National Library of Energy BETA

Sample records for basin onshore coalbed

  1. California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Los Angeles

  2. California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, San Joaquin

  3. ,"California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  5. Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  8. Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  9. ,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  10. ,"Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Natural Gas Liquids ... PM" "Back to Contents","Data 1: Calif--Los Angeles Basin Onshore Natural Gas Liquids ...

  14. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Crude Oil Reserves in ... PM" "Back to Contents","Data 1: Calif--Los Angeles Basin Onshore Crude Oil Reserves in ...

  15. CA, Los Angeles Basin Onshore Coalbed Methane Proved Reserves, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    169 180 173 305 284 277 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1 2 1 2 2 8 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 168 178 172 303 282 269 1979-2014 Dry Natural Gas 163 173 165 290 266 261 After Lease Separation

    1 2 1 2 2 8 1979-2014 Adjustments 1 0 0 0 0 9 1979-2014 Revision Increases 0 1 0 1 0 0 1979-2014 Revision Decreases 1 0 1 0 0 2 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0

  16. CA, San Joaquin Basin Onshore Coalbed Methane Proved Reserves, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    91 92 102 98 90 84 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 91 92 102 98 90 84 1979-2014 Dry Natural Gas 84 87 97 93 86 8 Wet After Lease Separation

    0 0 0 0 0 0 1979-2014 Adjustments 0 0 0 0 0 0 1979-2014 Revision Increases 0 0 0 0 0 0 1979-2014 Revision Decreases 0 0 0 0 0 0 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1979-2014 New

  17. Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Los Angeles Basin ... Proved Nonproducing Reserves of Crude Oil CA, Los Angeles Basin Onshore Proved ...

  18. Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--Los Angeles ... Lease Condensate Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Lease ...

  19. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  20. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 235 2010's 257 295 265 255 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  1. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 93 86 80 - = No Data Reported; -- = Not Applicable;

  2. California - Los Angeles Basin Onshore Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 98 90 84 - =

  3. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not

  4. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,095 2010's 2,037 1,950 1,893 1,813 1,838 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,784 1980's 1,721 1,566 1,593 1,556 1,538 1,642 1,398 1,196 1,086 972 1990's 901 885 773 749 744 679 560 518 445 336 2000's 748 836

  6. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 98 90 84 - = No Data

  7. Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 onsh Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 395 1,692 4,743 5,595 6,648 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 TX, RRC District 2 Onshore Shale Gas

  8. Texas--RRC District 4 Onshore Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    3 onsh Shale Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 onsh Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 1 6 24 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore

  9. Peru onshore-deepwater basins should have large potential

    SciTech Connect (OSTI)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H.

    1998-10-19

    Perupetro`s recent announcement that 13 offshore exploration blocks of nearly 1 million acres each will be offered for bids in the fourth quarter of 1998 has reawakened interest in this extensive, largely unexplored area. The new government policy, combined with the results of modern, deep-probing seismic surveys, has already led to a stepped-up search for oil and gas that will probably escalate. Most of Peru`s ten coastal basins are entirely offshore, but at both ends of the 1,500-mile coastline the sedimentary basins stretch from onshore across the continental shelf and down the continental slope. Two of these basin areas, both in the north, have commercial production. The third, straddling the country`s southern border, has never been drilled either on land or offshore. The Peruvian sectors of these three basins total roughly 50,000 sq miles in area, 75% offshore. All have major oil and gas potential. They are described individually in this article, an update in the ongoing studies last reported at the 1998 Offshore Technology Conference and in the first article of this series.

  10. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386

  11. California - San Joaquin Basin Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,784 3,960 3,941 1980's 4,344 4,163 3,901 3,819 3,685 3,574 3,277 3,102 2,912 2,784 1990's 2,670 2,614 2,415 2,327 2,044 1,920 1,768 1,912 1,945 1,951 2000's 2,331 2,232 2,102 2,013 2,185 2,694 2,345 2,309 2,128

  12. California - San Joaquin Basin Onshore Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116

  13. California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 6 6 6 5 6 7 7 7 4 1990's 5 4 5 6 5 4 3 4 5 7 2000's 10 8 10 8 8 9 8 9 6 6 2010's 5 4 4 4 4

  14. California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 74 1980's 74 51 118 111 100 115 104 102 96 91 1990's 82 71 79 81 71 77 77 79 57 59 2000's 63 51 68 78 94 110 100 103 97 113 2010's 98 78 77 85 96

  15. California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 305 284 277 - = No Data Reported;

  16. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Million Barrels) Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 7 6 6 6 5 5 5 5 5 4 1990's 4 4 4 4 4 3 3 3 1 1 2000's 0 1 0 0 1 2 0 0 0 0 2010's 1 1 1 1 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  18. ,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  19. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  20. Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 740 321 2000's 234 233 111 110 158 238 228 168 117 146 2010's 210 163 226 214 216 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 53 56 2000's 68 97 122 117 63 112 149 98 31 29 2010's 66 69 55 60 45 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Calif--Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Calif--Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 0 1990's 0 0 1 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 740 321 2000's 234 233 111 110 158 238 228 168 117 146 2010's 210 163 226 214 216 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 4 4 9 9 9 10 10 10 9 8 1990's 8 7 8 8 7 8 8 7 6 7 2000's 7 7 9 9 9 10 10 10 10 10 2010's 9 9 9 10 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    SciTech Connect (OSTI)

    Advanced Resources International

    2002-11-30

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

  6. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  11. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  14. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  15. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  16. California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Coalbed Methane Proved Reserves, Reserves

  17. Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves

  18. ,"California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  19. ,"California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  1. ,"California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves, Reserves Changes, and (Million Barrels)

  3. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  4. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. Fossil Energy Research Benefits - Coalbed Methane (920.32 KB) More Documents & Publications Before the Senate Energy and Natural

  5. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  6. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1 2005-2013 Adjustments 0 0 0 1 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  7. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 2005-2013 Adjustments 0 0 0 1 1 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  8. Louisiana--South Onshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,473 12,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale

  9. CA, Coastal Region Onshore Coalbed Methane Proved Reserves, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Buffalo, NY Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.67

    Feet)

    Year Jan Feb Mar Apr May Jun

  10. LA, South Onshore Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation 506 499 490 563 603 648 1979-2014 Adjustments 75 37 -16 97 -16 95 1979-2014 Revision Increases 72 111 190 87 80 65 1979-2014 Revision Decreases 115 142 132 135 131 135 1979-2014 Sales 14 17 29 18 4 36 2000-2014 Acquisitions 14 48 25 13 31 62 2000-2014 Extensions 67 26 26 104 141 58 1979-2014 New Field Discoveries 0 0 0 1 0 2 1979-2014 New Reservoir Discoveries in Old Fields 1 2 2 1 14 13 1979-2014 Estimated Production 65 72 75 77 75 79 Production

  11. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1 1 2005-2014 Adjustments 0 0 0 1 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  12. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    71 47 49 2005-2014 Adjustments 0 0 0 81 -17 -37 2009-2014 Revision Increases 0 0 0 0 0 21 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 ...

  13. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 4 2005-2014 Adjustments 0 0 0 1 1 -5 2009-2014 Revision Increases 0 0 0 0 0 9 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 ...

  14. Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 1 2 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC

  15. Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 71 47 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC

  16. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  17. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  18. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  19. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  20. Method for removal of methane from coalbeds

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  1. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  2. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and ...

  3. New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, ...

  4. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  5. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...

  6. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  7. ,"Texas (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Texas (with State Offshore) Coalbed Methane Proved Reserves ...

