Sample records for basin montana thrust

  1. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  2. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  3. DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  4. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  5. ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  6. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    SciTech Connect (OSTI)

    Abramiuk, I.N. (comp.)

    1980-08-01T23:59:59.000Z

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U/sub 3/O/sub 8/ at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable.

  7. Undrilled shallow giant trap in Denver basin, Colorado: mountain-front thrust

    SciTech Connect (OSTI)

    Jacob, A.F.

    1983-03-01T23:59:59.000Z

    Along the southwestern margin of the Denver basin, Precambrian rocks have been upthrusted at least 15,000 ft (4600 m) in the Front Range and 8000 to 10,000 ft (2400 to 3000 m) or more in the Wet Mountains. Below the Precambrian, the precise configuration of the strata and the faults is unknown because there are no available seismic or drilling data, but reasonable interpretations can be made by analogy with other similar areas. Important reservoirs in the basin are the Permian Lyons Sandstone, the Lower Cretaceous J and D sandstones, and the Upper Cretaceous Codell Sandstone, Niobrara Formation, and Pierre Shale. Directly overlying the J are the major hydrocarbon-source rocks in the basin. Black shale is interstratified with the Lyons Sandstone in at least one drill hole in front of the upthrust. All source rocks probably reached maturity in late Cretaceous time and still are generating today. Below the Precambrian, simple upfolding permits an oil column as much as 5000 ft (1500 m) high, or more, the J, and as much as 4000 ft (1200 m) high, or more, in the Lyons, assuming a fault dip of 70/sup 0/ at depth; lower fault dips permit higher oil columns. Clayey fault gouge, breccia, and minute faulting, in a zone that is in many places hundreds of feet wide at the fault, should be a good hydrocarbon seal, like a cork in a tilted 5000-ft (1500 m) high bottle. If the strata roll over to the west to form a large anticline below the Precambrian, a different kind of trap of very large dimensions would be present. Any kind of trap can extend a combined north-south distance of nearly 65 mi (105 km). Even if roll over is absent and the fault dips steeply, drilling depths to most traps are likely to be only several thousand feet.

  8. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  9. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    SciTech Connect (OSTI)

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01T23:59:59.000Z

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

  10. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April19. AverageForecast

  11. Montana Environmental Policy Act (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Environmental Policy Act aims to provide for the consideration of environmental impacts by the legislature when enacting laws, and for public transparency regarding the possible...

  12. The Montana 2013 Biennium Budget

    E-Print Network [OSTI]

    Greene, Jeffrey D.

    2012-01-01T23:59:59.000Z

    Montana 2013 Biennium Budget Abstract: Montana’s legislatureyears and constructs a two- year budget. The legislature waspromising for Montana and budget shortfalls are expected.

  13. Mining (Montana)

    Broader source: Energy.gov [DOE]

    This section provides general rules and regulations pertaining to mining practices in the state of Montana. It addresses mining locations and claims, procedures for rights-of-way and eminent domain...

  14. Montana Major Facility Siting Act (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Major Facility Siting Act aims to protect the environment from unreasonable degradation caused by irresponsible siting of electric transmission, pipeline, and geothermal facilities. The...

  15. Forestry Policies (Montana)

    Broader source: Energy.gov [DOE]

    Montana has over 20 million acres of public and private forested lands, about a quarter of the state's land area. Montana's Forests are managed by the Department of Natural Resources and...

  16. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08T23:59:59.000Z

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  17. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

    1988-01-01T23:59:59.000Z

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  18. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30T23:59:59.000Z

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  19. Clean Air Act of Montana (Montana)

    Broader source: Energy.gov [DOE]

    The purpose of the Clean Air Act of Montana is to achieve and maintain levels of air quality to "protect human health and safety and, to the greatest degree practicable, prevent injury to plant and...

  20. Montana Natural Areas Act of 1974 (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Natural Areas Act of 1974 provides for the designation and establishment of a system of natural areas in order to preserve the natural ecosystems of these areas. Designated natural...

  1. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrust Areas Physics Thrust Areas

  2. Climate Action Plan (Montana)

    Broader source: Energy.gov [DOE]

    Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in Montana, the Climate Change Advisory Committee (CCAC)...

  3. piggyback basin 2000a 1971 frontal thrust

    E-Print Network [OSTI]

    Chen, Wen-Shan

    : Petrol. Geol. Taiwan, 28, 59-96. Hung, J.H., and Suppe, J. (2000) Subsurface geometry of the Chelungpu.Y. (1963) San-I overthrust : Petrol. Geol. Taiwan, 2, p.1-20. Ruff, L.J. (1992) Asperity distributions

  4. Geophysical Exploration (Montana)

    Broader source: Energy.gov [DOE]

    An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas...

  5. Water Quality Act (Montana)

    Broader source: Energy.gov [DOE]

    The Water Quality Act establishes water conservation and protection, as well as the prevention, abatement, and control of water pollution, as the policy of the state of Montana. The Act establishes...

  6. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  7. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01T23:59:59.000Z

    The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

  8. Tectonic Evolution of the Contaya Arch Ucyali Basin, Peru 

    E-Print Network [OSTI]

    Navarro Zelasco, Luis

    2011-08-08T23:59:59.000Z

    The Contaya arch is an elongated topographic high that divides the Huallaga, Maranon and Ucayali basins in the Peruvian Amazonian plain. Its position well into the foreland basin and well inland from the main Andean thrust ...

  9. Tectonic Evolution of the Contaya Arch Ucyali Basin, Peru

    E-Print Network [OSTI]

    Navarro Zelasco, Luis

    2011-08-08T23:59:59.000Z

    The Contaya arch is an elongated topographic high that divides the Huallaga, Maranon and Ucayali basins in the Peruvian Amazonian plain. Its position well into the foreland basin and well inland from the main Andean thrust belt has proven...

  10. Montana State University 1 College of Agriculture

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Montana State University 1 College of Agriculture Graduate Programs Available Agricultural Education Program (http:// catalog.montana.edu/graduate/agriculture/agricultural- education) · M.S. in Agricultural Education (http://catalog.montana.edu/graduate/ agriculture/agricultural-education) Department

  11. Montana Alternative Energy Revolving Loan Program

    Broader source: Energy.gov (indexed) [DOE]

    Montana Alternative Energy Revolving Loan Program Kathi Montgomery MT Dept Environmental Quality kmontgomery@mt.gov 406-841-5243 Montana Alternative Energy Revolving Loan Program...

  12. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

  13. EIS-0484: Montana-to-Washington Transmission System Upgrade Project...

    Energy Savers [EERE]

    4: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington,...

  14. Montana State University 1 Academic Programs

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    .montana.edu/undergraduate/agriculture/agricultural-education/ agricultural-education-relations-option) · Agroecology - BS option in Sustainable Food and Bioenergy Systems (http://catalog.montana.edu/undergraduate/agriculture/sustainable- food.montana.edu/undergraduate/letters-science/psychology) · Architecture - Graduate - M.Arch (http://catalog.montana.edu/graduate/ arts-architecture/architecture/master-architecture

  15. Cenozoic basin development in Hispaniola

    SciTech Connect (OSTI)

    Mann, P.; Burke, K.

    1984-04-01T23:59:59.000Z

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  16. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  17. Montana Beginning Farm/Ranch Loan Program (Montana)

    Broader source: Energy.gov [DOE]

    Loans subsidized by tax-exempt bonds issued by the Montana Agricultural Loan Authority may be used for the production of energy using an alternative renewable energy source. The program is run...

  18. INTERNSHIP HANDBOOK Montana State University

    E-Print Network [OSTI]

    Dyer, Bill

    INTERNSHIP HANDBOOK Montana State University Counseling Program 2014-2015 #12;2 TABLE OF CONTENTS..........................................................................................................................................4 INTERNSHIP ASSIGNMENT TO YOUR PLACEMENT SITES........................................................................................5 APPLICATION TO INTERNSHIP SITES INTERNSHIP AT PLACE OF EMPLOYMENT OTHER IMPORTANT INFORMATION

  19. Montana State University 1 Biotechnology

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Biotechnology Note: MSU's programs in the biological sciences options see Biological Sciences at MSU. Biotechnology Modern research in cellular and molecular biology urgent problems in human and animal health, agriculture, and environmental quality. The emerging

  20. EMPLOYMENT APPLICATION Montana State University

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    EMPLOYMENT APPLICATION Montana State University Central Agricultural Research Center 52583 US employed by any other department on campus? Yes No If so, which department? LOCAL ADDRESS;EMPLOYMENT HISTORY (begin with most recent) Employer: Employer: Supervisor: Supervisor: Address: Address

  1. Memorandum of Understanding The University of Montana and The Montana Law Enforcement Academy

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Academy Concerning Curriculum Changes in The University of Montana's Police Science Associate of Arts Degree Program WHEREAS The University of Montana and The Montana Law Enforcement Academy share of Arts Degree Program; and WHERAS employees of The Montana Law Enforcement Academy who develop and

  2. Montana State University 1 Undergraduate Catalog

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    in Biotechnology (http://catalog.montana.edu/ undergraduate/agriculture/biotechnology) · Animal Systems Option · Plant Systems Option · Microbial Systems Option · Bachelor of Science in Environmental Horticulture (http:// catalog.montana.edu/undergraduate/agriculture/environmental- horticulture) · Environmental

  3. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect (OSTI)

    Peters, John

    2012-05-09T23:59:59.000Z

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.

  4. Tectonic setting and origin of the Black Warrior basin

    SciTech Connect (OSTI)

    Thomas, W.A.; Whiting, B.M. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Black Warrior basin has a triangular outline that is framed by the Ouachita thrust belt on the southwest, the Appalachian thrust belt on the southeast, and the North American craton on the north. The stratigraphy of the Black Warrior basin includes two distinct parts: a Cambrian-Mississippian passive-margin carbonate-shelf succession, and a Mississippian-Pennsylvanian clastic succession, the lower (Mississippian) part of which grades northeastward into a carbonate-shelf facies. The provenance and dispersal system of the Mississippian-Pennsylvanian clastic deposits have been interpreted in four different ways, each of which has significantly different implications for origin of the basin: (1) Ouachita orogenic source and northeastward prograding; (2) Alabama Appalachian orogenic source and northwestward prograding; (3) Georgia-tennessee Appalachian orogenic source and westward prograding; and (4) cratonic source and southward prograding. Subsidence history determined from calculations of decompacted thickness indicates that (1) the Black Warrior basin is an orogenic foreland basin related primarily to the Ouachita thrust load on the southwest; (2) later emplacement of the Alabama Appalachian thrust belt modified the southeastern side of the Ouachita-related Black Warrior foreland basin; and (3) a separate foreland basin, representing the southern end of the Appalachian foreland basin, formed in response to the Georgia-Tennessee Appalachian thrust load. The previously used criteria do not necessarily support a unique interpretation, but synthesizing these data with subsidence history leads to the conclusion that the Black Warrior basin is a tectonically driven, orogenic foreland basin dominated by Ouachita thrusting and modified by Appalachian thrusting.

  5. Montana State University 1 Geospatial &

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Geospatial & Environmental Analysis Option Freshman Year (equiv to 270) GPHY 357 - GPS Fund/App in Mapping 3 GPHY 384 - Adv GIS and Spatial Analysis 3 University GIS & Spatial Analysis 3 Choose one of the following: 3 NRSM 430 - Natural Resource Law PSCI 362

  6. EMPLOYMENT APPLICATION Montana State University

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    EMPLOYMENT APPLICATION Montana State University Western Triangle Ag Research Center 9546 Old Shelby employed by any other department on campus? Yes No If so, which department? Availability (Check those which) 1 2 3 4 College Major: EMPLOYMENT HISTORY (begin with most recent) Employer: Employer: Supervisor

  7. Thrust bolting: roof bolt support apparatus

    DOE Patents [OSTI]

    Tadolini, Stephen C. (Lakewood, CO); Dolinar, Dennis R. (Golden, CO)

    1992-01-01T23:59:59.000Z

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  8. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Environmental Management (EM)

    Update Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update Application from Montana Alberta Tie Ltd to construct, operate, and maintain...

  9. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Environmental Management (EM)

    Ltd Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric...

  10. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Environmental Management (EM)

    Scope Change 1 Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Scope Change 1 Application from Montana Alberta Tie Ltd to construct, operate,...

  11. Energy Secretary Chu Announces Montana Schools Win National Student...

    Energy Savers [EERE]

    Announces Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May 2, 2012 -...

  12. Montana Economy at a Glance September 2012 Montana Department of Labor & Industry Research & Analysis Bureau

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Montana Economy at a Glance September 2012 Montana Department of Labor & Industry Research to the economy over the last decade and helping to stabilize the Montana economy during the 2007-2010 recession The healthcare industry plays a positive and inte- gral role in the state's economy.Figure one shows the percent

  13. Qualifying RPS State Export Markets (Montana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Montana as eligible sources towards their RPS targets or goals. For specific...

  14. Growth Through Agriculture (GTA) Program (Montana)

    Broader source: Energy.gov [DOE]

    The Agriculture Development Council is tasked with enhancing the future development of agriculture in Montana through establishing policies and priorities, and awarding loans or grants that have a...

  15. Oil and Gas General Provisions (Montana)

    Broader source: Energy.gov [DOE]

    This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

  16. State Energy Policy Goal and Development (Montana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state of Montana's support for the development and implementation of renewable energy technologies as well as environmentally-friendly modifications to existing...

  17. Montana Water Quality Permit Application, Nondegradation Authorization...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Montana Water Quality Permit Application, Nondegradation Authorization, and Permit FeesPermitting...

  18. Safety & Risk Management Montana State University

    E-Print Network [OSTI]

    Dyer, Bill

    59717-0510 406-994-2711 406-994-7040 Fax www.montana.edu/wwwsrm Ergonomics Evaluation Form (Please keep 994-7040 or campus mail: Ergonomics Reimbursement c/o Safety & Risk Management The following Safety & Ergonomics Training Courses: www.montana.edu/wwwsrm/training.htm Ergonomics Program Contact

  19. Study Architecture at Montana State University

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Study Architecture at Montana State University www.arch.montana.edu 4069944256 5 ½ years to complete a Master of Architecture degree Fully accredited by National Architectural Accrediting Board (NAAB) 4year Bachelor of Arts in Environmental Design + 3 semester Master of Architecture 10

  20. Montana Alternative Energy Revolving Loan Program

    Broader source: Energy.gov [DOE]

    Presentation by Montana Alternative Energy Revolving Loan Program Kathi Montgomery from the Montana Department of Environmental Quality at the August 26, 2009 TAP Webcast for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Technical Assistance Project for state and local officials.

  1. Paleogene Larger Benthic Foraminiferal Stratigraphy and Facies distribution: implications for tectonostratigraphic evolution of the Kohat Basin, Potwar Basin and the Trans Indus Ranges (TIR) northwest Pakistan 

    E-Print Network [OSTI]

    Ahmad, Sajjad

    2011-11-24T23:59:59.000Z

    Thick Paleogene sequences occur in the southern deformed fold and thrust belt of the Himalayas. In this thesis I describe detailed litho- and biostratigraphy from ten key stratigraphic sections in the Kohat Basin, the ...

