary of Energy Steven Chu, Secretary of the Interior Ken Salazar, and Secretary of Agriculture Tom Vilsack will open the workshop with a roundtable discussion about the Administration's work to build a clean

58

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

59

California Onshore Natural Gas Processed in California (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Processed in California (Million Cubic Feet) California Onshore Natural Gas Processed in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

60

Development of onshore wind energy utilisation in Germany  

Science Journals Connector (OSTI)

Onshore wind energy utilisation in Germany has developed very dynamically in the last decade. This has mainly been driven by the renewable energy laws that systematically support the expansion of renewable ene...

Ronald Meisel; René Pforte; Wolf Fichtner

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

62

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

63

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

64

Oil spill fluorosensing lidar for inclined onshore or shipboard operation  

Science Journals Connector (OSTI)

An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some difficulties for its operation arise from the inclined path of rays. This is due to...

Karpicz, Renata; Dementjev, Andrej; Kuprionis, Zenonas; Pakalnis, Saulius; Westphal, Rainer; Reuter, Rainer; Gulbinas, Vidmantas

2006-01-01T23:59:59.000Z

65

Crude Oil plus Lease Condensate Estimated Production, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

1,929 1,991 2,065 2009-2011 1,929 1,991 2,065 2009-2011 Federal Offshore U.S. 599 590 504 2009-2011 Pacific (California) 22 19 22 2009-2011 Louisiana & Alabama 522 518 432 2009-2011 Texas 55 53 50 2009-2011 Alaska 210 195 206 2009-2011 Lower 48 States 1,719 1,796 1,859 2009-2011 Alabama 7 7 8 2009-2011 Arkansas 6 5 6 2009-2011 California 208 198 196 2009-2011 Coastal Region Onshore 18 18 20 2009-2011 Los Angeles Basin Onshore 15 15 15 2009-2011 San Joaquin Basin Onshore 161 152 149 2009-2011 State Offshore 14 13 12 2009-2011 Colorado 30 33 41 2009-2011 Florida 1 2 2 2009-2011 Illinois 5 4 4 2009-2011 Indiana 1 1 1 2009-2011 Kansas 40 41 41 2009-2011 Kentucky 2 1 1 2009-2011 Louisiana 68 66 68 2009-2011 North 11 10 11 2009-2011 South Onshore 48 47 47 2009-2011

66

Crude Oil plus Lease Condensate Revision Decreases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

1,262 1,957 3,682 2009-2011 1,262 1,957 3,682 2009-2011 Federal Offshore U.S. 208 214 1,455 2009-2011 Pacific (California) 17 4 15 2009-2011 Louisiana & Alabama 174 183 1,354 2009-2011 Texas 17 27 86 2009-2011 Alaska 152 76 129 2009-2011 Lower 48 States 1,110 1,881 3,553 2009-2011 Alabama 2 5 1 2009-2011 Arkansas 0 0 0 2009-2011 California 119 167 230 2009-2011 Coastal Region Onshore 4 39 10 2009-2011 Los Angeles Basin Onshore 47 2 2 2009-2011 San Joaquin Basin Onshore 68 125 217 2009-2011 State Offshore 0 1 1 2009-2011 Colorado 27 34 56 2009-2011 Florida 0 0 2 2009-2011 Illinois 1 4 2 2009-2011 Indiana 0 0 1 2009-2011 Kansas 21 47 23 2009-2011 Kentucky 3 3 2 2009-2011 Louisiana 69 93 43 2009-2011 North 6 11 4 2009-2011 South Onshore 57 73 34 2009-2011

67

Crude Oil plus Lease Condensate New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

141 124 481 2009-2011 141 124 481 2009-2011 Federal Offshore U.S. 96 10 410 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 34 10 410 2009-2011 Texas 62 0 0 2009-2011 Alaska 9 0 0 2009-2011 Lower 48 States 132 124 481 2009-2011 Alabama 0 1 1 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 0 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 2 2 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 1 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 1 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 10 0 8 2009-2011

68

Crude Oil plus Lease Condensate New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

141 124 481 2009-2011 141 124 481 2009-2011 Federal Offshore U.S. 96 10 410 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 34 10 410 2009-2011 Texas 62 0 0 2009-2011 Alaska 9 0 0 2009-2011 Lower 48 States 132 124 481 2009-2011 Alabama 0 1 1 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 0 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 2 2 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 1 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 1 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 10 0 8 2009-2011

69

U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,120 1,037 959 914 974 1,042 1,075 1,140 1,183 1,250 1,304 1,318 1974 1,283 1,264 1,272 1,280 1,319 1,342 1,387 1,426...

70

U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's NA 1950's NA NA NA NA NA NA NA NA NA NA 1960's NA NA NA NA NA NA NA NA NA NA 1970's NA NA NA...

71

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

72

Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin  

E-Print Network (OSTI)

and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China b China Offshore Oil after the late Mesozoic. These basins, both onshore and offshore, have a similar age and structural

Lin, Andrew Tien-Shun

73

Oil flow resumes in war torn onshore Neutral Zone  

SciTech Connect

Oil production has resumed in the war ravaged onshore fields of the Neutral Zone between Saudi Arabia and Kuwait 1 year after the end of Persian Gulf War. Initial production of about 40,000 b/d is expected to rise to 60,000 b/d by year end. This paper reports that prior to the January-February 1991 war to oust occupying Iraqi military forces from Kuwait, the Neutral Zone's Wafra, South Umm Gudair, and South Fuwaris onshore fields produced about 135,000 b/d.

Not Available

1992-03-09T23:59:59.000Z

74

Measuring the Environmental Externalities of Onshore Wind Power  

Science Journals Connector (OSTI)

Abstract This article provides a brief overview of the environmental externalities that are commonly associated with the development of onshore wind-power projects. The article discusses the physical characteristics of an onshore wind farm; the nature of the positive and negative externalities, such as low-carbon electricity generation, low water consumption, noise, visual amenity, wildlife impacts; and land disruption and change. A simple description of surrogate-based and nonmarket-based methods of measuring these externalities is given. Monetary values are also reported.

A. Bergmann

2013-01-01T23:59:59.000Z

75

Desalting ``opportunity crudes``  

SciTech Connect

The escalating cost of environmental compliance, combined with fluctuating market conditions, have refiners struggling to remain profitable. To help maintain profitability, many refiners are realigning their processes and resources to allow them to run heavier, lower cost, opportunity crudes. Many of these heavier crudes are difficult to desalt (due to the lower density difference between the crude and water), and can significantly contribute to downstream corrosion, fouling and catalyst poisoning. Consequently, effective desalting is a critical first step to successfully processing these crudes. The real challenge when desalting these crudes is to maintain clean effluent brine and at the same time minimize total operating costs. Lose control of either, and the economic benefit of processing opportunity crudes in the first place can be diminished. This paper will discuss how recent technological advancements, specifically emulsion polymers combined with a patented split feed application technique, can help maintain optimum desalter performance and minimize overall treatment costs when processing opportunity crudes.

Dion, M.A. [Betz Process Chemicals, Inc., The Woodlands, TX (United States)

1995-09-01T23:59:59.000Z

76

Alba is first heavy North Sea crude  

SciTech Connect

The development of the Alba oil field will constitute two North Sea firsts: the first Eocene reservoir developed, and the first development to handle heavy crude. The field was discovered in Block 16/26 of the North Sea's U.K. sector in 1984. The Alba field is in the heart of the North Sea, about midway between the northern fields of the East Shetlands basin and the southern Fulmar and Argyll fields. About 250 million bbl of the estimated 1 billion bbl reservoir of 20{degrees} gravity crude is believed recoverable.

Not Available

1991-05-27T23:59:59.000Z

77

Property:PotentialOnshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindArea PotentialOnshoreWindArea Jump to: navigation, search Property Name PotentialOnshoreWindArea Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

78

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

2 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

79

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

80

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 2002 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

82

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

83

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

84

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

85

Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31 LA, South Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production

86

California - Coastal Region Onshore Dry Natural Gas Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

87

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

88

AEO2011: Lower 48 Crude Oil Production and Wellhead Prices by Supply Region  

Open Energy Info (EERE)

Crude Oil Production and Wellhead Prices by Supply Region Crude Oil Production and Wellhead Prices by Supply Region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 132, and contains only the reference case. The data is broken down into Production, lower 48 onshore and lower 48 offshore. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO crude oil EIA prices Data application/vnd.ms-excel icon AEO2011: Lower 48 Crude Oil Production and Wellhead Prices by Supply Region- Reference Case (xls, 54.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

89

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

90

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

91

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

92

Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url FederalOnshore1987.jpg Description Another amendment to the Mineral Leasing Act, The Federal Onshore Oil and Gas Leasing Reform Act of 1987 granted the USDA Forest Service the authority to make decisions and implement regulations concerning the leasing of public domain minerals on National Forest System lands containing oil and gas. References Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)[1] Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) (30 U.S.C. § 181 et seq.) - Another amendment to the Mineral Leasing Act, The Federal

93

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

Science Journals Connector (OSTI)

(2)Where Et is the wind technical potential (kWh/year), A is the area of each grid cell (km(2)), ?1 is the availability factor, ?2 is the array efficiency, ? is average installed power density (MW km–2), and ((A?)/(1.5)) represents the number of turbines (1.5 MW GE turbine) in a given grid cell. ... If wind is to play a large role, lower quality wind resources would need to be used, and a bias against the highest speed winds can be less important. ... EEA. Europe’s Onshore and Offshore Wind Energy Potential. ...

Yuyu Zhou; Patrick Luckow; Steven J. Smith; Leon Clarke

2012-06-20T23:59:59.000Z

94

Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin  

E-Print Network (OSTI)

1 Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin Mediterranean) have been affected by a geochemically diverse igneous activity, offshore and onshore, since to our initial project. Key-Words: Mediterranean, Ligurian margins and Basin, Offshore Corsica, Miocene

Paris-Sud XI, Université de

95

Crude Oil Analysis Database  

DOE Data Explorer (OSTI)

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

96

Louisiana - South Onshore Dry Natural Gas Proved Reserves (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,580 17,755 13,994 1980's 13,026 12,645 11,801 11,142 10,331 9,808 9,103 8,693 8,654 8,645 1990's 8,171 7,504 6,693 5,932 6,251 5,648 5,704 5,855 5,698 5,535 2000's 5,245 5,185 4,224 3,745 3,436 3,334 3,335 3,323 2,799 2,844 2010's 2,876 2,519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Dry Natural Gas Proved Reserves

97

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

98

Competitiveness of Mexican crude  

SciTech Connect

Mexico is under great pressure to maintain oil export revenue levels if it is to avoid a reversal in its economic recovery program. While the country's vulnerability to a price plunge is also applicable to OPEC countries, the North Sea producers, and others, Mexico does have an ace. The ace is that its heavier, metals-ridden and sulfur-laden Maya crude, which had to be pushed on customers until about 1981, is now in strong demand. Comparisons are presented of the market value of five crude oils refined in the US Gulf Coast: West Texas Intermediate (or WTI, a 40/sup 0/ API, light), Arabian Light and Isthmus (both 34/sup 0/ medium-light), Alaska North Slope (or ANS, a 27/sup 0/ API, a medium), and Maya (22/sup 0/ API, medium-heavy). In this mix, the heavier the crude, the greater is the refining margin (except for Arabian Light, for which freight cost and product yield provide lower margins than those derived from WTI). The sacrifice by OPEC and other producers cutting crude oil prices was to the benefit to refiners' improved margins during the first half of 1983. Those cuts were on the lighter-quality oils. But prices for heavier Venezuelan, Californian, and Mexican crudes increased during the second half of 1983, due to developing refinery technologies in extracting favorable product yields from them. This issue of Energy Detente presents their fuel price/tax series and industrial fuel prices for December 1983 for countries of the Western Hemisphere.

Not Available

1983-12-28T23:59:59.000Z

99

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

100

Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

102

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

103

Important Norwegian crude assays updated  

SciTech Connect

New assays on two important Norwegian North Sea crude oils, Statfjord and Gullfaks, are presented. Both are high-quality, low-sulfur crudes that will yield a full range of good-quality products. All assay data came from industry-standard test procedures. The Statfjord field is the largest in the North Sea. Production started in 1979. Statfjord is a typical North Sea crude, produced from three separate platforms and three separate loading buoys with interconnecting lines. Current production is about 700,000 b/d. Gullfaks is produced from a large field in Block 34/10 of the Norwegian sector of the North Sea production area. Gullfaks crude oil is more biodegraded than other crudes from the region. Biodegradation has removed most of the waxy normal paraffins, resulting in a heavier, more naphthenic and aromatic crude.

Corbett, R.A

1990-03-12T23:59:59.000Z

104

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100–150m-3 well. The drilling cuttings...

Qaude-Henri Chaîneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

105

Crude Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Supply Domestic Production (a) .......................................... 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Alaska .................................................................. 0.58 0.53 0.44 0.55 0.54 0.51 0.48 0.52 0.51 0.47 0.42 0.49 0.53 0.51 0.47 Federal Gulf of Mexico (b) .................................... 1.34 1.19 1.18 1.36 1.30 1.22 1.27 1.29 1.34 1.36 1.37 1.45 1.27 1.27 1.38 Lower 48 States (excl GOM) ................................ 4.31 4.57 4.80 5.11 5.28 5.56 5.87 6.16 6.41 6.61 6.77 6.91 4.70 5.72 6.68 Crude Oil Net Imports (c) ......................................... 8.55 8.88 8.52 7.89 7.47 7.61 7.94 7.36 6.66 6.78 6.83 6.06 8.46 7.60 6.58 SPR Net Withdrawals ..............................................

106

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach  

SciTech Connect

Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

Amy Childers

2011-03-30T23:59:59.000Z

107

This Week In Petroleum Crude Oil Section  

Gasoline and Diesel Fuel Update (EIA)

Crude oil futures and estimated contract prices (dollars per barrel) Contract 1 Contract 2 Contract 3 Contract 4 Crude oil futures price contract 1 graph Crude oil futures price...

108

Maps of Selected State Subdivisions  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region Onshore CA 90 - Los Angeles Basin Onshore CA 10 - San Joaquin Basin Onshore

109

Microsoft Word - Crude by rail July 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Crude Oil Production Throughout the world, huge quantities of crude oil and natural gas are trapped in non- permeable shale rock. Over the past few years, technological...

110

U.S. Crude Oil Export Policy  

Gasoline and Diesel Fuel Update (EIA)

or use therein. * Crude exported from Alaska's Cook Inlet. * Heavy California crude oil. * Exports connected to refining or exchange of petroleum reserve oil. * Re-exportation...