  8. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  9. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  10. ,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Coalbed Methane Proved Reserves ...

  11. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  12. Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore

  13. ,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Texas--State Offshore Coalbed Methane Proved Reserves (Billion ...

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves ... Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  15. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves ... 9:22:44 AM" "Back to Contents","Data 1: North Dakota Coalbed Methane Proved Reserves ...

  16. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Louisiana--North Coalbed Methane Proved Reserves (Billion ...

  17. Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  19. U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  20. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  1. U.S. Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  5. U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic ...

  7. Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  10. U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  11. U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  12. Mississippi (with State off) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  13. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  14. U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  16. ,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves (Billion Cubic ...

  17. Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  19. European Wind Atlas: Onshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-onshore,http:cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  20. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect (OSTI)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  1. Offshore and onshore engineering practices compared

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The comparison between the practices relevant to onshore and offshore developments is the overall theme of this book. It provides help and guidance to people familiar with onshore practices who are venturing offshore for the first time or vice versa. They draw attention to the lessons of experience which benefit future developments and point to future guidelines and regulations. CONTENTS: Project economic evaluation and conceptual planning - the differences between onshore and offshore projects; A comparison of offshore and onshore plant design; Gas compression equipment - design differences between onshore and offshore applications; Experience in reliable pump design for onshore and offshore applications; Operability, reliability and maintenance - the differences onshore and offshore; Risk analysis in layout and safety engineering for platforms and terminals; The design of electrical supplies for equipment operation; Production measurements for a North Sea oil field; Chemical treatment and process equipment for water injection and oily water treatment systems offshore and onshore; Gas desulphurisation - the consequence of moving the process offshore; A comparison of offshore and onshore pipeline construction and commissioning; Pre-commissioning and commissioning of facilities onshore and offshore; Some aspects of revamp work on onshore and offshore plants.

  2. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 ...

  3. File:EIA-coalbed-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    coalbed-gas.pdf Jump to: navigation, search File File history File usage Coalbed Methane Fields, Lower 48 States Size of this preview: 776 600 pixels. Full resolution (1,650...

  4. ,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Coalbed Methane Proved Reserves ... 8:49:43 AM" "Back to Contents","Data 1: New York Coalbed Methane Proved Reserves ...

  5. ,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Coalbed Methane Proved ... 8:49:40 AM" "Back to Contents","Data 1: New Mexico--West Coalbed Methane Proved ...

  6. ,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves ... 9:00:33 AM" "Back to Contents","Data 1: New Mexico Coalbed Methane Proved Reserves ...

  7. ,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Coalbed Methane Proved ... 8:49:39 AM" "Back to Contents","Data 1: New Mexico--East Coalbed Methane Proved ...

  8. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of ...

  9. Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  10. Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  11. Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  1. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. ,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic ... "Back to Contents","Data 1: U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)" ...

  4. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. West Virginia Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. Integrated exploration strategy for locating areas capable of high gas rate cavity completion in coalbed methane reservoirs

    SciTech Connect (OSTI)

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    1995-10-01

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequential reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.

  8. Texas--RRC District 2 Onshore Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 37 37 66 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 TX, RRC District 10 Shale Gas Proved

  9. WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable...

    Office of Environmental Management (EM)

    Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop February 8, 2011 - ...

  10. ,"Texas - RRC District 3 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 3 Onshore ... 7:20:49 AM" "Back to Contents","Data 1: Texas - RRC District 3 Onshore ...

  11. ,"Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 4 Onshore Nonassociated ... 7:20:00 AM" "Back to Contents","Data 1: Texas - RRC District 4 Onshore Nonassociated ...

  12. ,"Texas - RRC District 2 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 2 Onshore ... 7:20:49 AM" "Back to Contents","Data 1: Texas - RRC District 2 Onshore ...

  13. ,"Texas - RRC District 4 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 4 Onshore ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 4 Onshore ...

  14. ,"Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 2 Onshore Nonassociated ... 7:19:59 AM" "Back to Contents","Data 1: Texas - RRC District 2 Onshore Nonassociated ...

  15. ,"Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 3 Onshore Nonassociated ... 7:19:59 AM" "Back to Contents","Data 1: Texas - RRC District 3 Onshore Nonassociated ...

  16. U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  17. U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    A Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  19. Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    C Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  20. Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  1. Methane recovery from coalbeds project. Monthly progress report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

  2. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  3. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  4. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  5. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  7. Table 16. Coalbed methane proved reserves, reserves changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves, reserves changes, and production, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ...

  8. Table 15. Coalbed methane proved reserves and production, 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,...

  9. Research and Development Concerning Coalbed Natural Gas

    SciTech Connect (OSTI)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality

  10. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Gasoline and Diesel Fuel Update (EIA)

    C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin ... Coalbed Methane Fields, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  11. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0...

  12. California (with State off) Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves, Reserves Changes, and

  13. California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves,

  14. California (with State off) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  15. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  16. Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 11 8 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves

  17. ,"Texas - RRC District 2 Onshore Dry Natural Gas Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 2 Onshore Dry Natural Gas ... 7:18:04 AM" "Back to Contents","Data 1: Texas - RRC District 2 Onshore Dry Natural Gas ...

  18. ,"Texas - RRC District 4 Onshore Dry Natural Gas Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 4 Onshore Dry Natural Gas ... 7:18:04 AM" "Back to Contents","Data 1: Texas - RRC District 4 Onshore Dry Natural Gas ...

  19. ,"Texas - RRC District 2 Onshore Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 2 Onshore Natural Gas, Wet ... 7:19:07 AM" "Back to Contents","Data 1: Texas - RRC District 2 Onshore Natural Gas, Wet ...

  20. ,"Texas - RRC District 4 Onshore Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 4 Onshore Natural Gas, Wet ... 7:19:07 AM" "Back to Contents","Data 1: Texas - RRC District 4 Onshore Natural Gas, Wet ...

  1. ,"Texas - RRC District 3 Onshore Dry Natural Gas Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 3 Onshore Dry Natural Gas ... 7:18:04 AM" "Back to Contents","Data 1: Texas - RRC District 3 Onshore Dry Natural Gas ...

  2. ,"Texas - RRC District 3 Onshore Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 3 Onshore Natural Gas, Wet ... 7:19:07 AM" "Back to Contents","Data 1: Texas - RRC District 3 Onshore Natural Gas, Wet ...

  3. New Mexico--West Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  4. New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  5. New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  6. New Mexico--East Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  7. Ownership questions can stymie development of coalbed methane

    SciTech Connect (OSTI)

    Counts, R.A. )

    1990-01-01

    Although the technology exists for commercial recovery of coalbed methane, production has been hindered because of the legal quandary as to ownership. The author discusses how claims to ownership of coalbed methane can and have been made by the coal owner or lessee, the oil and gas owner or lessee, the surface owner, or any combination thereof. The federal perspective on this question of ownership is described and several state rulings are assessed.

  8. Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds

    SciTech Connect (OSTI)

    Scott R. Reeves

    2003-03-31

    In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U

  9. CA, San Joaquin Basin Onshore Associated-Dissolved Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 468 9 70 3 2 0 1979-2014 New Field Discoveries 0 0 0 4 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 1 0 0 1979-2014 Estimated Production 148 164 237 132 ...

  10. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ,"CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"CA, Los Angeles Basin Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 2 0 35 8 2000-2014 Extensions 0 0 0 0 2 0 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1977-2014 ...

  15. CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 1 9 1 75 27 2009-2014 Extensions 1 1 6 8 1 1 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 5 4 2009-2014 ...