  2. Montana State University 1 Financial Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Spring EIND 354 - Engineering Probability and Statistics I 3 Professional Electives 3 ECNS 313Montana State University 1 Financial Engineering The Bachelor of Science in financial statistics and probability theory · Financial economics with a solid background in classical economic theory

  3. Game Preserves and Closed Areas (Montana)

    Broader source: Energy.gov [DOE]

    Game preserves and closed areas exist within the state of Montana for the protection of all the game animals and birds. Construction and development is limited in these areas. Currently, only three...

  4. Alternative Fuels Data Center: Montana Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Montana, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  5. Uniform Transboundary Pollution Reciprocal Access Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act allows any entity in a Reciprocating Jurisdiction harmed by pollution originating in the state of Montana to bring an action or other proceeding against the source of that pollution in the...

  6. Attachment #1 Montana Board of Regents

    E-Print Network [OSTI]

    Lawrence, Rick L.

    into useful products that range in size from nanoscale communications components and biomedical devices all, which are important to Montana's economic interests: biomaterials; materials for energy storage scaffolds; biomimetic chemistry methods to synthesize multifunctional nanostructured materials; biofilms

  7. Montana Water Center Annual Technical Report

    E-Print Network [OSTI]

    and abundance of fishes in Silver Bow Creek". Molly Smith of University of Montana received a $1,000 award his work on " Evaluation of the spatial and temporal availability of coldwater thermal refugia

  8. Montana State University 1 College of Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Computer Engineering · BS Electrical Engineering · Department of Mechanical & Industrial Engineering (http:// catalog.montana.edu/undergraduate/engineering/mechanical-industrial- engineering) · BS Financial Engineering · BS Industrial Engineering · BS Mechanical Engineering · BS Mechanical Engineering Technology

  9. Montana State University 1 Computer Science

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Computer Science A computer science degree is highly curriculum is designed with considerable flexibility, due to the numerous types of computer science jobs. Students may then select from exciting computer science electives such as artificial intelligence

  10. Electrical Generation Tax Reform Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

  11. Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike 

    E-Print Network [OSTI]

    Huntsman, Brent Stanley

    1983-01-01T23:59:59.000Z

    OF FIELD MAPPING Methods . Thrust Faults . The Wind Ridge Thrust Fault System The Red Rocks Thrust Fault System CLAY MODEL STUDIES Purpose and Description Model Results DISCUSSION OF RESULTS Kinematics of the Red Rocks Thrust Fault Termination... . Kinematics of the Southern Wind Ridge Thrust Fault . . . A Conceptual Model of the Red Rocks Thrust Fault Termination Implications of the Red Rocks Fault Termination . . . . . . Page V1 V11 1X X1 X11 7 9 17 18 18 21 24 27 35 35 38 49 49...

  12. BULL MOUNTAIN BASIN, MONTANA By G.D. Stricker

    E-Print Network [OSTI]

    Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in vertical scale from that in figure SM-3. 1999 Resource assessment of selected Tertiary coal beds and zones

  13. Judith Basin County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy Resources Jump

  14. Structural transect across Ventua basin and western Transverse Ranges

    SciTech Connect (OSTI)

    Namson, J.S.

    1987-05-01T23:59:59.000Z

    A retrodeformable cross section that integrates surface and subsurface data across the Ventura basin and western Transverse Ranges illustrates the structural style and evolution of Oligocene to Holocene age structures. Three deformational events are recognized: Oligocene to early Miocene compression, late Miocene through Pliocene normal faulting, and Pleistocene to Holocene compression. Oligocene to early Miocene compression caused uplift and formation of a large antiform north of the Santa Ynez fault in the central part of the range. This antiform is interpreted to be a ramp-related fold associated with movement on a southwest-verging blind thrust fault. Late Miocene through Pliocene age normal faulting along the Oak Ridge fault formed the southern boundary of the Ventura basin. The basin formed by simple block rotation along the normal fault and was filled by up to 6 km of Pliocene and Pleistocene clastic sediment. During Pleistocene to Holocene compression, the Ventura basin and western Transverse Ranges were deformed by both north- and south-verging thrust faults and related folds. The Ventura Avenue anticline is interpreted to be the result of imbricate thrust faulting in the Rincon and Monterey formations. Along the Oak Ridge trend, thrust-related folds rotated and reactivated the late Miocene and Pliocene age normal faults. A restoration of the regional transect documents 34% or 35 km of shortening by thrusting and folding during the Pleistocene to Holocene phase of compression.

  15. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  16. <Montana>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To win, a team must work together to quickly and accurately answer toss-up and bonus questions while following the strict rules of play. At the end of the tournament day,...

  17. Montana

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40

  18. Seismic reprocessing, interpretation and petroleum prospectivity of the East Cano Rondon Area, Llanos Basin, Colombia

    E-Print Network [OSTI]

    Molina, German D

    1999-01-01T23:59:59.000Z

    The Llanos Basin, in Eastern Colombia, is the major oil-producing province in the country. In recent years, exploration in this basin has been focused towards plays in the Llanos foothills, where proven thrust traps present the possibility of large...

  19. Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-Dakota Utilities CoMontana:

  20. Montana 310 Permit Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation Montana OpenEI

  1. Montana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities

  2. Montana/Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota

  3. Salt-related structures in northern Appalachian basin

    SciTech Connect (OSTI)

    Towey, P.

    1988-08-01T23:59:59.000Z

    The Plateau province of the northern Appalachian basin is characterized by a series of sharp, detached, thrust-faulted anticlines roughly parallel with the Allegheny Front. In southwestern Pennsylvania and northern West Virginia, major thrusting of Alleghenian age is dominantly from the east, with numerous smaller thrusts from the west. Although the principal decollement is in the Silurian Salina Group, evidence of deeper detachment zones close to the front is abundant. In central and northern Pennsylvania, however, major thrusting is from the west. In those areas, thrusts from the east are rare to absent. Folds there are thin skinned above a decollement in the Salina Group, with no evidence of deeper detachment. Some recent workers have dismissed thrusting from the west as merely back thrusts of Alleghenian age, but seismic and well information indicate that the structural history of the Plateau province was dominated by a tectonic regime characterized by faults from the west and later overprinted near the structural front by the structures of the Alleghenian orogeny with its compression from the east. The basic idea is not new, but evidence in support of it has not been widely published.

  4. Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana

    E-Print Network [OSTI]

    Kammer, Thomas

    Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana Rodney M THE BEARPAW SHALE (CRETACEOUS: CAMPANIAN) OF NORTHEASTERN MONTANA RODNEY M. FELDMANN, GALE A. BISHOP Shale of north- eastern Montana were studied to characterize the occurrence, preservation

  5. Montana State University 1 Finance Minor

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Finance Minor The Finance minor is open to all students, with the exception of students pursuing a business degree with the Finance option. Program objectives include · To provide flexibility to design one's own program through choice of electives Students seeking the Finance

  6. Montana State University 1 Environmental Sciences

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Environmental Sciences Note: MSU's programs in the biological. For additional options see Biological Sciences at MSU. Department of Land Resources & Environmental Sciences http and relationships in land and natural resources systems, combined with applications of environmental science

  7. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  8. Montana State University 1 Industrial Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Industrial Engineering The mission of the undergraduate program in Industrial Engineering (IE) is to produce graduates well grounded in both classical and current industrial engineering knowledge and skills consistent with the land-grant mission of MSU. Graduates

  9. Montana Employment Projections 2010 through 2020

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana Employment Projections 2010 through 2020 Produced by the Research and Analysis Bureau Department of Labor and Industry produces employment forecasts for job growth in upcoming years. These employment forecasts are primarily used by educational institutions (including both four- and two

  10. Geophysical investigations of certain Montana geothermal areas

    SciTech Connect (OSTI)

    Wideman, C.J. (Montana Bureau of Mines and Geology, Butte); Dye, L.; Halvorson, J.; McRae, M.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    Selected hot springs areas of Montana have been investigated by a variety of geophysical techniques. Resistivity, gravity, seismic, and magnetic methods have been applied during investigations near the hot springs. Because the geology is extremely varied at the locations of the investigations, several geophysical techniques have usually been applied at each site.

  11. Interaction of Groundwater and Surface Water in the Williston and Powder River Structural Basins

    E-Print Network [OSTI]

    Torgersen, Christian

    , Rapid City, SD 57702, email: jbednar@usgs.gov Groundwater availability in the Lower Tertiary and Upper in parts of Montana and Wyoming. Both structural basins are in the forefront of energy development associated with measuring streamflow, only fall estimates of base flow were used in the study. A net balance

  12. LANSCE | Lujan Center | Thrust Area | Local Structure, Magnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Area Local Structure, Magnetism, and Nanomaterials The Lujan Neutron Scattering Center encompasses a set of powder diffractometers, instrument scientist specialists, and...

  13. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System Permit Application Forms Webpage Abstract Provides a list of permit...

  14. The Montana 2013 Biennium Budget: Updated May 2012

    E-Print Network [OSTI]

    Greene, Jeffrey D.

    2013-01-01T23:59:59.000Z

    another hope for the state is to develop its oil reserves.Eastern Montana has oil reserves similar to those currently

  15. Montana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act...

  16. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  17. Montana-Dakota Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a...

  18. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  19. Application for presidential permit OE Docket No. PP-305 Montana...

    Broader source: Energy.gov (indexed) [DOE]

    at the U.S-Canada border. Federal Register Notice Vol 70 No 210. Application for presidential permit OE Docket No. 305 Montana Alberta Tie Ltd More Documents &...

  20. Electronics Engineering Department Thrust Area report FY'84

    SciTech Connect (OSTI)

    Minichino, C.; Phelps, P.L. (eds.)

    1984-01-01T23:59:59.000Z

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

  1. Wolf Point Substation, Roosevelt County, Montana

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

  2. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  3. Groundwater availability and flow processes in the Williston and Powder River basins in the Northern Great Plains

    E-Print Network [OSTI]

    Torgersen, Christian

    Groundwater availability and flow processes in the Williston and Powder River basins Center, Cheyenne, WY 4 Office of Groundwater, Denver, CO 5 Oklahoma Water Science Center, Oklahoma City in Montana and Wyoming, provides an opportunity to study the water-energy nexus within a groundwater context

  4. Implications of thermal events on thrust emplacement sequence in the Appalachian fold and thrust belt: Some new vitrinite reflectance data

    SciTech Connect (OSTI)

    Lewis, S.E.; Hower, J.C. (Montana Tech, Butte (USA))

    1990-11-01T23:59:59.000Z

    Interpretation of existing geothermometry data combined with new vitrinite reflectance data, within the framework of a detailed composite tectonic setting, elucidates the evolution of structural sequencing of thrust sheets during the Alleghanian event in the Valley and Ridge Province in Virginia. That the Pulaski thrust sheet preceded the Saltville thrust sheet in the emplacement sequence, and that both reached thermal maxima prior to, or during, respective emplacement may be inferred from vitrinite and other geothermometry data. In contrast, the Narrows and St. Clair thrust sheets probably each attained their thermal maximum after emplacement. New vitrinite reflectance data are consistent with CAI and other temperature-sensitive information heretofore ascertained in the Valley and Ridge Province and support previously established maximum temperatures of ca. 200C for strata of the Saltville thrust sheet as young as Mississippian. R{sub max} values from Mississippian coals in the Price Formation of the Saltville sheet, beneath but near the Pulaski thrust, range from 1.61% to 2.60%. At the structural front of the fold and thrust belt, a single Mississippian coal sample from the Bluefield Formation yields an R{sub max} value of 1.35%. Those coals showing highest R{sub max} values are more intensely fractured with secondary minerals filling the fractures. Warm fluids introduced during tectonic events may have played at least as important a role as that of combined stratigraphic and tectonic burial.

  5. Computational analysis of spiral groove thrust bearings and face seals

    E-Print Network [OSTI]

    Zirkelback, Nicole Lisa

    1997-01-01T23:59:59.000Z

    Analyses for incompressible and compressible spiral groove thrust bearings (SGTBS) and face seals (SGFSS) are presented. A successive approximation linearizes the partial differential equation of pressure that arises in the compressible fluid...

  6. Peak thrust operation of linear induction machines from parameter identification

    SciTech Connect (OSTI)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31T23:59:59.000Z

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  7. Thrust Network Analysis : exploring three-dimensional equilibrium

    E-Print Network [OSTI]

    Block, Philippe (Philippe Camille Vincent)

    2009-01-01T23:59:59.000Z

    This dissertation presents Thrust Network Analysis, a new methodology for generating compression-only vaulted surfaces and networks. The method finds possible funicular solutions under gravitational loading within a defined ...

  8. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  9. Energy Incentive Programs, Montana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowaMontana Energy Incentive

  10. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouth Dakota:Montana:

  11. Whitefish, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadowOpenWhitefish, Montana:

  12. Montana Tribal Energy Forum | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania | Department of|Montana Tribal

  13. Montana Delegation Visit January 9, 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal Solar ThermalJul 13 1 2MonroeMONTANA

  14. Huntley, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy ResourcesMontana: Energy Resources Jump to:

  15. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLC Place: New York,Montana

  16. Montana State Land Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLC Place: NewMontana

  17. Montana Sustainable Building Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLC Place:Montana Sustainable

  18. Anaconda, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda, Montana: Energy Resources Jump to:

  19. BLM Montana State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLM HumboldtMontana

  20. Missoula, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: Energy Resources (Redirected from Missoula, MT) Jump

  1. Montana - Encroachment Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,MajorLands |

  2. Montana Construction Dewatering General Permit - Example Authorization |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program

  3. Montana Construction Dewatering General Permit Application Information |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality ProgramOpen Energy

  4. Montana Cultural Records Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality ProgramOpen EnergyCultural

  5. Montana Environmental Quality Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir

  6. Montana Geographic Information Library | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy Information

  7. Montana State Antiquities Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10Open

  8. Montana Stream Permitting Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply

  9. Montana Watershed Coordination Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground StorageWebpage

  10. Ballantine, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalchBallantine, Montana: Energy

  11. Montana-Dakota Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities CoMontana-Dakota

  12. Deformation of layered rocks in the ramp regions of thrust faults: a study with rock models

    E-Print Network [OSTI]

    Chester, Judith Savaso

    1985-01-01T23:59:59.000Z

    and thrust belts for example, thrust faults commonly occur along specific stratigraphic horizons, and folding and faulting within thrust sheets often involves slip along bedding planes (e. g. , Rich, 1934; Douglas, 1950; Dahl str om, 1970; Price, 1981...). With the regional framework of many fold and thrust belts well estab- lished, the current emphasis of many studies has turned to defining the geometries, kinematics, and deformation mechanisms of individual thrust belt structures, and the intrinsic and extrinsic...