111

Virent is Replacing Crude Oil  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

112

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

113

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

114

China`s impact on the world crude-oil  

SciTech Connect

China`s oil market is in transition, and this has dramatically shaped its crude and petroleum product balances. During the last five years (1989-1993), imports of crude and refined products increased rapidly, while exports of crude and refined products declined year after year. In 1993 petroleum product imports surged to a record high of 354,000 barrels per day (b/d) at the same time that crude imports also increased to a record high of 315,000 b/d. If we combine imports and exports of both crude oil and products, China was a net oil importer of about 200,000 b/d during 1993. This marked the first time since 1960s that China has fallen into net oil importer status. Four major changes have characterized China`s oil imports and exports during the last two decades. First, China has made vigorous efforts to diversify its total exports away from oil-based goods to non-oil items. Second, the composition of oil exports has changed, shifting from dependence on crude oil exports toward a greater proportion of finished or semi-finished products. Third, the oil import pattern has also shifted from primarily heavy products to primarily light products. Finally, Northern China has continued to export oil across the Pacific Basin, but Southern China has begun importing petroleum from Indonesia and the Middle East. These trends indicate that China will become increasingly vital to both the regional and global oil trade. Overall, Asian oil imports are expected to double in the next ten years.

Wang, H. [Energy Security Analysis, Inc., Washington, DC (United States)

1993-12-31T23:59:59.000Z

115

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network (OSTI)

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA results performances with a simplified life cycle approach. Variability of GHG performances of onshore wind turbines

Paris-Sud XI, Université de

116

Northwest Australia's Saladin crude assayed  

SciTech Connect

High-quality Saladin crude oil from offshore Western Australia has been assayed. The 48.2[degree] API, 0.02 wt % sulfur crude's characteristics--determined in 1990--are presented here for the first time. The estimated 30--40 million bbl field, south of Barrow Island, is produced from two platforms in 58 ft of water in block TP 3. Production began in late 1989 from three platforms with three wells each and from two wells drilled directionally from Thevenard Island. The paper lists data on the following properties: API gravity, density, sulfur content, pour point, flash point, viscosity, salinity, heat of combustion, ash content, asphaltene content, wax content, and metal content for the whole crude and various fractions.

Rhodes, A.K.

1993-10-18T23:59:59.000Z

117

Low pour crude oil compositions  

SciTech Connect

This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

Motz, K.L.; Latham, R.A.; Statz, R.J.

1990-05-22T23:59:59.000Z

118

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah  

SciTech Connect

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

119

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report  

SciTech Connect

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

120

Inversion of heavy crude oil-in-brine emulsions.  

E-Print Network (OSTI)

??A large portion of Canada's reserves of crude oil consists of extra heavy crude and natural bitumens. As the reserves of conventional crude oil continue… (more)

Sun, Ruijun

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

122

Characterization of Crude Glycerol from Biodiesel Plants  

Science Journals Connector (OSTI)

Characterization of crude glycerol is very important to its value-added conversion. In this study, the physical and chemical properties of five biodiesel-derived crude glycerol samples were determined. Three methods, including iodometric–periodic acid ...

Shengjun Hu; Xiaolan Luo; Caixia Wan; Yebo Li

2012-05-21T23:59:59.000Z

123

Domestic Crude Oil First Purchase Prices for Selected Crude Streams  

U.S. Energy Information Administration (EIA) Indexed Site

for Selected Crude Streams for Selected Crude Streams (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Alaska North Slope 93.94 93.66 92.27 99.50 99.24 99.54 1977-2013 California Kern River 100.18 100.36 98.58 104.34 104.01 104.00 1993-2013 California Midway-Sunset 101.95 99.83 98.00 104.52 103.45 103.23 1993-2013 Heavy Louisiana Sweet 110.67 105.65 102.75 105.92 109.48 109.28 2003-2013 Louisiana Light Sweet 109.53 105.98 102.86 110.44 110.74 109.81 2003-2013 Mars Blend 106.43 101.23 99.39 100.06 104.09 104.22 2003-2013 West Texas Intermediate 92.41 94.05 94.08 102.44 104.75 104.48 1993-2013

124

Landed Costs of Imported Crude for Selected Crude Streams  

U.S. Energy Information Administration (EIA) Indexed Site

for Selected Crude Streams for Selected Crude Streams (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Algerian Saharan Blend W W W W 2009-2013 Angolan Cabinda 1983-2010 Brazilian Marlim W W W W W 2009-2013 Canadian Bow River 75.11 81.32 80.69 90.70 94.40 88.54 1996-2013 Canadian Light Sour Blend 86.95 92.97 91.76 94.96 103.23 102.09 2009-2013 Canadian Lloydminster 73.88 80.34 84.17 87.50 94.64 91.89 1983-2013 Ecuadorian Napo W W W 104.38 103.06 101.56 2009-2013 Ecuadorian Oriente 104.18 104.42 101.61 106.94 107.51 105.09 1983-2013 Gabon Rabi-Kouanga 1996-2008

125

Naphthenic acid corrosion by Venezuelan crudes  

SciTech Connect

Venezuelan crudes can contain levels of naphthenic acids that cause corrosion in distillation units designed for sweet crudes. This naphthenic acid corrosion can be mitigated in several ways, the most common of which is selective alloying. This paper will provide information from field experience on how various refineries worldwide have upgraded materials to run Venezuelan crudes in a cost effective way.

Hopkinson, B.E.; Penuela, L.E. [Lagoven, S.A., Judibana (Venezuela). Amuay Refinery

1997-09-01T23:59:59.000Z

126

Onshore wind max capacity 50.4% - what wind farm, what year? | OpenEI  

Open Energy Info (EERE)

Onshore wind max capacity 50.4% - what wind farm, what year? Onshore wind max capacity 50.4% - what wind farm, what year? Home How can I find more specific information about wind capacity? I can get the max/min/media stuff from the bar graphs. Is there any way to see individual wind farm capacity per year or get examples of performance? I'm helping run a tech site and some specific information would be helpful in dealing with skeptical individuals. Is there any more detailed information on capacity other than the graph summary statistics? (I do not know my way around this site, but I'm willing to learn.) Submitted by Bob Wallace on 15 June, 2013 - 00:23 1 answer Points: 0 Hi Bob- Thank you for posting your question. It seems that your question developed after viewing/using the Transparent Cost Database, however, I

127

Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 231 1980's 216 230 265 285 270 260 237 241 208 213 1990's 181 208 211 253 254 272 289 286 246 226 2000's 209 226 241 207 221 226 234 271 196 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

128

Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 248 1980's 252 260 289 292 295 269 281 277 260 260 1990's 279 273 272 278 290 287 323 347 363 422 2000's 406 378 370 287 326 309 333 327 310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

129

Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,079 1980's 1,645 1,920 1,785 1,890 1,965 1,895 1,760 1,861 1,703 1,419 1990's 1,418 1,127 1,176 1,137 1,169 1,126 1,178 1,497 1,516 1,772 2000's 1,930 1,798 1,797 1,768 1,858 2,066 2,048 2,249 2,292 1,837 2010's 2,101 2,766 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

130

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

131

Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,143 1980's 7,074 7,251 7,802 7,847 8,094 7,825 7,964 7,317 6,891 7,009 1990's 7,473 7,096 6,813 7,136 7,679 7,812 7,877 8,115 8,430 9,169 2000's 9,942 10,206 9,711 8,919 8,902 8,956 8,364 8,210 7,803 6,961 2010's 7,301 9,993 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

132

Crude butadiene to styrene process  

SciTech Connect

One of the natural by-products of ethylene manufacture is a mixture of C4`s containing butadiene, butenes and butane. This C4 stream is the predominant feed stock for producing pure butadiene by an extraction process. The demand growth for ethylene far exceeds that for butadiene resulting in a world wide surplus of butadiene. The ethylene producer has a number of options available to process the crude C4 stream if the market price does not justify isolation of the pure butadiene. The first option is recycle the crude C4 stream back to the ethylene cracker and co-crack with fresh feed. A second option that has become popular in the last few years has been the partial or complete hydrogenation of the butadiene and butenes in the crude C4 stream. Partial or selective hydrogenation is preferred when there is a market for iso-butene which finds use in MTBE manufacture. Full hydrogenation is used when cracker feed stock is limited, there is excess hydrogen and no cost effective outlets exist for butenes. Full hydrogenation produces butanes that are excellent crack feed stock. Both selective and full hydrogenation require low to moderate capital expenditure. Both of these options are currently being practiced to remove excess butadiene from the market. The crude C4 to styrene process developed by Dow offers an attractive, high value alternative to an olefins producer. This process selectively upgrades butadiene in C4 streams to styrene monomer and produces raffinate-1 as a by-product. The process is currently being operated at the 18--40 lb/hr scale in a Dow Texas pilot plant.

Dixit, R.S.; Murchison, C.B. [Dow Chemical Co., Midland, MI (United States)

1994-12-31T23:59:59.000Z

133

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 Dec-14 View History Rotary Rigs in Operation 1,876 1,904 1,930 1,924 1,925 1,882 1973-2014 By Site Onshore 1,819 1,842 1,866 1,867 1,872 1,824...

134

Crude Oil and Natural Gas Drilling Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun-14 Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 View History Rotary Rigs in Operation 1,861 1,876 1,904 1,930 1,924 1,925 1973-2014 By Site Onshore 1,804 1,819 1,842 1,866 1,867 1,872...

135

Crude Oil Imports From Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Imports From Persian Gulf Crude Oil Imports From Persian Gulf January - June 2013 | Release Date: August 29, 2013 | Next Release Date: February 27, 2014 2013 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is owned by the Venezuelan state oil company, would not be expected to import a large percentage from the Persian Gulf, since most of their imports likely come from Venezuela. In addition, other factors that influence a specific company's sources of crude oil imports would include the characteristics of various crude oils as well as a company's economic

136

U.S. Crude Oil Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Consistent with OECD inventories, U.S. inventories are low. They have been well below the normal range for over one year. Crude oil stocks in the United States, while tending to increase of late toward more normal levels, remain well below average. At the end of December, crude oil stocks were near 289 million barrels, about 4% below the 5-year average, and slightly higher than at the end of 1999. The latest weekly data, for the week ending January 19, show U.S. crude oil stocks at 286 million barrels, just about a million barrels above their level a year ago. Near-term tightness in U.S. crude oil markets have kept current prices above forward prices, reflecting current strength in crude oil demand relative to supply. Relatively strong U.S. oil demand next year should keep crude oil

137

Displacement of crude oil by carbon dioxide  

E-Print Network (OSTI)

DISPLACEMENT OF CRUDE OIL BY CARBON DIOXIDE A Thesis by OLUSEGUN OMOLE Submitted to the Graduate College of Texas ASM University in part';al fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1980 Major Subject...: Petroleum Engineering DISPLACEMENT OF CRUDE OIL BY CARBON DIOXIDE A Thesis by OLUSEGUN OMOLE Approved as to style and content by: hairman of Committee / (Member (Member (Member (Hea o Depart ent December 1980 ABSTRACT Displacement of Crude Oil...

Omole, Olusegun

1980-01-01T23:59:59.000Z

138

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Energy Information Administration, Form FEA-P110-M-1, "Refiners' Monthly Cost Allocation Report," January 1978 through June 1978; Form ERA-49, "Domestic Crude Oil Entitlements...

139

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

140

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

142

Implications of Increasing U.S. Crude Oil Production  

U.S. Energy Information Administration (EIA) Indexed Site

Implications of Increasing U.S. Crude Implications of Increasing U.S. Crude Oil Production By John Powell June 18, 2013 U.S. crude oil production is up dramatically since 2010 and will continue to grow rapidly; this has implications for: John Powell June 18, 2013 2 * Refinery operations * Refinery investment * Logistics infrastructure investment * Exports of petroleum products * Exports of crude oil Increased U.S. crude oil production has resulted in: John Powell June 18, 2013 3 * Declines in U.S. crude imports * Changes to refinery operations * Logistical constraints in moving crude from production areas to refining areas * Discounted prices for domestic "landlocked" crude vs. international seaborne crude

143

Texas - RRC District 2 Onshore Dry Natural Gas Proved Reserves (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,162 2,976 2,974 1980's 2,502 2,629 2,493 2,534 2,512 2,358 2,180 2,273 2,037 1,770 1990's 1,737 1,393 1,389 1,321 1,360 1,251 1,322 1,634 1,614 1,881 2000's 1,980 1,801 1,782 1,770 1,844 2,073 2,060 2,255 2,238 1,800 2010's 2,090 3,423 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

144

Texas - RRC District 4 Onshore Dry Natural Gas Proved Reserves (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,621 9,031 8,326 1980's 8,130 8,004 8,410 8,316 8,525 8,250 8,274 7,490 7,029 7,111 1990's 7,475 7,048 6,739 7,038 7,547 7,709 7,769 8,099 8,429 8,915 2000's 9,645 9,956 9,469 8,763 8,699 8,761 8,116 7,963 7,604 6,728 2010's 7,014 9,458 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves

145

Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model  

SciTech Connect

This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

Not Available

1988-09-01T23:59:59.000Z

146

Naphthenic acid corrosion in crude distillation units  

SciTech Connect

This paper summarizes corrosion experience in crude distillation units processing highly naphthenic California crude oils. Correlations have been developed relating corrosion rates to temperature and total acid number. There is a threshold acid number in the range of 1.5 to 2 mg KOH/g below which corrosion is minimal. High concentrations of hydrogen sulfide may raise this threshold value.

Piehl, R.L.

1988-01-01T23:59:59.000Z

147

Focus on Venezuelan heavy crude: refining margins  

SciTech Connect

Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

Not Available

1984-01-25T23:59:59.000Z

148

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil" "Sourcekey","R00003","R12003","R13003" "Date","U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel)","U.S. Crude Oil Domestic...

149

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

150

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

151

California Federal Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

152

California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

153

Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

154

Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

155

Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

156

Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

157

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

158

California--State Offshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

159

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by...

