National Library of Energy BETA

Sample records for basin fields mbbl

  1. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC

  2. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO

  3. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC

  4. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois Basin Forest City Basin Northern Appalachian Basin Powder River Basin Uinta Basin Cherokee Platform San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin Southwestern Coal Region Piceance Basin Big Horn Basin Wind River Basin Raton Basin Black Mesa Basin Terlingua Field Kaiparowits Basin Deep River Basin SW Colorado

  5. U V

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class Ventura Basin Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Proved Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  6. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co.

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  7. PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin Powder River Basin, North Half (Panel 1 of 2) Oil & Gas

  8. Webster Co. Kanawha Co. Cabell C

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl Appalachian Basin Boundary Appalachian Basin, Southern OH (Panel 4 of 7) Oil and Gas Fields By 2001 Liquids

  9. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids Reserve Class No 2001 Liiquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1000 Mbbl 1000.1 - 10,000 Mbbl Appalachian Basin Boundary C a n a d a N Y P A N Y U S A Appalachian Basin, NY Area (Panel 1 of 7) Oil and Gas Fields By 2001 Liquids

  10. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 Liquids

  11. Field Mapping At Northern Basin & Range Region (Blewitt Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details...

  12. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl Appalachian Basin Boundary C a n a d a U S A OH PA MI NY Lake Erie Lake St. Claire Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin WV Appalachian Basin, OH-PA (Panel 2 of 7) Oil and Gas Fields By 2001 Liquids

  13. WAT TENBERG SPIN DLE EAT ON BONN Y GREELEY ROGGEN WAVERLY SH

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Denver Basin Outline 0 20 40 10 30 Miles ± CO 2001 Reserve Summary for All Denver Basin Fields KS NE CO NE WY KS SD Index Map For 3 Denver Basin Panels The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of

  14. PR B_WY_C BM HILIGHT POWELL KIT TY WELL D RAW SC OT T MIKES D

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline CO Index Map For 2 Powder River Basin Panels WY MT SD NE ND Powder River Basin 1 2 NE Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin 2001 Reserve Summary for All Powder River Basin Fields PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR

  15. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  16. Field Mapping At Nw Basin & Range Region (Blewitt Et Al, 2005...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Nw Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details...

  17. Field Mapping At Northern Basin and Range Geothermal Region ...

    Open Energy Info (EERE)

    extension over broad areas of the northern Basin and Range. References Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown, R. (1 April 1993) Fission track evidence for...

  18. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 Liquids

  19. SILO LILLI SID NEY SW BIG SPRINGS SLOSS LITT LE H OOT SILO JUR

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1- 100,000 Mbbl Basin Outline The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural

  20. BR UFF BIG PINEY WILD ROSE BLU E GAP BR UFF UNIT WAMSUT TER

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline ID The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural

  1. LOOKOU T U-87 U-70 PEC ONI C COM AN CHE CR EEK U-107 HUGO CLIFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Denver Basin Outline The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural

  2. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  3. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001 gas reserves Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 Gas

  4. Assessing the Rye Patch Geothermal Field, a Classic Basin-and...

    Open Energy Info (EERE)

    the Rye Patch Geothermal Field, a Classic Basin-and-Range Resource Authors S.K Sanyal, J.R McNitt, S. J. Butler, C. W. Klein and and R.E. Elliss Published Journal GRC...

  5. ARM - Field Campaign - Columbia Basin Wind Energy Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsColumbia Basin Wind Energy Study Campaign Links Outsmarting the Wind -- U.S. News Science Old meteorological techniques used in new wind farm study -- EcoSeed ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Columbia Basin Wind Energy Study 2010.09.27 - 2011.05.31 Lead Scientist : Larry Berg For data sets, see below. Abstract The primary focus of this study was to obtain a multi-season data set

  6. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  7. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  8. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline WY UT ID INDEX MAP 2001 ...

  9. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 Reserves 0.1 - 10 MBOE Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 BOE

  10. Palynostratigraphy of the Erkovtsy field of brown coal (the Zeya-Bureya sedimentary basin)

    SciTech Connect (OSTI)

    Kezina, T.V.; Litvinenko, N.D.

    2007-08-15

    The Erkovtsy brown coal field in the northwestern Zeya-Bureya sedimentary basin (129-130{sup o}E, 46-47{sup o}N) is structurally confined to southern flank of the Mesozoic-Cenozoic Belogor'e depression. The verified stratigraphic scheme of the coalfield sedimentary sequence is substantiated by palynological data on core samples from 18 boreholes sampled in the course of detailed prospecting and by paleobotanical analysis of sections in the Yuzhnyi sector of the coalfield (data of 1998 by M.A. Akhmetiev and S.P. Manchester). Sections of the Erkovtsy, Arkhara-Boguchan, and Raichikha brown-coal mines are correlated. Stratigraphic subdivisions distinguished in the studied sedimentary succession are the middle and upper Tsagayan subformations (the latter incorporating the Kivda Beds), Raichikha, Mukhino, Buzuli, and Sazanka formations.

  11. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect (OSTI)

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  12. PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin Powder River Basin, North Half (Panel 1 of 2) Oil

  13. S R

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class 0 1 2 0.5 1.5 Miles E. Oregon-Washington Fields 2004 Liquid Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  14. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  15. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    U.S. Energy Information Administration (EIA) Indexed Site

    No 2001 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl Appalachian Basin Boundary Appalachian Basin, Eastern PA (Panel 3 of 7) Oil and Gas ...

  16. FELDA W SUNOCO F ELDA SEMINOLE SUNNILAND BEAR ISLAND CORKSCREW

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 MMbbl 10 - 100 Mbbl 100 - 1,000 Mbbl 1,000 - 10,000 Mbbl Study Area Boundary South Florida Peninsula Oil and Gas Fields By ...

  17. Webster Co. Kanawha Co. Cabell C

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, Southern OH (Panel 4 of 7) Oil and Gas Fields By 2001 BOE Reserve Class Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin OH WV The mapped oil and gas field

  18. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 BOE

  19. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 Gas

  20. Geology reinterpretation of an inactive old field-Mata 3, Venezuelan East Basin-using computer methods

    SciTech Connect (OSTI)

    Rodriguez, O.; Rivero, C.; Abud, J.