  13. Montana Facilities Which Do Not Discharge Process Wastewater...

    Open Energy Info (EERE)

    Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

  14. Economics, Mathematics, Statistics MONTANA STATE UNIVERSITY BOZEMAN MOUNTAINS & MINDS

    E-Print Network [OSTI]

    Dyer, Bill

    Economics, Mathematics, Statistics MONTANA STATE UNIVERSITY BOZEMAN MOUNTAINS & MINDS Economics The Department of Agricultural Economics and Economics offers a broad education involving the domestic, and for graduate study in economics and in related fields including business administra- tion, finance, public

  15. Montana State University 1 Ph.D. Degree in Ecology

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Montana State University 1 Ph.D. Degree in Ecology and Environmental Sciences This cross of ecology and environmental sciences, within the unparalleled natural laboratory that is the Greater Yellowstone Ecosystem. Particular program strengths include terrestrial and aquatic ecology, environmental

  16. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    SciTech Connect (OSTI)

    Wood, Marilyn A.

    1993-02-01T23:59:59.000Z

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  17. Well drilling tool with diamond radial/thrust bearings

    SciTech Connect (OSTI)

    Nagel, D.D.; Aparicio, T. Jr.

    1983-10-18T23:59:59.000Z

    A turbodrill is disclosed for connection to a drill string and has a rotating shaft for turning a drill bit. The turbodrill has rotor and stator blades operated by drilling mud flowing therethrough to rotate the shaft. The shaft is provided with radial/thrust bearing consisting of a pair of annular plates, each of which has conical surfaces supporting a plurality of friction bearing members of polycrystalline diamond. The radial and thrust loads are carried by the wear-resistant diamond bearing surfaces. The bearing members are preferably cylindrical studs having flat faces with flat disc-shaped diamond bearing members supported thereon around the adjacent surfaces of the supporting plates. The faces of the diamond bearings will wear into smoothly mating conical bearing surfaces with use. There are two or more pairs of diamond radial/thrust bearings to handle longitudinal as well as radial loads. The use of the diamond radial/thrust bearings makes it possible to eliminate the lubricant-flooded construction of prior art turbodrills and allow the bearings to be cooled and lubricated be drilling fluid flowing therethrough. The diamond radial/thrust bearings may be used with lubricant-flooded turbodrills and with other types of downhole motor driven drills such as drills driven by positive displacement motors.

  18. Structural analysis of the Little Water syncline, Beaverhead County, Montana

    E-Print Network [OSTI]

    Ponton, James Daniel

    1983-01-01T23:59:59.000Z

    STRUCTURAL ANALYSIS OF THE LITTLE WATER SYNCLINE, BEAVERHEAD COUNTY, MONTANA A Thesis by JAMES DANIEL PONTON Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1983 Major Subject: Geology STRUCTURAL ANALYSIS OF THE LITTLE WATER SYNCLINE, BEAVERHEAD COUNTY, MONTANA A Thesis by JAMES DANIEL PONTON Approved as to style and content by: John H. Spa (Chairman of C mittee) Jo M. Logan (Member...

  19. Structural geology of the Henneberry Ridge area, Beaverhead County, Montana

    E-Print Network [OSTI]

    Coryell, Jeffrey John

    1983-01-01T23:59:59.000Z

    ) and Weed (1900), helped define the Paleozoic stratigraphy of the Montana-Wyoming area as well as establish tenative type sections, some of which are still in use today. The search for economic deposits of minerals and oil shales provided the impetus...STRUCTURAL GEOLOGY OF THE HENNEBERRY RIDGE AREA, BEAVERHEAD COUNTY, MONTANA A Thesis by JEFFREY JOHN CORYELL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER...

  20. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  1. Separability of drag and thrust in undulatory animals and machines

    E-Print Network [OSTI]

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01T23:59:59.000Z

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal- istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation fram...

  2. Problems of millipound thrust measurement. The "Hansen Suspension"

    SciTech Connect (OSTI)

    Carta, David G.

    2014-03-31T23:59:59.000Z

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  3. On glacier retreat and drought cycles in the Rocky Mountains of Montana and Canada

    E-Print Network [OSTI]

    Berger, Wolfgang H

    2009-01-01T23:59:59.000Z

    North America – Glaciers of Canada Glaciers of the CanadianRocky Mountains of Montana and Canada W. H. Berger * ScrippsMontana and southwestern Canada. The presence of tidal lines

  4. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  5. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  6. ORIGINAL PAPER Granite magma migration and emplacement along thrusts

    E-Print Network [OSTI]

    Galland, Olivier

    ORIGINAL PAPER Granite magma migration and emplacement along thrusts Eric C. Ferre´ · Olivier in the emplacement of granite plutons in contractional settings. We address both cases where contractional tectonics. This phenomenon occurs for both low-viscosity magma (basalts to andesite) and high-viscosity magma (dry granite

  7. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  8. Montana Joint Application for Proposed Work in Montana's Streams (DNRC Form

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpage

  9. Montana Understanding the Basics of Water Law In Montana Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage Tanks

  10. Conceptual design of a thrust-vectoring tailcone for underwater robotics

    E-Print Network [OSTI]

    Nawrot, Michael T

    2012-01-01T23:59:59.000Z

    Thrust-vectoring on Autonomous Underwater Vehicles is an appealing directional-control solution because it improves turning radius capabilities. Unfortunately, thrust-vectoring requires the entire propulsion system be ...

  11. Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt

    E-Print Network [OSTI]

    Chapman, Shay Michael

    2013-08-09T23:59:59.000Z

    The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure...

  12. Design and characterization of a nano-Newton resolution thrust stand J. Soni and S. Roy

    E-Print Network [OSTI]

    Roy, Subrata

    Design and characterization of a nano-Newton resolution thrust stand J. Soni and S. Roy Citation-Newton resolution thrust stand J. Soni and S. Roya) Applied Physics Research Group, University of Florida

  13. active basement-involved thrust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the thrust bearing, Hyperco 27 and AISI 4340. And for the shaft Inconel 718 was chosen. A handbook approach is made in chapter IV, to find the stresses developed in the thrust disk...

  14. 2014 Evaluation and Economic Impact of the Montana Manufacturing Extension Center 1BY Paul Polzin, Emeritus Director

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    2014 Evaluation and Economic Impact of the Montana Manufacturing Extension Center 1BY Paul Polzin, Emeritus Director 2013 Montana Manufacturing Extension Center 2014 Evaluation and Economic Impact Research University of Montana Missoula, Montana 59812 #12;2014 Evaluation and Economic Impact

  15. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  16. Characterization of the Muddy Mountain-Keystone thrust contact and related deformation

    E-Print Network [OSTI]

    Brock, William Gene

    1973-01-01T23:59:59.000Z

    and Red Rock Canyon the thrust has moved over an erosional surface on the Aztec Sandstone in which forethrust debris (composed of clasts from the upper and lower plates deposited in front of the advancing thrust as outwash and channel deposits) fills... topographic lowe. Thrust-related deformation in the lower plate (Aztec Sandstone or forethrust debris) is evaluated by macroscopic and microscopic analyses and the fol- lowing trends are noticed as the thrust contact is approached: (1) an increase...

  17. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01T23:59:59.000Z

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  18. Montana 2012 Final Water Quality Integrated Report | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation Montana 2012 Final

  19. Montana 2012 Final Water Quality Integrated Report: Appendix A | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation Montana 2012

  20. Montana 2012 Report on Selected Heritage Properties | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation Montana

  1. Montana 319 Projects (Nonpoint Source Programs) Wiki | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation Montana

  2. Montana Bureau of Mines and Geology Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana Bureau

  3. Montana Code 70-30-102 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana Bureau

  4. Montana Code 75-20 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana Bureau

  5. Montana Code 75-20-101 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana Bureau1

  6. Montana Code 75-20-102 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana

  7. Montana Code 75-20-104 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana4 Jump

  8. Montana Code 75-20-201 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana4 Jump01

  9. Montana Code 75-20-211 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana4

  10. Montana Code 75-20-216 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana46 Jump

  11. Montana Code 75-20-301 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana46

  12. Montana Code 76-2-201 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana46201

  13. Montana Code 76-2-301 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana46201

  14. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co (Wyoming)

  15. Montana-Dakota Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co

  16. RAPID/BulkTransmission/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontanaMontana < RAPID‎ |

  17. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  18. Energy development and water options in the Yellowstone River Basin

    SciTech Connect (OSTI)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01T23:59:59.000Z

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  19. Montana State of mind Small City, the Rockies

    E-Print Network [OSTI]

    Dyer, Bill

    #12;#12;#12;#12;#12;#12;#12;Montana State of mind Small City, Big Energy Museum of the Rockies Streamline offers fare free bus service throughout the Bozeman area. Bozeman offers plenty of outdoor and intellectual and cultural activity. Bozeman offers all the amenities of a bigger city, including many chain

  20. An internship on the Beaverhead Ranch in Southwest Montana

    E-Print Network [OSTI]

    Donnelly, George Arthur

    1997-01-01T23:59:59.000Z

    The Beaverhead Ranch is located in Southwest Montana and operates a 7,000 head cow-calf operation on 257,000 acres. This ranch has been in operation under the management of Koch Beef since 195 1, a subsidiary of Koch Industries in Wichita, KS. My...

  1. Montana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    drinking water supplies, a Prairie County sugar beet grower contemplating the possible impacts of coal-bed, drying streams and falling reservoir levels were the norm throughout Montana in FY 2003. But drought methane brines on soil and water, or a Madison County fishing guide coping with the effects of whirling

  2. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  3. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  4. rf power system for thrust measurements of a helicon plasma source Alexander W. Kieckhafer and Mitchell L. R. Walker

    E-Print Network [OSTI]

    Walker, Mitchell

    rf power system for thrust measurements of a helicon plasma source Alexander W. Kieckhafer measurement stand and showed that rf power has no statistically significant contribution to the thrust stand now, a true thrust diagnostic that can measure thrust of a rf device does not exist. A helicon plasma

  5. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01T23:59:59.000Z

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  6. More wells will expand knowledge of Knox group, Black Warrior basin

    SciTech Connect (OSTI)

    Raymond, D.E. (Geological Survey of Alabama, Tuscaloosa, AL (US))

    1991-05-20T23:59:59.000Z

    The Arbuckle group of the Arkoma, Ardmore, and Anadarko basins was essentially untested in 1986. This paper reports that in these basins, shallower Pennsylvanian reservoirs were easy to reach and more economical to develop. The general consensus was that if a karstic reservoir was not present at the top of the Arbuckle group then there was no potential for oil and gas. Today the story is different; production zones are being found throughout the Arbuckle group, and drilling has been as deep as 28,000 ft. The Black Warrior basin is in a similar setting to the Arkoma, it is a foreland basin that has produced from multiple Mississippian and Pennsylvanian horizons at shallow depths. The Knox carbonate is present in a similar structural setting to that of the Arbuckle group at depths generally above 15,000 ft. In addition, Alabama is even more fortunate in that the buried Appalachian fold and thrust belt along the southern boundary of the basin also provides additional Knox targets with great promise. In this area Knox dolomites are fractured and folded and are juxtaposed by thrust faulting against Mississippian and Pennsylvanian rocks that are excellent sources of oil and gas. Therefore, the Knox is essentially untested in the Black Warrior basin.

  7. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect (OSTI)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.

  8. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    SciTech Connect (OSTI)

    Casey, Daniel; Malta, Patrick

    1990-12-01T23:59:59.000Z

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scale losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.

  9. Thrust faulting in Temblor Range, Kern County, California

    SciTech Connect (OSTI)

    Simonson, R.R.

    1991-02-01T23:59:59.000Z

    Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

  10. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01T23:59:59.000Z

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  11. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect (OSTI)

    Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan)

    2011-08-15T23:59:59.000Z

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  12. RECIPIENT:Montana DEQ U.S. DEPARTMENT OF ENERGY EERE PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETERlIINAIION PROJECT TITLE: Developing Railway Markets for Montana Biodiesel Page 1 02 STATE: MT Funding Opportunity Announcement Numlnr DE-FOAOOOOO52...

  13. Thrust and efficiency model for electron-driven magnetic nozzles

    SciTech Connect (OSTI)

    Little, Justin M.; Choueiri, Edgar Y. [Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, New Jersey 08544 (United States)] [Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, New Jersey 08544 (United States)

    2013-10-15T23:59:59.000Z

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is found that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.

  14. EA-1978: Sand Creek Winds, McCone County, Montana

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  15. Montana Administrative Rules 17-20-924 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia

  16. Montana-Dakota Utilities Co (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast

  17. Distribution of stress in the oceanic lithosphere beneath the Lau-Havre Basin

    E-Print Network [OSTI]

    Altman, Larry Wayne

    1978-01-01T23:59:59.000Z

    . If the material injected into the basin floor came from the upper edge of the down-going slab, then it should be andesitic in composition just like the rocks of the volcanic frontal arc which are thought to have the same source. The CI CI CI Cl I I I I... arcs. In this theory, the Benioff zones do not delineate great thrust faults in the classical sense, but rather, they reflect underthrusting or subduction of lithospheric plates into the mantle beneath the arcs. The Origin of Marginal Basins...

  18. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  19. Cartesian thrust allocation algorithm with variable direction thrusters, turn rate limits and singularity avoidance

    E-Print Network [OSTI]

    Johansen, Tor Arne

    propellers [5], power consumption optimization [6] and other power management-related issues [7], [8], [9 thrust slowly and/or reverse the direction of the generated thrust, minimizing the power consumption should normally be included. This func- tionality requires significant numerical calculations for each

  20. Middle-late Miocene ( 10 Ma) formation of the Main Boundary thrust in the western Himalaya

    E-Print Network [OSTI]

    Kurapov, Alexander

    Ma in well-dated stratigraphic sections from Pakistan to Nepal across the Indo-Gangetic foreland derived from the hanging wall of the Main Boundary thrust indicates that source-area uplift and denudation thrust in the Kohat region of northwest Pakistan indicate that rapid cooling below 105 C between 8 and 10

  1. Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters

    E-Print Network [OSTI]

    Choueiri, Edgar

    Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters A, 2003 Abstract Thermal effects on direct measurements of the thrust produced by steady-state, high-power. Associate Fellow, AIAA. §Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20-23rd

  2. The Role of Climate in the Deformation of a Fold and Thrust Belt

    E-Print Network [OSTI]

    Steen, Sean Kristian

    2012-02-14T23:59:59.000Z

    and uplifted in large folds. In order to test this and related ideas in a natural example, we have compared modeled rainfall to measured thrust sheet displacement, geometry, and internal deformation in the Appalachian fold and thrust belt. We use mean annual...