160

Production of Onshore Lower-48 Oil and Gas-model methodology and data description. [PROLOG  

SciTech Connect

This report documents the methodology and data used in the Production of Onshore Lower-48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. A linear program is used to select drilling activities for conventional oil and gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using an exogenously specified price path, net present values are computed for fixed amounts of drilling activity for oil and gas, and for exploration and development in each of six onshore regions. Forecasts of drilling for enhanced gas recovery (EGR) are exogenously determined, and this drilling is included when considering the constraints on drilling rigs. The report is organized as follows. Chapter 2 is a general overview of the model, describing the major characteristics of the methodology and the logical interaction of the various modules. Chapter 3 specifies the structure of the linear program including the equations for the objective function and the constraints. The details of the methodology used to model exploratory, developmental, and deep gas drilling are presented in Chapters 4-6, respectively. Chapter 7 presents a discussion of the economic evaluation which takes place in each discounted cash flow calculation performed by the model. Cost equations are presented, and various user-specified options as to how to incorporate these costs are discussed. Methodological details and equations used to model finding rates and revisions are given in Chapter 8. Possible areas of future enhancements to the PROLOG model are presented in Chapter 9.

Carlson, M.; Kurator, W.; Mariner-Volpe, B.; O'Neill, R.; Trapmann, W.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently. Crude oil rose about 36 cents per gallon from its low point in mid February 1999 to the middle of January 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, heating oil spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled slightly higher as the New York Harbor market began to

162

Crude Oil and Gasoline Price Monitoring  

Gasoline and Diesel Fuel Update (EIA)

What drives crude oil prices? What drives crude oil prices? November 13, 2013 | Washington, DC An analysis of 7 factors that influence oil markets, with chart data updated monthly and quarterly Crude oil prices react to a variety of geopolitical and economic events November 13, 2013 2 price per barrel (real 2010 dollars, quarterly average) Low spare capacity Iraq invades Kuwait Saudis abandon swing producer role Iran-Iraq War Iranian revolution Arab Oil Embargo Asian financial crisis U.S. spare capacity exhausted Global financial collapse 9-11 attacks OPEC cuts targets 1.7 mmbpd OPEC cuts targets 4.2 mmbpd Sources: U.S. Energy Information Administration, Thomson Reuters 0 20 40 60 80 100 120 140 1970 1975 1980 1985 1990 1995 2000 2005 2010 imported refiner acquisition cost of crude oil

163

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

164

U.S. Crude Oil Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

Like the rest of the OECD countries, US petroleum inventories are low and Like the rest of the OECD countries, US petroleum inventories are low and are not expected to recover to the normal range this winter. Preliminary data for the end of October indicate it may be the lowest level for crude oil stocks in the United States since weekly data began being collected in 1982, when crude oil inputs to refineries were about 3-4 million barrels per day less than today. U.S. crude oil stocks stood at about 283 million barrels on November 3, according to EIA's latest weekly survey. This puts them about 21 million barrels or 7% below the level seen at the same time last year. Current market conditions do suggest some improvement in the near term. Days supply of commercial crude oil stocks in the United States is estimated to have been 19 days in October, the lowest for that month since

165

Pipelining characteristics of Daqing waxy crude oil  

Science Journals Connector (OSTI)

Compared with pipelining Newtonian fluid, the pipelining characteristics of the waxy crude pipeline are sensitive to the complicated rheological properties. When the temperature is lower than the wax appearance t...

Ying-ru Zhu ???; Jin-jun Zhang ???

2007-02-01T23:59:59.000Z

166

Summary Statistics Table 1. Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

"Monthly Foreign Crude Oil Acquisition Report"; and Form EIA-14, "Refiners' Monthly Cost Report." 0 6 12 18 24 30 J F M A M J J A S O N D 1998 Dollars per Barrel RAC First...

167

U.S. Crude Oil Stocks  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: U.S. crude oil stocks stood at about 289 million barrels on September 8, according to EIA's latest survey. This puts them about 24 million barrels below the level seen at the same time last year. Current market conditions do not suggest much improvement in the near term. We probably ended last month (August 2000) with the lowest level for end-of-August crude oil stocks (289 million barrels) in the United States since 1976, when crude oil inputs to refineries were about 2 million barrels per day less than today. However, by EIA data, we have seen (at least slightly) lower crude stocks in recent months, including an end-December 1999 level of 284 million barrels. The American Petroleum Institute (API), which also surveys petroleum supply and demand

168

Membrane degumming of crude vegetable oil  

E-Print Network (OSTI)

Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

Lin, Lan

2012-06-07T23:59:59.000Z

169

Review of critical factors affecting crude corrosivity  

SciTech Connect

Lower quality opportunity crudes are now processed in most refineries and the source of the crudes may vary daily. These feedstocks, if not properly handled, can result in reduction in service life of equipment as well as costly failure and downtime. Analytical tools are needed to predict their high temperature corrosivity toward distillation units. Threshold in total sulfur and total acid number (TAN) have been used for many years as rules of thumb for predicting crude corrosivity, However, it is now realized that they are not accurate in their predictive ability. Crudes with similar composition and comparable with respect to process considerations have been found to be entirely different in their impact on corrosion. Naphthenic acid content, sulfur content, velocity, temperature, and materials of construction are the main factors affecting the corrosion process, Despite progress made in elucidating the role of the different parameters on the crude corrosivity process, the main problem is in calculating their combined effect, especially when the corroding stream is such a complex mixture. The TAN is usually related directly to naphthenic acid content. However, discrepancies between analytical methods and interference of numerous components of the crude itself lead to unreliable reported content of naphthenic acid. The sulfur compounds, with respect to corrosivity, appear to relate more to their decomposition at elevated temperature to form hydrogen sulfide than to their total content in crude. This paper reviews the present situation regarding crude corrosivity in distillation units, with the aim of indicating the extent of available information, and areas where further research is necessary.

Tebbal, S.; Kane, R.D. [CLI International, Inc., Houston, TX (United States)

1996-08-01T23:59:59.000Z

170

Recent Trends in Crude Oil Stock Levels  

Gasoline and Diesel Fuel Update (EIA)

J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 0 280 300 320 340 360 380 400 420 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 Average Range: 1993-1995 Recent Trends in Crude Oil Stock Levels by Aileen A. Bohn Energy Information Administration (EIA) data for March 1996 primary inventories of crude oil were the lowest recorded in almost 20 years. Crude oil inventories, which were generally on a downward trend since the beginning of 1995, fell below the average range in July 1995 and have yet to recover (Figure FE1). On September 27, 1996, crude oil stocks registered 303 million barrels, compared to a normal range of nearly 311 to 332 million barrels for September. 1 Low crude oil inventories can cause price volatility in crude oil markets. 2 When inventories are low, refiners resort to

171

,"F.O.B. Costs of Imported Crude Oil for Selected Crude Streams"  

U.S. Energy Information Administration (EIA) Indexed Site

for Selected Crude Streams" for Selected Crude Streams" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","F.O.B. Costs of Imported Crude Oil for Selected Crude Streams",14,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_imc2_k_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_imc2_k_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

172

Crude oil and crude oil derivatives transactions by oil and gas producers.  

E-Print Network (OSTI)

??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

Xu, He

2007-01-01T23:59:59.000Z

173

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

174

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

175

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

mid-January, 2000. WTI crude oil price rose about $17 per mid-January, 2000. WTI crude oil price rose about $17 per barrel or 40 cents per gallon from its low point in mid February 1999 to January 17, 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and the beginning of a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, distillate spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled higher as the New York Harbor market began to draw on product from other areas. They closed at 83 cents per gallon, an increase of 11 cents from the prior Friday. Crude oil had risen about 4 cents from

176

This Week In Petroleum Crude Oil Section  

Gasoline and Diesel Fuel Update (EIA)

Refinery Inputs Refinery Inputs Crude Oil Futures and Estimated Contract Prices (Dollars per Barrel) Crude Oil Futures Prices Petroleum Data Tables more data Most Recent Year Ago 11/29/13 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 01/11/13 Contract 1 92.72 97.65 96.60 99.32 100.32 93.96 92.72 93.56 Contract 2 93.01 97.90 96.93 99.26 100.39 94.14 92.95 93.99 Contract 3 93.24 97.94 96.91 98.73 99.97 94.06 92.92 94.35 Contract 4 93.32 97.66 96.55 97.91 99.18 93.75 92.68 94.66 Crude Oil Futures Price Graph. Crude Oil Stocks (Million Barrels) and Days of Supply Crude Oil Stocks Petroleum Data Tables more data Most Recent Year Ago 11/29/13 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 01/11/13 U.S. 385.8 375.2 372.3 367.6 360.6 357.9 350.2 360.3

177

Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386 2,364 1,909 2010's 2,235 3,690 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

178

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474 8,327 7,930 7,057 2010's 7,392 10,054 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

179

Price discovery in crude oil futures  

Science Journals Connector (OSTI)

Abstract This study examines price discovery among the two most prominent price benchmarks in the market for crude oil, WTI sweet crude and Brent sweet crude. Using data on the most active futures contracts measured at the one-second frequency, we find that WTI maintains a dominant role in price discovery relative to Brent, with an estimated information share in excess of 80%, over a sample from 2007 to 2012. Our analysis is robust to different decompositions of the sample, over pit-trading sessions and non-pit trading sessions, segmentation of days associated with major economic news releases, and data measured to the millisecond. We find no evidence that the dominant role of WTI in price discovery is diminished by the price spread between Brent that emerged in 2008.

John Elder; Hong Miao; Sanjay Ramchander

2014-01-01T23:59:59.000Z

180

Pipeline transportation of high pour Handil crude  

SciTech Connect

Problems related with the pipeline transportation of high pour Handil (Indonesia) crude between Huntington Beach and Santa Fe Springs, California are discussed. The results of laboratory and field studies of chemical additives for pour depression are presented. A rotational viscometer was used to establish the relevant rheological parameters of treated and untreated crude. Chemical treatment at the 200 ppm level was found to be economically more attractive than the available heating step. A limited discussion is also presented of the use of analytical methods for improved characterization of the wax-wax and wax-additive interactions. 11 refs.

Irani, C.A.; Zajac, J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Improving an Accuracy of ANN-Based Mesoscale-Microscale Coupling Model by Data Categorization: With Application to Wind Forecast for Offshore and Complex Terrain Onshore Wind Farms  

Science Journals Connector (OSTI)

The ANN-based mesoscale-microscale coupling model forecasts wind speed and wind direction with high accuracy for wind parks located in complex terrain onshore, yet some weather regimes remains unresolved and f...

Alla Sapronova; Catherine Meissner…

2014-01-01T23:59:59.000Z

182

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

183

Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil  

Science Journals Connector (OSTI)

This article assesses the life cycle emissions of a fictive onshore wind power station consisting of 141.5-MW wind turbines situated on the northeastern coast of Brazil. The objective is to identify the main sources of CO2(eq)-emissions during the life cycle of the wind farm. The novelty of this work lies in the focus on Brazil and its emerging national manufacturing industry. With an electricity matrix that is primarily based on renewable energy sources (87% in 2010), this country emits eight times less CO2 for the production of 1 kWh of electricity than the global average. Although this fact jeopardizes the CO2 mitigation potential of wind power projects, it also reduces the carbon footprint of parts and components manufactured in Brazil. The analysis showed that reduced CO2-emissions in the material production stage and the low emissions of the component production stage led to a favorable CO2-intensity of 7.1 g CO2/kWh. The bulk of the emissions, a share of over 90%, were unambiguously caused by the production stage, and the transportation stage was responsible for another 6% of the CO2-emissions. The small contributions from the construction and operation phases could be neglected. Within the manufacturing process, the steel tower was identified as the source responsible for more than half of the emissions. The environmental impacts of the wind farm are small in terms of CO2-emissions, which can be credited to a green electricity mix. This scenario presents an advantage for the country and for further production sites, particularly in the surroundings of the preferred wind farm sites in Brazil, which should be favored to reduce CO2 emissions to an even greater extent.

Kerstin B. Oebels; Sergio Pacca

2013-01-01T23:59:59.000Z

184

Effects of increasing filing fees for noncompetitive onshore oil and gas leases  

SciTech Connect

The Government Accounting Office (GAO) examined the impact of increasing the fee charged to applicants for noncompetitive onshore oil and gas leases from $25.00 to $75.00. Interior believes the increased filing fee will: (1) reduce casual speculation and multiple filings, thereby reducing fraud potential, development delays caused by assignments, and administrative burden; and (2) generate significant additional revenue. Interior's analysis is, of necessity, based largely on conjecture, but the possibility that the positive results foreseen may not materialize to the degree projected cannot be ruled out. For example, while it is likely that the $75 fee will generate additional revenue over what was obtainable under either the $10 or $25 rate, Interior's projections of at least a million filings annually and $150 million in revenues are far from certain. GAO was also unable in the time available to determine the degree to which the problems the Department desires to overcome exist, or that they will be resolved through a fee increase. Results suggest that: reducing the number of filings is not necessarily the total or only solution to reducing the administrative burden; the casual speculator is not having that great an adverse effect on development, and in fact has certain positive aspects; and the true extent of fraud in the SOG may not be as great as initially supposed. In addition, there are possible adverse effects that may not have been fully considered. For example, the increased filing fee, when coupled with the increased rental, could adversely affect industry's exploration activities, particularly that of the smaller independent. GAO suggests, now that the increase is in effect, that the Interior Department and the Congress closely watch the results, and be prepared to take remedial action if deemed necessary.

Not Available

1982-03-19T23:59:59.000Z

185

E-Print Network 3.0 - atmospheric crude distillation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Problems Summary: and atmospheric distillations of crude-oil mixtures from charging tanks. The crude is then processed in order... of resources: crude marine vessels, storage...

186

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

187

U.S. Crude Oil Production Forecast-Analysis of Crude Types  

Gasoline and Diesel Fuel Update (EIA)

oil production by crude type as it would be delivered from well-site or lease storage tanks. Once the oil enters transportation and distribution systems, it may be commingled...

188

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

189

Costs of Imported Crude Oil by API Gravity  

Annual Energy Outlook 2012 (EIA)

Crude Oil Acquisition Report," July 1984 to present. 26. F.O.B. Costs of Imported Crude Oil by API Gravity 48 Energy Information Administration Petroleum Marketing Annual 1996...

190

Costs of Imported Crude Oil by API Gravity  

Annual Energy Outlook 2012 (EIA)

Crude Oil Acquisition Report," July 1984 to present. 26. F.O.B. Costs of Imported Crude Oil by API Gravity 48 Energy Information Administration Petroleum Marketing Annual 1997...

191

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64...

192

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46...

193

Secretary Bodman Announces Sale of 11 Million Barrels of Crude...  