  16. CA, Los Angeles Basin Onshore Associated-Dissolved Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 3 0 37 8 2000-2014 Extensions 0 0 0 0 2 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 ...

  17. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  18. CA, Los Angeles Basin Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Reserves 35 257 295 265 255 233 2009-2014 Adjustments 10 15 19 -8 -7 4 2009-2014 Revision Increases 98 22 23 20 15 5 2009-2014 Revision Decreases 47 2 2 36 9 27 2009-2014 Sales 0 0 2 0 75 21 2009-2014 Acquisitions 0 1 9 1 75 27 2009-2014 Extensions 1 1 6 8 1 1 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 5 4 2009-2014 Estimated Production 15 15 15 15 15 15

    84 87 97 93 86 80 1977-2014 Adjustments 5 5 7 11 -9 9 1977-2014 Revision

  19. CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Reserves ,095 2,037 1,950 1,893 1,813 1,838 2009-2014 Adjustments -30 1 16 14 -39 16 2009-2014 Revision Increases 192 204 229 382 172 328 2009-2014 Revision Decreases 68 125 217 318 79 188 2009-2014 Sales 3 0 0 0 208 419 2009-2014 Acquisitions 18 1 16 5 206 426 2009-2014 Extensions 22 13 18 6 15 11 2009-2014 New Field Discoveries 0 0 0 2 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 2009-2014 Estimated Production 161 152 149 148 147 151

    2,469 2,321 2,590 1,550 1,460

  20. CA, San Joaquin Basin Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,469 2,321 2,590 1,550 1,460 1,690 1977-2014 Adjustments 2 4 902 -574 -55 10 1977-2014 Revision Increases 180 488 1,444 379 223 579 1977-2014 Revision Decreases 148 427 1,854 491 84 200 1977-2014 Sales 4 2 45 284 35 1,083 2000-2014 Acquisitions 78 0 42 92 25 1,074 2000-2014 Extensions 446 8 69 3 1 0 1977-2014 New Field Discoveries 1 1 0 4 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 9 0 0 1977-2014 Estimated Production 214 220 289 178 165 150

  1. CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 1 1 1 1 14 1979-2014 Adjustments 0 1 0 -1 0 11 2009-2014 Revision Increases 0 0 0 1 0 4 2009-2014 Revision Decreases 0 0 0 0 0 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0 1

  2. CA, San Joaquin Basin Onshore Nonassociated Natural Gas Proved Reserves,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation 607 498 506 269 245 265 1979-2014 Adjustments 1 -3 -12 58 -20 19 1979-2014 Revision Increases 96 47 116 84 115 112 1979-2014 Revision Decreases 59 84 31 120 73 70 1979-2014 Sales 0 2 47 303 0 164 2000-2014 Acquisitions 25 0 44 93 0 164 2000-2014 Extensions 4 0 1 0 0 0 1979-2014 New Field Discoveries 1 1 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 9 0 0 1979-2014 Estimated Production 78 68 63 58 46 4

  3. CA, San Joaquin Basin Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    146 210 163 226 214 216 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 401 359 319 81 96 55 1996-2014 Nonassociated Gas (billion cu ft) 311 253 265 36 61 37 1996-2014 Associated Gas (billion cu ft) 90 106 54 45 35 18

  4. CA, Los Angeles Basin Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 1 1979-2014 Adjustments 0 0 0 0 0 1 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0

  5. CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as...

    U.S. Energy Information Administration (EIA) Indexed Site

    91 92 102 98 90 84 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 91 92 102 98 ...

  6. CA, Los Angeles Basin Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    29 66 69 55 60 45 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 12 21 23 16 16 11 1996-2014 Nonassociated Gas (billion cu ft) 0 0 0 0 0 ...

  7. CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 1979-2014 Adjustments 0 0 0 0 0 0 1979-2014 Revision Increases 0 0 0 0 0 0 1979-2014 Revision Decreases 0 0 0 0 0 0 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 ...

  8. WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop February 8, 2011 - 12:00am Addthis WASHINGTON, DC --- On Wednesday, February 9th the Department of Interior will host an onshore renewable energy workshop. The two-day conference will bring together stakeholders from across the government, renewable energy industry, and conservation community to discuss

  9. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0 0 0 0 0 0 2002-2014 Colorado 544,215 529,891 514,531 376,543 449,281 419,132 2002-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2002-2014 Kansas 43,661 38,869 35,924 31,689 28,244 25,365 2002-2014 Louisiana 0 0 0 0 0 0 2002-2014 Louisiana Onshore 0 0 0 0 0 0 2007-2014 Montana 12,376 9,920 6,691 3,731 1,623 5,766

  10. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  11. ,"Louisiana - South Onshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click ... Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  12. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production ...

  13. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect (OSTI)

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  14. Alaska Onshore Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous

  15. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  16. Exploiting coalbed methane and protecting the global environment

    SciTech Connect (OSTI)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  17. Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California)

  18. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  19. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells South Dakota Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from

  20. Integrated process for coalbed brine disposal

    SciTech Connect (OSTI)

    Brandt, H. |; Bourcier, W.L.; Jackson, K.J.

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  1. Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009...

  2. California Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onshore Natural Gas Gross Withdrawals and Lease

  3. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  4. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  5. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  6. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  7. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Louisiana--South Onshore Shale Production (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shale Production (Billion Cubic Feet) Louisiana--South Onshore Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  9. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  10. Proceedings of the 1992 SPE Permian Basin oil and gas recovery conference

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This book covers the proceedings of the 1992 Permian Basin Oil and Gas Recovery Conference. Topics covered include: fluid-loss measurements from drilling fluid, CO{sub 2} injection, coalbed methane production, drilling equipment, hydraulic fracturing in horizontal wells, reservoir characterization, cementing and well completions, and well testing.

  11. Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves, Reserves

  12. Geohydrological feasibility study of the Black Warrior Basin for the potential applicability of Jack W. McIntyre`s patented process

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. Mclntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Black Warrior Basin of Mississippi and Alabama through literature surveys. Methane gas from coalbeds in the Black Warrior Basin is confined to the coal fields of northern Alabama. Produced water from degasification of coalbeds is currently disposed by surface discharge. Treatment prior to discharge consists of short-term storage and in-stream dilution. Mr. Mclntyre`s process appears to be applicable to the Black Warrior Basin and could provide an environmentally sound alternative for produced water production.

  13. California--Coastal Region Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 14 15 15 13 13 11 1990's 12 11 9 10 9 7 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 10 2010's 11 12 18 13 12

  14. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  15. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  16. Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 938,635 822,216 818,942 724,016 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Louisiana

  17. Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,020 4,583 4,920 4,936 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Texas

  18. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 96,052 85,735 84,723 84,386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Oklahoma

  19. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,763,732 5,274,730 5,854,956 6,636,937 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Texas

  20. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  1. Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves,

  2. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onsho

  3. Coalbed methane could cut India`s energy deficit

    SciTech Connect (OSTI)

    Kelafant, J.; Stern, M.

    1998-05-25

    Foreign interest in upcoming Indian coalbed methane (CBM) concession rounds will depend on prospect quality, fiscal regime attractiveness, and perceptions interested parties will have concerning the government`s willingness to promote development. The more liberal tax and royalty provisions for foreign producers announced by the ministry of Petroleum and Natural Gas indicate that India is interested in attracting international CBM investments. This article examines the potential for developing the country`s large CBM resource base, estimated between 30 tcf (250 billion cu m) and 144 tcf (4 trillion cu m) of gas. It also provides an overview of the current contractual and regulatory framework governing CBM development.

  4. Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA...

    Open Energy Info (EERE)

    Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url...