  3. Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT 59717

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT M.S. Electrical Engineering University of Utah 1987 B.S. Electrical Engineering University of Alaska Experience: 2008 ­ present Professor ­ Electrical & Computer Engineering (ECE) Department, Montana State

  4. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 to, NEPA and Section 401 of the Federal Water Pollution Control Act (33 U.S.C. 1341). #12;

  5. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah Act of 1969 (42 U.S.C. 4321-4347; hereinafter "NEPA") and Section 401 of the Federal Water Pollution

  6. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH for providing environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico Pollution Control Act (33 U.S.C. 1341). Compliance with all applicable environmental laws and regulations

  7. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution

    E-Print Network [OSTI]

    Mickley, Loretta J.

    Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution) The nitrogen-fixing legume kudzu (Pueraria montana) is a wide- spread invasive plant in the southeastern United the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia

  8. Data Archive and Portal Thrust Area Strategy Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30T23:59:59.000Z

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  9. A new model for the role of salt in the Salina Basin of southeast Mexico

    SciTech Connect (OSTI)

    Oviedo, A.; Mora, G. [Petroleos Mexicanos, Mexico City (Mexico); Herbert, R. [BP Exploration, Bogota (Colombia)

    1996-08-01T23:59:59.000Z

    The Salina Basin lies on the southern margin of the Gulf of Mexico, adjacent to the Late Cretaceous-Tertiary foldbelt of the Sierra de Chiapas. As its name implies, the basin contains a significant quantity of salt, which is interpreted to be a laterally equivalent deposit of the Jurassic Louann Salt in the northern Gulf of Mexico. Compressional tectonics, intermittently active since the Late Cretaceous, have profoundly affected the distribution of allochthonous salt in the basin. Traditional models of the Salina Basin interpret the style of salt tectonics as dominated by steep vertical-sided salt diapirs. Although the presence of isolated diapirs cannot be ruled out, recent studies of wells and improved-quality seismic data indicate the widespread presence of remnant salt canopies or sheets in the basin. These canopies exhibit many of the characteristics of the same features now identified in the northern Gulf of Mexico. Canopy emplacement was initiated during the Paleogene in response to thrusting and burial under a thick foredeep sediment load, prograding from the south. The elevation of the Sierra de Chiapas provided a large sediment influx, which loaded the canopies, forming intra-salt basins. Some of these developed into large salt evacuation basins, of which the Comalcalco and Macuspana basins are examples. A number of oilfields have been discovered below the remnant salt sheets, with significant future potential remaining.

  10. A new model for the role of salt in the Salina Basin of Southeast Mexico

    SciTech Connect (OSTI)

    Oviedo, A.; Guillermo, M. [Petroleos Mexicanos, Mexico City (Mexico); Herbert, R. [BP exploration, Mexico City (Mexico)

    1995-08-01T23:59:59.000Z

    The Salina Basin lies on the southern margin of the Gulf of Mexico, adjacent to the Late Cretaceous-Tertiary foldbelt of the Sierra de Chiapas. As its name implies, the basin contains a significant quantity of salt, which is interpreted to be a laterally equivalent deposit of the Jurassic Louann Salt in the northern Gulf of Mexico. Compressional tectonics, intermittently active since the Late Cretaceous, has profoundly affected the distribution of allochthonous salt in the basin. Traditional models of the Salina Basin interpret the style of salt tectonics as dominated by steep, vertical-sided salt diapirs. Although the presence of isolated diapirs cannot be ruled out, recent studies of wells and improved-quality seismic data indicate the widespread presence of remnant salt canopies or sheets in the basin. These canopies exhibit many of the characteristics of the same features now identified in the northern Gulf of Mexico. Canopy emplacement was initiated during the Paleogene in response to thrusting and burial under a thick foredeep sediment load, prograding from the south. The widest extent of the salt canopies occurred during the Early Miocene. Subsequent elevation of the Sierra de Chiapas provided a large sediment influx, which loaded the canopies, forming intra-salt basins. Some of these developed into large salt evacuation basins, of which the Comalcalco and Macuspana basins are examples. A number of oilfields have been discovered below the remnant salt sheets, with significant future potential remaining.

  11. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    SciTech Connect (OSTI)

    Marotz, Brian; Althen, Craig; Gustafson, Daniel

    1996-01-01T23:59:59.000Z

    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  12. Incorporating safety into surface haulage in the Powder River basin

    SciTech Connect (OSTI)

    Jeffery, W.; Jennings, C.

    1996-12-31T23:59:59.000Z

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  13. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    SciTech Connect (OSTI)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30T23:59:59.000Z

    Integrated carbon?to?liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub?bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal?Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat?camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger?scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.

  14. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect (OSTI)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01T23:59:59.000Z

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  15. Broadwater County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights, Ohio: EnergyCounty, Montana: Energy

  16. Carter County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo EnergyCarrolltonMontana: Energy

  17. PPL EnergyPlus LLC (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump to:PPL EnergyPlus LLC (Montana)

  18. Prairie County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudrePowers EnergyCity BiomassMontana:

  19. Central Montana E Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral ElCentral Montana E Pwr Coop Inc

  20. Montana State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLC Place: NewMontana State

  1. Montana's At-large congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLC Place:Montana

  2. Montana-Dakota Utilities Co (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-Dakota Utilities Co (South

  3. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-Dakota Utilities Co

  4. Mineral County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanao GEPP Jump to: navigation,MinerMontana:

  5. Custer County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine: Energy ResourcesMontana:

  6. Dawson County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnic InternationalMontana: Energy Resources Jump

  7. Deer Lodge County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeer Lodge County, Montana: Energy

  8. Montana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National ScienceModeling of ExascaleMontana

  9. Montana - Access Road Easement Policy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,Major

  10. Montana - Instructions for Application for Utilities Across State Trust

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,MajorLands |Lands

  11. Montana - Land Use License Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,MajorLands

  12. Montana - Right-of-Way Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New

  13. Montana 401 Water Quality Certification Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformation

  14. Montana Association of Conservation Districts Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program Laws &

  15. Montana Board of Water Well Contractors Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program Laws &Board of

  16. Montana Board of Water Well Contractors Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program Laws &Board

  17. Montana Building with Wildlife Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program Laws

  18. Montana Department of Natural Resources & Conservation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality ProgramOpen

  19. Montana Disinfected Water and Hydrostatic Testing General Permit | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality ProgramOpenEnergy

  20. Montana Domestic Sewage Treatment Lagoons General Permit Fact Sheet | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality ProgramOpenEnergyEnergy

  1. Montana Domestic Sewage Treatment Lagoons General Permit Information | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality

  2. Montana Domestic Sewage Treatment Lagoons General Permit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir QualityInformation

  3. Montana Environmental Policy Act Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir QualityInformationEnvironmental

  4. Montana Ground Water Pollution Control System Information Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy InformationEnergy

  5. Montana Ground Water Pollution Control System Permit Application Forms

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy

  6. Montana Groundwater Information Center Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpage Jump to:

  7. Montana Hazardous Waste Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpage Jump

  8. Montana Information for 310 Applicant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpage JumpInformation

  9. Montana MCA Title 85, Water Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse Jump to: navigation,

  10. Montana MPDES General Information Form (MDEQ Form 1) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse Jump to:

  11. Montana Natural Resources Conservation Service Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse Jump to:Information

  12. Montana Natural Streambed and Land Preservation Act Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse Jump

  13. Montana Nonpoint Source FAQs Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpoint Source FAQs

  14. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpoint Source

  15. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpoint

  16. Montana Pending Water Right Application Status Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpointOpen

  17. Montana Pollutant Discharge Elimination System (MPDES) Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpointOpenEnergy

  18. Montana Portable Suction Dredging General Permit - Example Authorization |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpointOpenEnergyOpen

  19. Montana Produced Water General Permit - Example Authorization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse

  20. Montana Restricted Use Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law and

  1. Montana Sand and Gravel Operations General Permit - Example Authorization |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10Open Energy

  2. Montana Stream Permitting Guide Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10OpenPermitting

  3. Montana Stream Protection Act Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtection Act

  4. Montana Streamside Management Zone Law Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtection ActWebpage

  5. Montana Suction Dredge General Permit Application Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtection

  6. Montana Total Maximum Daily Load Development Projects Wiki | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|

  7. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage Tanks Webpage

  8. Montana Water Quality Permit Application, Nondegradation Authorization, and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage TanksPermit

  9. Montana Water Rights Bureau New Appropriations Rule | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage

  10. Montana Water Rights Bureau Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground StorageWebpage Jump to:

  11. Montana Water Rights Form Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground StorageWebpage Jump

  12. Montana Watershed Protection Section Contacts Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground

  13. Montana Watershed Restoration Plans Wiki | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|UndergroundRestoration Plans Wiki

  14. Montana-Dakota Utilities Co (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|UndergroundRestoration Plans

  15. Montana-Dakota Utilities Co (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|UndergroundRestoration

  16. Sustainable Energy Resources for Consumers (SERC) Success Story: Montana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department IdahoMontana

  17. RAPID/BulkTransmission/Environment/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana < RAPID‎ |

  18. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii <Montana

  19. RAPID/Geothermal/Well Field/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎HawaiiMontana

  20. RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/ColoradoMontana <

  1. Ravalli County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:RanciaRappahannockCounty, Montana: Energy

  2. Richland County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - MakingMinnesota: EnergyWisconsin:Montana: Energy

  3. Big Sandy, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources ofBeyondPV CoSandy, Montana:

  4. Deformation associated with transverse-thrust ramps: a field and experimental study 

    E-Print Network [OSTI]

    McCaskey, Michael Donald

    1982-01-01T23:59:59.000Z

    direction. 2. Marias Pass Location Maps. (A) Generalized geologic map showing location of Marias Pass, and the Lewis Thrust, and (B) schematic diagram illustrates ramp geometries for the Lewis Thrust in the Marias Pass region. 3. Geometry of dip ramp... of Marias Pass showing the location of study sites A, 8, C, and the dip-ramp site at Two Medicine Lake . 85 24. Contour map of the Lewis Thrust surface in the Marias Pass area constructed from sur- vey sites (measured in feet above sea level in order...

  5. Deformation associated with transverse-thrust ramps: a field and experimental study

    E-Print Network [OSTI]

    McCaskey, Michael Donald

    1982-01-01T23:59:59.000Z

    direction. 2. Marias Pass Location Maps. (A) Generalized geologic map showing location of Marias Pass, and the Lewis Thrust, and (B) schematic diagram illustrates ramp geometries for the Lewis Thrust in the Marias Pass region. 3. Geometry of dip ramp... of Marias Pass showing the location of study sites A, 8, C, and the dip-ramp site at Two Medicine Lake . 85 24. Contour map of the Lewis Thrust surface in the Marias Pass area constructed from sur- vey sites (measured in feet above sea level in order...

  6. Characteristics of displacement transfer zones associated with thrust faults / by Arthur Francis Xavier O'Keefe

    E-Print Network [OSTI]

    O'Keefe, Arthur Francis Xavier

    1980-01-01T23:59:59.000Z

    back limb fault and then develops into s. drag fold on the underlying plate. The lower thrust dies by losing displacement until it becomes a fore-limb . hrust in a mino" anticline which plunges out under . he higher thrust (Figure 2). drag olo... is compared with two physical models developed by Gardner and Spang (1973). Their fi. st model involves a conical fold in the upper plate of the lowez- thzust with the point of the cone at the termination of the higher thrust . The fold then opens along...

  7. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  8. Analysis of macroscopic fractures on Teton anticline, Northwestern Montana

    E-Print Network [OSTI]

    Sinclair, Steven W.

    1980-01-01T23:59:59.000Z

    1817 &UNCONFORMITY 174 &UNCONFORMITY 366 &UNCONFORMITY 286 &UNCONFORMITY 1536 &UNCONFORMITY 2100 Figure 4. Stratigraphy of the Sawtooth thrust province. these rocks from the thinner, shallow-marine Devonian carbonate ~ocks above. Another... minor unconformity separates the Devonian from the Lower Mississippian (Kinderhookian and Osagean series). Mississippian rocks represent a stable shelf environment with the oresence of 366 meters of shallow marine dolomites and limestones in the area...

  9. A comparison of eddy current effects in a single sided magnetic thrust bearing

    E-Print Network [OSTI]

    DeWeese, Randall Thomas

    1996-01-01T23:59:59.000Z

    finite element studies of magnetic thrust bearings using static bench testing procedures to investigate configurations that promote eddy current reduction. Several rotor/stator configurations, including solid metal, laminated washers, tapewound lam...

  10. Power Rental Market to Receive Thrust from Asia-Pacific, to Rise...

    Open Energy Info (EERE)

    Thrust from Asia-Pacific, to Rise to US20.64 billion by 2019 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture Submitted by John55364(95) Contributor...

  11. At several localities around the world, thrust belts have developed on both sides of

    E-Print Network [OSTI]

    ten Brink, Uri S.

    of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called; Fig. 2). The Eastern Greater Antilles arc (Hispaniola and Puerto Rico) of the northeastern Caribbean

  12. Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing

    E-Print Network [OSTI]

    Desireddy, Vijesh R.

    2010-01-14T23:59:59.000Z

    Magnetic bearings have been researched by the National Aeronautics and Space Administration (NASA) for a very long time to be used in wide applications. This research was to assemble and test an axial thrust electromagnetic bearing, which can handle...

  13. Solid bitumen at Atigun Gorge, central Brooks Range front: Implications for oil exploration in the North Slope fold and thrust belt

    SciTech Connect (OSTI)

    Howell, D.G.; Johnsson, M.J.; Bird, K.J. (U.S. Geological Survey, Menlo Park, CA (United States))

    1991-03-01T23:59:59.000Z

    The Atigun Gorge area of the north-central Brooks range is a structurally complex region in which a sequence of north-verging duplex structures involving Paleozoic and Mesozoic Ellesmerian continental margin deposits are structurally overlain by a south-verging thrust of Brookian foreland basin deposits of Albian age. The resulting structural triangle zone is marked by numerous small-scale thrusts involving Permian and Triassic strata in which solid bitumen, occupying fissures up to 10 cm wide and several meters in length, has been found. The presence of aromatics in the odorless, black material was confirmed by ultraviolet fluorescence following extraction in dichloromethane. The occurrence of solid bitumen at Atigun Gorge adds to a growing inventory of hydrocarbon-filled fractures found mostly in Cretaceous rocks in the Brooks Range foothills. These occurrences are consistent with a model of hydrocarbon generation beneath the northern margin of the Brooks Range. The regional distribution of vitrinite reflectance isograds suggests that the northern margin of the Brooks Range and the adjoining foreland basin deposits of the North Slope have experienced similar thermal histories. The 0.6% vitrinite reflectance isograd intersects the land surface along the southern margin of the foreland and the 2.0% isograd lies within the northern part of the range. Although these relations suggest the possibility of petroleum resources at shallow depths beneath the Brooks Range foothills, they also indicate that a considerable amount of differential uplift has occurred, probably resulting in redistribution and some leakage of any oil and gas accumulations.

  14. Structural discordance between neogene detachments and frontal sevier thrusts, central Mormon Mountains, southern Nevada

    E-Print Network [OSTI]

    Wernicke, Brian; Walker, J. Douglas; Beaufait, Mark S.