Energy Savers (EERE)

Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

194

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

195

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

196

Bridging 3D seismic onshore: Lodgepole play highlights promise and challenges  

SciTech Connect

Recent major discoveries by Conoco Inc. and Duncan Oil in the Lower Mississippian Lodgepole formation of the Williston basin show that finding major oil reserves is still possible in the US and that 3D seismic methods have the capability to locate them. The implications are profound for independent oil and gas producers, who traditionally concentrate their operations in the mature US. Like major companies, independents are profiting form use of 3D seismic methods. The Williston basin successes show how independents might use 3D seismic methods to identify opportunities in a region once considered to be drilled up. Both the increasing use of these technologies by independents as well as the experiences major companies have had with them are well-documented. The paper discusses the Lodgepole discoveries, rejuvenation of the US oil and gas industry, stratigraphic information available by 3D seismic means, economic impact, and implications of 30 seismic work in the US.

O`Connor, R.B. Jr. [Wavetech Geophysical Inc., Denver, CO (United States)

1995-11-20T23:59:59.000Z

197

Low Temperature Fluorescence Studies of Crude Petroleum Oils  

Science Journals Connector (OSTI)

(26) However, it has to be noted that dilution of crude petroleum oils radically changes the photophysics of fluorescence emission and, as such, the Shpol’skii method is not suitable for exploring crude oil fluorescence from neat, undiluted oils. ... with shorter wavelength excitation (to 325 nm); all crude petroleums have nearly the same relative dependence of quantum yield on excitation wavelength. ...

Peter Owens; Alan G. Ryder

2011-09-14T23:59:59.000Z

198

Gravity of world crude barrel to rise by 1995  

SciTech Connect

This paper reports on the loss of crude exports from Iraq and Kuwait in 1990-91 and their gradual reentry into oil markets which will have a profound effect on world crude quality. Accordingly, the proportion of heavy crude in world markets will decline the next 5 years.

Not Available

1991-12-16T23:59:59.000Z

199

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on  

E-Print Network (OSTI)

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

200

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

3 of 17 3 of 17 Notes: After declining in 1999 due to a series of announced production cuts, OPEC 10 (OPEC countries excluding Iraq) production has been increasing during 2000. EIA's projected OPEC production levels for fourth quarter 2000 have been lowered by 300,000 barrels per day from the previous Outlook. Most of this decrease is in OPEC 10 production, which is estimated to be 26.5 million barrels per day. EIA still believes that only Saudi Arabia, and to a lesser degree, the United Arab Emirates, will have significant short-term capacity to expand production. EIA's forecast assumes that OPEC 10 crude oil production will decline by 400,000 barrels per day to 26.1 million barrels per day by mid-2001. Iraqi crude oil production is estimated to have increased from 2.3 million

202

Lactic acid fermentation of crude sorghum extract  

SciTech Connect

Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

1980-04-01T23:59:59.000Z

203

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

204

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

205

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

206

Improved paving asphalt from Baku crudes  

SciTech Connect

An improved paving asphalt has been obtained from commercial BN-60/90 asphalt by adding certain components that are waste materials in petroleum refining: a still residue from the distillation of naphthenic acids to improve adhesion properties, asphalt obtained in deasphalting vacuum resid to improve ductility and impart freeze resistance, and a dialkylnaphthalene as a pour point depressant. Three different blend formulations were prepared by melting and mixing and analyzed for their physicochemical properties. The possibility was also investigated of expanding the raw material base for paving asphalts by including certain waste materials obtained in refining Baku crudes.

Allakhverdiev, A.A.; Kuliev, R.B.; Samedova, F.I.

1988-03-01T23:59:59.000Z

207

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

208

Proved Nonproducing Reserves of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2006 2007 2008 2009 2010 2011 View History U.S. 5,174 5,455 5,400 6,015 6,980 9,049 1996-2011 Federal Offshore U.S. 1,921 2,304 2,297 2,150 1,710 2,662 1996-2011 Pacific (California) 37 20 12 12 13 13 1996-2011 Louisiana & Alabama 1,816 2,231 2,229 2,013 1,595 2,597 1996-2011 Texas 68 53 56 125 102 52 1996-2011 Alaska 442 400 529 633 622 566 1996-2011 Lower 48 States 4,732 5,055 4,871 5,382 6,358 8,483 1996-2011 Alabama 0 0 0 0 0 1 1996-2011 Arkansas 1 0 0 0 1 0 1996-2011

209

Crude oil to ethylene in one step  

SciTech Connect

Reports that the most important feature of the partial combustion cracking (PCC) process is its ability to convert heavy petroleum fractions to light olefins with minimum residue. Presents diagram of the PCC process; graph of feedstock cost vs. return on investment (ROI); and tables with average ethylene yields, cracking yields, and PCC vs. LPG and naphtha cracking. Finds that the 10% difference in capital between the PCC and the naphtha feed case is due mainly to the cost of the acid gas and sulfur handling sections required for the PCC, but not for a naphtha cracker. The very favorable ROI and ethylene costs are due to the relative difference in feedstock pricing. Sensitivity of ROI to changes in feedstock was also studied for the PCC cases. The ratio of cost of high-sulfur fuel oil (HSFO) to average crude price is used to indicate the substantial effect of feedstock price on the attractiveness of the project. Concludes that with HSFO at 85 to 100% of crude value, the PCC represents an excellent investment for future ethylene needs.

Kirk, R.O.

1983-02-01T23:59:59.000Z

210

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

211

PVT Correlations of Indian Crude Using Support Vector Regression  

Science Journals Connector (OSTI)

Department of Chemical Engineering, Indian Institute of Technology, Kanpur-208016, U. P., India ... Correlations for bubble point pressure, solution gas?oil ratio, oil formation volume factor (for both saturated and undersaturated crude) and viscosity (for both saturated and undersaturated crude) have been developed for Indian crude using support vector regression (SVR). ... Each data set was checked for any missing data and if found, such points were rejected. ...

Sarit Dutta; J. P. Gupta

2009-09-01T23:59:59.000Z

212

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

Annual Energy Outlook 2012 (EIA)

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

213

,"Colorado Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

214

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

215

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

216

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

217

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

218

Characterization of acidic components in Midway Sunset crude oil  

SciTech Connect

The crude oil from the Midway Sunset Field in California contains 70% non-distillable constituents called resid. Analysis of Midway Sunset crude components using standard analytical techniques such as GC and GC-MS is difficult due to the complex and intractable nature of the resid. Acidic components in crudes are of importance because the presence of these compounds results in problems related to pipe corrosion and waste-water contamination. Detailed characterization of the acidic components of Midway Sunset crude using high-resolution electron impact (HREI) and chemical ionization (HRCI) mass spectrometry have been undertaken.

Haas, G.W.; Ellis, L.; Hunt, J.E.; Winans, R.E. [Argonne National Lab., IL (United States)

1995-12-31T23:59:59.000Z

219

,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

220

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

222

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1...

223

Texas State Offshore Crude Oil + Lease Condensate Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions...

224

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

225

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves...

226

California Federal Offshore Crude Oil + Lease Condensate New...  

U.S. Energy Information Administration (EIA) Indexed Site

disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Reservoir Discoveries in Old Fields...

227

,"Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

228

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

229

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

230

Texas State Offshore Crude Oil + Lease Condensate Reserves Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales...

231

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

232

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million...

233

Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade...

234

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1...

235

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

236

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

237

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

238

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

239

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

240

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales...

242

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1...

243

,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

244

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

245

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

246

Texas State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Reservoir Discoveries in Old Fields...

247

,"Texas State Offshore Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

248

California State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Reservoir Discoveries in Old Fields...

249

,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

250

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old...

251

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1...

252

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

253

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

254

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2...

255

Texas State Offshore Crude Oil + Lease Condensate Reserves New...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

256

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

257

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade...

258

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

259

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

260

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BIODEGRADATION OF HIGH CONCENTRATIONS OF CRUDE OIL IN MICROCOSMS.  

E-Print Network (OSTI)

??Oil biodegradation at high concentrations was studied in microcosms. The experimental approach involved mixing clean sand with artificially weathered Alaska North Slope crude oil at… (more)

XU, YINGYING

2002-01-01T23:59:59.000Z

262

,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

263

Waxy crude oil production in the South China Sea  

SciTech Connect

The Phillips Petroleum International Corporation Asia (PPICA) Xijiang Field Development Project is a unique project resulting in the production of a waxy crude oil. The crude oil is produced on two platforms feeding a final production unit located on an FPSO (Floating Production, Storage and Off-loading) vessel located between the platforms. The crude from these two fields contains a high concentration of wax and has a relatively high pour point temperature. The crude composition and oil properties are listed in two tables. Special consideration was needed with respect to operating temperatures, start-up and shutdown procedures.

Low, W.R.; Gerber, E.J.; Simek, L.A.

1996-12-31T23:59:59.000Z

264

Calculating Deposit Formation in the Pipelining of Waxy Crude Oils  

Science Journals Connector (OSTI)

Wax deposition from a waxy crude oil is modelled in turbulent flow in a pipeline. Molecular diffusion in a thin boundary layer...

S. Correra; A. Fasano; L. Fusi; D. Merino-Garcia

2007-04-01T23:59:59.000Z

265

Table 18: Reported proved nonproducing reserves of crude oil...  

Gasoline and Diesel Fuel Update (EIA)

: Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012 Lease...

266

Table 18: Reported proved nonproducing reserves of crude oil...  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, " "nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012"...

267

,"California--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

268

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

269

,"California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

270

,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

271

,"Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

272

,"Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million...

273

,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

274

,"California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

275

,"Federal Offshore California Crude Oil plus Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

276

,"California Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

277

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

278

Texas - RRC District 10 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

279

U.S. Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

280

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Texas - RRC District 7B Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

282

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

283

Texas - RRC District 6 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

284

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

285

Louisiana State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

286

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

287

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

288

Texas - RRC District 7C Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

289

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

290

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

291

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

292

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

293

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

294

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

295

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

296

California State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

297

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

298

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

299

California Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

300

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

302

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

303

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

304

Texas - RRC District 8A Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

305

Texas - RRC District 9 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

306

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

307

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

308

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

309

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

310

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

311

Texas - RRC District 8 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

312

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

313

Texas - RRC District 1 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

314

Texas - RRC District 5 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

315

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

316

Costs of Crude Oil and Natural Gas Wells Drilled  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

317

Water Basins Civil Engineering  

E-Print Network (OSTI)

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

318

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

319

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

320

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day. After being sharply curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

EIA assumes in its base case that OPEC 10 production averages about EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. Over the course of the past year, worldwide oil production has increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day in the last months of 2000. After being nearly completely curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

322

OPEC Crude Oil Production 1998-2001  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.8 million barrels per day to a level of 77.9 million barrels per day. After being sharply curtailed in December and January, EIA's base case assumes that Iraqi oil exports return closer to more normal levels in February. By the second half of 2001, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels

323

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

324

Divergent/passive margin basins  

SciTech Connect

This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

Edwards, J.D. (Shell Oil Company (US)); Santogrossi, P.A. (Shell Offshore Inc. (US))

1989-01-01T23:59:59.000Z

325

Waxy crude oil handling in Nigeria; Practices, problems, and prospects  

SciTech Connect

With case studies, the practices, problems, and prospects of handling waxy crude oils in Nigeria are discussed. Using a rotational viscometer, the temperature dependence of rheological properties and thixotropy of these crudes were determined. Suggestions are given on how to improve handling practices. These suggestions include adequate screening and ranking of wax inhibitors, taking into account pour-point depression, viscosity, and yield value.

Ajienka, J.A.; Ikoku, C.U. (Dept. of Petroleum Engineering, Univ. of Port Harcourt, Choba, Port Harcourt (NG))

1990-01-01T23:59:59.000Z

326

Multi-fractal Analysis of World Crude Oil Prices  

Science Journals Connector (OSTI)

In order to reveal the stylized facts of world crude oil prices, R/S (Rescaled Range Analysis) method is introduced in this paper. For illustration, WTI (West Texas Intermediate) and Brent daily crude oil prices are used in this paper. The calculated ...

Xiucheng Dong; Junchen Li; Jian Gao

2009-04-01T23:59:59.000Z

327

F.O.B. Costs of Imported Crude Oil for Selected Crude Streams  

U.S. Energy Information Administration (EIA) Indexed Site

for Selected Crude Streams for Selected Crude Streams (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Angolan Cabinda 1983-2010 Canadian Bow River 1996-2010 Canadian Light Sour Blend W 90.81 W W W W 2010-2013 Canadian Lloydminster 70.87 79.48 80.36 W 92.04 W 1983-2013 Ecuadorian Oriente 1983-2008 Gabon Rabi-Kouanga 1996-2008 Iraqi Basrah Light 100.31 W W 97.05 101.32 W 2009-2013 Mexican Mayan 98.74 98.36 96.26 99.63 99.74 99.31 1983-2013 Mexican Olmeca 1996-2010 Nigerian Forcados Blend 1996-2008 Nigerian Qua Iboe W W W 2009-2013 Venezuelan Furrial 1996-2008 Venezuelan Leona 1996-2010

328

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

329

Gulf Coast refiners gain access to more California crudes  

SciTech Connect

Refiners east of the Rockies, particularly Gulf Coast refiners, have gained access to easter and central California crudes with the opening of Celeron Corp.'s All American Pipeline (AAPL). Currently, AAPL is carrying a blend of California crudes with properties similar to Alaskan North Slope (ANS). Although the blend is moderate gravity and sulfur content, it is comprised of crudes from several fields in California that display wide variations in quality. Future deliveries east from California will be from regions with even more extremes of quality. To familiarize refiners with the crudes that will become available, some of the properties of these California crudes are discussed, along with some of the problems refiners may encounter in processing these materials.

Vautrain, J.H.; Sanderson, W.J.

1988-07-11T23:59:59.000Z

330

Fact #652: December 6, 2010 U.S. Crude Oil Production Rises ...  

Energy Savers (EERE)

2: December 6, 2010 U.S. Crude Oil Production Rises Fact 652: December 6, 2010 U.S. Crude Oil Production Rises The production of crude oil in the U.S., including lease...

331

Fact #819: April 28, 2014 Imports of Crude Oil Declining | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9: April 28, 2014 Imports of Crude Oil Declining Fact 819: April 28, 2014 Imports of Crude Oil Declining Imports of crude oil to the U.S. were on an upward trend for about 20...

332

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

333

Origin of cratonic basins  

SciTech Connect

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

334

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

335

E-Print Network 3.0 - arctic crude oil Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage, Conversion and Utilization 98 Time-varying Predictability in Crude Oil Markets: The Case of GCC Countries Summary: Time-varying Predictability in Crude Oil...