    1996-08-01

    Nowadays to find a new oil field is a very dificult task that the petroleum people know very well; therefore the reactivation of an old oil field that had important production is the best way to increase the economic benefits for the Corporation and for the country in general. In this paper, the most important point was the Geology Study regarding the reopening of the Mata-3 oil field, which ceased to be active 15 years ago, after producing 30 mmbls of light oil. There are 30 prospective sands but only 3 of them have produced 70% of the primary production. Thus, the principal objectives were the S2, S3, 4 sands of Oficina Formation (Venezuelan East Basin) in 476 wells located in this area. The following computer systems that were available to us: GIPSIE System, Vax (Intergraph Co.); PMSE System, Vax (Intergraph Co.); CPS-3 System, Unix (Radian Co.); and SIGEMAP System PC (Corpoven, S.A.). All of them assist in the different tasks that must be done by the geologists working in the interpretation area. In the end, we recommended 40 wells to workover (2 wells/year for 20 years) and thereby to increase the POI (petroleum in situ) and increase the reserves by 13.4 mmbls of fight oil, important commercial production. The estimate of the total investment is about $2 million (340 mmBs.).

  1. Kenai Tyonek Kasilof Nikiski Soldotna Salamatof KENAI BELUGA RIVER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl Boundary of Fields in Offshore 0 4 8 2 6 Miles Northeast Cook Inlet ± KATALLA Gulf of AK Southern Alaska (Cook Inlet) Oil and Gas Fields By 2004 Liquids

  2. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION

    SciTech Connect (OSTI)

    Don L. Hanosh

    2004-08-01

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

  3. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.; Morgan, C.D.

    1996-05-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

  4. PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin Powder River Basin, North Half (Panel 1 of 2) Oil

  5. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  6. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian Basin Boundary C a n a d a U S A OH PA MI NY Lake Erie Lake St. Claire Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin WV Appalachian Basin, OH-PA (Panel 2 of 7) Oil and Gas Fields By

  7. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate

  8. Parana basin

    SciTech Connect (OSTI)

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  9. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  10. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  11. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    SciTech Connect (OSTI)

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    2012-11-01

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E?¢????12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E?¢????25 to 1E?¢????24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E?¢????3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E?¢????12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E?¢????25 to 1E?¢????24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E?¢????3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fl

  12. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  13. Utah Nevada California Arizona Idaho Oregon Wyoming

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information.

  14. Ventura_E_liquids.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2004 Proved Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl Study Area Outline 0 4 8 2 6 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by

  15. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  16. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  17. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  18. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  19. Geothermal Resource Analysis And Structure Of Basin And Range...

    Open Energy Info (EERE)

    And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  20. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T H R U S T B E L T U I N T A - P I C E A N C E B A S I N GR EA TE R GR EE N RIV ER BA SIN PARADOX BASIN RATON BASIN SAN JUAN BASIN ARKOMA BASIN ANADARKO BASIN EAST TEXAS BASIN FT WORTH BASIN LOUISIANA-MISSISSIPPIA SALT BASINS APPALACHIAN BASIN WESTERN GULF PROVINCE GULF COAST OFFSHORE BASIN WIND RIVER BASIN POWDER RIVER BASIN PERMIAN BASIN DENVER BASIN SAN JOAQUIN BAS IN WILLISTON BASIN 4 5 3 1 8 7 9 2 59 54 61 89 78 80 83 88 57 62 98 76

  1. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  2. the Central Basin Platform,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    q / ~ ~ - ~ / o o f - - 2 3 - / % 8 Overview of the Structural Geology and Tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico T . Hoaka, K. Sundbergb, and P. Ortolevac a Kestrel Geoscience, LLC 9683 West Chatfield Avenue, Unit D Littleton, Colorado 80128 b Phillips Petroleum Company 252 Geoscience Building Bartlesville, Oklahoma 74003 c Laboratory for Computational Geodynamics Department of Chemistry Indiana University Bloomington, Indiana 47405

  3. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  4. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  5. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  6. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  7. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    the Basin and Range province in Hidalgo County, southwestern New Mexico Authors Deal, E. G., Elston, W.E., Erb, E. E., Peterson, S. L., & Reiter and D. E. Conference 29th Field...

  8. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  9. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  10. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  11. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  12. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  13. Subsurface basin analysis of fault-controlled turbidite system in Bradano trough, southern Adriatic foredeep, Italy

    SciTech Connect (OSTI)

    Casnedi, R.

    1988-11-01

    Subsurface data (seismic lines, wireline logs, cores, and drill cuttings) from intensive hydrocarbon exploration in the Pliocene-Pleistocene Bradano Trough were used in performing a three-dimensional basin analysis and in reconstructing the time-space evolution of the basin. A middle Pliocene sedimentary system characterizes the hydrocarbon-bearing sands of the major gas field of the Bradano Trough, the Candela field. This system includes two phases of deposition in a migrating basin. 9 figures.

  14. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015","1/15/1981" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  15. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015,"6/30/1981" ,"Release Date:","3/11/2016" ,"Next Release Date:","8/31/2016" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016

  16. Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico

    SciTech Connect (OSTI)

    Hoak, T.; Sundberg, K.; Ortoleva, P.

    1998-12-31

    The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.

  17. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  18. Field Mapping At Hawthorne Area (Lazaro, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy...

  19. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  20. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power...

  1. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  3. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  4. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  5. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996

    SciTech Connect (OSTI)

    Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

    1998-09-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  6. EA-64 Basin Electric Power Cooperative | Department of Energy

    Energy Savers [EERE]

    Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada PDF icon EA-64 Basin Electric Power Cooperative More Documents & Publications EA-64-A

  7. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Energy Savers [EERE]

    -A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada PDF icon EA-64-A Basin Electric Power Cooperative More Documents & Publications EA-64

  8. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  9. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish...

  10. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Broader source: Energy.gov [DOE]

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  11. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  12. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  13. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect (OSTI)

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  14. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  15. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  16. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H.; Boswell, R.

    1993-12-31

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  17. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  18. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  19. Field Mapping At Northern Basin & Range Region (Shevenell, Et...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  20. Field Mapping At Nw Basin & Range Region (Shevenell, Et Al.,...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  1. Field Mapping At Northern Basin & Range Region (Blewitt, Et Al...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  2. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  3. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  4. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  6. K-Basins - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basins About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  7. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  8. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  9. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  10. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  11. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  12. CRAD, Emergency Management - Office of River Protection K Basin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section ...

  13. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  14. Climate Change and the Macroeconomy in the Caribbean Basin: Analysis...