  5. ,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 4 Onshore Natural Gas Plant ...

  6. ,"Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas ... 7:17:26 AM" "Back to Contents","Data 1: Texas--RRC District 4 Onshore Natural Gas ...

  7. ,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 3 Onshore Natural Gas Plant ...

  8. ,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 2 Onshore Natural Gas Plant ...

  9. ,"Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas ... 7:17:26 AM" "Back to Contents","Data 1: Texas--RRC District 3 Onshore Natural Gas ...

  10. ,"Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas ... 7:17:26 AM" "Back to Contents","Data 1: Texas--RRC District 2 Onshore Natural Gas ...

  11. Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds

    SciTech Connect (OSTI)

    Lambert, S.W.; Trevits, M.A.; Steidl, P.F.

    1980-08-01

    Coalbed gas drainage from the surface in advance of mining has long been the goal of researchers in mine safety. Bureau of Mines efforts to achieve this goal started about 1965 with the initiation of an applied research program designed to test drilling, completion, and production techniques for vertical boreholes. Under this program, over 100 boreholes were completed in 16 different coalbeds. The field methods derived from these tests, together with a basic understanding of the coalbed reservoir, represent an available technology applicable to any gas drainage program whether designed primarily for mine safety or for gas recovery, or both.

  12. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  13. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,171 52,846 49,661 2000's 69,451 82,542 55,854 74,400 88,734 87,998 75,186 101,503 116,637 108,705 2010's 108,827 60,252 81,444 101,930 90,099 113

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  14. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,465 16,034 19,428 2000's 30,481 32,805 29,911 21,778 24,574 31,831 32,480 41,067 43,009 29,807 2010's 40,216 37,626 50,538 37,119 34,825 40,10

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA NA NA 0 0 2007-2014 Repressuring NA NA NA NA 0 0 2007-2014 Vented and Flared

  15. Nevada Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 75,656 84,093 89,954 2000's 121,054 108,510 109,605 115,960 136,945 147,743 166,867 171,473 180,668 192,049 2010's 175,837 162,778 189,291 181,326 167,916 207,145

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0

  16. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect (OSTI)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  17. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  18. Alabama Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  19. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  20. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  1. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  2. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  3. Geohydrologic feasibility study of the greater Green River Basin for the potential applicability of Jack W. McIntyre`s patented tool

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-02-01

    Geraghty & Miller, Inc, of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented tool for the recovery of natural gas from coalbed/sand formations in the Greater Green River Basin through literature surveys.

  4. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  5. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  6. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197

  7. California - Coastal Region Onshore Crude Oil + Lease Condensate Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 341 2010's 478 564 620 599 587 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  8. California - Coastal Region Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 290 266 261 - = No Data Reported; -- = Not

  9. California - Coastal Region Onshore Natural Gas, Wet After Lease Separation

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 305 284 277 - = No Data

  10. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 1980's 65 60 59 61 28 23 14 12 12 5 1990's 4 11 19 66 60 54 48 47 2 0 2000's 0 0 0 1 8 8 6 1 1 1 2010's 2 1 2 2 8 - = No Data

  11. Alabama Onshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  12. California Onshore-California Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (Million Cubic Feet) Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,755 13,192 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages:

  13. Louisiana Onshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 32,212 33,735 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  14. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed

  15. California Onshore Natural Gas Processed in California (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in California (Million Cubic Feet) California Onshore Natural Gas Processed in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 180,648 169,203 164,401 162,413 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed

  16. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  17. Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 342 328 370 396 405 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  18. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 143 146 2000's 123 134 139 150 115 148 162 164 122 129 2010's 126 113 125 155 188 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 70 68 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Outer Continental Shelf oil and gas activities in the Atlantic and their onshore impacts. Atlantic summary report, July 1, 1983-December 31, 1984

    SciTech Connect (OSTI)

    Rudolph, R.W.; Havran, K.J.

    1984-12-01

    The search for oil and gas on the Outer Continental Shelf in the Atlantic continues. Hydrocarbon exploration efforts have been and probably will continue to be concentrated on four major sedimentary basins: the Georges Bank Basin, the Baltimore Canyon Trough, the Carolina Trough, and the Blake Plateau Basin. To date, 46 exploratory wells have been drilled in these areas, most of them in the Mid-Atlantic Planning Area where resource estimates indicate the hydrocarbon potential is the greatest of the three Atlantic Outer Continental Shelf planning areas. Currently, no operators are involved in exploration efforts in the Atlantic. No commercial discoveries have been announced. Since the first and most successful sale of Atlantic Outer Continental Shelf blocks in Lease Sale 40 in August 1976, there have been eight other sales bringing total revenues of almost $3 billion to the Federal Treasury. The current tentative milestone chart for the 5-year offshore leasing schedule calls for four additional lease sales to be held in the Atlantic Outer Continental Shelf. Although no firm plans have been made for the transportation of potential offshore hydrocarbons to onshore processing facilities, it is believed that oil would be transported by tanker or tug-barge system to existing refineries on the Raritan and Delaware Bays. Gas probably would be transported by pipeline to one of several onshore landfalls identifed by Atlantic Coast States and in Federal environmental impact documents. Recent onshore support for Atlantic Outer Continental Shelf exploration came from Davisville, Rhode Island, the only shore support base for the Atlantic that was active during 1984. Three maps are provided in the back pocket of this report for the North Atlantic, Mid-Atlantic and South Atlantic planning areas. 29 refs., 8 figs., 6 tabs.

  2. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  3. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA

  4. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,731 2,865 2,527 2000's 3,607 4,496 1,265 2,264 1,676 3,567 3,345 4,235 2,632 918 2010's 1,600 1,589 2,465 4,911 3,189 7,083

    12,927 12,540 12,449 15,085 16,205 15,307 1967-2014 From Gas Wells 1,561 1,300 933 14,396 15,693 15,005 1967-2014 From Oil Wells 11,366 11,240 11,516 689 512 303 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0

  5. Tennessee Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,636 6,213 5,875 2000's 5,250 2,479 2,596 5,621 2,262 5,627 6,691 7,291 4,411 3,668 2010's 22,156 26,314 62,961 36,613 45,019 69,830

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented

  6. West Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 569 515 499 2000's 516 2,620 1,885 2,084 1,406 2,287 3,664 3,849 1,889 1,109 2010's 1,480 2,579 2,361 2,840 6,816 13,27

    65,174 394,125 539,860 741,853 1,040,250 1,318,822 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 242,241 1967-2014 From Oil Wells 0 0 1,477 2,660 1,643 1967-2014 From Shale Gas Wells 113,773 227,012 344,847 572,076 796,366 2007-2014 From Coalbed Wells 0 0 0 0 0

  7. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95 271 167 2000's 1,843 2,727 3,764 2,484 532 576 827 2,024 1,088 1,079 2010's 592 418 496 535 W 706

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,908,739 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667

  8. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 338,858 323,771 365,587 2000's 364,245 374,311 521,868 535,099 585,841 630,410 741,759 772,968 797,266 913,672 2010's 981,750 1,043,786 1,138,771 1,034,288 1,047,683 1,160,140

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0

  9. Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,661 13,678 12,515 2000's 14,513 17,777 35,104 26,672 22,946 35,376 27,213 37,871 34,312 36,576 2010's 61,242 85,298 115,328 81,013 80,411 127,365

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0

  10. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 15,524 21,515 22,842 2000's 28,926 17,520 22,273 10,995 12,045 20,478 21,830 23,079 19,910 18,039 2010's 30,728 21,136 49,211 24,556 20,844 39,632