336

E-Print Network 3.0 - asphaltenic crude oils Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

18 A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Summary: of crude oil emulsions. Other means of destabilizing...

337

Table 27. Landed Costs of Imported Crude Oil by API Gravity  

Annual Energy Outlook 2012 (EIA)

Crude Oil Acquisition Report," July 1984 to present. 27. Landed Costs of Imported Crude Oil by API Gravity Energy Information Administration Petroleum Marketing Annual 1997...

338

Table 27. Landed Costs of Imported Crude Oil by API Gravity  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Acquisition Report," July 1984 to present. 27. Landed Costs of Imported Crude Oil by API Gravity Energy Information Administration Petroleum Marketing Annual 1996...

339

Table 23. Domestic Crude Oil First Purchase Prices by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum Marketing Annual 1996...

340

Table 23. Domestic Crude Oil First Purchase Prices by API Gravity  

Gasoline and Diesel Fuel Update (EIA)

"Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum Marketing Annual 1997...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE to Issue Second Solicitation for Purchase of Crude Oil for...  

Energy Savers (EERE)

Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum...

342

Water content test for EOR crude simulates desalter  

SciTech Connect

Crude oil produced from enhanced oil recovery (EOR) projects employing micellar/polymer flooding can require an alternative test method for water content to the ASTM centrifuge test, or grindout procedure. The reason is that centrifuging cannot break the surfactant-stabilized emulsion. As an alternative, Marathon Oil Co. has developed a simulated desalter test (SDT) and necessary apparatus for the accurate evaluation of the quality of crude oil from such projects. Oil quality parameters such as basic sediment and water values are used almost universally for determining the acceptability of crude oil into pipeline or refinery systems.

Duke, R.B. (Marathon Oil Co., Littleton, CO (US))

1991-02-25T23:59:59.000Z

343

Hydrocarbon composition of crude oils near the Caspian depression  

SciTech Connect

The structural-group composition of hydrocarbons of Mesozoic crude oils near the Caspian depression was investigated by mass-spectrometry, followed by the analysis of the mass-spectra using a computer. The distribution of naphthenic hydrocarbons, according to the number of rings and of aromatic hydrocarbons, according to the degree of hydrogen unsaturation is similar for all the crude oils examined. The hydrocarbon composition of Mesozoic crude oils is characterized by a reduction in the content of aliphatic hydrocarbons and alkyl benzenes.

Botneva, T.A.; Khramova, E.V.; Nekhamkina, L.G.; Polyakova, A.A.

1983-01-01T23:59:59.000Z

344

Hydrocarbon composition of crude oil from Lam Bank  

SciTech Connect

The authors discuss the crude oil from a new offshore field called the Lam Bank in the Caspian Sea. A segregated commercial crude was distilled and the distillation data is shown. In order to determine the content of n-paraffins, the naphthenic-paraffinic part of the narrow cuts was subjected to adsorptive separation on CaA zeolite. Owing to the high contents of naphthenic and isoparaffinic hydrocarbons and the low content of aromatic hydrocarbons in the distillate part, this crude can be used to produce high-quality fuels and oils by the use of the dewaxing processes.

Samedova, F.I.; Agaeva, R.M.; Alieva, F.Z.; Valiev, M.A.

1987-07-01T23:59:59.000Z

345

SPR Crude Oil Acquisition Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures Section 301(e)(2) of the Energy Policy Act of 2005 (Public Law 109-58) directs the Secretary of Energy to develop procedures to acquire petroleum, subject to certain conditions, in quantities to fill the Strategic Petroleum Reserve (SPR) to the authorized one billion barrel capacity. On April 24, 2006, a Notice of Proposed Rulemaking (NOPR) for acquisition of crude oil for the SPR was published in the Federal Register. The procedures include provisions for acquisition through several means, including direct purchase, by transfer of royalty oil from the Department of the Interior, and by receipt of premium barrels resulting from deferral of scheduled deliveries of petroleum for the Reserve.

346

,"U.S. Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisition Cost of Crude Oil" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refiner...

347

Colorado Crude Oil + Lease Condensate Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

348

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2012 (EIA)

957 15 731 315 -382 -141 33 712 15 735 Crude Oil 614 - - - - 300 -139 -147 -15 638 4 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 342 0 21 11 -304 - - 14 19 9 29...

349

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2012 (EIA)

848 14 646 310 -422 -51 0 622 15 707 Crude Oil 527 - - - - 296 -183 -57 3 578 2 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 320 0 11 11 -265 - - 1 17 12 48 Pentanes...

350

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

351

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

352

Characterization of the crude oil polar compound extract  

SciTech Connect

This research is designed to determine if there are any naturally occurring constituents in crude oils that can be chemically altered to bring about increased oil production. An extract containing only the polar organic compounds of the crude oil was obtained by using a modification of the ASTM-2007 procedure. Chemical characterization of the polar compounds were carried out using high pressure liquid chromatography (HPLC) and gas chromatography. The HPLC analyses indicated a range of polar organic compound content of 10 crude oils from 1.6% to 12.7%. Wettability determinations show that by adding a small amount of the polar fraction from a crude oil, to a mineral oil, a 40 to 111% change of wettability toward a more oil-wet system will occur, depending on the specific extract used.

Donaldson, E.C.; Crocker, M.E.

1980-10-01T23:59:59.000Z

353

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

354

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

355

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

356

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

357

Texas State Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

358

Texas State Offshore Crude Oil + Lease Condensate Reserves Acquisition...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

359

Texas State Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

360

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

362

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

363

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

364

Texas State Offshore Crude Oil + Lease Condensate Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

365

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

366

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

367

The relationship between crude oil and gasoline prices  

Science Journals Connector (OSTI)

This study investigates the dynamic relationship between crude oil and retail gasoline prices during the last 21 years and determines ... that date, the results show that gasoline prices include higher profit mar...

Ali T. Akarca; Dimitri Andrianacos

1998-08-01T23:59:59.000Z

368

Conductivity factor in the electrostatic coalescence of crude oil emulsions  

E-Print Network (OSTI)

vertically-oriented, cylindrical coalescer. The electrical conductivity of each phase of the water-in-oil emulsion was varied to determine their effects on the rate of coalescence. Both light and intermediate grades of crude oil emulsions were modified...

Nelson, James B

1998-01-01T23:59:59.000Z

369

Volatility Relationship between Crude Oil and Petroleum Products  

Science Journals Connector (OSTI)

This paper utilizes calculated historical volatility and GARCH models to compare the historical price volatility behavior of crude oil, motor gasoline and heating oil in U.S. markets since 1990. ... GARCH/TARCH m...

Thomas K. Lee; John Zyren

2007-03-01T23:59:59.000Z

370

API gravity ranges of EIA-182 crude streams  

Gasoline and Diesel Fuel Update (EIA)

API Gravity Ranges of Selected Crude Streams, EIA-182 Gravity 20 or less Alabama Heavy Ca - Coalinga Ca - Cymric Ca - Kern River Ca - Lost Hills Ca - Midway-Sunset Ca OCS - Hondo...

371

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

372

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

373

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

374

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

375

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

376

Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts  

Science Journals Connector (OSTI)

...measurements, and the borehole conditions were consistent...fracture porosity or large void space (secondary...features (34, 35). Drilling in the Nantucket...continental scientific drilling workshop, Arlington...guide to Earth’s largest continental flood...Culpeper basin, VA ( Drilling, Observation, and Sampling...

David S. Goldberg; Dennis V. Kent; Paul E. Olsen

2010-01-01T23:59:59.000Z

377

Use of ultrasonic energy to decrease the gel strength of waxy crude oil  

SciTech Connect

This patent describes improvement in a process for flowing waxy crude oil through a pipe line. The improvement comprises: applying ultrasonic energy to the flowing crude oil prior to or after combining with the crude oil a solution of polymeric wax crystal modifier whereby the gel strength of the crude oil-wax crystal modifier is lowered.

Scribner, M.E.

1991-01-08T23:59:59.000Z

378

Characterization of Sodium Emulsion Soaps Formed from Production Fluids of Kutei Basin, Indonesia  

Science Journals Connector (OSTI)

The Kutei Basin soap emulsions are resolved by heating and treatment with relatively high dosages of acid demulsifiers. ... Two main types of soaps can form in production fluids:1 calcium naphthenate scales, which can manifest as in situ sticky or hardened deposits, and sodium emulsion soaps, which can create severe oil dehydration problems and lead to excessive slop oil/sludge volumes at crude-oil terminals. ... Similar sodium carboxylate soaps are also common to other basins around Borneo (e.g., Sarawak, Brunei, and Sabah)2 and in other parts of southeast Asia (e.g., the South China Sea, Malaysia, offshore Vietnam, Bohai Bay in China, and elsewhere in Indonesia). ...

Darrell L. Gallup; Joseph A. Curiale; P. Colin Smith

2007-05-02T23:59:59.000Z

379

Assessment of the corrosivity of crude fractions from varying feedstock  

SciTech Connect

Crude corrosivity is becoming a critical issue because of frequent variation of feedstock based on spot market opportunities and high sulfur and naphthenic acid content of low cost crudes. The choice of remediation methods (blending, inhibition, upgrading, and/or process changes) depends on accurate prediction of the corrosivity of these crudes. This paper presents the results of autoclave and flow loop runs conducted to assess the corrosivity of Middle East, Shengli, and Bachequero-13 crudes fractions on several materials used in refinery construction. Autoclave tests were conducted in vacuum heater feed line (VHFL) and Asphalt`s fractions from each crude and in atmospheric gas oil (AGO) and heavy vacuum gas oil (HVGO) from the Bachequero-13. Flow loop tests were conducted only on the VHFL`s of each crude. As expected, the test results showed a major increase in corrosion rate with increasing temperature. Corrosion rates were generally less than 10 mpy for all materials at up to 300 C. At 400 C, corrosion rates on the low Cr steels (0 to 5 Cr) were generally around 100 mpy. For the Middle East and Shengli oils, the asphalt`s were more corrosive than the VHFL cuts. Only slight differences were found in the corrosivity of these two oils. By comparison, the Bachequero-13 fractions were generally more corrosive than those from the Shengli or the Middle Eastern crudes. At 200 ft/s (67 m/s), the corrosion rates of the carbon steel specimens were high in the Middle Eastern fraction compared to the Bachequero-13 and Shengli fractions.

Tebbal, S.; Kane, R.D. [CLI International, Inc., Houston, TX (United States); Yamada, Kazuo [Japan Energy Corp., Okayama (Japan)

1997-09-01T23:59:59.000Z

380

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

382

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

383

Refining Crude Oil - Energy Explained, Your Guide To Understanding Energy -  

Gasoline and Diesel Fuel Update (EIA)

Oil and Petroleum Products > Refining Crude Oil Oil and Petroleum Products > Refining Crude Oil Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

384

Tight Product Balance Pushes Up Product Spread (Spot Product - Crude  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Gasoline inventories indicate how tight the gasoline product market is in any one region. When the gasoline market is tight, it affects the portion of gasoline price is the spread between spot product price and crude oil price. Note that in late 1998-and early 1999 spreads were very small when inventories were quite high. Contrast summers of 1998 or 1999 with summer 2000. Last summer's tight markets, resulting low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline -- particularly in the Midwest. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories stayed well below average and the spread during the

385

First Factor Impacting Distillate Prices: Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: World oil prices have tripled from their low point in December 1998 to August this year, pulling product prices up as well. But crude prices are expected to show a gradual decline as increased oil production from OPEC and others enters the world oil market. We won't likely see much decline this year, however, as prices are expected to end the year at about $30 per barrel. The average price of WTI was almost $30 per barrel in March, but dropped to $26 in April as the market responded to the additional OPEC production. However, prices strengthened again, averaging almost $32 in June, $30 in July, and $31 in August. The continued increases in crude oil prices indicate buyers are having trouble finding crude oil, bidding higher prices to obtain the barrels available.

386

Retail Product Prices Are Driven By Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Retail prices for both gasoline and diesel fuel have risen strongly over the past two years, driven mostly by the rise in world crude oil prices to their highest levels since the Persian Gulf War. Of course, there are a number of other significant factors that impact retail product prices, the most important of which is the supply/demand balance for each product. But the point of this slide is to show that generally speaking, as world crude oil prices rise and fall, so do retail product prices. Because of the critical importance of crude oil price levels, my presentation today will look first at global oil supply and demand, and then at the factors that differentiate the markets for each product. I'll also talk briefly about natural gas, and the impact that gas

387

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

388

Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory  

Gasoline and Diesel Fuel Update (EIA)

Forecasting Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels MICHAEL YE, ∗ JOHN ZYREN, ∗∗ AND JOANNE SHORE ∗∗ Abstract This paper presents a short-term monthly forecasting model of West Texas Intermedi- ate crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed market behavior during the post-Gulf War period, the model was developed with the objectives of being both simple and practical, with required data readily available. As a result, the model is useful to industry and government decision-makers in forecasting price and investigat- ing the impacts of changes on price, should inventories,

389

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

390

Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Design of Crude Oil Pre-heat Trains G.T.Po]Jey B.L.Yeap D.I.Wilson M.H.Panjeh Shahi Pinchtechnology.com Dept of Chern. Engng. Dept. of Chern. Engng. University of Cambridge University of Tehran Pre-heat trains differ from most other heat... recovery networks in a number of important ways. Combination offactors gives rise to the need for a design procedure specific to pre heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat...

Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

391

The toxicity of two crude oils and kerosine to cattle  

E-Print Network (OSTI)

THE TOXICITY OF TWO CRUDE OILS AND KEROSINE TO CATTLE A Thesis by LOYD DOUGLAS ROWE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1972 Major... Subject: Veterinary Toxicology THE TOXICITY OF TWO CRUDE OILS AND KEROSINE TO CATTLE A Thesis by LOYD DOUGLAS ROWE Approved as to style and content by: i (Chairman of Committee) J (Head of De rtment) (Member) (Me er) December 1972 ABSTRACT...