    Open Energy Info (EERE)

    in the Caribbean Basin: Analysis and Projections to 2099 Jump to: navigation, search Name Climate Change and the Macroeconomy in the Caribbean Basin: Analysis and Projections to...

  15. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  16. Judith Basin County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  17. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  18. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  19. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  20. K Basins isolation barriers summary report

    SciTech Connect (OSTI)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

  1. PP-64 Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Basin Electric Power Cooperative PP-64 Basin Electric Power Cooperative Presidential Permit Authorizing Basin Electric Power Cooperative to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-64 Basin Electric Power Cooperative More Documents & Publications PP-61 Minnkota Power Cooperative (MPC) PP-42 Roseau Electric Cooperative, Inc. PP-61-1 Minnkota Power Cooperative (MPC

  2. K Basins Sludge Treatment Process | Department of Energy

    Energy Savers [EERE]

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download PDF icon K Basins Sludge Treatment Process PDF icon Summary - K Basins Sludge Treatment Process More Documents & Publications Compilation of TRA Summaries K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide

  3. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarters report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  4. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  5. Carderock Maneuvering & Seakeeping Basin | Open Energy Information

    Open Energy Info (EERE)

    6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned...

  6. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish habitat structures was completed on ...

  7. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  8. 183-H Basin sludge treatability test report

    SciTech Connect (OSTI)

    Biyani, R.K.

    1995-12-31

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  9. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  10. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  11. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  12. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  13. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect (OSTI)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  14. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  15. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  16. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  17. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to ...

  18. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  19. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  20. Geothermal Literature Review At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  1. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990. Citation Details In-Document Search Title: Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1990. The goal of the Fifteenmile Creek Habitat Improvement project is to improve wild winter steelhead habitat in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2.

  2. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Exploration Strategies Tectonic & Structural Controls of Great Basin Geothermal Systems: Developing Successful Exploration Strategies Keeping Nevada in Hot Water ...

  3. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site This fact sheet provides information about the Shirley Basin South, Wyoming, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shirley Basin South, Wyoming, Disposal Site Site Description and History The Shirley Basin South disposal site is located in rural Carbon County about 60 miles south of Casper and 35 miles

  4. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  5. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  6. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect (OSTI)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  7. Okanogan Basin Spring Spawner Report for 2007.

    SciTech Connect (OSTI)

    Colville Tribes, Department of Fish & Wildlife

    2007-09-01

    The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

  8. Analysis of K west basin canister gas

    SciTech Connect (OSTI)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  9. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  12. Landslide oil field, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  13. K Basin sludge treatment process description

    SciTech Connect (OSTI)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  14. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson

    2006-07-01

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  15. A Calibrated Maxey-Eakin Curve for the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin, which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Recharge rates are estimated on the basis that some fraction of annual precipitation will recharge, and that fraction will increase with increasing elevation. This results in a hypothetical curve relating annual groundwater recharge to annual precipitation. Field validation of recharge rates is critical in order to establish credibility to any estimate. This is due to the fact that the Maxey-Eakin model is empirical. An empirical model is derived from practical experience rather than basic theory. Therefore, a validated Maxey-Eakin model in one groundwater basin does not translate to a different one. In the WRD's Maxey-Eakin model, they used a curve calibrated against three locations in western Nevada and applied it to the Fenner Basin. It is of particular importance to note that all three of the WRD's location are west of longitude 116{sup o}W, where annual precipitation is significantly lower. Therefore, The WRD's Maxey-Eakin curve was calibrated to a drier climate, and its application to the Fenner Basin lacks credibility.

  16. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect (OSTI)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.

  17. K Basins fuel encapsulation and storage hazard categorization

    SciTech Connect (OSTI)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a {open_quotes}Category 2{close_quotes} Facility.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  19. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect (OSTI)

    Gustavson, T.C. (Univ. of Texas, Austin, TX (United States)); Holliday, V.T. (Univ. of Wisconsin, Madison, WI (United States))

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  20. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  1. EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Umatilla

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, Oregon | Department of Energy Walla Walla Basin Spring Chinook Hatchery Program; Umatilla County, Oregon EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Umatilla County, Oregon SUMMARY Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin.

  2. EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program;...

    Broader source: Energy.gov (indexed) [DOE]

    Walla Walla Basin Spring Chinook Hatchery Program Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download...

  3. Independent Oversight Review, Hanford K Basin and Cold Vacuum...

    Broader source: Energy.gov (indexed) [DOE]

    Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations This report provides the results of an independent oversight review of operations...

  4. Micro-Earthquake At Northwest Basin and Range Geothermal Region...

    Open Energy Info (EERE)

    Micro-Earthquake At Northwest Basin and Range Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At...

  5. EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project...

    Energy Savers [EERE]

    Sampson Hatchery, Yakima Basin Coho Project; Kittitas County, Washington Contact Dave Goodman jdgoodman@bpa.gov (503) 230-4764 More Information http:efw.bpa.gov...

  6. Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) |...

    Open Energy Info (EERE)

    Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  7. Compound and Elemental Analysis At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  8. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  9. Isotopic Analysis At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  10. Dixie Valley - Geothermal Development in the Basin and Range...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  11. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash &...

  12. Lithium In Tufas Of The Great Basin- Exploration Implications...

    Open Energy Info (EERE)

    In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  13. Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  14. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  15. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin,...

  16. Oregon Willamette River Basin Mitigation Agreement | Open Energy...

    Open Energy Info (EERE)

    River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for DOI...

  17. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstrationn Project, outlining the technical aspects of the User Group System.

  18. Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher...

    Open Energy Info (EERE)

    Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nw...

  19. Geothermal Reservoir Assessment Case Study, Northern Basin and...

    Open Energy Info (EERE)

    Basin and Range Province, Northern Dixie Valley, Nevada Abstract NA Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy,...

  20. Water Sampling At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details...

  1. Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  2. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  3. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  4. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  5. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

  6. Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

  7. Contemporary Strain Rates in the Northern Basin and Range Province...

    Open Energy Info (EERE)

    province using data from continuous GPS (CGPS) networks, supplemented by additional campaign data from the Death Valley, northern Basin and Range, and Sierra Nevada-Great Valley...

  8. Geographic Information System At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

  9. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  10. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity...

  11. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  12. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  13. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity...

  15. Geodetic Survey At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Northern Basin & Range Region (Laney, 2005) Exploration Activity...

  16. Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...

    Open Energy Info (EERE)

    Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity...