    1985-02-01T23:59:59.000Z

    Bonanza King Formation. Between the Keystone-Muddy Mountain and Gass Peak-Wheeler Pass thrusts is a broad, regional synclinorium consisting of miogeoclinal rocks which have been folded and faulted on small thrusts. N W E s Fig. 6. Axes...-groned, thin-to rneclum- bedded chert), toward top fossaliferous, locally cross-laminated SULTAN LIMESTONE (216 m) CRYSTAL PASS LIMESTONE (69m) Lrnestone, hght c, lroy, ophonit, laminated sandstone marker bedneer top VALENTINE LIMESTONE (79m) Lm...

  15. Characteristics of displacement transfer zones associated with thrust faults / by Arthur Francis Xavier O'Keefe 

    E-Print Network [OSTI]

    O'Keefe, Arthur Francis Xavier

    1980-01-01T23:59:59.000Z

    CHARAC 'ERZSTZCS OF DZSPLACENENT TRANSFER 'ZONES ASSOCIATED WI H THRUST FAULTS A Thesis by ARTHUR FRANCIS XAVIER O&HEEFE Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree... of NASTER OF SCIENCE August 1990 Idaho or Subrent: Geology CHARACTERISTICS QF DISPLACEMENT TRANSFER ZONES ASSOCIATED NITS THRUST FAULTS A Thesis by ARTHUR FRANCIS XAVIER 0 'KEEFE Approved ss to style and content by: (Co-chairman of' Commi. tee...

  16. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  18. A.R.M. 36.2.521 - Administrative Procedures for Montana Environmental...

    Open Energy Info (EERE)

    36.2.521 - Administrative Procedures for Montana Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  19. EA-1932: Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This EA was initiated to evaluate the potential environmental impacts of a BPA proposal to fund Montana Fish, Wildlife and Parks to help restore native fish populations to the Tobacco River and Lake Koocanusa. The project has been cancelled.

  20. A diminutive pelecinid wasp from the Eocene Kishenehn Formation of northwestern Montana (Hymenoptera: Pelecinidae)

    E-Print Network [OSTI]

    Greenwalt, Dale; Engel, Michael S.

    2014-07-01T23:59:59.000Z

    A new genus and species of pelecinid wasp (Proctotrupoidea: Pelecinidae) is described and figured from a single male preserved in oil shale from the middle Eocene Kishenehn Formation of northwestern Montana. Phasmatopelecinus leonae Greenwalt...

  1. Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300,...

  2. Abies lasiocarpa establishment of subalpine meadows in Glacier National Park, Montana

    E-Print Network [OSTI]

    ), Montana. This study evaluates spatiotemporal influences of climate on conifer invasions into subalpine meadows. Seedling establishment of A. lasiocarpa show both time and site dependent relationships to interannual variation in climate. Annual and seasonal...

  3. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 of the Water Resources

  4. EA-1551: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE started to prepare, jointly with the Montana Department of Environmental Quality (MDEQ), an EA that would also serve as a state EIS. The document would evaluate the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana. Based on comments received on the DOE Draft EA/MDEQ Draft EIS, DOE cancelled preparation of the EA and announced preparation of DOE/EIS-0399 (of the same title).

  5. Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina

    E-Print Network [OSTI]

    Hilley, George

    -and-thrust belt, Argentina G. E. Hilley1 and M. R. Strecker Institut fu¨r Geowissenschaften, Universita¨t Potsdam, Potsdam, Germany V. A. Ramos Department de Geologia, Universidad de Buenos Aires, Buenos Aires, Argentina in the central Andes of Argentina where wedge development over time is well constrained. We solve

  6. The State of the Columbia River Basin

    E-Print Network [OSTI]

    will depend on demonstrated effectiveness. Sincerely, Bruce Measure, Chair Northwest Power Conservation Council and Bruce A. Measure Chair Montana Rhonda Whiting Montana W. Bill Booth Idaho James A. Yost Idaho Forum Develops Guidelines for Efficiency Savings and Verification 14 First-Ever Regional Standards

  7. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    SciTech Connect (OSTI)

    Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

    1996-11-01T23:59:59.000Z

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  8. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect (OSTI)

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01T23:59:59.000Z

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  9. Annual Review of BPA-Funded Fish and Wildlife Projects in Montana, November 28-29, 1984.

    SciTech Connect (OSTI)

    Drais, Gregory

    1985-01-01T23:59:59.000Z

    Brief summaries of projects investigating the impacts of hydroelectric power projects in Montana on fish and wildlife values are presented. (ACR)

  10. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  12. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  14. Evolution of the Llanos Basin and the deformation of the Eastern Cordiller, Columbia

    SciTech Connect (OSTI)

    Addison, F.; Cooper, M.; Hayward, A.; Howe, S. O'Leary, J. (BP Exploration Co. Ltd., Santafe de Bogota (Colombia))

    1993-02-01T23:59:59.000Z

    The Llanos Basin is located on the flank of the Eastern Cordillera in northeast Colombia. Basin development commenced with the deposition of a synrift Triassic and Jurassic megasequence related to the separation of North and South America in the Caribbean. Basin development continued with the Cretaceous Back Arc Megasequence deposited in a back arc basin behind the Andean subduction zone. Three major sequences can be recognized corresponding to extensional pulses in the Tithonian, Albian, and the Santonian which control thickness and facies distributions. The primary reservoir in the basin is the Late Eocene Mirandor Formation which was deposited in a fluvial system which prograded from the Guyana Shield to the west-northwest. This was deposited as part of the Pre-Andean Foreland Basin Megasequence (Bartonian to Serravallian) which developed as a result of uplift onset and deformation in the Central Cordillera. This megasequence covered the Magdalena Valley the Eastern Cordillera ad the Llanos Basin. In the foothills of the Eastern Cordillera, the Mirador Formation begins to show evidence of marine influence and was probably deposited in a series of shoreface sands and offshore bar complexes in the Cordillera. The Pre-Andean Foreland Basin Megasequence includes the Eocene-Oligocene Carbonera Formation which was deposited in a low every fluvial system that was mud dominated. Within the Carbonera Formation, a series of major, grossly coarsening upward cycles can be seen which are separated by maximum flooding surfaces that approximate to time lines. These cycles correspond to the early phases of development of the Central Cordillera with each pulse being seen as an influx of coarser clastics to the basin. The deformation style in the Eastern Cordillera is a mixture of thin-skinned thrust structures and the inversion of the thick-skinned basement involved extension faults. The inversion structures include the Cuisana field, a giant oil and gas-condensate discovery.

  15. Dual mechanisms of Laramide structural growth: the Bighorn uplift-Powder River basin transition

    SciTech Connect (OSTI)

    Jenkins, C.D. Jr.; Lisenbee, A.L.

    1986-08-01T23:59:59.000Z

    The Bighorn uplift margin from Buffalo to Dayton, Wyoming, consists of a northern monoclinal domain and a southern fault-segmented domain. The Precambrian basement and overlying Paleozoic-Mesozoic strata have been rotated and folded in the monocline, producing a structural relief of 17,000 ft. Range-directed thrusts, formed by compression in the synclinal hinge of the monocline, are responsible for several second-order structures. The monocline may be transported eastward above a Rich-model thrust in the basement. The southern domain displays up to 20,000 ft of structural relief and consists of contiguous fault-bounded blocks with eastern margins 2 to 9 mi long. The largest and northernmost fault-bounded block, the Precambrian-cored Piney block, was transported eastward along a west-dipping reverse fault. Drilling indicates the fault overlies a vertical Cretaceous-Tertiary section underlain by nearly flat strata below the top of the Cretaceous Parkman Sandstone. Wells drilled through the Precambrian-cored Clear Creek thrust block west of Buffalo suggest a similar structural development. Reverse faulting in the southern domain occurred at a late stage, cutting through the synclinal flexure of the monocline, or occurred contemporaneously with the formation of the monocline to the north. Paleocene and Eocene syntectonic conglomerates underlie and front the range-bounding faults and exhibit basal angular unconformities. An arcuate band of conglomerates on the east side of Mowry basin implies the existence of other thrusts beneath Tertiary strata in the topographic basin, a conclusion reinforced by seismic data.

  16. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  17. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  18. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  19. Phytologia (April 1, 2014) 96(2) 71 Taxonomy of Hesperocyparis montana, H. revealiana and H. stephensonii: Evidence from leaf essential oils

    E-Print Network [OSTI]

    Adams, Robert P.

    . stephensonii: Evidence from leaf essential oils analyses and DNA sequences Robert P. Adams Biology Department oils were analyzed from Hesperocyparis montana H. revealiana and H. stephensonii. The cpDNA sequences the clade for H. montana and H. revealiana. The generally considered close relationship between H. montana

  20. Montana contains the headwaters for three continental watersheds-the St. Mary's River, the Columbia River, and the Missouri River. The St. Mary's

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    -the largest in Montana-drains more than one half of the state's land area, but yields less than one, wind-sailing, and wildlife watching. You can float 207 miles from Montana Power Company's Morony Dam of the state. The major watersheds of Montana are those carved by the Columbia River's tributaries

  1. Emplacement of bitumen (asphalite) veins in the Nequen Basin, Argentina

    SciTech Connect (OSTI)

    Parnell, J.; Carey, P.F. [The Queen`s Univ. of Belfast (United Kingdom)

    1995-12-01T23:59:59.000Z

    Veins of solid bitumen (asphaltite) have been commerically exploited in the Neuquen basin, Argentina, for over 100 yr. Veins are up to 5 m wide and several kilometers in length, over a region of 15,000 km{sup 2}. These veins were emplaced in fractures both parallel and at high angles to bedding, in close proximity to their source rocks in the Vaca Muetra and Agrio formation (Late Jurassic-Early Cretaceous). Two or more phases of bitumen emplacement can be recognized in several localities; structures bearing viscous oil are younger than structures having solid bitumen. Bitumen emplacement was vigorous and caused brecciation and spalling of the host rocks. The bitumen was also viscous, and supports rock debris ranging in size from sand grains up to meter-scale slabs. Brecciation, bedding-parallel injection, and wall rock impregnation suggest high fluid pressures during emplacement. High fluid pressure may have been engendered by substantial hydrocarbon generation from rich source rocks in a low-permeability sequence, and probably caused the fractures into which the bitumen migrated. The bedding-parallel veins facilitated decollement during thrusting that took place during and after bitumen emplacement. The timing of emplacement relative to thrusting and oil migration constrains bitumen emplacement to the Eocene-Oligocene.

  2. Mining problems caused by tectonic stress in Illinois basin

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    The Illinois basin coalfield is subject to a contemporary tectonic stress field in which the principal compressive stress axis ({sigma}1) is horizontal and strikes N60{degree}E to east-west. This stress is responsible for widespread development of kind zones and directional roof failures in mine headings driven perpendicular to {sigma}1. Also, small thrust faults perpendicular to {sigma}1 and joints parallel to {sigma}1 weaken the mine roof and occasionally admit water and gas to workings, depending upon geologic setting. The direction of magnitude of stress have been identified by a variety of techniques that can be applied both prior to mining and during development. Mining experience shows that the best method of minimizing stress-related problems is to drive mine headings at about 45 to {sigma}1.

  3. The University of Montana continues its commitment to increased accountability and linkage of Planning, Resource Allocation, and Assessment. This second annual Institutional Assessment Report illustrates not only that commitment,

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    , infusing $70 million per year into Montana's economy, and developing economic capacity through intellectual

  4. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    SciTech Connect (OSTI)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15T23:59:59.000Z

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  5. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Evolution of Extensional Basins and Basin and Range Topography West of Death Valley California...

  6. FACILITIES PLANNING, DESIGN & CONSTRUCTION Sixth Avenue and Grant Street PO Box 172760 Bozeman, Montana 59717-2760

    E-Print Network [OSTI]

    Dyer, Bill

    , Montana 59717-2760 Phone: (406) 994-5413 · Fax: (406) 994-5665 Acknowledgement of Subcontractors FORM 102 Page 1 of 1 ACKNOWLEDGEMENT OF SUBCONTRACTORS Project Title: PPA NO. Location: Date: Contractor) Acknowledged by: Montana State University Facilities Planning, Design, & Construction (Signature) (Date) #12;

  7. Geology, exploration status of Uruguay's sedimentary basins

    SciTech Connect (OSTI)

    Goso, C.; Santa Ana, H. de (Administracion Nacional de Combustibles, Alcohol y Portland (Uruguay))

    1994-02-07T23:59:59.000Z

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  8. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  9. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10

    E-Print Network [OSTI]

    Déverchčre, Jacques

    Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia neotectonics; KEYWORDS: Late Pleistocene, Holocene, thrust fault, slip rate, 10Be dating, Mongolia Citation-Altay, Mongolia) estimated with 10 Be dates, J. Geophys. Res., 108(B3), 2162, doi:10.1029/2001JB000553, 2003. 1

  10. Tuning the Passive Structural Response of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency

    E-Print Network [OSTI]

    Victoria, University of

    Thrust Generation and Efficiency by Andrew James Richards B.A.Sc., The University of British Columbia of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency by Andrew James Richards B for the use of flexible oscillating foils which, under suitable conditions, have been demon- strated

  11. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  12. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  13. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-06-01T23:59:59.000Z

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  14. Structure and evolution of the active fold and thrust belt of southwestern Taiwan using GPS geodesy

    E-Print Network [OSTI]

    Hickman, John Bibb

    1999-01-01T23:59:59.000Z

    ) from north to south, a dramatic change in the width of the deformation front of the fold and thrust belt which is accentuated across the Michih fault, and 4) the Tulungwan fault, a bounding fault between the Western Foothills and the Slate Belt, appears...

  15. Thrust Area 2 Free-Piston Compressor for Portable Fluid-Powered Systems

    E-Print Network [OSTI]

    Barth, Eric J.