Rowe, Loyd Douglas

1972-01-01T23:59:59.000Z

392

"ENDING STOCKS OF CRUDE OIL (excluding SPR)"  

U.S. Energy Information Administration (EIA) Indexed Site

ENDING STOCKS OF CRUDE OIL (excluding SPR)" ENDING STOCKS OF CRUDE OIL (excluding SPR)" "Sourcekey","WCESTP11","WCESTP11","WCESTP21","WCESTP21","WCESTP31","WCESTP31","WCESTP41","WCESTP41","WCESTP51","WCESTP51","WCESTUS1","WCESTUS1" "Date","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)"

393

Petroleum Crude Oil Characterization by IMS-MS and FTICR MS  

Science Journals Connector (OSTI)

Petroleum Crude Oil Characterization by IMS-MS and FTICR MS ... Here, complementary ion mobility/mass spectrometry (IM/MS) and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS analyses of light, medium, and heavy petroleum crude oils yielded distributions of the heteroatom-containing hydrocarbons, as well as multiple conformational classes. ... To illustrate the effectiveness of the IM/MS approach in the analysis of petroleum crude oils, three samples were studied: a Calvert light crude oil, a Duri medium crude oil, and a San Andro heavy crude oil. ...

Francisco A. Fernandez-Lima; Christopher Becker; Amy M. McKenna; Ryan P. Rodgers; Alan G. Marshall; David H. Russell

2009-11-11T23:59:59.000Z

394

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

395

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Depth of Crude Oil and Natural Gas Wells Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 5,426 5,547 5,508 5,613 6,064 5,964 1949-2008 Crude Oil 4,783 4,829 4,836 4,846 5,111 5,094 1949-2008 Natural Gas 5,616 5,757 5,777 5,961 6,522 6,500 1949-2008 Dry Holes 5,744 5,848 5,405 5,382 5,578 5,540 1949-2008 Exploratory Wells 6,744 6,579 6,272 6,187 6,247 6,322 1949-2008 Crude Oil 6,950 8,136 8,011 7,448 7,537 7,778 1949-2008 Natural Gas 6,589 5,948 5,732 5,770 5,901 5,899 1949-2008 Dry Holes 6,809 6,924 6,437 6,340 6,307 6,232 1949-2008

396

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

397

U.S. Imports of Crude Oil and Petroleum Products  

Annual Energy Outlook 2012 (EIA)

9,240 9,584 9,380 8,815 9,472 9,309 1973-2014 Crude Oil 7,264 7,547 7,165 7,054 7,623 7,471 1920-2014 Natural Gas Plant Liquids and Liquefied Refinery Gases 166 141 99 116 86 90...

398

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

29,654 457 22,655 9,757 -11,830 -4,359 1,022 22,083 459 22,770 40,249 Crude Oil 19,044 - - - - 9,297 -4,312 -4,561 -451 19,787 132 0 20,405 Natural Gas Plant Liquids and Liquefied...

399

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

7,134 78 8,072 4,027 -3,603 366 34 7,401 3,285 5,354 Crude Oil 5,259 - - - - 3,454 -222 227 -164 8,685 198 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,875 0 534 1...

400

U.S. Exports of Crude Oil and Petroleum Products  

Annual Energy Outlook 2012 (EIA)

3,858 3,966 4,121 4,156 4,479 4,533 1973-2014 Crude Oil 246 268 288 396 401 389 1920-2014 Natural Gas Plant Liquids and Liquefied Refinery Gases 581 697 727 683 765 743 1981-2014...

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

2,416 250,220 124,827 -111,703 11,357 1,044 229,444 101,831 165,961 1,223,681 Crude Oil 163,028 - - - - 107,081 -6,891 7,037 -5,099 269,223 6,132 0 882,888 Natural Gas Plant...

402

Surface Properties of Basic Components Extracted from Petroleum Crude Oil  

Science Journals Connector (OSTI)

Surface Properties of Basic Components Extracted from Petroleum Crude Oil ... Ratios in oils are inherited from source rock kerogens with minor change, are conserved during catagenesis and biodegrdn., are robust correlation parameters, and facilitate the classification of petroleums in terms of the depositional facies and lithol. of the source rock. ...

Andreas L. Nenningsland; Se?bastien Simon; Johan Sjo?blom

2010-11-10T23:59:59.000Z

403

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2012 (EIA)

6,046 98 7,569 4,450 -3,757 434 -42 6,943 2,694 5,247 Crude Oil 4,384 - - - - 3,691 -391 312 6 7,952 37 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,663 0 411 35 165...

404

Extraction of Basic Components from Petroleum Crude Oil  

Science Journals Connector (OSTI)

Extraction of Basic Components from Petroleum Crude Oil ... Ratios in oils are inherited from source rock kerogens with minor change, are conserved during catagenesis and biodegrdn., are robust correlation parameters, and facilitate the classification of petroleums in terms of the depositional facies and lithol. of the source rock. ...

Se?bastien Simon; Andreas L. Nenningsland; Emily Herschbach; Johan Sjo?blom

2009-12-01T23:59:59.000Z

405

Reproducibility of LCA Models of Crude Oil Production  

Science Journals Connector (OSTI)

Reproducibility of LCA Models of Crude Oil Production ... We examine LCA greenhouse gas (GHG) emissions models to test the reproducibility of their estimates for well-to-refinery inlet gate (WTR) GHG emissions. ... We use the Oil Production Greenhouse gas Emissions Estimator (OPGEE), an open source engineering-based life cycle assessment (LCA) model, as the reference model for this analysis. ...

Kourosh Vafi; Adam R. Brandt

2014-10-03T23:59:59.000Z

406

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

407

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2012 (EIA)

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

408

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF  

E-Print Network (OSTI)

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF-355. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR

Weston, Ken

409

The efficiency of the crude oil markets: Evidence from variance ratio tests  

E-Print Network (OSTI)

oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994­2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil

Paris-Sud XI, Université de

410

California and New Mexico: Sapphire Energy Advances the Commercialization of Algae Crude Oil  

Office of Energy Efficiency and Renewable Energy (EERE)

The Sapphire Green Crude Farm is the first algae-to-energy facility. If adopted and commercialized by other refineries, this algae-based crude oil is a viable “green” alternative fuel option.

411

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method  

Science Journals Connector (OSTI)

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method ... An improved analytical method for the determination of asphaltene content in crude oils and petroleum products was developed. ... Composition of heavy petroleums. ...

Estrella Rogel; Cesar Ovalles; Michael E. Moir; John F. Schabron

2009-08-14T23:59:59.000Z

412

Aggregation and transport kinetics of crude oil and sediment in estuarine waters  

E-Print Network (OSTI)

Modeling the transport and fate of spilled crude oil is important for estimating short and long-term toxicity effects in coastal ecosystems. This research project investigates the partitioning of hydrocarbons from a surface crude oil slick...

Sterling, Michael Conroy, Jr.

2004-09-30T23:59:59.000Z

413

SciTech Connect: Crude Glycerol as Cost-Effective Fuel for Combined...  

Office of Scientific and Technical Information (OSTI)

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as...

414

EIA's U.S. Crude Import Tracking Tool: Selected Sample Applications  

U.S. Energy Information Administration (EIA) Indexed Site

to only 652,000 bbld. Source of U.S. crude oil imports: Imports of light crude from Africa have declined by 92.7%, particularly from Nigeria and Algeria. Imports from Saudi...

415

Fact #758: December 17, 2012 U.S. Production of Crude Oil by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Fact 758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Texas is by far the State that produces...

416

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition  

Science Journals Connector (OSTI)

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition ... In the present work, various solid surfaces and crude oils have been used to study the effect of material and crude oil composition on the wettability of pipeline-mimicking surfaces. ... A procedure for evaluation of the plugging potential and for identification and extn. of naturally hydrate inhibiting components in crude petroleums was presented. ...

Guro Aspenes; Sylvi Høiland; Anna E. Borgund; Tanja Barth

2009-11-16T23:59:59.000Z

417

The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance of the  

E-Print Network (OSTI)

The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance crude, making reliance on Canadian heavy crude oil more significant, and the approval of the Keystone XL of ConocoPhillips' Petrozuata- Hamaca and ExxonMobil's Cerro Negro Orinoco Belt heavy oil projects

Texas at Austin, University of

418

Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating  

E-Print Network (OSTI)

Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating, Stanford, California 94305, United States *S Supporting Information ABSTRACT: Heavy crude oil can that by using carbon nano- catalysts, heavy crude oil can be efficiently upgraded to lighter oil at a relatively

Cui, Yi

419

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

420

The Relationship Between Crude Oil and Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Administration, Office of Oil and Gas, October 2006 Administration, Office of Oil and Gas, October 2006 1 The Relationship Between Crude Oil and Natural Gas Prices by Jose A. Villar Natural Gas Division Energy Information Administration and Frederick L. Joutz Department of Economics The George Washington University Abstract: This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price. Typically, this relationship has been approached using simple correlations and deterministic trends. When data have unit roots as in this case, such analysis is faulty and subject to spurious results. We find a cointegrating relationship relating Henry Hub prices to the WTI and trend capturing the relative demand and supply effects over the 1989-through-2005 period. The dynamics of the relationship

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

422

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

423

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

424

World Crude Production Not Keeping Pace with Demand  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The crude market is the major factor behind todayÂ’s low stocks. This graph shows the balance between world production and demand for petroleum. Normally, production exceeds demand in the summer, building stocks, and is less than demand in the winter months, drawing the stocks back down (dark blue areas). However, production exceeded demand through most of 1997 and 1998, building world stocks to very high levels and driving prices down. But the situation reversed in 1999. Recently, there has been more petroleum demand than supply, requiring the use of stocks to meet petroleum needs. Following the extremely low crude oil prices at the beginning of 1999, OPEC agreed to remove about 6% of world production from the market in order to work off excess inventories and bring prices back up.

425

WTI Crude Oil Price: Base Case and 95% Confidence Interval  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Spot WTI crude oil prices broke $35 and even $36 per barrel in November as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. The recent decline in prices seems to be more the result of an unraveling of speculative pressures than a change in underlying fundamentals. Prices had been running higher than supply/demand fundamentals would have indicated throughout the fall months as a result of rising Mideast tensions, concern over the adequacy of distillate supplies, and expectations of Iraqi supply interruptions. But Mideast tensions seemed to ease in December and the market appeared to perceive a quick return of Iraqi crude oil supplies at full capacity. Pledges by Saudi Arabia/OPEC to offset a longer term Iraqi

426

Crude oil prices: Are our oil markets too tight?  

SciTech Connect

The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

Simmons, M.R. [Simmons and Co. International, Houston, TX (United States)

1997-02-01T23:59:59.000Z

427

Kazakhstan seeks to step up crude oil export capabilities  

SciTech Connect

This paper reports that the Commonwealth of Independent States' Kazakhstan republic is driving to achieve international export capability for its crude oil production. Latest official figures showed Kazakhstan producing 532,000 b/d, or a little more than 5% of the C.I.S. total of 10.292 million b/d. As part of its oil export campaign, Kazakhstan agreed with Oman to a joint venture pipeline to ship oil from Kazakh fields, including supergiant Tengiz, earmarked for further development by a Chevron Corp. joint venture. In addition, Kazakh leaders were scheduled to conduct 3 days of talks last week with Turkish officials covering construction of a crude oil pipeline to the Mediterranean Sea through Turkey.

Not Available

1992-06-22T23:59:59.000Z

428

A nonparametric GARCH model of crude oil price return volatility  

Science Journals Connector (OSTI)

The use of parametric GARCH models to characterise crude oil price volatility is widely observed in the empirical literature. In this paper, we consider an alternative approach involving nonparametric method to model and forecast oil price return volatility. Focusing on two crude oil markets, Brent and West Texas Intermediate (WTI), we show that the out-of-sample volatility forecast of the nonparametric GARCH model yields superior performance relative to an extensive class of parametric GARCH models. These results are supported by the use of robust loss functions and the Hansen's (2005) superior predictive ability test. The improvement in forecasting accuracy of oil price return volatility based on the nonparametric GARCH model suggests that this method offers an attractive and viable alternative to the commonly used parametric GARCH models.

Aijun Hou; Sandy Suardi

2012-01-01T23:59:59.000Z

429

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

430

Process Considerations in the Biodesulfurization of Crude Oil  

SciTech Connect

Biodesulfurization offers an attractive alternative to conventional hydrodesulfurization due to the mild operating conditions and reaction specificity afforded by the biocatalyst. The enzymatic pathway existing in Rhodococcus has been demonstrated to oxidatively desulfhrize the organic sulfbr occurring in dibenzothiophene while leaving the hydrocarbon intact. In order for biodesulfiization to realize commercial success, a variety of process considerations must be addressed including reaction rate, emulsion formation and breakage, biocatalyst recovery, and both gas and liquid mass transport. This study compares batch stirred to electro-spray bioreactors in the biodesulfurization of both model organics and actual crudes in terms of their operating costs, ability to make and break emulsions, ability to effect efficient reaction rates and enhance mass transport. Further, sulfim speciation in crude oil is assessed and compared to the sulfur specificity of currently available biocatalyst.

Borole, A.P.; Kaufman, E.N.

1998-10-20T23:59:59.000Z

431

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

432

Forecasting World Crude Oil Production Using Multicyclic Hubbert Model  

Science Journals Connector (OSTI)

OPEC’s actual production was mainly unrestricted until the 1973 Arab oil embargo. ... On the basis of the analysis of all 47 investigated oil producing countries, the results of our study estimated that the world ultimate reserve of crude oil is around 2140 BSTB and that 1161 BSTB are remaining to be produced as of 2005 year end. ... MSTB/D = thousand stock tank barrels per day ...

Ibrahim Sami Nashawi; Adel Malallah; Mohammed Al-Bisharah

2010-02-04T23:59:59.000Z

433

Algae to Bio-Crude in Less Than 60 Minutes  

ScienceCinema (OSTI)

Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

Elliott, Doug

2014-06-02T23:59:59.000Z

434

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Exploratory and Development Wells Exploratory and Development Wells Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 View History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Exploratory NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Development Wells Drilled NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012

435

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

436

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

437

INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS  

SciTech Connect

Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

1998-10-27T23:59:59.000Z

438

Induced biochemical interactions in immature and biodegraded heavy crude oils  

SciTech Connect

Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

1998-11-01T23:59:59.000Z

439

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

440

Price dynamics of crude oil and the regional ethylene markets  

Science Journals Connector (OSTI)

This paper is the first attempt to investigate: (i) is the crude oil (WTI) price significantly related to the regional ethylene prices in the Naphtha intensive ethylene markets of the Far East, North West Europe, and the Mediterranean? (ii) What drives the regional ethylene prices? The paper is motivated by the recent and growing debate on the lead-lag relationship between crude oil and ethylene prices. Our findings, based on the long-run structural modelling approach of Pesaran and Shin, and subject to the limitations of the study, tend to suggest: (i) crude oil (WTI) price is cointegrated with the regional ethylene prices (ii) our within-sample error-correction model results tend to indicate that although the ethylene prices in North West Europe and the Mediterranean were weakly endogenous, the Far East ethylene price was weakly exogenous both in the short and long term. These results are consistent, during most of the period under review (2000.1–2006.4) with the surge in demand for ethylene throughout the Far East, particularly in China and South Korea. However, during the post-sample forecast period as evidenced in our variance decompositions analysis, the emergence of WTI as a leading player as well, is consistent with the recent surge in WTI price (fuelled mainly, among others, by the strong hedging activities in the WTI futures/options and refining tightness) reflecting the growing importance of input cost in determining the dynamic interactions of input and product prices.