  17. Kinematic model for postorogenic Basin and Range extension |...

    Open Energy Info (EERE)

    Article: Kinematic model for postorogenic Basin and Range extension Abstract The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek...

  18. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  19. Summary - K Basins Sludge Treatment Process

    Office of Environmental Management (EM)

    K Basin DOE is Proces the va at Han subsys oxidati objecti of-fact maturi Eleme Techn The as which seven * M * M * Pr * Pr * As The Ele Site: H roject: K P Report Date: A ited States Why DOE ns Sludge Treatme s constructing ss (STP) for re rious sludge st nford. The STP stems: sludge ion, assay, pac ive of the asse t" appraisal of t ty by first ident ents (CTEs) of t ology Readine What th ssessment team was further div CTEs and the Material Mobiliza Material Transfe rocess Chemis rocess

  20. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  3. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  4. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  5. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delaware W 28.49 W 131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern...

  6. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Gasoline and Diesel Fuel Update (EIA)

    Florida W 38.51 W 140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W 16.14 W 63.35 25.5% 1,681 W 88.5% Northern...

  7. Geodetic Survey At Nw Basin & Range Region (Blewitt Et Al, 2005...

    Open Energy Info (EERE)

    Geodetic Survey At Nw Basin & Range Region (Blewitt Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin &...

  8. Stratigraphy and petroleum potential of Trout Creek and Twentymile sandstones (Upper Cretaceous), Sand Wash Basin, Colorado

    SciTech Connect (OSTI)

    Siepman, B.R.

    1985-05-01

    The Trout Creek and Twentymile Sandstones (Mesaverde Group) in Moffat and Routt Counties, Colorado, are thick, upward-coarsening sequences that were deposited along the western margin of the Western Interior basin during Campanian time. These units trend northeast-southwest and undergo a facies change to coal-bearing strata on the northwest. Surface data collected along the southeastern rim of the Sand Wash basin were combined with well-log data from approximately 100 drill holes that have penetrated the Trout Creek or Twentymile in the subsurface. The sandstones exhibit distinctive vertical profiles with regard to grain size, sedimentary structures, and biogenic structures. A depositional model that incorporates the key elements of the modern Nile River (northeast Africa) and Nayarit (west-central Mexico) coastal systems is proposed for the Trout Creek and Twentymile sandstones and associated strata. The model depicts a wave-dominated deltaic, strand-plain, and barrier-island system. Depositional cycles are asymmetrical in cross section as they are largely progradational and lack significant transgressive deposits. Source rock-reservoir rock relationships are ideal as marine shales underlie, and coal-bearing strata overlie sheetlike reservoir sandstones. Humic coal, the dominant source of Mesaverde gas, generates major quantities of methane upon reaching thermal maturity. Existing Mesaverde gas fields are largely structural traps, but stratigraphic and combination traps may prove to be equally important. The sparsely drilled deeper part of the basin warrants testing as large, overpressured-gas accumulations in tight-sandstone reservoirs are likely to be found.

  9. The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada

    SciTech Connect (OSTI)

    Bowman, D.L.

    1984-02-01

    During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms of size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.

  10. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  11. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  12. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect (OSTI)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

  13. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  14. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  15. Biothem-based Mississippian transect from the Basin and Range Province to the Anadarko basin

    SciTech Connect (OSTI)

    Frye, M.W. ); Lane, H.R. ); Couples, G.D. )

    1991-03-01

    A west-to-east transect, constructed using the 'Biostratigraphic Package Approach' of Lane and Frye and illustrating the biostratigraphic, lithologic, and depositional sequence relationships within the Mississippian system, extends from the basin and range province across the Transcontinental Arch (TA) and into the Anadarko basin. The transect is based on both published and proprietary biostratigraphic data. It was constructed primarily to portray the regional distribution and exploration significance of biotherms relative to the axis of the TA. These biotherms are biostratigraphic units that are wedge- or lens-shaped bodies of strata that are bounded by paleontologically recognizable unconformities in their updip extents, are conformable with underlying and overlying biothems in their maximum shelfal development, are conformable or bounded by surfaces of nondeposition and or submarine erosion in their downdip, basinal extremities, and also contain a logical sequence of depositionally related facies. An unexpected result of constructing the transect was the recognition of an apparent compensatory temporal and spatial distribution of Mississippian biothems. This distribution is interpreted to imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. Platescale tilting, along with local subsidence and uplift, is suggested as the overriding mechanism controlling deposition along the extent of the transect.

  16. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect (OSTI)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  17. Depositional environments, sequence stratigraphy, and trap configuration of lower Wolfcampian clastics along eastern edge of Midland basin, west Texas

    SciTech Connect (OSTI)

    Stewart, N.R.; Reuter, S.G.

    1989-03-01

    The Lower Permian (lower Wolfcampian) along the eastern edge of the Midland basin, west Texas, is characterized by ramp-type shelf margins. During eustatic lowstand, nearshore sedimentation shifted drastically to the west into a basinal setting below the Pennsylvanian (Canyon) shelf margin. Core descriptions demonstrate that lowstand systems tract (LST) and transgressive systems tract (TST) siliciclastics were deposited in deltaic and coastal-plain environments. Prodelta, delta-front, and stream-mouth bar facies are associated with the LST. Coastal-plain and distributary channels are preserved in the TST. The sequence stratigraphic framework indicates type 1 sequence boundaries at 287 Ma, 282 Ma, and 280 Ma in the lower Wolfcampian clastics. This lower Wolfcampian package of sedimentary rocks overlies the Pennsylvanian and is capped by the 279-Ma middle Wolfcampian unconformity. All three sequence boundaries and associated systems tract deposits exhibit a prograding stacking pattern within the sequence stratigraphic framework. Basinally restricted prograding LST deltaic rocks are overlain by backstepping TST deltaics and highstand systems tract (HST) outer marine shales. Production in lower Wolfcampian clastic fields is associated with fine-grained quartzarenites up to 45 ft thick which were deposited in stream-mouth bars. Delta-front and prodelta low-permeability shales encase the reservoir facies, forming lateral permeability barriers. HST outer marine shales deposited over the stream-mouth-bar sandstones act as a top seal, creating a stratigraphic trap and providing source for the high-BTU gas and oil produced from these basinally restricted LST deltaics.

  18. CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Kevin McClure; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  20. Field Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecologist for a Day Field Guide Program supported by: ©2011, Savannah River Ecology Laboratory - Outreach Program INVERTEBRATES Page 1 Brown Millipede Burgundy Millipede Red Millipede Green Centipede Small Gray Millipede Carrion Beetle Larva Red Centipede Orb Weaver Trapdoor Spider W lf S id Harvestman (Daddy long legs) S i d Mi th Wolf Spiders Harvestman (Daddy-long-legs) Spined Micrathena MOUS SPIDER Black and Yellow Argiope Widow Spider Crab Spider Cross Spider ©2011, Savannah River Ecology

  1. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect (OSTI)

    Anderson, S.

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  2. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

  3. Field O

    Office of Legacy Management (LM)

    -- ! Department of Energy Field O ffice, O s k Ridge P.O . Box 2001 Oak Ridge, Tennessee 37031- 0723 April 20. 1993 Dr. Robert Kulikowskf Director, Bureau of Radiation Control New York City Department of Health 111 Livingston Street Brooklyn, New York 11201 Dear Dr. Kulfkowskf: BAKER AN0 W ILLIAM W AREHOUSES SITE - CORPLETION O F CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled c leanup activities to be conducted by the Department of Energy (WE) at 513-519

  4. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    br Brophy br Model br Moeck br Beardsmore br Type br Volume br Geothermal br Region Mean br Reservoir br Temp br Mean br Capacity Abraham Hot Springs Geothermal Area Northern Basin...

  5. Magnitude of Crustal Extension in the Southern Great Basin |...

    Open Energy Info (EERE)

    Magnitude of Crustal Extension in the Southern Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Magnitude of Crustal Extension in the...

  6. Diachroneity of Basin and Range Extension and Yellowstone Hotspot...

    Open Energy Info (EERE)

    Basin and Range Province. Authors Joseph P. Colgan, Trevor A. Dumitru and Elizabeth L. Miller Published Journal Geology, 2004 DOI 10.1130G20037.1 Online Internet link for...

  7. Adjudicated Groundwater Basins in California | Open Energy Information

    Open Energy Info (EERE)

    Basins in CaliforniaLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  8. Evaluation of Geothermal Potential of Rio Grande Rift and Basin...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range Province, New Mexico Abstract A...

  9. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural...

  10. Characteristics of Basin and Range Geothermal Systems with Fluid...

    Open Energy Info (EERE)

    of 150-200C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap...

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  12. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  13. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    SciTech Connect (OSTI)

    Saulsbury, Bo; Geerlofs, Simon H.; Cada, Glenn F; Bevelhimer, Mark S

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

  14. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  15. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences:

    Office of Scientific and Technical Information (OSTI)

    Nashville, Tennessee (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Citation Details In-Document Search Title: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Many cities are located at or near the confluence of streams where availability of water resources may be enhanced to sustain user needs while also posing an increased

  16. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied

    Office of Scientific and Technical Information (OSTI)

    Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations (Technical Report) | SciTech Connect CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations Citation Details In-Document Search Title: CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations This

  17. Tectonic & Structural Controls of Great Basin Geothermal Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Successful Exploration Strategies | Department of Energy Tectonic & Structural Controls of Great Basin Geothermal Systems: Developing Successful Exploration Strategies Tectonic & Structural Controls of Great Basin Geothermal Systems: Developing Successful Exploration Strategies Keeping Nevada in Hot Water presentation by James Faulds of University of Nevada, Reno at the 2013 Annual Peer Review meeting in Colorado. PDF icon nevada_hotwater_peerreview2013.pdf More Documents

  18. CRAD, Emergency Management - Office of River Protection K Basin Sludge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste System | Department of Energy Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River

  19. K Basins Sludge Treatment Project Phase 1 | Department of Energy

    Energy Savers [EERE]

    Project Phase 1 K Basins Sludge Treatment Project Phase 1 Full Document and Summary Versions are available for download PDF icon K Basins Sludge Treatment Project Phase 1 More Documents & Publications Compilation of TRA Summaries Independent Activity Report, Richland Operations Office - April 2011 Enterprise Assessments, Review of the Hanford Site Sludge Treatment Project Engineered Container Retrieval and Transfer System Preliminary Documented Safety Analysis, Revision 00 - April 2015

  20. Repository site definition in basalt: Pasco Basin, Washington

    SciTech Connect (OSTI)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  1. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  2. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect (OSTI)

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  3. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect (OSTI)

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  4. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  5. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  6. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff ‘n’ puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  7. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  9. Potiguar basin: geologic model and habitat of oil of a Brazilian equatorial basin

    SciTech Connect (OSTI)

    Falkenhein, F.U.; Barros, R.M.; Da Costa, I.G.; Cainelli, C.

    1984-04-01

    The Potiguar basin integrates the eastern part of the Brazilian equatorial Atlantic-type margin. The rifting stage of this basin occurred during the Neocomian and Aptian. The drifting stage and sea-floor spreading began in the Late Albian. The rifting stage clearly was intracratonic during the Neocomian and is recognized as a mosaic of half-grabens trending mostly northeast-southwest and filled with syntectonic lacustrine siliciclastics. The half-graben pattern exhibits rotation of beds into the major fault zone, and the preserved uplifted margins display either paleostructures of paleogeomorphic features with hydrocarbons. A regional pre-Aptian unconformity preceded the Aptian proto-oceanic rifting stage which was characterized by syntectonic fluvio-deltaic sediments. The Aptian tectonics were represented by reactivation of former lineaments superimposed by predominant east-west normal faulting. Structural highs during this stage are so far the most prolific oil accumulations. The most important source beds and reservoir rocks are both Neocomian and Aptian sediments. Geochemistry and hydrodynamics have shown that hydrocarbon migration was driven through fracture or fault zones in both Aptian or Albian plays. Lithofacies maps support this interpretation because pools occur whenever adjacent downthrown blocks present a high shale content.

  10. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  11. South Atlantic sag basins: new petroleum system components

    SciTech Connect (OSTI)

    Henry, S.G. Mohriak, W.U.; Mello, M.R.

    1996-08-01

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

  12. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  13. Assessing the Rye Patch geothermal field, a classic Basin-and...

    Open Energy Info (EERE)

    if one or two additional wells are drilled for injection. Authors Sanyal, S.K., McNitt, J.R., Butler, S.J., Klein, C.W., and Ellis and R.K. Conference GRC Annual Meeting;...

  14. Field Mapping At Nw Basin & Range Region (Blewitt, Et Al., 2003...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  15. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  16. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  20. Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-05-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

  1. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect (OSTI)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  2. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect (OSTI)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  3. Shale Gas Development in the Susquehanna River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay

  4. Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin

    Office of Environmental Management (EM)

    Site (SRS) recently cleaned up a 17- acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a cost of $8.9 million, $2.9 million under budget. The manmade earthen basin received ash from the former R Area Pow- erhouse operations, which ended in 1964. The first of five reactors con- structed at SRS, the R Reactor produced nuclear materials for national defense. Recovery Act funding allowed SRS to accelerate

  5. Title Geology of the Great Basin. Copyright Issue Entire Book

    National Nuclear Security Administration (NNSA)

    Geology of the Great Basin. Copyright Issue Entire Book Author Fiero, B. 101084 Document Date 1/1/86 Document Type Book ERC Index number 05.09.128 Box Number 1672-1 Recipients Unversity of Nevada Reno Press ADI " Geology of the Great Basin Cover photograph: ^prings, Black Rock Desert, Nevada. John The document contained in this file has not been saved as an electronic file because it is copyrighted material. A hard copy of this document can be found in Box Number 0526-4

  6. Heat flow in the northern Basin and Range province | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat flow in the northern Basin and Range province Abstract The heat flow in the Basin and Range...

  7. Functions and requirements for 105-KE Basin sludge retrieval and packaging

    SciTech Connect (OSTI)

    Feigenbutz, L.V.

    1994-12-16

    Sludge, and the clouding due to sludge, interferes with basin operation and maintenance activities. This document defines the overall functions and requirements for sludge retrieval and packaging activities to be performed in the 105-KE Basin.

  8. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect (OSTI)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  9. Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility- August 2012

    Broader source: Energy.gov [DOE]

    Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations

  10. K Basins Groundwater Monitoring Task, Spent Nuclear Fuels Project: Report for April, May, and June 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-08-30

    This report provides a summary of groundwater monitoring at the K Basins during April, May, and June 2006

  11. Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative, IG-0409

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 25, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative" BACKGROUND: At the request of the Western Area Power Administration (Western), we conducted an audit of charges to Western made by Basin Electric Power Cooperative (Basin), under Contract No. DE- MP65-82WP-19001. The contract for Westernms purchase of electric power from Basin

  12. Gas/liquid sampler for closed canisters in KW Basin - test report

    SciTech Connect (OSTI)

    Pitkoff, C.C.

    1995-01-23

    Test report for the gas/liquid sampler designed and developed for sampling closed canisters in the KW Basin.

  13. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  14. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  15. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect (OSTI)

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  16. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  17. Physical property characterization of 183-H Basin sludge

    SciTech Connect (OSTI)

    Biyani, R.K.; Delegard, C.H.

    1995-09-20

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting `loss-on-ignition` was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs.

  18. GAMA-LLNL Alpine Basin Special Study: Scope of Work

    SciTech Connect (OSTI)

    Singleton, M J; Visser, A; Esser, B K; Moran, J E

    2011-12-12

    For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

  19. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  20. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  1. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  2. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks

    SciTech Connect (OSTI)

    Beverly Seyler; David Harris; Brian Keith; Bryan Huff; Yaghoob Lasemi

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons, and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.

  3. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 10.4 Biodiesel and Other Renewable Fuels Overview Biodiesel Other Renew- able Fuels f Feed- stock a Losses and Co- prod- ucts b Production Trade Stocks d Stock Change e Consumption Imports Exports Net Imports c TBtu TBtu Mbbl MMgal TBtu Mbbl Mbbl Mbbl Mbbl Mbbl Mbbl MMgal TBtu TBtu 2001 Total .................... 1 (s) 204 9 1 81 41 40 NA NA 244 10 1 NA 2002 Total .................... 1 (s) 250 10 1 197 57 140

  4. Historical trends and extremes in boreal Alaska river basins

    SciTech Connect (OSTI)

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flow events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.

  5. Historical trends and extremes in boreal Alaska river basins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  6. Criticality safety evaluation report for K Basin filter cartridges

    SciTech Connect (OSTI)

    Schwinkendorf, K.N.

    1995-01-01

    A criticality safety evaluation of the K Basin filter cartridge assemblies has been completed to support operations without a criticality alarm system. The results show that for normal operation, the filter cartridge assembly is far below the safety limit of k{sub eff} = 0.95, which is applied to plutonium systems at the Hanford Site. During normal operating conditions, uranium, plutonium, and fission and corrosion products in solution are continually accumulating in the available void spaces inside the filter cartridge medium. Currently, filter cartridge assemblies are scheduled to be replaced at six month intervals in KE Basin, and at one year intervals in KW Basin. According to available plutonium concentration data for KE Basin and data for the U/Pu ratio, it will take many times the six-month replacement time for sufficient fissionable material accumulation to take place to exceed the safety limit of k{sub eff} = 0.95, especially given the conservative assumption that the presence of fission and corrosion products is ignored. Accumulation of sludge with a composition typical of that measured in the sand filter backwash pit will not lead to a k{sub eff} = 0.95 value. For off-normal scenarios, it would require at least two unlikely, independent, and concurrent events to take place before the k{sub eff} = 0.95 limit was exceeded. Contingencies considered include failure to replace the filter cartridge assemblies at the scheduled time resulting in additional buildup of fissionable material, the loss of geometry control from the filter cartridge assembly breaking apart and releasing the individual filter cartridges into an optimal configuration, and concentrations of plutonium at U/Pu ratios less than measured data for KE Basin, typically close to 400 according to extensive measurements in the sand filter backwash pit and plutonium production information.

  7. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  8. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect (OSTI)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  9. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  10. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  11. Italy to open exclusive Po basin area in 1992

    SciTech Connect (OSTI)

    Rigo, F.

    1991-05-27

    Under new regulations of the European Community, no oil and gas state monopoly is allowed in the member countries. As a consequence, by 1992 Italy will open for application by international oil companies all lands not covered by exploitation concessions in the ENI exclusive area. This monopoly area covers the prolific Po basin, the cradle of the Italian state oil company AGIP SpA, Milan. Due to profits derived from numerous gas discoveries of the 1950s in this basin, AGIP, a relatively small enterprise at that time, could eventually afford to expand in Italy and abroad and through successful exploration achieve status of a major international oil company. The ENI exclusive area covers the Po and Veneto plains and adjacent 15 km of territorial waters, for a total surface of more than 23,000 sq miles. The area to become available for exploration will be regulated by the Italian petroleum law, for one of the most favorable in the world.

  12. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect (OSTI)

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  13. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  14. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  15. Cesium-137 in K west basin canister water

    SciTech Connect (OSTI)

    Trimble, D.J.

    1997-01-24

    Liquid and gas samples were taken from 50 K West Basin fuel storage canisters in 1996. The cesium-137 data from the liquid samples and an analysis of the data are presented. The analysis indicated that the cesium-137 data follow a lognormal distribution. Assuming that the total distribution of the K West canister water was predicted, the total K West Basin canister water was estimated to contain about 8,150 curies. The mean canister contains about 2.14 curies with as many as 5% or 190 of the canisters exceeding 19 curies. Opening ten canisters per shift could include a hot canister (cesium-137 > 25 curies) in one out of eight shifts.

  16. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  17. Structural framework, stratigraphy, and evolution of Brazilian marginal basins

    SciTech Connect (OSTI)

    Ojeda, H.A.O.

    1982-06-01

    The structural framework of the Brazilian continental margin is basically composed of eight structural types: antithetic tilted step-fault blocks, synthetic untilted step-fault blocks, structural inversion axes, hinges with compensation grabens, homoclinal structures, growth faults with rollovers, diapirs, and igneous structures. The antithetic tilted and synthetic untilted step-fault blocks are considered as synchronous, complementary structural systems, separated by an inversion axis. Two evaporitic cycles (Paripueira and Ibura) were differentiated in the Sergipe-Alagoas type basin and tentatively correlated to the evaporitic section of other Brazilian marginal basis. Four phases are considered in the evolution of the Brazilian marginal basins: pre-rift, rift, transitional, and drift. During the pre-rift phase (Late Jurassic-Early Cretaceous), continental sediments were deposited in peripheral intracratonic basins. In the rift phase (Early Cretaceous), the breakup of the continental crust of the Gondwana continent gave rise to a central graben and rift valleys where lacustrine sediments were deposited. The transitional phase (Aptian) developed under relative tectonic stability, when evaporitic and clastic lacustrine sequences were being deposited. In the drift phase (Albian to Holocene), a regionl homoclinal structure developed, consisting of two distinct sedimentary sequences, a lower clastic-carbonate and an upper clastic. From the Albian to the Holocene Epoch, structures associated to plastic displacement of salt or shale developed in many Brazilian marginal basins. Two phases of major igneous activity occurred: one in the Early Cretaceous associated with the rift phase of the Gondwana continent, and the other in the Tertiary during the migration phase of the South American and African plates.

  18. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  19. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  20. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  1. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    SciTech Connect (OSTI)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  2. Analysis of water from K west basin canisters (second campaign)

    SciTech Connect (OSTI)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and liquid samples have been obtained from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters. The data will provide source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System subproject (Ball 1996) and the K Basins Fuel Retrieval System subproject (Waymire 1996). The barrels of ten canisters were sampled in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results for the gas and liquid samples of the first campaign have been reported (Trimble 1995a; Trimble 1995b; Trimble 1996a; Trimble 1996b). An analysis of cesium-137 (137CS ) data from the second campaign samples was reported (Trimble and Welsh 1997), and the gas sample results are documented in Trimble 1997. This report documents the results of all analytes of liquid samples from the second campaign.

  3. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin sections, leading to an interpretation of the sequence of diagenetic events and development of porosity in the reservoir. Nearly 1000 stable isotope geochemistry samples have been collected from cores in four of the five states in the study area. More than 400 of these samples will be analyzed for fluid inclusion and/or strontium isotope analyses, as well. Gas samples have been collected from 21 wells in four states and analyzed for chemical content and isotope analyses of carbon and hydrogen. Because natural gases vary in chemical and isotope composition as a function of their formation and migration history, crossplots of these values can be very revealing. Gas from the Homer field in Kentucky indicates compartmentalization and at least two different sources. Gas from the York field in Ohio also came from at least two discrete compartments. Gas from the Cottontree field in West Virginia is very dry, probably generated from post-mature source rocks. Isotope reversals may be indicative of cracking of residual oil. Gas from Glodes Corners Road field in New York also is post-mature, dry gas, and again isotope reversals may indicate cracking of residual oil in the reservoir. Noble gases are predominantly of crustal origin, but a minor helium component was derived from the mantle. The project web server continues to evolve as the project progresses. The user/password authenticated website has 18 industry partner users and 20 research team users. Software has been installed to track website use. Two meetings of the research team were held to review the status of the project and prepare reports to be given to the full consortium. A meeting of the full consortium--industry partners and researchers--was very successful. However, the ultimate product of the research could be improved if industry members were more forthcoming with proprietary data.

  4. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  5. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect (OSTI)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  6. Tectonosedimentary evolution of the Crotone basin, Italy: Implications for Calabrian Arc geodynamics

    SciTech Connect (OSTI)

    Smale, J.L. ); Rio, D. ); Thunell, R.C. )

    1990-05-01

    Analysis of outcrop, well, and offshore seismic data has allowed the Neogene tectonosedimentary evolution of an Ionian Sea satellite basin to be outlined. The Crotone basin contains a series of postorogenic sediments deposited since Serravallian time atop a complex nappe system emplaced in the early Miocene. The basin's evolution can be considered predominantly one of distension in a fore-arc setting punctuated by compressional events. The earliest sediments (middle-late Miocene) consist of conglomerates, marls, and evaporites infilling a rapidly subsiding basin. A basin-wide Messinian unconformity and associated intraformational folding mark the close of this sedimentary cycle. Reestablishment of marine conditions in the early Pliocene is documented by sediments which show a distinct color banding and apparent rhythmicity, which may represent the basin margin to lowermost Pliocene marl/limestone rhythmic couplets present in southern Calabria. A bounding unconformity surface of middle Pliocene age (3.0 Ma), which corresponds to a major northwest-southeast compressional event, closes this depositional sequence. The basin depocenter shifted markedly toward the southeast, and both chaotic and strong subparallel reflector seismic facies of wide-ranging thicknesses fill the depositional topography created during this tectonic episode. Basin subsidence decreases dramatically in the late Pliocene and cessates in response to basin margin uplift in the early Pleistocene. The chronostratigraphic hierarchy of these depositional sequences allows them to constrain the deformational history of the basin. In addition, similar depositional hierarchies in adjacent basins (i.e., Paola, Cefalu, and Tyrrhenian Sea) allow them to tie the stratigraphy and evolution of the Crotone basin to the geodynamic evolution of the Calabrian arc system.

  7. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin |

    Office of Environmental Management (EM)

    Department of Energy Accomplish Cleanup of Second Cold War Coal Ash Basin Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS). About $24 million from the Recovery Act funded the environmental restoration project, allowing SRS to complete the project at least five years ahead of schedule. The work is part

  8. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  9. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect (OSTI)

    Wood, James R.; Harrison, William B.

    2002-12-02

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  10. Savannah River Site - D-Area Oil Seepage Basin | Department of Energy

    Energy Savers [EERE]

    - D-Area Oil Seepage Basin Savannah River Site - D-Area Oil Seepage Basin January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River Site Plume Name: D-Area Oil Seepage Basin Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCs/SVOCs Present?: Yes VOC Name Concentration (ppb)

  11. K-West and K-East basin thermal analyses for dry conditions

    SciTech Connect (OSTI)

    Beaver, T.R.; Cramer, E.R.; Hinman, C.A.

    1994-09-29

    Detailed 3 dimensional thermal analyses of the 100K East and 100 K West basins were conducted to determine the peak fuel temperature for intact fuel in the event of a complete loss of water from the basins. Thermal models for the building, an array of fuel encapsulation canisters on the basin floor, and the fuel within a single canister are described along with conservative predictions for the maximum expected temperatures for the loss of water event.

  12. Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin

    Office of Environmental Management (EM)

    | Department of Energy Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental

  13. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    SciTech Connect (OSTI)

    Boles, James R.; Garven, Grant

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  14. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  15. File:EIA-Eastern-GreatBasin-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Eastern Great Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  16. Minimum 186 Basin levels required for operation of ECS and CWS pumps

    SciTech Connect (OSTI)

    Reeves, K.K.; Barbour, K.L.

    1992-10-01

    Operation of K Reactor with a cooling tower requires that 186 Basin loss of inventory transients be considered during Design Basis Accident analyses requiring ECS injection, such as the LOCA and LOPA. Since the cooling tower systems are not considered safety systems, credit is not taken for their continued operation during a LOPA or LOCA even though they would likely continue to operate as designed. Without the continued circulation of cooling water to the 186 Basin by the cooling tower pumps, the 186 Basin will lose inventory until additional make-up can be obtained from the river water supply system. Increasing the make-up to the 186 Basin from the river water system may require the opening of manually operated valves, the starting of additional river water pumps, and adjustments of the flow to L Area. In the time required for these actions a loss of basin inventory could occur. The ECS and CWS pumps are supplied by the 186 Basin. A reduction in the basin level will result in decreased pump suction head. This reduction in suction head will result in decreased output from the pumps and, if severe enough, could lead to pump cavitation for some configurations. The subject of this report is the minimum 186 Basin level required to prevent ECS and CWS pump cavitation. The reduction in ECS flow due to a reduced 186 Basin level without cavitation is part of a separate study.

  17. Feasibility for Reintroducing Sockeye and Coho Salmon in the Grande Ronde Basin, 1998 Final Report.

    SciTech Connect (OSTI)

    Cramer, Steven P.; Witty, Kenneth L.

    1998-07-01

    A report concerning the feasibility of reintroducing Sockeye Salmon into Wallowa Lake and Coho Salmon into the Grande Ronde River Basin.

  18. Structural safety evaluation of the K Basin railcar and truck applications

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-08-01

    There are two rail spurs in the storage/transfer areas of both the K East and K West fuel storage basins. These rail spurs both end at the west edge of the basins. To avoid accidental entry of a railcar into a basin, administrative procedures and rail control hardware have been provided. Based upon a combination of historical documentation and existing adminstrative controls, a maximum credible impact accident was established. Using this design basis accident, the existing rail control hardware was evaluated for structural adequacy. The K Basin rail spurs are embedded in concrete, which permits truck/trailer entry into the same area. Safety issues for truck applications are also addressed.

  19. Water scarcity and development in the Tigris-Euphrates river basin. Master`s thesis

    SciTech Connect (OSTI)

    1995-08-01

    This report will examine aspects of water scarcity and development, and discuss solutions available to avoid conflict over water in the Tigris-Euphrates River Basin. (MM).

  20. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K.

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  1. MOSRC Field Definitions 01202016 MOSRC Field Definitions

    Office of Environmental Management (EM)

    MOSRC Field Definitions 01202016 MOSRC Field Definitions 1/5 1/20/2016 Field Name Definition Prime Contract Procurement Instrument Identifier The unique Prime Contractor identifier as it is recorded on the original (or base) contract in FPDS-NG. This must be a valid DOE M&O PIID, as recorded in FPDS-NG. Prime Contract DUNS Number The Prime Contractor's Dun and Bradstreet Data Universal Numbering System (DUNS) as it is recorded on the prime contract in FPDS-NG. Subcontract DUNS Number The

  2. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  3. THIN SECTION DESCRIPTIONS: LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field in Utah (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  4. Tanzania wildcats to evaluate Jurassic Mandawa salt basin

    SciTech Connect (OSTI)

    Nagati, M.

    1996-10-07

    After 5 years of stagnant exploration in East Africa, Canadian independent Tanganyika Oil Co. of Vancouver, B.C., will drill two wildcats in Tanzania to evaluate the hydrocarbon potential of the coastal Jurassic Mandawa salt basin. Mita-1, spudded around Oct. 1, will be drilled to about 7,000 ft, East Lika-1 will be drilled in early December 1996 to approximately 6,000 ft. The two wells will test different structures and play concepts. The paper describes the exploration history, source rock potential, hydrocarbon shows, potential reservoir, and the prospects.

  5. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  6. California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Los Angeles

  7. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 235 2010's 257 295 265 255 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  8. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 93 86 80 - = No Data Reported; -- = Not Applicable;

  9. California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 15 6 6 6 5 6 8 8 7 4 1990's 5 4 5 6 5 4 3 4 5 7 2000's 10 8 10 8 8 9 10 9 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. California - Los Angeles Basin Onshore Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 98 90 84 - = No Data

  11. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not

  12. California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, San Joaquin

  13. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,095 2010's 2,037 1,950 1,893 1,813 1,838 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,784 1980's 1,721 1,566 1,593 1,556 1,538 1,642 1,398 1,196 1,086 972 1990's 901 885 773 749 744 679 560 518 445 336 2000's 748 836

  16. KW-Basin Sludge Treatment Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities KW-Basin Sludge Treatment Project About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility

  17. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">