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0

  11. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,687 5,080 4,582 2000's 5,522 4,290 4,947 4,593 3,340 8,066 7,787 10,908 7,230 3,331 2010's 3,949 4,223 7,696 5,080 4,132 4,634

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  12. ,"Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  2. ,"Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  5. ,"Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  6. ,"Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  8. ,"Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  14. ,"Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. Alaska Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  17. Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska

    Gasoline and Diesel Fuel Update (EIA)

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  18. Alaska Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  19. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 316,456 308,512 335,608 357,629 355,905 346,325 335,426 338,806 2000's 324,577 339,311 358,936 423,366 365,100 376,892 380,221 368,344 337,359 349,457 2010's 316,546 294,728 315,682 280,101 305,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 386,382 346,733 334,987 322,544 326,919 317,137 315,701 347,667 2000's 334,983 336,629 322,138 303,480 287,205 291,271 301,921 286,584 281,088 258,983 2010's 273,136 237,388 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Calif--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Calif--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 306,829 260,560 251,390 232,005 231,640 236,725 264,610 330,370 2000's 323,864 328,778 309,399 290,212 273,232 274,817 278,933 264,838 259,988 239,037 2010's 251,559 218,638 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,296,865 5,461,594 5,518,978 5,525,982 5,626,448 5,665,074 5,738,595 5,526,033 2000's 5,681,726 5,698,798 5,603,941 5,737,755 5,688,972 5,969,905 6,301,649 6,931,629 7,753,869 7,615,836 2010's 7,565,123 7,910,898 8,127,004 8,285,436 8,652,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Texas--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Texas--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,734,715 4,894,291 4,961,117 4,983,373 5,068,868 5,102,806 5,167,180 5,005,568 2000's 5,240,909 5,229,075 5,084,012 5,189,998 5,022,369 5,239,469 5,523,237 6,093,951 6,913,906 6,781,162 2010's 6,686,719 7,089,072 7,458,989 7,619,582 7,942,121 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  7. Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463

  8. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's

  9. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  10. Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,511,271 1,517,415 1,531,493 1,589,019 1,437,037 1,325,445 1,360,141 1,403,510 2000's 1,314,375 1,350,494 1,226,613 1,219,627 1,226,268 1,189,611 1,264,850 1,293,590 1,292,366 1,472,722 2010's 2,140,525 2,958,249 2,882,193 2,282,452 1,918,626 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  12. CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves ,095 2,037 1,950 1,893 1,813 1,838 2009-2014 Adjustments -30 1 16 14 -39 16 2009-2014 Revision Increases 192 204 229 382 172 328 2009-2014 Revision Decreases 68 125 217 318 79 188 2009-2014 Sales 3 0 0 0 208 419 2009-2014 Acquisitions 18 1 16 5 206 426 2009-2014 Extensions 22 13 18 6 15 11 2009-2014 New Field Discoveries 0 0 0 2 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 2009-2014 Estimated Production 161 152 149 148 147 151

  13. CA, San Joaquin Basin Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,609 2,447 2,685 1,650 1,574 1,823 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 607 498 506 269 245 265 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 2,002 1,949 2,179 1,381 1,329 1,558 1979-2014 Dry Natural Gas 2,469 2,321 2,590 1,550 1,460 1,69

  14. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes,

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 855 777 756 15 2011-2014 Adjustments 1 1 -1 -740 2011-2014 Revision Increases 912 258 68 1 2011-2014 Revision Decreases 0 248 0 3 2011-2014 Sales 0 0 0 12 2011-2014 Acquisitions 0 0 0 14 2011-2014 Extensions 43 1 1 0 2011-2014 New Field Discoveries 0 0 0 0 2011-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2011-2014 Estimated Production 101 90 89 1 2011

  15. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 435 512...

  16. Texas Onshore Natural Gas Processed in New Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Processed in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 29,056 869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-New Mexico

  17. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    SciTech Connect (OSTI)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  18. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect (OSTI)

    Amy Childers

    2011-03-30

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  19. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  20. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  1. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming??s diverse energy resources. WERIC was established in 2006 by the University of Wyoming??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  2. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81

  3. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140

  4. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  5. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning; Ashraf, Ali; Duckworth, Cole; Sinata, Priscilla; Sugiyono, Ivan; Shannon, Mark A.; Werth, Charles J.

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  6. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"06/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,079 1980's 1,645 1,920 1,785 1,890 1,965 1,895 1,760 1,861 1,703 1,419 1990's 1,418 1,127 1,176 1,137 1,169 1,126 1,178 1,497 1,516

  8. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,513 1980's 2,429 2,080 1,881 1,784 1,756 1,537 1,405 1,296 1,226 1,148 1990's 1,056 1,123 1,206 1,159 1,063 960

  9. Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,052 1980's 3,333 3,466 3,167 3,220 3,264 2,940 2,605 2,563 2,400 2,278 1990's 2,024 1,987 1,723 2,092 2,590 3,196 3,612 3,539 3,275

  10. Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,143 1980's 7,074 7,251 7,802 7,847 8,094 7,825 7,964 7,317 6,891 7,009 1990's 7,473 7,096 6,813 7,136 7,679 7,812 7,877 8,115 8,430

  11. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Seismic Surveying (Number of Elements) Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 41 41 38 43 44 45 43 46 46 48 2001 44 45 45 47 45 42 42 41 39 39 42 41 2002 38 40 35 32 32 32 34 33 37 38 35 31 2003 28 29 28 27 24 25 28 30 30 31 31 32 2004 33 35 35 36 35 39 38 39 40 42 42 41

  12. Solute concentrations influence microbial methanogenesis in coal-bearing strata of the Cherokee basin, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kirk, Matthew F.; Wilson, Brien H.; Marquart, Kyle A.; Zeglin, Lydia H.; Vinson, David S.; Flynn, Theodore M.

    2015-11-18

    In this study, microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4–1.1 m) coalbeds with marginal thermal maturities (0.5–0.7% Ro) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na–Cl typemore » with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L–1. Gas dryness values [C1/(C2 + C3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location

  13. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  14. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  15. ,"California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  16. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  17. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 137 134 2000's 130 148 61 61 16 70 85 42 26 51 2010's 199 248 293 280 281 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 1 1 0 0 0 0 1990's 0 1 1 2 2 1 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 2010's 154 691 1,508 1,857 2,110 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  3. Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 257 2010's 272 261 428 500 613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  4. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 92 2010's 207 222 203 256 257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  5. Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 7 2000's 9 12 14 12 13 16 16 16 8 14 2010's 53 242 711 615 825 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  6. Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 19 1980's 16 20 23 26 22 24 20 32 25 16 1990's 17 14 14 14 12 11 8 12 10 12 2000's 13 14 11 13 15 19 16 17 17 15 2010's 47 229 506 594 706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 45 1980's 48 68 52 73 81 76 69 70 67 56 1990's 63 61 66 72 74 82 85 75 75 64 2000's 59 53 60 56 64 72 74 94 88 77 2010's 113 203 374 698 1,037 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 24 26 2000's 34 29 41 37 21 19 18 22 18 26 2010's 37 19 118 163 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 52 51 53 57 53 49 53 75 58 73 1990's 49 48 39 57 54 68 79 116 77 74 2000's 69 82 71 72 72 78 75 128 65 74 2010's 75 76 81 63 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 7 9 2000's 8 8 5 7 4 17 4 2 2 1 2010's 80 3 1 7 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 75 77 85 80 87 86 84 80 74 72 1990's 71 69 65 65 70 70 82 86 96 122 2000's 90 97 91 85 73 71 87 77 79 74 2010's 96 202 181 228 223 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Calif--Coastal Region Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 1 1 0 0 0 0 1990's 0 1 1 2 2 1 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 19 1980's 16 20 23 26 22 24 20 32 25 16 1990's 17 14 14 14 12 11 8 12 10 12 2000's 13 14 11 13 15 19 16 17 17 15 2010's 47 229 506 594 706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 52 51 53 57 53 49 53 75 58 73 1990's 49 48 39 57 54 68 79 116 77 74 2000's 69 82 71 72 72 78 75 128 65 74 2010's 75 76 81 63 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 75 77 85 80 87 86 84 80 74 72 1990's 71 69 65 65 70 70 82 86 96 122 2000's 90 97 91 85 73 71 87 77 79 74 2010's 96 202 181 228 223 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Parana basin

    SciTech Connect (OSTI)

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  19. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect (OSTI)

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  20. CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations

    SciTech Connect (OSTI)

    Muhammad Sahimi; Theodore T. Tsotsis

    2002-12-15

    One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.