Mansur Masih; Ibrahim Algahtani; Lurion De Mello

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Changes in rheological properties of crude oil upon treatment with urea (a discussion)  

SciTech Connect

Paraffin-containing systems, such as waxy crudes, leave extensive wax deposits on pipeline walls and greatly adds to pipeline costs. It is proposed that solid hydrocarbons be extracted from raw crudes by adduct formation with urea. The petroleum would be separated into basic groups of hydrocarbons: normal-structure paraffins, and cyclic paraffins. Mangyshlak, Dolina, and Romashinko crude were treated. It is shown that by changing the rheological properties of crude oil by extracting the normal-structure hydrocarbons, it becomes possible to transport high-wax and medium-wax crude through pipelines with several advantages as specified.

Rudakova, N.Y.; Froishteter, G.B.; Radionova, N.V.; Timoshina, A.A.; Tkschuk, T.I.

1983-11-01T23:59:59.000Z

442

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

443

Petroleum basin studies  

SciTech Connect

This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

Shannon, P.M. (Univ. College, Dublin (IE)); Naylor, D. (Westland Exploration Ltd., Dublin (IE))

1989-01-01T23:59:59.000Z

444

Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

2: December 6, 2: December 6, 2010 U.S. Crude Oil Production Rises to someone by E-mail Share Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on Facebook Tweet about Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on Twitter Bookmark Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on Google Bookmark Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on Delicious Rank Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on Digg Find More places to share Vehicle Technologies Office: Fact #652: December 6, 2010 U.S. Crude Oil Production Rises on AddThis.com... Fact #652: December 6, 2010

445

Caribbean basin framework, 3: Southern Central America and Colombian basin  

SciTech Connect

The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas of Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.

Kolarsky, R.A.; Mann, P. (Univ. of Texas, Austin (United States))

1991-03-01T23:59:59.000Z

446

Advanced Chemistry Basins Model  

SciTech Connect

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

447

Linkages between the markets for crude oil and the markets for refined products  

SciTech Connect

To understand the crude oil price determination process it is necessary to extend the analysis beyond the markets for petroleum. Crude oil prices are determined in two closely related markets: the markets for crude oil and the markets for refined products. An econometric-linear programming model was developed to capture the linkages between the markets for crude oil and refined products. In the LP refiners maximize profits given crude oil supplies, refining capacities, and prices of refined products. The objective function is profit maximization net of crude oil prices. The shadow price on crude oil gives the netback price. Refined product prices are obtained from the econometric models. The model covers the free world divided in five regions. The model is used to analyze the impacts on the markets of policies that affect crude oil supplies, the demands for refined products, and the refining industry. For each scenario analyzed the demand for crude oil is derived from the equilibrium conditions in the markets for products. The demand curve is confronted with a supply curve which maximizes revenues providing an equilibrium solution for both crude oil and product markets. The model also captures crude oil price differentials by quality. The results show that the demands for crude oil are different across regions due to the structure of the refining industries and the characteristics of the demands for refined products. Changes in the demands for products have a larger impact on the markets than changes in the refining industry. Since markets for refined products and crude oil are interrelated they can't be analyzed individually if an accurate and complete assessment of a policy is to be made. Changes in only one product market in one region affect the other product markets and the prices of crude oil.

Didziulis, V.S.

1990-01-01T23:59:59.000Z

448

Ertek, G., Tun, M.M., Kurtaraner, E., Kebude, D., 2012, 'Insights into the Efficiencies of On-Shore Wind Turbines: A Data-Centric Analysis', INISTA 2012 Conference. July 2-4, 2012, Trabzon,  

E-Print Network (OSTI)

-Shore Wind Turbines: A Data-Centric Analysis', INISTA 2012 Conference. July 2-4, 2012, Trabzon, Turkey://research.sabanciuniv.edu. Insights into the Efficiencies of On-Shore Wind Turbines: A Data-Centric Analysis Gürdal Ertek, Murat University Istanbul, Turkey Abstract--Literature on renewable energy alternative of wind turbines does

Yanikoglu, Berrin

449

Late Cretaceous-Cenozoic Basin framework and petroleum potential of Panama and Costa Rica  

SciTech Connect

Despite its location between major petroleum provinces in northwestern South America and northern Central America, there is a widespread negative perception of the petroleum potential of Panama and Costa Rica in southern Central America. Several factors may contribute to this perception: (1) the on and offshore geology of many areas has only be studied in a reconnaissance fashion; (2) sandstone reservoirs and source rocks are likely to be of poor quality because Upper Cretaceous-Cenozoic sandstones are eroded from island arc or oceanic basement rocks and because oil-prone source rocks are likely to be scarce in near-arc basins; and (3) structural traps are likely to be small and fragmented because of complex late Cenozoic thrust and strike-slip tectonics. On the other hand, onshore oil and gas seeps, shows and small production in wildcat wells, and source rocks with TOC values up to 26% suggest the possibility of future discoveries. In this talk, we present the results of a regional study using 3100 km of offshore seismic lines kindly provided by industry. Age and stratigraphic control of offshore lines is constrained by limited well data and detailed field studies of basin outcrops in coastal areas. We describe the major structures, stratigraphy, and tectonic history of the following areas: Gulf of Panama and Gulf of Chiriqui of Panama and the Pacific and Caribbean margins of Costa Rica.

Mann, P. (Univ. of Texas, Austin (United States)); Kolarsky, R. (Texaco USA, New Orleans, LA (United States))

1993-02-01T23:59:59.000Z

450

Mick Jagger Explains High Crude Oil Prices How can Mick Jagger of The Rolling Stones help explain the current high crude oil  

E-Print Network (OSTI)

Mick Jagger Explains High Crude Oil Prices How can Mick Jagger of The Rolling Stones help explain the current high crude oil price? It does not relate to Mick' short stint at the London School of Economics, the oil industry operates on the same principle, at least in the short run. The industry relies on proven

Ahmad, Sajjad

451

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

452

Paraffin problems in crude oil production and transportation: A review  

SciTech Connect

Problems related to crystallization and deposition of paraffin waxes during production and transportation of crude oil cause losses of billions of dollars yearly to petroleum industry. The goal of this paper is to present the knowledge on such problems in a systematic and comprehensive form. The fundamental aspects of these problems are defined, and characterization of paraffins and their solubility tendencies have been discussed. It has been established conclusively that n-paraffins are predominantly responsible for this problem. Comprehensive discussion on the mechanism of crystallization of paraffins has been included. Compounds other than n-paraffins, especially asphaltenes and resins, have profound effects on solubility of n-paraffins. In evaluations of the wax potential of a crude, the climate of the area concerned should be considered. Under the most favorable conditions, n-paraffins form clearly defined orthorhombic crystals, but unfavorable conditions and the presence of impurities lead to hexagonal and/or amorphous crystallization.The gelation characteristics are also affected the same way. An attempt was made to classify the paraffin problems into those resulting from high pipeline pressure, high restarting pressure, and deposition on pipe surfaces. Fundamental aspects and mechanism of these dimensions are described. Wax deposition depends on flow rate, the temperature differential between crude and pipe surface, the cooling rate, and surface properties. Finally, methods available in the literature for predicting these problems and evaluating their mitigatory techniques are reviewed. The available methods present a very diversified picture; hence, using them to evaluate these problems becomes taxing. A top priority is standardizing these methods for the benefit of the industry. 56 refs.

Misra, S.; Baruah, S.; Singh, K. (Oil and Natural Gas Corp., Ltd., Jorhat (India))

1995-02-01T23:59:59.000Z

453

Energy & Financial Markets: What Drives Crude Oil Prices? - Energy  

U.S. Energy Information Administration (EIA) Indexed Site

& Financial Markets - U.S. Energy Information Administration (EIA) & Financial Markets - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

454

Energy and Financial Markets Overview: Crude Oil Price Formation  

Gasoline and Diesel Fuel Update (EIA)

Richard Newell, Administrator Richard Newell, Administrator May 5, 2011 Energy and Financial Markets Overview: Crude Oil Price Formation EIA's Energy and Financial Markets Initiative 2 Richard Newell, May 5, 2011 * Collection of critical energy information to improve market transparency - improved petroleum storage capacity data - other improvements to data quality and coverage * Analysis of energy and financial market dynamics to improve understanding of what drives energy prices - internal analysis and sponsorship of external research * Outreach with other Federal agencies, experts, and the public - expert workshops - public sessions at EIA's energy conferences - solicitation of public comment on EIA's data collections

455

,"U.S. Crude Oil Imports"  

U.S. Energy Information Administration (EIA) Indexed Site

Imports" Imports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil Imports",71,"Monthly","9/2013","1/15/1920" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_impcus_a2_nus_epc0_im0_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_epc0_im0_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

456

EIA-813, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF ENERGY  

U.S. Energy Information Administration (EIA) Indexed Site

13, Monthly Crude Oil Report Page 1 13, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-813 MONTHLY CRUDE OIL REPORT INSTRUCTIONS .................................................................................................................................................................................... QUESTIONS If you have any questions about Form EIA-813 after reading the instructions, please contact the Survey Manager at (202) 586-3536. PURPOSE The Energy Information Administration (EIA) Form EIA-813, "Monthly Crude Oil Report," is used to collect data on end-of- month stocks of crude oil, and movements of crude oil by pipeline. A summary of the data appear on EIA's website at

457

OECD Crude "Demand" Remains Flat Between 1st and 2nd Quarters  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: As we enter the year 2000, we can expect crude oil demand to follow the usual pattern and remain relatively flat in OECD countries between first and second quarters. Note that for OECD, product demand is greater than crude use. These areas import products from outside the region. While product demand falls during the second and third quarters, crude inputs to refineries remain high enough to allow for some product stock building Additionally, purchases of crude oil exceed inputs to refineries for a time, allowing crude oil stocks to build as well in order to cover the shortfall between crude oil production and demand during the fourth and first quarters. Price can strengthen during the "weak product demand" summer months when the market feels stock building is inadequate to meet the

458

EIA - AEO2010 - Factors affecting the relationship betwen crude oil and  

Gasoline and Diesel Fuel Update (EIA)

Factors affecting the relationship betweeen crude oil and natural gas prices Factors affecting the relationship betweeen crude oil and natural gas prices Annual Energy Outlook 2010 with Projections to 2035 Factors affecting the relationship between crude oil and natural gas prices Background Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis. Figure 26. Ratio of low-sulfur light crude oil prices to natural gas prices on an energy-equivalent basis, 1995-2035 Click to enlarge » Figure source and data excel logo

459

DOE to Issue Second Solicitation for Purchase of Crude Oil for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue Second Solicitation for Purchase of Crude Oil for the Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve April 18, 2007 - 12:36pm Addthis Solicitation Issued for Up to Four Million Barrels WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it has issued the second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16, 2007, resulted in no awards because the Office of Fossil Energy determined that the bids were too high and not a reasonable value for taxpayers. This series of solicitations for the purchase of crude oil are planned to replace the 11 million barrels of oil sold after Hurricane Katrina. The

460

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of 11 Million Barrels of Crude Oil Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve September 14, 2005 - 10:21am Addthis WASHINGTON, DC - Secretary Samuel W. Bodman announced that the Department of Energy has approved bids for the sale of 11 million barrels of crude oil from the Strategic Petroleum Reserve (SPR). Combined with the 12.6 million barrels of crude previously approved for loans these SPR releases, in response to the disruptions caused by Hurricane Katrina, will provide 23.6 million barrels of crude for the U.S. market. "The United States is committed to using all of the tools at our disposal to help keep our oil and gasoline markets well supplied," Secretary Bodman

462

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

463

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

464

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

465

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

466

Spot Prices for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Spot Prices Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product by Area 12/09/13 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 View History Crude Oil WTI - Cushing, Oklahoma 97.1 98.32 97.25 97.21 96.27 97.18 1986-2013 Brent - Europe 110.07 108.91 109.47 108.99 108.08 110.3 1987-2013 Conventional Gasoline New York Harbor, Regular 2.677 2.698 2.670 2.643 2.639 2.650 1986-2013 U.S. Gulf Coast, Regular 2.459 2.481 2.429 2.398 2.377 2.422 1986-2013 RBOB Regular Gasoline Los Angeles 2.639 2.661 2.569 2.543 2.514 2.527 2003-2013 No. 2 Heating Oil New York Harbor

467

Venezuela bets on heavy crude for long term  

SciTech Connect

In the heart of eastern Venezuela lies the Orinoco Belt, a vast reserve of heavy crudes and bitumen that equate to only 8{degree} to 10{degree} API. At the beginning of the 1920s, a number of foreign companies explored this area. However, they realized that this crude was too heavy to be produced commercially and abandoned their exploratory sites. In 1978--1980, state firm PDVSA made a large effort to quantify the resources. Geologists finally estimated the in-place reserves at 1.2 trillion bbl, of which 267 billion bbl (41 billion t) were considered recoverable. If produced at a rate of 1.5 million bopd, these reserves would last nearly 500 years. PDVSA experimented with various methods to produce the bitumen. Finally, in the mid-1980s, a breakthrough of sorts was achieved, almost by accident. Lab technicians discovered that bitumen will continue to burn effectively when emulsified with water. Company officials describe the flame as resembling burning gas. This discovery began the rapidly accelerating process to develop what is called the now-patented Orimulsion production. PDVSA managers discarded their plans to supply refineries with bitumen and adopted a new strategy of targeting Orimulsion as an alternative boiler fuel for electric power-generating stations. To oversee this project, a new subsidiary, Bitor (a compressed combination of the terms, bitumen and Orinoco), was created. Bitor operations are described.

Abraham, K.S.

1997-01-01T23:59:59.000Z

468

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

469

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per barrel in ""dollar year"" specific to each...