    Thrust Area 2 Free-Piston Compressor for Portable Fluid-Powered Systems Dr. Eric J. Barth José A Diluted combustion products from previous stroke Combustion gases expand down to Air in compressor chamber begins to pressurize. Combustion products cooled Compressor side pumps to reservoir. Magnet locks free

  16. A Thrust Stand for High-power Steady-state Plasma Thrusters L.D. Cassady,

    E-Print Network [OSTI]

    Choueiri, Edgar

    Accelerator with lithium vapor propellant operating at 500 A, 9.5 mg/s lithium flow rate and a 0.07 T applied-pendulum thrust stand described here is used as an integral part of our lithium Lorentz Force Accelerator (LiLFA) research program. The demonstration of 50% efficiency at 0.5 MW with 500 hours of nearly erosion

  17. Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust

    E-Print Network [OSTI]

    . Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 #12;2 #12;Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust Thomas M. Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 1 This work is based

  18. Predicting stress distributions in fold-and-thrust belts and accretionary wedges by optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    element method (EEM) provides the stress distribution in geometrical models of folds, relevant to fold for discontinuities. The example chosen to illustrate the potential of the EEM and to validate our implementation is the thrusting of a rectangular sheet over a flat and weak de´collement. The EEM reproduces the solution proposed

  19. Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran) Anne Paul 1 Grenoble Cedex, France 2 International Institute of Earthquake Engineering and Seismology, Tehran, Iran 3 that the crust of Zagros underthrusts the crust of central Iran along the MZT considered as a crustal

  20. CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade

    E-Print Network [OSTI]

    Tullis, Stephen

    CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade K. Mc vibration source of a small scale vertical axis wind turbine. The dynamic loading on the blades of the turbine, as they rotate about the central shaft and travel through a range of relative angles of attack

  1. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition and eastern Nepal and 20.5 Ć 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT

  2. Montana Code 76-2-301 and 302 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program LawsMontana46201

  3. The Main Mantle Thrust (MMT) is the regional contact between collider India and the overthrust Kohistan-Ladakh series in the Pakistan Himalaya. Early Himalayan-age

    E-Print Network [OSTI]

    Kidd, William S. F.

    and the overthrust Kohistan-Ladakh series in the Pakistan Himalaya. Early Himalayan-age thrusting and some later (~20

  4. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson [USGS, Reston, VA (United States)

    2006-07-01T23:59:59.000Z

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  5. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    SciTech Connect (OSTI)

    Carrell, L.A.; Sippel, M.A.

    1996-09-01T23:59:59.000Z

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  6. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01T23:59:59.000Z

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  7. As a physics major at Montana State University, you will study some of the

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    As a physics major at Montana State University, you will study some of the most exciting aspects and mathematics scholarships won by our physics students. With a degree in physics, you will have the opportunity studies in graduate school where you will find that physics provides an excellent background for entering

  8. AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review #12;ACAdEMiC pRogRAMS College of Agriculture Baccalaureate: Agricultural Education Options: AgRelations Teaching Agricultural Operations Technology MasterofScience: Agricultural Education Baccalaureate

  9. ECOS Inquiries Series -University of Montana Effect of Acid Rain on the Ability of

    E-Print Network [OSTI]

    Brewer, Carol

    1 ECOS Inquiries Series - University of Montana Effect of Acid Rain on the Ability of Soil Microbes OF ACID RAIN ON THE ABILITY OF SOIL MICROBES TO DECOMPOSE ORGANIC NITROGEN 3. GOALS AND OBJECTIVES: a ecosystems. One well known example of this is the production of acid rain due to certain air pollutants

  10. MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520 Tel (406) 994 with the Social Security Administration and State policies, the Human Resources procedure for Name and Address changes has been modified. The Human Resources Department uses two separate forms ­ one for name changes

  11. Outstanding Ag Leader Award Presented by MSU College of Agriculture and Montana Agricultural

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Outstanding Ag Leader Award Presented by MSU College of Agriculture and Montana Agricultural Experiment Station (MAES) Criteria for Selection Be well respected in their agricultural community of achievement in agriculture, be an industry leader, or an upcoming active innovative producer (or a combination

  12. Montana State University 1 M.S.in Land Resources and

    E-Print Network [OSTI]

    Lawrence, Rick L.

    , bioremediation, land reclamation, restoration ecology, fluvial systems ecology and restoration, riparian ecologyMontana State University 1 M.S.in Land Resources and Environmental Sciences The M.S. program in Land Resources and Environmental Sciences is designed to provide outstanding graduate training

  13. Montana State University EMEC320 Thermodynamics I1 EMEC 320: THERMODYNAMICS I

    E-Print Network [OSTI]

    Dyer, Bill

    Montana State University EMEC320 Thermodynamics I1 EMEC 320: THERMODYNAMICS I (UPDATED AUG 27, 2011 thermodynamic concepts, first and second laws, open and closed systems, properties of ideal and real substances.E. and Borgnakke, C. ISBN 0-471-15232-3 "Fundamentals of Thermodynamics" COORDINATING INSTRUCTOR: Dr. Sarah Codd

  14. Montana State University EIND 101 Introduction to Industrial Engineering EIND 101: INTRODUCTION TO INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Dyer, Bill

    Montana State University EIND 101 Introduction to Industrial Engineering EIND ­ 101: INTRODUCTION TO INDUSTRIAL ENGINEERING (Revised 11/4/11) CATALOG DATA: PREREQUISITE: Must be taken the first year enrolled in IE program. Overview of the industrial engineering profession. Lectures will concentrate on tools

  15. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to evaluate potential environmental impacts of rebuilding its 41-mile long 115 kilovolt (kV) wood-pole Kalispell-Kerr transmission line between Kalispell and Polson, Montana. Additional information is available on the project website, http://efw.bpa.gov/environmental_services/Document_Library/KALISPELL_KERR/.

  16. ECOS Inquiries Series -University of Montana Composting 101-It's the Microbes

    E-Print Network [OSTI]

    Brewer, Carol

    1 ECOS Inquiries Series - University of Montana Composting 101- It's the Microbes Target Grade: COMPOSTING 101: IT'S THE MICROBES 3. GOALS AND OBJECTIVES: a. Inquiry Questions: What is composting and what Teachers and students): Everybody knows compost is good for the garden, but not everybody knows why

  17. Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING

    E-Print Network [OSTI]

    Dyer, Bill

    problem solutions. Structure, thermal, and fluid concepts in nature applied to engineering. Advanced. 2) Perform basic structural, thermal, and fluid analyses in biological and engineering systems. 3Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING CATALOG

  18. Abies lasiocarpa establishment of subalpine meadows in Glacier National Park, Montana 

    E-Print Network [OSTI]

    . Ben Wu Head of Department, Douglas Sherman May 2009 Major Subject: Geography iii ABSTRACT Abies Lasiocarpa Establishment of Subalpine Meadows in Glacier National Park, Montana. (May 2009) Dianna Alsup Gielstra, B.S., University... or > 5 cm diameter class. .................................................. 111 Fig. 5.26. Ripley's K residual grouped a) all meadows, b) lower elevation meadows, c) higher elevation meadows ................................................... 114...

  19. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental impacts of a proposal to rebuild approximately 120 miles of existing transmission line in Sanders, Lake, Missoula, Granite, Powell, and Deer Lodge Counties in Montana.

  20. Sanders County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin ECSanatoga,Sandalfoot Cove,

  1. Thrust and efficiency model for electron-driven magnetic nozzles Justin M. Little and Edgar Y. Choueiri

    E-Print Network [OSTI]

    Choueiri, Edgar

    Thrust and efficiency model for electron-driven magnetic nozzles Justin M. Little and Edgar Y-driven magnetic nozzles Justin M. Littlea) and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics

  2. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  3. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  4. Measurement of normal thrust and evaluation of upper-convected Maxwell models for molten plastics in large amplitude oscillatory shear

    E-Print Network [OSTI]

    Oakley, Jason Glen

    1992-01-01T23:59:59.000Z

    with Relaxation Spectrum Re- ported by Khan and Larson (1987) . IV. 5 Normal Thrust Measurements IV. 6 Mewts-Denn Model Compared With Normal Thrust Measure- ments 37 42 44 46 49 V CONCLUSION REFERENCES APPENDIX FIGURES . . APPENDIX Pa, ge B FIRST... tensor, this is also referred to as the Maxwell model. I. 5 1 Maxwell Model Dealy and Wissbrun (1990) give the Boltzmann superposition principle in the material objective (ie. frame indifferent) integral form in terms of a memory function...

  5. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana , Hettinger, North Dakota , and New Underwood , South Dakota , in Custer and Fallon Counties in Montana, Adams , Bowman , and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  6. Annual Report on Wildlife Activities, September 1985-April 1986, Action Item 40.1, Columbia River Basin Fish and Wildlife Program.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1986-04-01T23:59:59.000Z

    This annual report addresses the status of wildlife projects Bonneville Power Administration (BPA) has implemented from September 1985 to April 1986. This report provides a brief synopsis, review, and discussion of wildlife activities BPA has undertaken. BPA's effort has gone towards implementing wildlife planning. This includes measure 1004 (b)(2), loss statements and measure 1004 (b)(3), mitigation plans. Loss statements have been completed for 14 facilities in the Basin with 4 additional ones to be completed shortly. Mitigation plans have been completed for 5 hydroelectric facilities in Montana. The Northwest Power Planning Council is presently considering two mitigation plans (Hungry Horse and Libby) for amendment into the Program. Currently, mitigation plans are being prepared for the 8 Federal hydroelectric facilities in the Willamette River Basin in Oregon, Grand Coulee Dam in the state of Washington, and Palisades Dam on the Snake River in Idaho.

  7. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13T23:59:59.000Z

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  8. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect (OSTI)

    Robert Caldwell

    1998-04-01T23:59:59.000Z

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  9. Mechanical characteristics of folds in Upper Cretaceous strata in the Disturbed Belt of northwestern Montana

    E-Print Network [OSTI]

    Gilbert, Pat Kader

    1974-01-01T23:59:59.000Z

    controlled cross section through a wave trai. n of these folds, The citations on these pages follow the style of the U. S. Geological Survey Bulletin. other field observations, laboratory analysis of collected samples, and theoretical considerations...MECHANICAL CHARACTERISTICS OF FOLDS IN UPPER CRETACEOUS STRATA IN THE DISTURBED BELT OF NORTHWESTERN MONTANA A Thesis by PAT KADER GILBERT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  10. Structure and evolution of the East Sierran thrust system, east central California

    E-Print Network [OSTI]

    Dunne, George C.; Walker, J. Douglas

    2004-08-01T23:59:59.000Z

    . Geologic sketch map of the southern Inyo Mountains. IMVC is Inyo Mountains Volcanic Complex of Dunne et al. [1998]. Informal pluton names are as follows: F, French Spring; B, Black Warrior; L, Long John. TC4012 DUNNE AND WALKER: EAST SIERRAN THRUST SYSTEM 2... by the Dolomite Canyon fault and by contractional shear zones in the upper plate of the Dolomite fault; truncations reveal a component of right drag; (2) prominent shear zone in Black Warrior pluton (163 Ma; SI-D91-3) shows a gently plunging mineral lineation...

  11. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPointsThrust 1: Structure and Dynamics of

  12. K-Basins design guidelines

    SciTech Connect (OSTI)

    Roe, N.R.; Mills, W.C.

    1995-06-01T23:59:59.000Z

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  13. Operational Performance of Sedimentation Basins

    E-Print Network [OSTI]

    Bleything, Matthew D.

    2012-12-14T23:59:59.000Z

    and sludge pumps and clog pipes. (Lee, 2007) Composition of grit varies widely, with moisture content ranging from 13 to 63 percent, and volatile content ranging from 1 to 56 percent. The specific gravity of clean grit particles may be as high as 2... for unobstructed flow of the inlet water into the basin when the basin was almost full to capacity with sediment. The outlet of the sediment basin is an oil/water separator. This is for oil leaks and spills from the plant island. The design called...

  14. A two-dimensional finite difference model of the effects of erosion on the evolution of pore pressure within a moving thrust sheet

    E-Print Network [OSTI]

    Sales, James Gregory

    1994-01-01T23:59:59.000Z

    conditions (see Table 2) where all niodcl layers are assigned R values representative of a) sandstone, b) shale, and c) limestone; shown at the 1'inal stage of thrust loading. H was held constant at 1. 2xl0'o Pa i 36 13 Excess pore pressure for thrust... tectonic style of orogens and individual thrust. sheets. Johnson (1981), for instance, suggested that the Keystone thrust of southeast Nevada traveled as much as eighty-eight kilometers facilitated by the removal of the lithostatic load. More generally...

  15. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  16. The mission of the Research Centers is to serve the specific needs of the clientele in local production areas and the broader needs of Montana agriculture

    E-Print Network [OSTI]

    Dyer, Bill

    production areas and the broader needs of Montana agriculture in general through applied research directed to the problems and impacts of agricultural production. New knowledge generated by Agricultural Research Center programs benefits Montana agriculture and the scientific community at local, state and national levels

  17. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  18. Improved recovery demonstration for Williston Basin carbonates. Final report

    SciTech Connect (OSTI)

    Sippel, M.A.

    1998-07-01T23:59:59.000Z

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

  19. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  20. Abstract --This panel session paper outlines one of the re-search thrust areas in the Power System Engineering Research

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Abstract -- This panel session paper outlines one of the re- search thrust areas in the Power- tential of harnessing the inherent flexibility of certain load types such as heating and cooling and PHEV for massive penetration of renewable resources such as wind and solar power into the mix of elec- tricity

  1. Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland)

    E-Print Network [OSTI]

    Gilli, Adrian

    Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne coring in Lake Lucerne, Switzerland, have revealed surprising deformation structures in flat in Lake Lucerne affecting four sections of the lake floor with areas ranging from 0Ć25 to 6Ć5 km2 in area

  2. The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran

    E-Print Network [OSTI]

    Elliott, John

    -and-thrust belt, Iran E. Nissen a, , F. Yamini-Fard b , M. Tatar b , A. Gholamzadeh b,1 , E. Bergman c , J Engineering and Seismology, PO Box 19395-3913, Tehran, Iran c Department of Physics, University of Colorado rights reserved. 1. Introduction The Zagros mountains in south-western Iran are one of the most rapidly

  3. Mechanical characteristics of folds in Upper Cretaceous strata in the Disturbed Belt of northwestern Montana 

    E-Print Network [OSTI]

    Gilbert, Pat Kader

    1974-01-01T23:59:59.000Z

    -shape. The trough in S3 (see unit 23, Plate 2) is hi. ghly fractured in the sandstone and shows considerable flowage in the shale. From the air, it is readily apparent that these folds of the upper Two Medicine are much smaller in lateral extent along strike than... Formation (mostly shale), the Virgelle Sandstone, and the Two Medi. cine Formation (mostly shale), Montana Group, Upper Cretaceous. The Virgelle Sand- stone, about 54 meters thick, lies between the shales and behaved as the most competent member...