  1. Ohio Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,491 7,981 11,388 2000's 10,123 10,545 22,722 18,774 18,258 27,941 23,184 37,292 23,493 37,668 2010's 58,161 92,845 171,590 161,174 175,466 210,460

    78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed

  2. Utah Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,079 5,945 6,478 2000's 10,544 15,141 15,439 14,484 9,423 12,239 28,953 56,438 55,374 49,984 2010's 48,399 40,138 47,138 49,562 58,499 55,797

    436,885 461,507 490,393 470,863 453,207 422,423 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223

  3. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  4. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,162 2,976 2,974 1980's 2,502 2,629 2,493 2,534 2,512 2,358 2,180 2,273 2,037 1,770 1990's 1,737 1,393 1,389 1,321 1,360 1,251 1,322 1,634 1,614 1,881 2000's 1,980 1,801 1,782 1,770 1,844 2,073 2,060 2,255 2,238 1,800 2010's 2,090

  5. Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166

  6. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,518 7,186 6,315 1980's 5,531 5,292 4,756 4,680 4,708 4,180 3,753 3,632 3,422 3,233 1990's 2,894 2,885 2,684 2,972 3,366 3,866 4,349 4,172 3,961 3,913 2000's 3,873 3,770 3,584 3,349 3,185 3,192 3,050 2,904 2,752 2,616 2010's 2,588

  7. Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,565 1980's 5,762 5,546 5,048 5,004 5,020 4,477 4,010 3,859 3,626 3,426 1990's 3,080 3,110 2,929 3,251 3,653 4,156 4,652 4,418 4,205 4,132 2000's 4,042 3,943 3,826 3,548 3,400 3,406 3,278

  8. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,621 9,031 8,326 1980's 8,130 8,004 8,410 8,316 8,525 8,250 8,274 7,490 7,029 7,111 1990's 7,475 7,048 6,739 7,038 7,547 7,709 7,769 8,099 8,429 8,915 2000's 9,645 9,956 9,469 8,763 8,699 8,761 8,116 7,963 7,604 6,728 2010's 7,014

  9. Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474

  10. Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386

  11. Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,565 1980's 5,762 5,546 5,048 5,004 5,020 4,477 4,010 3,859 3,626 3,426 1990's 3,080 3,110 2,929 3,251 3,653 4,156 4,652 4,418 4,205 4,132 2000's 4,042 3,943 3,826 3,548 3,400 3,406 3,278 3,102

  12. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 1 1 1 1 1 1 1 1 1 1 2001 1 1 1 1 1 1 1 1 1 1 1 1 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 1 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

  13. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 36 36 34 37 39 40 39 41 40 41 2001 38 38 38 39 37 35 35 32 30 33 34 33 2002 32 31 26 25 24 23 26 26 28 30 27 22 2003 19 20 20 20 17 18 21 22 22 24 24 25 2004 25 27 27 27 26 30 30 31 32 34 33 32

  14. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Two-Dimensional Seismic Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 4 4 3 5 4 4 3 4 4 5 2001 5 6 6 7 7 6 6 8 8 5 7 7 2002 6 9 9 7 8 9 8 7 9 8 8 8 2003 8 9 8 7 7 7 7 8 8 7 7 7 2004 8 8 8 9 9 9 8 8 8 8 9 9 2005 8 8 6 8 8 9 8 8 7 6 5 6 2006 5 5 4 4 4 9 5 4 4 5 5 5 2007

  15. MASK basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASK basin - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  16. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  17. Outer continental shelf oil and gas activities in the South Atlantic (US) and their onshore impacts. South Atlantic summary report update

    SciTech Connect (OSTI)

    Havran, K.J.

    1983-01-01

    An update of the South Atlantic Summary Report 2, this report provides current information about Outer Continental Shelf (OCS) oil- and gas-related activities and their onshore impacts for the period June 1982 to February, 1983. The geographical area covered by the report extends from north of Cape Hatteras, North Carolina to Cape Canaveral, Florida. The information is designed to assist in planning for the onshore effects associated with offshore oil and gas development. It covers lease and transportation strategies and the nature and location of onshore facilities. An appendix summarizes related state and federal studies. 11 references, 2 tables.

  18. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  19. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  20. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  1. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect (OSTI)

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  2. Solute concentrations influence microbial methanogenesis in coal-bearing strata of the Cherokee basin, USA

    SciTech Connect (OSTI)

    Kirk, Matthew F.; Wilson, Brien H.; Marquart, Kyle A.; Zeglin, Lydia H.; Vinson, David S.; Flynn, Theodore M.

    2015-11-18

    In this study, microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4–1.1 m) coalbeds with marginal thermal maturities (0.5–0.7% Ro) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na–Cl type with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L–1. Gas dryness values [C1/(C2 + C3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast

  3. ,"Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. Coastal energy transportation study, phase ii, volume 1: a study of OCS onshore support bases and coal export terminals

    SciTech Connect (OSTI)

    Cribbins, P.D.

    1981-08-01

    This study concentrates on siting alternatives for on-shore support bases for Outer Continental Shelf (OCS) oil and gas exploration and coal export terminals. Sixteen alternative OCS sites are described, and a parametric analysis is utilized to select the most promising sites. Site-specific recommendations regarding infrastructure requirements and transportation impacts are provided. Eleven alternative coal terminal sites are identified and assessed for their potential impacts.

  5. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect (OSTI)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  6. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  7. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect (OSTI)

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the

  8. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  9. H. R. 2998: A bill to amend the Natural Gas Act to permit the development of coalbed methane gas in areas where its development has been impeded or made impossible by uncertainty and litigation over ownership rights, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, July 23, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would direct the Secretary of Energy to compile a list of affected states which are determined to be states in which disputes, uncertainty, or litigation exist or potentially exists regarding the ownership of coalbed methane; in which the development of significant deposits of coalbed methane may be impeded by such disputes; in which statutory or regulatory procedures permitting and encouraging development of coalbed methane prior to final resolution of disputes are not in place; and in which extensive development of coalbed methane does not exist. Colorado, Montana, New Mexico, Wyoming, Utah, Virginia, and Alabama are excluded from such a list since they currently have development of coalbed methane. Until the Secretary of Energy publishes a different list, the affected states are West Virginia, Pennsylvania, Kentucky, Ohio, Tennessee, Indiana, and Illinois, effective on the date of enactment of this bill.

  10. ,"Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  13. ,"California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  15. Outer Continental Shelf oil and gas activities in the Mid-Atlantic and their onshore impacts: a summary report, November 1979. Update 3, August 1981

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    At the present, there are no operators drilling in the Mid-Atlantic Region. The prime targets for future exploration will be in areas of 3000 to 6000 feet (914 to 1829 m) depth of water, seaward of previously leased tracts. No commercial discoveries have been found during the 4-year drilling history of the area. Because of the minimal offshore oil- and gas-related activity in the Mid-Atlantic Region, the onshore impacts are also minimal. Little development has occurred as a result of exploration or development. The level of nearshore and onshore activity may increase with exploration associated with upcoming Lease Sale 59. More permanent onshore development will be contingent on the outcome of future exploration efforts. After Lease Sale 59, the next sale is Lease Sale 76, which is tentatively scheduled for March 1983.

  16. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  17. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  18. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect (OSTI)

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  19. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  20. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  1. Outer Continental Shelf Oil and Gas Information Program. Update 2, August 1981, Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: a summary report, July 1980

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    In July 1980, the Office of Outer Continental Shelf (OCS) Information issued an initial report called Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: A Summary Report, July 1980. The purpose of this report was to provide State and local governments with current information about offshore oil and gas resources and onshore activity in the area extending from Cape Hatteras, North Carolina, to Cape Canaveral, Florida. This information was designed to assist in socioeconomic planning for the onshore impacts of oil and gas development in the affected areas. This report, Update 2, discusses Outer Continental Shelf oil and gas activities and their onshore impacts for the period of February 1981 to August 1981. Because of the minimal offshore oil- and gas-related activity in the South Atlantic Region, the onshore impacts are also minimal. Very little, if any, development has occurred as a result of exploration or development. Even though the South Atlantic OCS does contain large areas with hydrocarbon potential, little optimism has been generated by exploration associated with Lease Sale 43. Lease Sale 56 included tracts with geologic conditions more favorable to the generation, migration, and accumulation of hydrocarbons, especially the deepwatr tracts, but industry showed moderate interest in the first deepwater lease sale. The level of nearshore and onshore activity may increase with exploration associated with Lease Sale 56. More permanent onshore development will be contingent on the outcome of exploration efforts.

  2. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  3. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  4. Reserves in western basins

    SciTech Connect (OSTI)

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  5. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of

  6. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... As a result. it is believed that most of the structures formed within the context of an ... order to facilitate flexure modeling of the CBP and adjacent Delaware and Midland basins. ...

  7. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  9. Permian basin gas production

    SciTech Connect (OSTI)

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  10. Hydrocarbon exploration through remote sensing and field work in the onshore Eastern Papuan Fold Belt, Gulf province, Papua New Guinea

    SciTech Connect (OSTI)

    Dekker, F.; Balkwill, H.; Slater, A. ); Herner, R. ); Kampschuur, W. )

    1990-05-01

    Over the years several types of remote sensing surveys have been acquired of the Eastern Papuan Fold Belt, in the Gulf Province of Papua New Guinea. These include aerial photographs, Landsat Multispectral Scanner (MSS), and Synthetic Aperture Radar (SAR). Each has been used by Petro-Canada Inc. for interpreting the geologic structure and stratigraphy of onshore hydrocarbon prospects. Analysis of available remotely sensed imagery reveals greater structural complexity than is shown on published geologic maps. Foremost among the images is SAR because of its low, artificial sun angle. Hence, a comprehensive view of the area has been acquired revealing many structural elements previously not appreciated. A distinct difference in structural style is found between the northern and southern segment of the Eastern Papuan fold belt in the study area. The northern segment shows discontinuous, open folds with widely separated anticlines set in featureless valleys. The southern segment is tightly folded, possessing few anticlines and synclines clearly recognizable on the imagery. However, structural components can be traced easily for tens of miles. Recent field work supports an SAR structural interpretation suggesting most, if not all, anticlines in the northern segment are overturned. The combination of remote sensing and field work proved invaluable in understanding the fold belt tectonics and has aided considerably in the selection of drilling locations.

  11. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  12. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  13. Coalbed Methane Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    1,966 1,914 1,886 1,763 1,655 1,466 1989-2013 Federal Offshore U.S. 0 0 0 0 0 0 2005-2013 Pacific (California) 0 0 0 0 0 0 2005-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0...

  14. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  15. Coalbed Methane Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    Coal Market Module of the National Energy Modeling System Model Documentation 2013 June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Model Documentation: Coal Market Module 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  16. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... Bolden, G.P., 1984, Wrench Faulting in Selected Areas of the Permian Basin, &: Moore, G. ... I I I I I 1 I I I I I I 1 I I I I Henry, C.A. and Price, J.G., 1985, Summary of ...

  17. ,"Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

  20. Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993

    SciTech Connect (OSTI)

    Cox, D.O.; Decker, A.D.; Stevens, S.H.

    1993-06-01

    The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

  1. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  2. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  3. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  4. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power...

  5. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  6. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  7. Stormwater detention basin sediment removal

    SciTech Connect (OSTI)

    Gross, W.E.

    1995-12-31

    In the past, stormwater runoff from landfills has been treated mainly by focusing on reducing the peak storm discharge rates so as not to hydraulically impact downstream subsheds. However, with the advent of stricter water quality regulations based on the Federal Clean Water Act, and the related NPDES and SPDES programs, landfill owners and operators are now legally responsible for the water quality of the runoff once it leaves the landfill site. At the Fresh Kills Landfill in New York City, the world`s largest covering over 2000 acres, landfilling activities have been underway since 1945. With the main objective at all older landfill sites having focused on maximizing the available landfill footprint in order to obtain the most possible airspace volume, consideration was not given for the future siting of stormwater basin structures. Therefore, when SCS Engineers began developing the first comprehensive stormwater management plan for the site, the primary task was to locate potential sites for all the stormwater basins in order to comply with state regulations for peak stormwater runoff control. The basins were mostly constructed where space allowed, and were sized to be as large as possible given siting and subshed area constraints. Seventeen stormwater basins have now been designed and are being constructed to control the peak stormwater runoff for the 25-year, 24-hour storm as required by New York State. As an additional factor of safety, the basins were also designed for controlled discharge of the 100-year, 24 hour storm.

  8. EA-64 Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric Power Cooperative (2.8 MB) More Documents & Publications EA-64-A

  9. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  10. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Broader source: Energy.gov [DOE]

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  11. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  12. South Atlantic summary report 2. Revision of Outer Continental Shelf oil and gas activities in the South Atlantic (US) and their onshore impacts

    SciTech Connect (OSTI)

    Deis, J.L.; Kurz, F.N.; Porter, E.O.

    1982-05-01

    The search for oil and gas on the Outer Continental Shelf (OCS) in the South Atlantic Region began in 1960, when geophysical surveys of the area were initiated. In 1977, a Continental Offshore Stratigraphic Test (COST) well was drilled in the Southeast Georgia Embayment. In March 1978, the first lease sale, Sale 43, was held, resulting in the leasing of 43 tracts. Approximately a year later, in May 1979, the first exploratory drilling began, and by February 1980, six exploratory wells had been drilled by four companies. Hydrocarbons were not found in any of these wells. Lease Sale 56, the second lease sale in the South Atlantic Region, was held in August 1981. The sale resulted in the leasing of 47 tracts. Most of the leased tracts are in deep water along the Continental Slope off North Carolina. To date, no drilling has occurred on these tracts, but it is likely that two wells will be drilled or will be in the process of being drilled by the end of 1982. Reoffering Sale RS-2 is scheduled for July 1982, and it will include tracts offered in Lease Sale 56 that were not awarded leases. Lease Sale 78 is scheduled to be held in July 1983. The most recent (March 1982) estimates of risked resources for leased lands in the South Atlantic OCS are 27 million barrels of oil and 120 billion cubic feet of gas. To date, onshore impacts resulting from OCS exploration have been minimal, and they were associated with Lease Sale 43 exploratory activities. In June 1981, the South Atlantic Regional Technical Working Group prepared a Regional Transportation Management Plan for the South Atlantic OCS. The plan is principally an integration of regulatory frameworks, policies, and plans that are applicable to pipeline siting from each of the South Atlantic coastal States and Federal agencies with jurisdiction in the area.

  13. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    and continued ural gas liquids and crude oil, which have a higher value in energy ... Submersible pump Coal Methane released from coal Methane to pipeline Water (discharged) ...

  14. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  15. Tectonic mechanisms for formation of the Central Basin platform and adjacent basinal areas, Permian basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Yang, Kennming; Dorobek, S.L. )

    1992-04-01

    Formation of the Central Basin platform (CBP), with the Delaware basin to its west and the Midland basin to its east, has been attributed to the crustal deformation in the foreland area of the Marathon Orogen during the late Paleozoic. Because of complexities in the areal distribution and magnitudes of uplift along the length of the CBP, its formative mechanisms are still controversial. Previous interpretations about the mechanisms for uplift of the CBP are based on the characteristics of the boundary faults between the CBP and adjacent basinal areas. Here, an integrated tectonic model is proposed for formation of the uplift and adjacent basins based on studies of the structure of sedimentary layers overlying Precambrian basement rocks of the uplift and restoration of the lower Paleozoic strata in the Delaware basin.

  16. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  17. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  18. Late Paleozoic structural evolution of Permian basin

    SciTech Connect (OSTI)

    Ewing, T.E.

    1984-04-01

    The southern Permian basin is underlain by the NNW-trending Central Basin disturbed belt of Wolfcamp age (Lower Permian), the deep Delaware basin to its west, and the shallower Midland basin to its eat. The disturbed belt is highly segmented with zones of left-lateral offset. Major segments from south to north are: the Puckett-Grey Ranch zone; the Fort Stockton uplift; the Monahans transverse zone; the Andector ridges and the Eunice ridge; the Hobbs transverse zone; and the Tatum ridges, which abut the broad Roosevelt uplift to the north. The disturbed belt may have originated along rift zones of either Precambrian or Cambrian age. The extent of Lower and Middle Pennsylvanian deformation is unclear; much of the Val Verde basin-Ozona arch structure may have formed then. The main Wolfcamp deformation over thrust the West Texas crustal block against the Delaware block, with local denudation of the uplifted edge and eastward-directed backthrusting into the Midland basin. Latter in the Permian, the area was the center of a subcontinental bowl of subsidence - the Permian basin proper. The disturbed belt formed a pedestal for the carbonate accumulations which created the Central Basin platform. The major pre-Permian reservoirs of the Permian basin lie in large structural and unconformity-bounded traps on uplift ridges and domes. Further work on the regional structural style may help to predict fracture trends, to assess the timing of oil migration, and to evaluate intrareservoir variations in the overlying Permian giant oil fields.

  19. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  20. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  1. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  2. CRAD, Emergency Management - Office of River Protection K Basin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section ...

  3. PP-64 Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Basin Electric Power Cooperative to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-64 Basin Electric Power Cooperative More ...

  4. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  5. Judith Basin County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  6. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  7. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  8. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  9. Climate Change and the Macroeconomy in the Caribbean Basin: Analysis...

    Open Energy Info (EERE)

    in the Caribbean Basin: Analysis and Projections to 2099 Jump to: navigation, search Name Climate Change and the Macroeconomy in the Caribbean Basin: Analysis and Projections to...

  10. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  11. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    SciTech Connect (OSTI)

    Purves, W.J. ); Ting, S.C. )

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  12. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  13. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  18. K Basins isolation barriers summary report

    SciTech Connect (OSTI)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on

  19. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin Electric Power Cooperative (1.87 MB) More Documents & Publications EA-64

  20. K Basins Sludge Treatment Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download K Basins Sludge Treatment Process (27.17 MB) Summary - K Basins Sludge Treatment Process (185.69 KB) More Documents & Publications Compilation of TRA Summaries K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide

  1. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarters report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  2. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  3. Carderock Maneuvering & Seakeeping Basin | Open Energy Information

    Open Energy Info (EERE)

    6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned...

  4. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  5. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish habitat structures was completed on ...

  6. 183-H Basin sludge treatability test report

    SciTech Connect (OSTI)

    Biyani, R.K.

    1995-12-31

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  7. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogeochemical Indicators for Great Basin Geothermal Resources Project Officer: Eric Hass Total Project Funding: $1.2 million April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Principal Investigator Stuart F Simmons Colorado School of Mines 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Determine fundamental controls on fluid-mineral equilibria in six geothermal systems across the Great Basin to

  8. Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.

  9. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  10. Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine

    SciTech Connect (OSTI)

    Law, B.E.; Ulmishek, G.F.; Clayton, J.L.; Kabyshev, B.P.; Pashova, N.T.; Krivosheya, V.A.

    1998-11-23

    An evaluation of thermal maturity, pore pressures, source rocks, reservoir quality, present-day temperatures, and fluid recovery data indicates the presence of a large basin-centered gas accumulation in the Dnieper-Donets basin (DDB) and Donbas foldbelt (DF) of eastern Ukraine. This unconventional accumulation covers an area of at least 35,000 sq km and extends vertically through as much as 7,000 m of Carboniferous rocks. The gas accumulation is similar, in many respects, to some North American accumulations such as Elmworth in the Alberta basin of western Canada, the Greater Green River basin of southwestern Wyoming, and the Anadarko basin of Oklahoma. Even though rigorous assessments of the recoverable gas have not been conducted in the region, a comparison of the dimensions of the accumulation to similar accumulations in the US indicates gas resources in excess of 100 tcf in place. The paper describes the geology, the reservoirs, source rocks, seals, and recommendations for further study.

  11. Southern Colombia's Putumayo basin deserves renewed attention

    SciTech Connect (OSTI)

    Matthews, A.J. ); Portilla, O. )

    1994-05-23

    The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

  12. New tools attack Permian basin stimulation problems

    SciTech Connect (OSTI)

    Ely, J.W.; Schubarth, S.K.; Wolters, B.C.; Kromer, C. )

    1992-06-08

    This paper reports that profitable stimulation treatments in the Permian basin of the southwestern U.S. combine new tools with technology and fluids previously available. This paper reports that a wide selection of fracturing fluids and techniques needs to be considered to solve the varied problems associated with stimulating hydrocarbon reservoirs that are at diverse depths, temperatures, pressures, and lithologies. The Permian basin of West Texas and New Mexico is the most fertile ground in the U.S. for some of the newer stimulation technologies. In this basin, these new tools and techniques have been applied in many older producing areas that previously were treated with more conventional stimulation techniques, including acidizing and conventional fracturing procedures.

  13. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  14. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  15. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  16. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  17. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  18. DOE - Office of Legacy Management -- Shirley Basin AEC Ore Buying...

    Office of Legacy Management (LM)

    Shirley Basin AEC Ore Buying Station - WY 0-05 Site ID (CSD Index Number): WY.0-05 Site Name: Shirley Basin AEC Ore Buying Station Site Summary: The history of domestic uranium ...

  19. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to ...

  20. K West basin isolation barrier leak rate test

    SciTech Connect (OSTI)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-10-31

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.