470

Characteristics of Baku and eastern crudes as raw materials for lube oil production  

SciTech Connect

This article presents data to show that the lube cuts from the Baku medium-wax crudes, in contrast to the eastern medium-wax crudes, will not give oils with viscosity indexes above 90 even when severly treated. The medium-wax Baku crudes have higher contents of naphthenic-paraffinic hydrocarbons, and their aromatic hydrocarbons are present in smaller amounts and have poorer viscosity-temperature properties. The Baku refineries have become the principal suppliers of lube oils in the USSR because of their use of low-wax crudes and relatively simple manufacturing processes. In recent years, the resources of low-wax crudes have declined while the medium-wax crudes have increased. The Baku medium-wax crudes are distinguished by higher contents of oils, including residual oils. It is concluded that the Baku medium-wax crudes should be processed to produce oils that are in short supply, such as transformer oils, turbine oils, compressor oils, high-viscosity oils of the P-28 type, and special-purpose oils (e.g., white oils, naphthenic oils) for which a high viscosity index is not a requirement. The medium-wax crudes from the eastern districts should be used to produce oils with viscosity indexes above 90. Includes 5 tables.

Samedova, F.I.; Kasumova, A.M.

1984-01-01T23:59:59.000Z

471

Crude oil prices and petroleum inventories : remedies for a broken oil price forecasting model.  

E-Print Network (OSTI)

??The empirical relationship between crude oil prices and petroleum inventories has been exploited in a number of short-term oil price forecasting models. Some of the… (more)

Grimstad, Dan

2007-01-01T23:59:59.000Z

472

U.S. Federal Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0...

473

U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

474

,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

475

,"U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

476

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Proved Reserves",1,"Annual",2013,"6301899" ,"Data 2","Changes in Reserves During...

477

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1996...

478

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1997...

479

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

Annual Energy Outlook 2012 (EIA)

Crude Oil and Natural Gas Proved Reserves With Data for 2013 | Release Date: December 4, 2014 | Revision: December 19, 2014 Next Release Date: December 2015 | full report Previous...

480

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "basin onshore crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 PADD 1 130 25 3,403 1,515 3,374 230 -269 3,374 264 5,307 PADD 2 1,993 892 4,464 2,094 500 -317 -225 4,240 386 5,224 PADD 3 6,249 96 7,346 4,283 -3,758 511 -211 6,723 2,976 5,239 PADD 4 887 14 643 287 -425 -18 51 615 10 713 PADD 5 1,174 20 3,127 1,413 310 82 36 2,939 362 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

482

Williston basin Seislog study  

SciTech Connect

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

483

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 ,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 Crude Oil 1,472 - - - - 1,839 556 -359 17 3,416 76 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 508 -17 115 63 -14 - - 75 105 71 404 Pentanes Plus 63 -17 - - 0 98 - - -18 37 53 72 Liquefied Petroleum Gases 444 - - 115 63 -112 - - 93 68 18 332 Ethane/Ethylene 163 - - - 0 -100 - - 11 - - 52 Propane/Propylene 186 - - 104 49 -22 - - 66 - 7 244 Normal Butane/Butylene 52 - - 16 5 5 - - 22 17 11 29 Isobutane/Isobutylene 43 - - -4 8 5 - - -6 50 - 7 Other Liquids - - 858 - - 12 -143 127 346 474 40 -6 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 858 - - 5 -547 -8 11 271 26 0 Hydrogen - - - - - - 23 - - 23 0 - -

484

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

562 822 4,163 1,839 735 -69 52 3,955 244 4,801 562 822 4,163 1,839 735 -69 52 3,955 244 4,801 Crude Oil 1,116 - - - - 1,730 800 -87 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases 396 - - 121 73 -107 - - -8 74 11 407 Ethane/Ethylene 163 - - - 0 -108 - - -2 - - 58 Propane/Propylene 156 - - 108 59 -24 - - -3 - 2 300 Normal Butane/Butylene 48 - - 11 9 10 - - -4 29 9 45 Isobutane/Isobutylene 29 - - 2 6 14 - - 1 46 - 5 Other Liquids - - 838 - - 5 -258 -159 8 408 25 -16 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 838 - - 3 -565 4 1 257 21 0 Hydrogen - - - - - - 22 - - 22 0 - -

485

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 Crude Oil 34 - - - - 897 1 113 -43 1,084 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 90 0 25 32 86 - - 16 27 15 174 Pentanes Plus 15 0 - - - - - - 0 - 10 4 Liquefied Petroleum Gases 75 - - 25 32 86 - - 16 27 5 169 Ethane/Ethylene 1 - - 0 - - - - 0 - - 1 Propane/Propylene 51 - - 36 27 83 - - 24 - 4 168 Normal Butane/Butylene 16 - - -11 3 3 - - -8 17 1 0 Isobutane/Isobutylene 8 - - 0 2 - - - -1 9 - 0 Other Liquids - - 22 - - 555 1,614 193 -31 2,421 5 -10 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 25 273 -19 -35 332 5 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol)

486

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 Crude Oil 1,104 - - - - 1,209 - 140 10 2,443 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 66 4 - - - 36 59 13 22 Pentanes Plus 26 0 - - - - - - 5 18 3 -1 Liquefied Petroleum Gases 34 - - 66 4 - - - 30 41 10 23 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 14 - - 49 4 - - - 12 - 10 45 Normal Butane/Butylene 5 - - 15 0 - - - 13 19 0 -11 Isobutane/Isobutylene 15 - - 1 - - - - 5 22 - -12 Other Liquids - - 20 - - 107 252 94 -71 488 13 43 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 20 - - 19 143 37 -2 219 3 0 Hydrogen - - - - - - 47 - - 47 0 - - Oxygenates (excl. Fuel Ethanol)

487

WTI Crude Oil Price: Base Case and 95% Confidence Interval  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Spot WTI prices broke $35 and even $36 per barrel in November as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. The recent decline in prices seems to be more the result of an unraveling of speculative pressures than a change in underlying fundamentals. Prices had been running higher than supply/demand fundamentals would have indicated throughout the fall months as a result of rising Mideast tensions, concern over the adequacy of distillate supplies, and expectations of Iraqi supply interruptions. But Mideast tensions seemed to ease in December and the market appeared to perceive a quick return of Iraqi crude oil supplies at full capacity. Pledges by Saudi Arabia/OPEC to offset a longer term Iraqi

488

Calculations allow program to design pipelines for waxy crude--  

SciTech Connect

This article reports that calculations have been derived which will permit writing of a computer program for design of a pipeline handling Newtonian, pseudoplastic, or yield-pseudoplastic crudes. Statistical analysis was used to find out the variation of rheological behavior with operating temperatures and wax content in various Saudi oils. The evaluation was carried out at a statistical confidence level of 95%. Experimental data were correlated with respect to power-law and Herschel-Bulkey law. The pipeline design calculations were carried out through a computer program. The friction factor was determined from Torrance's correlation and Dodge and Metzner correlation for yield-pseudoplastic and pseudoplastic fluids, respectively. The frictional pressure drop was calculated from Darcy-Weisbach equation.

Al-Fariss, T.F.; Desouky, S.E.M. (King Saud Univ., Riyadh, (SA))

1990-01-08T23:59:59.000Z

489

Unit root properties of crude oil spot and futures prices  

Science Journals Connector (OSTI)

In this article, we examine whether WTI and Brent crude oil spot and futures prices (at 1, 3 and 6 months to maturity) contain a unit root with one and two structural breaks, employing weekly data over the period 1991–2004. To realise this objective we employ Lagrange multiplier (LM) unit root tests with one and two endogenous structural breaks proposed by Lee and Strazicich [2003. Minimum Lagrange multiplier unit root test with two structural breaks. Review of Economics and Statistics, 85, 1082–1089; 2004. Minimum LM unit root test with one structural break. Working Paper no. 04–17, Department of Economics, Appalachian State University]. We find that each of the oil price series can be characterised as a random walk process and that the endogenous structural breaks are significant and meaningful in terms of events that have impacted on world oil markets.

Svetlana Maslyuk; Russell Smyth

2008-01-01T23:59:59.000Z

490

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 Crude Oil 1,111 - - - - 1,160 2 62 4 2,331 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 50 5 - - - 1 66 15 35 Pentanes Plus 28 0 - - - - - - 0 21 3 4 Liquefied Petroleum Gases 33 - - 50 5 - - - 1 45 12 31 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 46 4 - - - 1 - 10 51 Normal Butane/Butylene 6 - - 6 1 - - - 0 26 1 -14 Isobutane/Isobutylene 15 - - -2 0 - - - 0 20 - -7 Other Liquids - - 16 - - 74 245 103 11 414 13 1 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 16 - - 7 138 37 2 193 3 0 Hydrogen - - - - - - 43 - - 43 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 1 1 0

491

Correlation structure and principal components in global crude oil market  

E-Print Network (OSTI)

This article investigates the correlation structure of the global crude oil market using the daily returns of 71 oil price time series across the world from 1992 to 2012. We identify from the correlation matrix six clusters of time series exhibiting evident geographical traits, which supports Weiner's (1991) regionalization hypothesis of the global oil market. We find that intra-cluster pairs of time series are highly correlated while inter-cluster pairs have relatively low correlations. Principal component analysis shows that most eigenvalues of the correlation matrix locate outside the prediction of the random matrix theory and these deviating eigenvalues and their corresponding eigenvectors contain rich economic information. Specifically, the largest eigenvalue reflects a collective effect of the global market, other four largest eigenvalues possess a partitioning function to distinguish the six clusters, and the smallest eigenvalues highlight the pairs of time series with the largest correlation coefficie...

Dai, Yue-Hua; Jiang, Zhi-Qiang; Jiang, George J; Zhou, Wei-Xing

2014-01-01T23:59:59.000Z

492

Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Percentages of Total Imported Crude Oil by API Gravity Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History 20.0º or Less 16.07 17.25 17.35 14.65 17.17 19.70 1983-2013 20.1º to 25.0º 34.75 32.07 33.66 33.41 32.73 35.52 1983-2013 25.1º to 30.0º 9.35 8.59 8.61 11.45 8.98 7.73 1983-2013 30.1º to 35.0º 25.99 30.03 26.36 28.73 29.89 26.56 1983-2013 35.1º to 40.0º 11.94 10.60 12.42 9.74 9.89 8.80 1983-2013 40.1º to 45.0º 1.62 1.23 1.13 1.70 1.14 W 1983-2013 45.1º or Greater 0.28 0.23 0.48 0.31 0.20 W 1983-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

493

Petroleum geochemistry of Atrau region, Pre-Caspian Basin, Kazakhstan  

SciTech Connect

Pre-Caspian Basin covers an area of approx. 500,000 sq. km. and is characterized mainly by thick (0-5000 m) Kungurian salts. Atrau region occupies 100,000 sq.km. and is located at the southern part of the basin. Oils of this basin are found in the sub-salt (Carboniferous reefs) and supra-salts (Triassic red beds and Jurassic-Cretaceous clastics) reservoirs. Seventeen crude oil samples analyzed from different wells appear to be paraffinic and paraffinic-naphthenic type. Some of the oils hardly contained any n-alkanes, probably owing to biodegradation. Biomarker signatures of saturate and aromatic fractions and stable carbon isotopes of whole oils revealed two genetically different oil families; family I and family II. Family I was generated from clastic supra-salt sediments having immature (%Rc=0.55) terrestrial organic matter. Family II was generated from carbonate rich sub-salt sediments, containing mature (%Rc=0.65-0.80) marine organic matter. Majority of Triassic, Kungurian and Upper Cretaceous successions contained enough organic matter with considerably low total petroleum potential (S1+S2). Upper Carboniferous sediments, on the other hand, contain enough and oil prone organic matter that reached peak oil generation stage (233.1 Ma) and hydrocarbon saturation level for expulsion as a result of high sedimentation rates in the Lower to Middle Triassic succession in Kobyekovskaya-2 well. Maximum paleotemperature reached in the area was not enough for H{sub 2}S formation and cracking of already generated hydrocarbons to natural gas.

Guerge, K. [TPAO dis Projeler Grup Baskanligi, Ankara (Turkey)

1995-08-01T23:59:59.000Z

494

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

495

Effect of Flow Improvers on Rheological and Microscopic Properties of Indian Waxy Crude Oil  

Science Journals Connector (OSTI)

Department of Petroleum Engineering, Indian School of Mines, Dhanbad, 826004, Jharkhand, India ... Kök, M. V.; Letoffe, J. M.; Claudy, P.Comparative Methods in the Determination of Wax Content and Pour Points of Crude Oils J. Therm. ... Deshmukh, S.; Bharambe, D. P.Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology Fuel Process. ...

Shivanjali Sharma; Vikas Mahto; Virender Parkash Sharma

2014-03-05T23:59:59.000Z

496

Allegations of diversion and substitution of crude oil. Bayou Choctaw Storage Site, Strategic Petroleum Reserve  

SciTech Connect

Investigation did not substantiate allegations that crude oil destined for the Strategic Petroleum Reserve storage site at Bayou Choctaw was diverted to private use and some other material substituted in its place. However, recommendations are made for handling intermediate transport and storage systems for crude oil to tighten security aspects. (PSB)

Not Available

1984-03-30T23:59:59.000Z

497

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices  

E-Print Network (OSTI)

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

Paris-Sud XI, Université de

498

Fermented ammoniated condensed whey as a crude protein source for feedlot cattle  

SciTech Connect

Four feeding trials were conducted to evaluate fermented ammoniated condensed whey as a crude protein supplement for finishing cattle fed corn silage or corn - corn silage diets. Feed efficiencies and daily gains with protein treatments were noted. The trials indicate that fermented ammoniated condensed whey is comparable to soybean meal as a crude protein source for feedlot cattle. (Refs. 18).

Crickenberger, R.G.; Henderson, H.E.; Reddy, C.A.

1981-04-01T23:59:59.000Z

499

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition  

E-Print Network (OSTI)

a large number of crude-oils, finished products such as liquified petroleum gas, gasoline, diesel fuel product blending and shipping. Some examples of nonlinear refinery planning problems including pooling, 2010 #12;crude-blends, and CDU feed charging. This problem has been addressed since the late 90s

Grossmann, Ignacio E.

500

On the interfacial properties of micrometre–sized water droplets in crude oil  

Science Journals Connector (OSTI)

...micrometre-sized water droplets in crude oil A. Yeung 1 T. Dabros 2 J. Czarnecki 1...Natural Resources Canada, , CANMET, 1 Oil Patch Drive, Suite A202, Devon, Alberta...remarkable stability of water-in-crude oil emulsions is due to the presence of a complex...

1999-01-01T23:59:59.000Z