  4. The Montana Rivers Information System: Edit/entry program user`s manual

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  5. Shallow meteoric alteration and burial diagenesis of massive dolomite in the Castle Reef Formation, northwest Montana

    E-Print Network [OSTI]

    Whitsitt, Philip Mark

    1989-01-01T23:59:59.000Z

    ), Sawmill Creek (SC), Half Dome Crag (HDC), Morningstar Mountain (MM), Mount Field (MF), Gateway Pass (GP), North Fork of Dupuyer Creek (NFD), South Fork of Dupuyer Creek (SFD), Volcano Reef (VR), North Fork of Teton River (NFT), Teton River (TR), Cave...SHALLOW METEORIC ALTERATION AND BURIAL DIAGENESIS OF MASSIVE DOLOM I TE I N THE CASTLE REEF FORMAT I ON ~ NORTHWEST MONTANA A Thesis by PHILIP MARK WHITSITT Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  6. Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming

    SciTech Connect (OSTI)

    Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

    2005-03-31T23:59:59.000Z

    The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

  7. Montana - ARM 17.20 - Major Facility Siting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,Major Facility

  8. Montana - ARM 36.25 - State Land Leasing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,Major FacilityARM

  9. Montana - Application for Right of Way Easement for Utilities Through State

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,MajorLands | Open

  10. Montana - MCA 75-20 - Major Facility Siting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |New York:NewMonsey,MajorLandsSiting

  11. Montana ARM 17.20.1606, Electric Transmission Lines, Need Standard | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia |NewInformationEnergy

  12. Montana Air Quality Program Laws & Rules Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir Quality Program Laws & Rules

  13. Montana Facilities Which Do Not Discharge Process Wastewater (MDEQ Form 2E)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open Energy Information Which

  14. Montana Guide to the Streamside Management Zone Law & Rules Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpage Jump to:Energy

  15. Montana Joint Application for Proposed Work in Streams, Lakes and Wetlands

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpageWebpage | Open

  16. Montana MCA 69-3-101, Definition for Public Utility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpageWebpage |

  17. Montana MCA 75-20-104, Policy and General Provisions Definitions for Major

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open EnergyWebpageWebpage

  18. Montana MCA 77-4-102, Geothermal Resource Definitions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| Open

  19. Montana Notice of Intent: Sand and Gravel General Permit (MDEQ Form NOI) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpointOpen Energy

  20. Montana Public Water Supply Law and Rules Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law and Rules

  1. Montana Rule 17.20.2 Geothermal Investigation Reports | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law

  2. Montana Rule 36.2.10 General State Land Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10 General State

  3. Montana Rule 36.25.1 Surface Management Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10 General

  4. Montana Rule 36.25.4 Geothermal Rules and Regulations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10

  5. Montana Surface Water Application for Beneficial Use (DNRC Form 600 GW) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtectionOpen Energy

  6. Montana Surface Water Application for Beneficial Use (DNRC Form 600 SW) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtectionOpen

  7. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  8. Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan Joseph K. Goode,1 the controls on this intramontane basin deformation, we study the Naryn Basin of south central Kyrgyzstan central Kyrgyzstan, Tectonics, 30, TC6009, doi:10.1029/2011TC002910. 1. Introduction [2] Deformation

  9. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01T23:59:59.000Z

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  10. The Climate of the South Platte Basin

    E-Print Network [OSTI]

    The Climate of the South Platte Basin Colorado Climate Center http://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers #12;Precipitation Monthly Average Precipitation for Selected Sites in the South Platte Basin 0.00 0

  11. Geological Modeling of Dahomey and Liberian Basins

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16T23:59:59.000Z

    The objective of this thesis is to study two Basins of the Gulf of Guinea (GoG), namely the Dahomey and the Liberian Basins. These Basins are located in the northern part of the GoG, where oil and gas exploration has significantly increased...

  12. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15T23:59:59.000Z

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  13. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  14. facebook.com/MTasmsu montana.edu/asmsu April 10th -12th 6:30 PM

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    facebook.com/MTasmsu montana.edu/asmsu April 10th - 12th 6:30 PM April 13th 12:30 PM April 10th. For more info, visit the Campus Entertainment facebook page at: facebook.com/asmsuce 04/09 - 04/15 #12;

  15. RESOLUTIONAGREEMENT This Agreement is entered into between the University of Montana and the U.S. Department of

    E-Print Network [OSTI]

    Chu, Xi

    RESOLUTIONAGREEMENT This Agreement is entered into between the University of Montana and the U and information technology" or "EIT" includes information technology and any equipment or interconnected system includes any equipment or interconnected system or subsystem of equipment that is used in the automatic

  16. TEACHER CANDIDATES AND THE CHILD ABUSE LAWS Montana Statutes require all professionals and school employees to report suspected child

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    the following summary of the Montana Code, be aware that a teacher candidate is not considered a full state (summarized): "When professionals and officials know or have reasonable cause to suspect, as a result of information they receive in their professional or official capacity, that a child is abused

  17. Genetic classification of petroleum basins

    SciTech Connect (OSTI)

    Demaison, G.; Huizinga, B.J.

    1989-03-01T23:59:59.000Z

    Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

  18. Mississippian facies relationships, eastern Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Peace, H.W. (Oryx Energy, Inc., Midland, TX (United States)); Forgotson, J.M. (Univ. of Oklahoma, Norman (United States))

    1991-08-01T23:59:59.000Z

    Mississippian strata in the eastern Anadarko basin record a gradual deepening of the basin. Late and post-Mississippian tectonism (Wichita and Arbuckle orogenies) fragmented the single large basin into the series of paired basins and uplifts recognized in the southern half of Oklahoma today. Lower Mississippian isopach and facies trends (Sycamore and Caney Formations) indicate that basinal strike in the study area (southeastern Anadarko basin) was predominantly east-west. Depositional environment interpretations made for Lower Mississippian strata suggest that the basin was partially sediment starved and exhibited a low shelf-to-basin gradient. Upper Mississippian isopach and facies trends suggest that basinal strike within the study area shifted from dominantly east-west to dominantly northwest-southeast due to Late Mississippian and Early Pennsylvanian uplift along the Nemaha ridge. Within the study area, the Chester Formation, composed of gray to dove-gray shales with interbedded limestones deposited on a carbonate shelf, thins depositionally into the basin and is thinnest at its facies boundary with the Springer Group and the upper portion of the Caney Formation. As basin subsidence rates accelerated, the southern edge of the Chester carbonate shelf was progressively drowned, causing a backstepping of the Chester Formation calcareous shale and carbonate facies. Springer Group sands and black shales transgressed northward over the drowned Chester Formation shelf.

  19. Depositional and diagenetic characteristics of Waulsortian-type buildups in the Lodgepole formation: Big Snowy Mountains, Montana, and Dickinson Field, North Dakota

    E-Print Network [OSTI]

    Adams, Andrea Suzanne

    1999-01-01T23:59:59.000Z

    - most notably the pore-filling blocky calcite cements are saddle dolomite cements- are seen in the Montana and North Dakota mounds. Early rim cements and replacement chalcedony are also present. Cathodoluminescence and isotope analysis also show...

  20. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect (OSTI)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05T23:59:59.000Z

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

  1. One and two-dimensional finite difference models of pore pressure evolution within and below a moving thrust sheet 

    E-Print Network [OSTI]

    Smith, Richard Edwin

    1992-01-01T23:59:59.000Z

    Chatanooga Shale through the Cambrian Pumpkin Valley Shale were measured within the Copper Ridge thrust sheet on cross section A-A' of the Swan Island Quadrangle. Again, the Rome Formation forms the basal detachment zone and is not completely exposed... contain a variety of ancient, hydrologically and mechanically different, well consolidated sedimentary layers including shales, siltstones, sandstones, carbonates and evaporites. In addition, the models cited above were made for specific accretionary...

  2. One and two-dimensional finite difference models of pore pressure evolution within and below a moving thrust sheet

    E-Print Network [OSTI]

    Smith, Richard Edwin

    1992-01-01T23:59:59.000Z

    Chatanooga Shale through the Cambrian Pumpkin Valley Shale were measured within the Copper Ridge thrust sheet on cross section A-A' of the Swan Island Quadrangle. Again, the Rome Formation forms the basal detachment zone and is not completely exposed... contain a variety of ancient, hydrologically and mechanically different, well consolidated sedimentary layers including shales, siltstones, sandstones, carbonates and evaporites. In addition, the models cited above were made for specific accretionary...

  3. Silurian of Illinois basin - a carbonate ramp

    SciTech Connect (OSTI)

    Coburn, G.W.

    1986-05-01T23:59:59.000Z

    The Silurian of the Illinois basin has classically been defined as a shelf-basin sequence. According to the shelf-basin model, the Illinois basin is a deep-water basin in the extreme southern part (southern Illinois-Tennessee), with a slope in the south (Illinois-Indiana) and a shelf extending from central Illinois and Indiana northeast to the Michigan basin. Reef buildups are in a continuous trend along the shelf break. However, the author proposes that the silurian of the Illinois basin represents a carbonate ramp. The down-ramp position is located in southern Illinois and grades into deeper water environments south of Illinois. In this environment, reef buildups would form in the late Alexandrian of early St. Clair, and would begin in the down-ramp position. Therefore, using the new model, reef buildups are expected throughout the basin, rather than being confined to an imaginary shelf break. This model would facilitate exploration in southern Illinois, Indiana, and western Kentucky for reefal hydrocarbon deposits. A ramp model is indicated for the Illinois basin because: (1) the basin lacks a shelf-slope break; (2) the facies sequence is compatible with a ramp environment and incompatible with a shelf-slope environment; (3) discontinuous reef trends are typical of a ramp environment; and (4) facies changes and slope are gradual, extending over hundreds of miles as expected in a ramp environment. Modern carbonate models border on ocean basins. However, the Illinois basin is a cratonic basin, which may have affected the depositional environments. How much that environment differed from present-day models is unknown.

  4. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31T23:59:59.000Z

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  5. Improved recovery demonstration for Williston Basin carbonates. Quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Carrell, L.A.; Nautiyal, C.

    1995-05-01T23:59:59.000Z

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Cores from five Red River wells in the Bowman-Harding study area have been examined and described in detail; contracts have been awarded for a 3-D survey in Bowman Co., ND and a 2D, multi-component survey in Richland Co.; extended-time pressure buildup data have been analyzed from two wells which are candidates for jetting-lance completion workovers; a 20-day injectivity test has been completed in the Red River (upper member); a jetting-lance completion program has commenced with one job completed and three more scheduled during April; and reservoir data from three key Red River fields in the Bowman-Harding study area has been researched and accumulated for inclusion in the TORIS database and technology transfer activities.

  6. Geothermal : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bloomquist, R.Gordon

    1991-10-01T23:59:59.000Z

    The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington better understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.

  7. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  8. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  9. Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana

    E-Print Network [OSTI]

    Hennings, Peter Hill

    1986-01-01T23:59:59.000Z

    , Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

  10. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01T23:59:59.000Z

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  11. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  12. area sichuan basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 59 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  13. area tarim basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 65 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  14. area groundwater basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concerning aspects of petroleum geochemistry in the basin, especially in determining source rock(s) in the western part of this basin. It has been speculated that Ngimbang...

  15. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  16. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  17. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  18. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  19. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  20. Oil migration pattern in the Sirte Basin

    SciTech Connect (OSTI)

    Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

    1995-08-01T23:59:59.000Z

    Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

  1. Sedimentary basins of the late Mesozoic extensional

    E-Print Network [OSTI]

    Johnson, Cari

    17 Sedimentary basins of the late Mesozoic extensional domain of China and Mongolia S.A. Graham,* T Mongolia was extended during the Late Jurassic and Early Cretaceous. As noted by various authors (Li et al in southern Mongolia (Lamb and Badarch, 1997), a crushed late Paleozoic flysch basin along the China­Mongolia

  2. EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

  3. Greybull Sandstone Petroleum Potential on the Crow Indian Reservation, South-Central Montana

    SciTech Connect (OSTI)

    Lopez, David A.

    2002-05-13T23:59:59.000Z

    The focus of this project was to explore for stratigraphic traps that may be present in valley-fill sandstone at the top of the Lower Cretaceous Kootenai Formation. This sandstone interval, generally known as the Greybull Sandstone, has been identified along the western edge of the reservation and is a known oil and gas reservoir in the surrounding region. The Greybull Sandstone was chosen as the focus of this research because it is an excellent, well-documented, productive reservoir in adjacent areas, such as Elk Basin; Mosser Dome field, a few miles northwest of the reservation; and several other oil and gas fields in the northern portion of the Bighorn Basin.

  4. Montana Dam Safety Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the state's interest in the construction of dams for water control and regulation and for hydropower generation purposes. It regulates dam construction, operation, and...

  5. Montana Radon Control Act (Montana)

    Broader source: Energy.gov [DOE]

    The Radon Control Act regulates the emission of radon, the gaseous decay products of uranium or thorium. The Act addresses operator certification of radon-producing facilities, testing and...

  6. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  7. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  8. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  9. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004VENTURA

  10. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31T23:59:59.000Z

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  11. Correlation and Stratigraphic Analysis of the Bakken and Sappington Formations in Montana 

    E-Print Network [OSTI]

    Adiguzel, Zeynep 1986-

    2012-09-24T23:59:59.000Z

    The Upper Devonian-Lower Mississippian (Late Fammenian-Tournaisian) Bakken Formation in the Williston Basin is one of the largest continuous oil fields in the U.S. The upper and the lower shale members are organic rich source rocks that supplied oil...

  12. Correlation and Stratigraphic Analysis of the Bakken and Sappington Formations in Montana

    E-Print Network [OSTI]

    Adiguzel, Zeynep 1986-

    2012-09-24T23:59:59.000Z

    The Upper Devonian-Lower Mississippian (Late Fammenian-Tournaisian) Bakken Formation in the Williston Basin is one of the largest continuous oil fields in the U.S. The upper and the lower shale members are organic rich source rocks that supplied oil...

  13. Mid-Continent basin: a reappraisal

    SciTech Connect (OSTI)

    Berg, J.R.

    1983-08-01T23:59:59.000Z

    One of the largest unevaluated basins in the Mid-Continent is the Salina basin in Kansas and its extension into eastern Nebraska. The purpose of this study is to update all older data, reconstruct new maps, and reappraise the potential for further exploration. The last comprehensive publications on the area were in 1948 and 1956. The Salina basin includes 12,700 mi/sup 2/ (33,000 km/sup 2/) in north-central Kansas, and approximately 7000 mi/sup 2/ (18,000 km/sup 2/) in east-central Nebraska. The basin is delineated by the zero isopach of Mississippian rocks bordering the basin. The Central Kansas uplift borders the basin on the southwest and Nemaha ridge on the east; the southern limit is an ill-defined saddle in the vicinity of T17S. Boundaries of the Nebraska basin are less well defined, but the axis of the basin trends directly north from the Kansas border along the boundary of Ts10 and 11W, to 41/sup 0/N lat., and then bifurcates to the northwest toward the Siouxiana arch and northeast for an unknown distance. Conventional structure maps have been constructed on several horizons, and a series of cross sections depicts anomalous structures. Recent gravity, magnetic, and seismic reflection profiling also provide information on basement tectonics which may influence structures in the younger sediments. Basement depth ranges from 600 ft (180 m) on the northeast Nemaha ridge boundary of the basin, to a depth of 4750 ft (1450 m) or -3000 ft (-915 m) below sea-level datum in Jewell County; therefore, there may be an approximate total of 10,000 mi/sup 3/ (42,000 km/sup 3/ of sediments for future exploration.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Cogeneration : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Deshaye, Joyce; Bloomquist, R.Gordon

    1992-12-01T23:59:59.000Z

    This guidebook focuses on cogeneration development. It is one of a series of four guidebooks recently prepared to introduce the energy developer to the federal, state and local agencies that regulate energy facilities in Idaho, Montana, Oregon, and Washington (the Bonneville Power Administration Service Territory). It was prepared specifically to help cogeneration developers obtain the permits, licenses and approvals necessary to construct and operate a cogeneration facility. The regulations, agencies and policies described herein are subject to change. Changes are likely to occur whenever energy or a project becomes a political issue, a state legislature meets, a preexisting popular or valuable land use is thought threatened, elected and appointed officials change, and new directions are imposed on states and local governments by the federal government. Accordingly, cogeneration developers should verify and continuously monitor the status of laws and rules that might affect their plans. Developers are cautioned that the regulations described herein may only be a starting point on the road to obtaining all the necessary permits.

  18. Hydrogeology and structure of the Bluewater Springs area south central Montana

    SciTech Connect (OSTI)

    Padilla, C.E. [AGES, Billings, MT (United States); Osborne, T.J. [Braun Intertec, Billings, MT (United States)

    1996-06-01T23:59:59.000Z

    The Bluewater springs area in south central Montana was the site of oil and gas exploration in the first half of this century. Though no significant oil was found, artesian water wells produced over 3,000 gallons per minute. Artesian springs in the area produce tufa deposits over faulted, northwest dipping Mesozoic and upper Paleozoic sediments. Two new faults were mapped in the vicinity, one of these a high angle vertical fault dissects an anticline. The Tensleep and Madison aquifers (700-1,000 feet deep) leak water to the surface through faults and fractures, producing variable water quality depending on the minerals dissolved from overlying rock formations. Evaluation of limited aquifer data reveals the following: (1) hydraulic conductivity of 40,000 to 300,000 gpd/ft, (2) hydrostatic head greater than 400 feet above land surface. (3) Total dissolved solids concentrations were 2,370 ppm in Big Bluewater Springs, but only 1,200 ppm in a Tensleep well in the vicinity. Flowing wells 45 to 70 years old have failed leading to major yield reductions, and cessation of flow. Potentially corrosive groundwater coupled with excessive flow velocities and inadequate well construction has likely led to well failures. In response, major uncontrolled alterations of groundwater flow systems have occurred with outbreaks of new springs and sinkholes near failed wells. New wells must be carefully planned, constructed and tested to avoid excessive interference, depressurization and failure.

  19. Death of a carbonate basin: The Niagara-Salina transition in the Michigan basin

    SciTech Connect (OSTI)

    Leibold, A.W.; Howell, P.D. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-01T23:59:59.000Z

    The A-O Carbonate in the Michigan basin comprises a sequence of laminated calcite/anhydrite layers intercalated with bedded halite at the transition between normal marine Niagaran carbonates and lower Salina Group evaporites. The carbonate/anhydrite interbeds represent freshing events during initial evaporative concentration of the Michigan basin. Recent drilling in the Michigan basin delineates two distinct regions of A-O Carbonate development: a 5 to 10 m thick sequence of six 'laminites' found throughout most of the western and northern basin and a 10 to 25 m thick sequence in the southeastern basin containing both thicker 'laminates' and thicker salt interbeds. Additionally, potash deposits of the overlying A-1 evaporite unit are restricted to the northern and western basin regions. The distribution of evaporite facies in these two regions is adequately explained by a source of basin recharge in the southeast-perhaps the 'Clinton Inlet' of earlier workers. This situation suggest either that: (1) the source of basin recharge is alternately supplying preconcentrated brine and more normal marine water, or (2) that the basin received at least two distinct sources of water during A-O deposition.

  20. Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002

    SciTech Connect (OSTI)

    Milici, R.C.; Hatch, J.R.

    2004-09-15T23:59:59.000Z

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

  1. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  2. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  3. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  4. Petroleum potential of the Libyan sedimentary basins

    SciTech Connect (OSTI)

    Hammuda, O.S.; Sbeta, A.M.

    1988-08-01T23:59:59.000Z

    Contrary to prevailing opinion, all Libyan sedimentary basins and the Al-Jabal Al-Akhdar platform contain prolific petroleum accumulations with very high prospectivity. A systematic review of the types of traps and pays in this central part of the southern Mediterranean province reveals great variability in reservoir and source rock characteristics. The reservoir rocks are of almost all geologic ages. The thick source rock sequences also vary in nature and organic content. The organic-rich facies have accumulated in intracratonic and passive margin basins or in marginal seas. Most of the oil discovered thus far in these basins is found in large structural traps. Future discoveries of stratigraphic traps or small structural traps will require intensified efforts and detailed studies using up-to-date multidisciplinary techniques in sedimentary tectonics, biostratigraphic facies analysis, and geochemical prospecting in order to develop a better understanding of these basins, thus improving their prospectivity.

  5. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01T23:59:59.000Z

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  6. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  7. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22T23:59:59.000Z

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  8. Late devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia

    E-Print Network [OSTI]

    Stephens, N P; Sumner, Dawn Y.

    2003-01-01T23:59:59.000Z

    reef, Canning Basin, Western Australia. Palaeontology 43,the Canning Basin, Western Australia. In: Loucks, R.G. ,Canning Basin, Western Australia. Ph.D Thesis, University of

  9. Wind/solar: A regulatory guide to leasing, permitting, and licensing in Idaho, Montana, Oregon, and Washington

    SciTech Connect (OSTI)

    Bain, D. (Oregon State Dept. of Energy, Salem, OR (United States)); Bloomquist, R.G. (Washington State Energy Office, Olympia, WA (United States))

    1992-12-01T23:59:59.000Z

    This handbook is one of a series that was recently written or updated for persons involved in the development of generating plants that use renewable resources. Other siting handbooks cover facilities powered by geothermal, hydro, and biomass resources. These handbooks are intended to introduce the reader to the regulations and their corresponding institutions that affect the development of physical facilities. The handbooks, for the most part, apply to resource development in the Pacific Northwest, i.e., Oregon, Washington, Idaho, and Western Montana. Some states have their own development or siting handbooks. These may be identified and obtained by contacting the states' energy offices.

  10. Wind/Solar : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bain, Don; Bloomquist, R. Gordon

    1992-12-01T23:59:59.000Z

    This handbook is one of a series that was recently written or updated for persons involved in the development of generating plants that use renewable resources. Other siting handbooks cover facilities powered by geothermal, hydro, and biomass resources. These handbooks are intended to introduce the reader to the regulations and their corresponding institutions that affect the development of physical facilities. The handbooks, for the most part, apply to resource development in the Pacific Northwest, i.e., Oregon, Washington, Idaho, and Western Montana. Some states have their own development or siting handbooks. These may be identified and obtained by contacting the states` energy offices.

  11. Testing some models of foreland deformation at the Thermopolis anticline, southern Bighorn Basin, Wyoming

    SciTech Connect (OSTI)

    Paylor, E.D.; Lang, H.R.; Conel, J.E.; Adams, S.L. (California Institute of Technology, Pasadena (USA)); Muncy, H.L. (Tenneco Oil Exploration and Production, Englewood, CO (USA))

    1989-01-01T23:59:59.000Z

    The Thermopolis anticline is a typical structure in the Rocky Mountain foreland, southern Bighorn Basin, Wyoming. Photogeologic interpretation of Landsat Thematic Mapper data, in combination with the evaluation of topographic, bore hole, seismic reflection, and field data were used to analyze structure and constrain tectonic models. The anticline is near-concentric, asymmetric with a southwest sense of vergence, and plunges to the northwest. The steeply dipping to overturned southwest limb of the fold is cut at the surface by several thrust faults dipping northeast. Approximately 25% of the stratigraphic section on the southwest limb is missing due to faulting. Two east to northeast-striking, basement-controlled compartmental faults segment the anticline into three blocks that apparently deformed simultaneously but probably independently from one another. Slickensides indicate a dominant southwest tectonic transport direction. Additionally, subtle northeast-trending folds are superposed on the dominant northwest structural trend. Structural patterns at Thermopolis anticline can be explained using models that propose a single phase of northeast Laramide compression, combined with shear-zone deformation.

  12. Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar, a Water Vapor DIAL, a Solar Radiometer,

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar form 24 June 2010) ABSTRACT Coordinated observational data of atmospheric aerosols were collected over-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from

  13. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    . 18.5% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free 11.0% ad val. Waste and scrap18 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana, Oregon

  14. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    .10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 760222 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana, Oregon

  15. EIS-0030-S: Bonneville Power Administration Proposed FY 1980 Program, Facility Location Supplement, Northwest Montana/North Idaho Support and Libby Integration, Supplemental

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this supplemental statement to evaluate the environmental impacts of proposed alternative actions to alternative actions intended to address the need for reliability of electrical service to loads in Northwest Montana and North Idaho and the need for integrating the generation being added at Libby Dam into the Federal Columbia River Power System.

  16. Full story from the April 2010 issue CENTER FOR INVASIVE PLANT MANAGEMENT | Montana State University | PO Box 173120 Bozeman, MT 59717

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    .weedcenter.org | email: weedcenter@montana.edu Seed Dispersal by Vehicles By Dr. Lisa Rew and Fredric Pollnac1 If you have ever driven your vehicle off-road or on an unpaved road surface, chances are that you have played vehicle only moved a few seeds of this invasive species a short distance, natural events such as wind

  17. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect (OSTI)

    Chatelain, E.E. [Valdosta State Univ., GA (United States)

    1997-09-01T23:59:59.000Z

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  18. Fort Peck-Havre transmission line project, Hill, Blaine, Phillips, Valley and McCone Counties, Montana

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Construction and operation of a 180-mile, 230-kilovlt (kV) transmission line between Fort Peck and Havre, Montana is proposed to provide a replacement for the 161-kV line that currently runs between the two cities. The new line would be carried on woodpole, H-frame structures. The existing 161-kV line would be removed, and the Richardson Coulee Substation would be relocated. Intermediate facilities to be improved would include the Fort Peck Switchyard and the Richardson Coulee, Malta, Harlem, and Havre substations.Construction of the line would commence in August 1983, and operation would commence in January 1986. The expected life of the transmission system would be 100 years. Estimated cost of the project, in 1983 dollars, is $36.1 million. The project would upgrade an essential element of the Western Area Power Administration's electric power system and the Montana Power Company's interconnected transmission network. Continued electric service reliability would be improved, and safety conditions affecting personnel who maintain the line would be enhanced. Additional transmission capacity would be provided to accommodate future load growth, precluding the need for multiple transmission lines. The line would eleminate seven acres of productive land and create physical conflicts with present and future agricultural activities. The line would traverse areas characterized by concentrations of archaeological resources and cultural resources of importance to native Americans. Transmission structures could mar scenery in areas with historically significant architecture and would interfere with waterfowl.

  19. Structural and stratigraphic evolution of Shira Mountains, central Ucayali Basin, Peru? 

    E-Print Network [OSTI]

    Sanchez Alvarez, Jaime Orlando

    2008-10-10T23:59:59.000Z

    The Ucayali Basin is a Peruvian sub-Andean basin that initially formed during the extensive tectonics of the Early Paleozoic. Originally, the Ucayali Basin was part of a larger basin that extended east of the current ...

  20. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect (OSTI)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01T23:59:59.000Z

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  1. Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By

    E-Print Network [OSTI]

    B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

    India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

  2. active single basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsidence histories of the Aquitaine Basin (Fig.8c) record a minor ac- celeration in subsidence. The shortening of the Australian plate adjacent to the basin is small (from 2...

  3. annapolis basin area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history Geosciences Websites Summary: ; and this was followed by an increase in the...

  4. annecy basin eastern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsidence histories of the Aquitaine Basin (Fig.8c) record a minor ac- celeration in subsidence. The shortening of the Australian plate adjacent to the basin is small (from 2...

  5. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2...

  6. Improved Basin Analog System to Characterize Unconventional Gas Resource

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02T23:59:59.000Z

    , the BASIN software is combined with PRISE in the UGRA system to estimate unconventional resource potential in frontier basins. The PRISE software contains information about the resources (conventional gas, conventional oil, shale gas, coalbed methane...

  7. K West basin isolation barrier leak rate test

    SciTech Connect (OSTI)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-10-31T23:59:59.000Z

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

  8. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01T23:59:59.000Z

    TECTONICS, VOL. 8, NO. 3, PAGES 453-467, JUNE 1989 EVOLUTION OF EXTENSIONAL BASINS AND BASIN AND RANGE TOPOGRAPHY WEST OF DEATH VALLEY, CALIFORNIA K.V. Hodges, L.W. McKenna, J. Stock , J. Knapp, L. Page, K. Sternlof, D. Silverberg, G. Wrist 2... of the extensional riders in this area indicates that the sole fault dips less than 15řNW beneath the Nova Formation [Hodges et al., 1989]. Detailed mapping of the structurally lowest portions of the Nova Basin south of Panamint Butte (Figure 2; K.V. Hodges...

  9. Simplified vibratory characterization of alluvial basins

    E-Print Network [OSTI]

    Semblat, Jean-François; Duval, Anne-Marie

    2011-01-01T23:59:59.000Z

    For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement between modal numerical results and experimental ones is satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance.

  10. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01T23:59:59.000Z

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  11. NE Pacific Basin --Tagging Data Kate Myers, Ph.D.

    E-Print Network [OSTI]

    Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

  12. ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996

    E-Print Network [OSTI]

    #12;ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996 DOE FRAP 1996-03 Prepared-96.............................................. 22 LIST OF FIGURES Figure 1. Bridge Creek basin livestock wintering area back assessment, 1996 quality in the Bridge Creek basin are assessed. These sites had been inspected in the winter and spring

  13. Modeling thermal convection in supradetachment basins: example from western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

  14. Exploring Geophyte Use in the Northern Great Basin

    E-Print Network [OSTI]

    Provancher, William

    Wild Onion & Balsamroot Gambel Oak Pinyon Pine Salina Wild Rye Sunflower Seed Great Basin Rye IndianExploring Geophyte Use in the Northern Great Basin: nutrient content, handling costs, effects of human settlement, subsistence, and sociopolitical change in Basin/Plateau #12;Problems Geophytes

  15. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01T23:59:59.000Z

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  16. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25T23:59:59.000Z

    To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins...

  17. Basin Approach to Address Bacterial Impairments in Basins 15, 16, and 17

    E-Print Network [OSTI]

    Gregory, L.; Brown, M.; Hein, K.; Skow, K.; Engling, A.; Wagner, K.; Berthold, A.

    2014-01-01T23:59:59.000Z

    ), the population throughout the Matagorda Bay watershed are generally rural with dispersed cities. In Basin 15 the two major cities are El Campo and Palacios with a total basin population of 58,682. This produces a population density of approximately 61... between 2010 and 2050 with the exception of Lavaca and Fayette counties. The cities of Palacios, El Campo, Flatonia, Schulenburg, Shiner, Hallettsville, Yoakum, Edna, Victoria, and Port Lavaca, all located within the Matagorda Bay watershed...

  18. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  19. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  20. Summary status of K Basins sludge characterization

    SciTech Connect (OSTI)

    Baker, R.B.

    1995-01-20T23:59:59.000Z

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline.