Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Organic and isotopic geochemistry of source-rocks and crude oils from the East Sirte Basin (Libya).  

E-Print Network (OSTI)

??The Sirte Basin is a major oil producing area in Libya, but the understanding of the processes that have led to the petroleum accumulation is… (more)

Aboglila, Salem Abdulghni-O

2010-01-01T23:59:59.000Z

2

Petroleum Geology and Geochemistry of Oils and Possible Source Rocks of the Southern East Coast Basin, New Zealand.  

E-Print Network (OSTI)

??The East Coast Basin of New Zealand contains up to 10,000 m of predominantly fine-grained marine sediments of Early Cretaceous to Pleistocene age, and widespread… (more)

Elgar, Nils Erik

1997-01-01T23:59:59.000Z

3

Geochemistry of oils from the Junggar basin, northwest China  

SciTech Connect

The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geo-chemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

Clayton, J.L.; King, J.D.; Lillis, P.G. [Geological Survey, Denver, CO (United States)] [and others

1997-11-01T23:59:59.000Z

4

PVT correlations for Middle East crude oils  

Science Conference Proceedings (OSTI)

Empirical equations for estimating bubblepoint pressure, oil FVF at bubblepoint pressure, and total FVF for Middle East crude oils were derived as a function of reservoir temperature, total surface gas relative density, solution GOR, and stock-tank oil relative density. These empirical equations should be valid for all types of oil and gas mixtures with properties falling within the range of the data used in this study.

Al-Marhoun, M.A.

1988-05-01T23:59:59.000Z

5

East Coast (PADD 1) Gross Inputs to Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gross Inputs to Atmospheric Crude Oil Distillation Units (Thousand Barrels per Day)

6

Weekly East Coast (PADD 1) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly East Coast (PADD 1) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

7

East Coast Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

East Coast Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

8

New Mexico - East Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

9

Armageddon, oil, and the Middle East crisis  

SciTech Connect

This book relates the intricate subject of biblical prophecy to the current crisis in the Middle East. With the development of oil politics, Dr. Walvoord believes a new world government will emerge, centered in the Middle East, which will eclipse the United States and Russia as world powers. The world government will be subjected to catastrophic, divine judgments which precipitate a gigantic world war culminating in Armageddon. Each chapter is devoted to the scriptural explanations of events leading to the second coming of Christ. The result is a prophetic calendar summing up to the countdown to Armageddon. Some of the chapter titles include: the Arab oil blackmail; watch Jerusalen; the rising tide of world religion; the coming Middle East peace; the coming world dictator; and Armageddon: the world's death struggle.

Walvoord, J.F.; Walvoord, J.E.

1980-01-01T23:59:59.000Z

10

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

11

Middle East oil show: Proceedings. Volume 2  

SciTech Connect

This conference proceedings represent the second volume of a two volume set of papers dealing with oil and gas development concepts in the Middle East. It presents papers dealing with enhanced recovery techniques, methods for predicting productivity of wells, computer modeling methods for reservoirs, methods for minimizing water influx and formation damage, offshore platform designs, and advances in various geophysical logging and surveying techniques. Papers deal with both the onshore and offshore environments.

NONE

1995-10-01T23:59:59.000Z

12

Geopolitical implications of Middle East oil  

SciTech Connect

Despite the current belief that there is no longer an energy crisis, the U.S. is highly dependent on imported oil from the Middle East. This dependence will increase with economic growth, causing crude imports to double by the year 2000. Without further investment in exploration and development, the U.S. will continue to suffer from a declining reserve base and the uncertainties associated with world politics.

Keplinger, H.F.

1986-11-01T23:59:59.000Z

13

Middle East oil show: Proceedings. Volume 1  

SciTech Connect

This is a book of conference proceedings which deal with critical issues and technologies being used to maximize recovery of the oil and gas resources of the Middle East. Papers include information on horizontal drilling techniques, corrosion control, offshore technologies, uses of flexible tubing in drilling and completion, scale control technologies, enhanced recovery techniques, and waste management. Other topics include performance testing for drilling fluids and new computer codes for simulating well performance during both tertiary and secondary recovery.

NONE

1995-11-01T23:59:59.000Z

14

California - San Joaquin Basin Onshore Crude Oil Estimated ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Estimated Production from Reserves (Million Barrels)

15

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

16

New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

17

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

18

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

19

Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah  

SciTech Connect

Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

1983-04-01T23:59:59.000Z

20

Proceedings of the 7th Middle East oil show  

Science Conference Proceedings (OSTI)

This book contains the November, 1991 proceedings of the 7th Middle East Oil Show. It includes the following topics: Horizontal drilling; Emergency pipeline repair; Geologic interpretation and digital processing of satellite images; Fracturing patterns; Oil and gas saturation monitoring; and The environmental impact of oil spills.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Oil, turmoil, and Islam in the Middle East  

SciTech Connect

The turmoil and strife of the Middle East raises serious questions about the security of the world's oil supply. The author argues that OPEC and OAPEC can no longer afford to impose indiscriminate price increases on the marketplace because they hurt not only themselves but oil poor Third World nations as well. The author analyzes the importance of Middle Eastern oil in world politics. He emphasizes that any consideration of the forces influencing development in the Middle East should take Islamic tradition into account. Each chapter is organized around a current Middle Eastern problem: oil politics in relation to international energy needs; the ramifications of the new oil wealth and power of the Middle East; The Iran-Iraq War; Muslim insurgency in Afghanistan; The Arab-Israel conflict; turmoil in Lebanon; Palestinian nationalism; and the Middle East as a superpower.

Sheikh, A.R.

1986-01-01T23:59:59.000Z

23

Gas Generation from K East Basin Sludges - Series II Testing  

Science Conference Proceedings (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2001-03-14T23:59:59.000Z

24

Hydrocarbon potential of the Lamu basin of south-east Kenya  

SciTech Connect

The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regime prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.

Nyagah, K.; Cloeter, J.J.; Maende, A. (National Oil Corp. of Kenya, Nairobi (Kenya))

1996-01-01T23:59:59.000Z

25

Middle East: stratigraphic evolution and oil habitat: discussion  

SciTech Connect

The paper, Middle East: Stratigraphic Evolution and Oil Habitat, by R.J. Murris (AAPG Bull. v. 64, p. 597-618) is discussed. Problems with the time-stratigraphic units used in the article are pointed out, along with the source rocks of the petroleum deposits, the depositional cyclicity, subsidence and sea level fluctuation, and the Middle East geosyncline. (JMT)

Ibrahim, M.W.

1981-03-01T23:59:59.000Z

26

Russians to seek exploration in difficult Far East basins  

SciTech Connect

Local governments and associations in Russia hope to encourage exploration interest in lightly explored, mostly nonproducing offshore basins in the Far East. Adjacent onshore areas have experienced recurring shortages of natural gas and petroleum products. Russian authorities have been attempting to license blocks in far eastern waters for much of the 1990s, but political, bureaucratic, fiscal, and tax uncertainties have frustrated most efforts. Approval of the Russian Parliament is needed for tender offers, and no one can predict when such approvals might be forthcoming. Dalwave is offering a package of more than 40,000 km of 24--48 fold regional 2D seismic data on nearly 400 lines in the Sea of Okhotsk and Bering Sea. The package is being made available to give geoscientists a head start at regional evaluation outside the Sakhalin Island area. The paper describes Russian`s Far East resources, exploration prospects, and other considerations.

NONE

1998-06-01T23:59:59.000Z

27

Diminishing importance of Middle East oil: its future implications. [Monograph  

Science Conference Proceedings (OSTI)

Long-term structural changes in the oil and energy markets and the reduced dependence of oil importers on Middle East production are the result of better energy-use efficiency, fuel substitution, and an increase in OPEC production. The decision by western countries to lower their demand and reduce stockpiles has had a significant impact on oil-exporting countries in terms of their spending, their economic development, and their aid programs. Political events and disruptions have also affected the Middle East's political, strategic, and economic future. (DCK)

Kanovsky, E.

1982-08-04T23:59:59.000Z

28

Oil and Gas Resources of the Fergana Basin (Uzbekistan ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0575(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration

29

,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

30

,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

31

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 29 Appendix A Petroleum Geology The petroleum geology discussion is copied ...

32

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2004-04-26T23:59:59.000Z

33

Geological model for oil gravity variations in Oriente Basin, Ecuador  

Science Conference Proceedings (OSTI)

The Oriente basin is one of the major productive Subandean basins. Most of the fields produce 29/sup 0/-33/sup 0/ API paraffinic oils, but oils have been discovered with gravities ranging from 10/sup 0/to 35/sup 0/ API. All the oils have been recovered from multiple middle to Late Cretaceous sandstone reservoirs (Hollin and Napo Formations). Wells display a variety of oil gravities by reservoir. The origin of the Oriente oils is problematical and controversial, but structural, geochemical, and well evidence suggest a vast oil kitchen west of the present Andean foothills that was mature for oil generation by at least early Tertiary. Oil analyses indicate a single family of oils is present. Oil gravity variations can be explained systematically in terms of the various alteration processes suffered by the oil in each reservoir. Intermittent early Andean uplift (latest Cretaceous to Mid-Eocene) resulted in biodegradation and water-washing of oils, particularly in the uppermost Napo reservoirs. The main Andean orogeny (Pliocene) uplifted the Hollin reservoir to outcrop in the west, and tilted the basin down to the south. This movement resulted in water washing or flushing of the Hollin aquifer and a phase of northward remigration of oil. Late Andean structures postdated primary oil migration. Almost all structures displaying growth during the Late Cretaceous to early Eocene have been oil bearing, but some, particularly those located on the present-day basin flanks, were later severely biodegraded or breached.

Dashwood, M.F.; Abbotts, I.L.

1988-01-01T23:59:59.000Z

34

PADD 1 (East Coast) Heating Oil Stocks Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The East Coast (PADD 1) is the primary heating oil region, and it depends heavily on production from the Gulf Coast (PADD 3) as well. The biggest decline in U.S. stocks has taken place in the heating oil markets of PADD 1 (East Coast), which consumed 86 percent of the nationÂ’s heating oil in 1998. It also is the region with the largest volume of heating oil stocks. PADD 1 was down over 8.4 million barrels on January 21 from the 5-year average stock level for end of January PADD 3, which supplies PADD 1, was down 4.6 million barrels from its 5-year January ending levels. During the week ending January 21, weather in New England was nearly 20% colder than normal for this time of year. This cold weather on top of low stocks was pushing prices up, with

35

Oil and turmoil: America faces OPEC and the Middle East  

Science Conference Proceedings (OSTI)

Middle-East expert Rustow traces the chain of events that placed economic power in an unstable region. He recounts how European imperialists acquired and surrendered their positions of domination, how nationalists such as Nasser and Qaddafi sought to manipulate the superpowers, and how leaders such as Sadat and Begin wrestled with war and peace. Meanwhile, the oil industry's Seven Sisters lost their preeminence as OPEC grew from a loose confederacy of oil shiekdoms into a cartel strong enough to shake the world economy. Rustow analyzes the confusion in oil-consuming countries that led to long gasoline lines one year and talk of an oil glut and OPEC's collapse the next. He puts into context Washington's uneven efforts to bring stability to the strife-torn Middle East. 221 references, 3 figures, 7 tables.

Rustow, D.A.

1982-01-01T23:59:59.000Z

36

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

37

Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa  

SciTech Connect

Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

Tiercelin, J.J.; Lezzar, K.E. (Universite de Bretagne Occidentale, Brest (France)); Richert, J.P. (Elf Aquitaine, Pau (France))

1994-07-01T23:59:59.000Z

38

Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East  

SciTech Connect

Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have been generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.

Zumberge, J.E. (GeoMark Research Inc., Houston, TX (United States)); Macko, S. (Univ. of Virginia, Charlottesville, VA (United States)) Engel, M. (Univ. of Oklahoma, Norman, OK (United States)) (and others)

1996-01-01T23:59:59.000Z

39

TCLP Preparation and Analysis of K East Basin Composite Sludge Samples  

Science Conference Proceedings (OSTI)

This report contains results from TCLP preparation and analysis of K East Basin floor and canister composite sludge samples. Analyses were performed in the Radiochemical Processing Laboratory (PNNL, 325 Building).

Silvers, Kurt L.

2000-08-15T23:59:59.000Z

40

Hydrography within the Central and East Basins of the Bransfield Strait, Antarctica  

Science Conference Proceedings (OSTI)

The hydrography in the central and east basins of the Bransfield Strait is examined using data collected along a track 340 km long through the strait in November 1995, in conjunction with historical data from the NODC database. Circumpolar Deep ...

Cara Wilson; Gary P. Klinkhammer; Carol S. Chin

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

42

California - San Joaquin Basin Onshore Crude Oil Proved Reserves ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's:

43

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 139 Appendix D Field Summaries Tables 1D and 2D lists the fields of the West

44

Risk analysis in oil and gas projects : a case study in the Middle East  

E-Print Network (OSTI)

Global demand for energy is rising around the world. Middle East is a major supplier of oil and gas and remains an important region for any future oil and gas developments. Meanwhile, managing oil and gas projects are ...

Zand, Emad Dolatshahi

2009-01-01T23:59:59.000Z

45

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

46

Oil and gas developments in Far East in 1981  

SciTech Connect

Petroleum activity throughout the Far East region was brisk during 1981. Exploration acreage acquisition, drilling, and seismic activity proceeded rapidly in all of the main producing countries. In addition, activity expanded into some hitherto relatively inactive areas such as onshore Thailand, Sri Lanka, North Vietnam, etc. Exploration drilling increased approximately 12% in 1981. Indonesia was the most active country in the Far East again in 1981. Numerous discoveries were recorded. Exploration in India started in earnest along the east coast. Burma also recorded a busy year along the Irrawaddy River. Sri Lanka experienced exploration drilling in 1981 for the first time since 1976. Onshore Thailand had a flurry of activity and provided the most significant discoveries in the Far East Region. The Philippines also had an active year and progressed rapidly with development work on 2 additional producing fields. Production from the Far East region again declined slightly to an estimated 4.4 million BOPD. With no major discoveries over the last few years, present producing fields are for the most part fully developed and on the decline. Acreage acquisition during 1981 showed a large increase in many parts of the region. Indonesia offered 9 exploration blocks. All were successfully tendered. Onshore Thailand also had intense competition for areas adjacent to oil and gas discoveries by Shell and Esso. Participation by foreign contractors in exploration and production ventures throughout the Far East region increased during 1982. Countries such as Bangladesh, Burma, India, Thailand, and Malaysia all experienced increased interest by foreign companies. On the other hand, relinquishments by contractors in Pakistan and Philippines indicated a decrease in interest in those areas. (JMT)

Fletcher, G.L.

1982-11-01T23:59:59.000Z

47

East Asia now important factor in oil world  

SciTech Connect

On one level the countries of East Asia are vital components of the global energy equation specifically in regard to oil production and are directly affected by the entire world. But equally they are independent nation states with their own particular energy characteristics, making each country worthy of specific consideration. There is not necessarily a regional dimension to every energy issue facing the countries and one must be careful to avoid facile generalizations about the region. For the purpose of this article, East Asia will be defined as Japan, the newly industrialized economies of Hong Kong, Singapore, Taiwan and South Korea; the industrializing economies of Malaysia, Thailand, Indonesia, and the Philippines, and the remainder, excluding the Indian subcontinent, but including China, Burma, and Viet Nam. Together these countries contain some one third of the world's population and produce around a fifth of the world gross domestic product (GDP). For the past 3 decades, they have made up the fastest growing economic region of the world. However, East Asia cannot be considered in isolation from the Middle East. No examination of any energy topic can ignore the importance of that area.

Norton, H. (BP Asia Pacific and Middle East (SG))

1991-10-21T23:59:59.000Z

48

Design of a System to Retrieve Sludge from the K East Spent Fuel Basin at Hanford  

SciTech Connect

This paper describes the Sludge Retrieval System (SRS), which was designed to safely remove radioactive sludge from the K East spent fuel basin at the 100 K Area of the Hanford Site. Basin water and sludge have the potential to leak to the environment due to the age and condition of the basins. Since the 100 K Area spent fuel basins are located next to the Columbia River, the Spent Nuclear Fuel Project mission includes the safe removal, containment, and transportation of sludge from the basins to a secure storage location. The scope of the SRS includes: (1) a system capable of retrieving sludge from the K East basin floor, pits, and fuel canisters; (2) separation of debris from sludge, where debris is defined as any material greater than 0.64 cm (0.25 in.) in diameter; (3) collection of sludge particles in a container that can be transported away from the basin; and (4) modifications to the K East basin to allow installation of the SRS. The SRS was designed by Fluor Federal Services. Changes to the designed system were made by Fluor Hanford as a result of full-scale testing performed after design. This paper discusses this testing, as well as operation and control of the system. Construction and startup testing was initially scheduled to be complete by the end of December 2002. Startup of the system is now expected in April 2003.

TWITCHELL, A.L.

2003-01-01T23:59:59.000Z

49

K East basin sludge volume estimates for integrated water treatment system  

Science Conference Proceedings (OSTI)

This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

Pearce, K.L.

1998-08-19T23:59:59.000Z

50

Oil shale of the Uinta Basin, northeastern Utah  

SciTech Connect

The Tertiary rocks, which occupy the interior of the Uinta basin, have been subdivided into four formations: Wasatch, Green River, Bridger, and Uinta. The division is based on stratigraphic and paleontologic evidence. Hydrocarbon materials have been found in all four formations, although bedded deposits (asphaltic sandstone and oil shale) are known only in the Wasatch and Green River. Veins of gilsonite, elaterite, ozocerite, and other related hydrocarbons cut all the Tertiary formation of the Uinta basin. Good oil shale (Uinta basin of Utah) is black or brownish black except on weathered surfaces, where it is blue-white or white. It is fine grained, slightly calcareous, and usually free from grit. It is tough and in thin-bedded deposits remarkably flexible. Although oil shale consists of thin laminae, this is not apparent in some specimens until after the rock has been heated and the oil driven off. Freshly broken oil shale gives off a peculiar odor similar to that of crude petroleum. Oil shale contains a large amount of carbonaceous matter (largely remains of lower plants, including algae), which is the source of the distillation products. Thin splinters of oil shale will burn with a very sooty flame and give off an asphaltic odor. Lean specimens of oil shale have a higher specific gravity than rich specimens and are generally heavier than coal.

Winchester, D.E.

1918-01-01T23:59:59.000Z

51

Oil and gas developments in Middle East in 1984  

Science Conference Proceedings (OSTI)

Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed.

Hemer, D.O.; Lyle, J.H.

1985-10-01T23:59:59.000Z

52

Seismic reprocessing, interpretation and petroleum prospectivity of the East Cano Rondon Area, Llanos Basin, Colombia  

E-Print Network (OSTI)

The Llanos Basin, in Eastern Colombia, is the major oil-producing province in the country. In recent years, exploration in this basin has been focused towards plays in the Llanos foothills, where proven thrust traps present the possibility of large discoveries. However, the Llanos foreland still remains an attractive exploration target due to lower risk plays linked to proven production mechanisms. One giant field and over 51 smaller fields have been discovered. The basin, with an exploration well density of 1:500 1=2, can hardly be considered mature. Improvements in seismic data processing, sequence stratigraphic analysis and a better understanding of the petroleum systems have led to a renewed interest in the Llanos foreland in an attempt to identify new plays and prospects. An integrated geophysical and geological study was done to evaluate the petroleum prospectivity of the East Cano Rondon Area, located 35-km southwest of the giant Cano Limon Field. The purpose of the project was to reprocess approximately 200 km of mid 1980s seismic, integrate the interpretation of the seismic data with the available well and geologic data, create a sequence stratigraphic framework and describe the hydrocarbon potential of the area. Reprocessing the seismic data gave an improved image of the subsurface from previous processing. The implementations of techniques like refraction statics, pre-stack linear noise attenuation (FK Filter), surface consistent residual statics, dip moveout (DMO), post stack signal enhancement (FK Weighting) and finite difference migration improved the static solutions, signal noise to ratio and imaging of the fault planes. The interpretation of the seismic data led to the dentition of the structural styles, deformation history, paleotopography and identification of seismic facies. The sequence stratigraphic framework was built from the integration of the seismic, well and regional data. 5 transgressive-regressive sequences were identified in the Upper Cretaceous to Early Oligocene rocks. Two prospective areas were identified within the East Cano Rondon Area. One of them is related to the proven play of fault bounded anticlinal structures. Three gelds in the vicinity of the study area have proven reserves in this play. The second prospect is based on a new play that is being proposed. The play involves the stratigraphic pinchout of basal transgressive sands deposited in the topographic lows created by wrench fault tectonics. The two prospects could have up to an estimated 759 MMBO.

Molina, German D

1999-01-01T23:59:59.000Z

53

Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0...

54

Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0...

55

Analysis of sludge from K East basin floor and weasel pit  

Science Conference Proceedings (OSTI)

Sludge samples from the floor of the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and possibly assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements.

Makenas, B.J., Westinghouse Hanford

1996-05-04T23:59:59.000Z

56

FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,  

E-Print Network (OSTI)

Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

57

Oil and gas development in Middle East in 1987  

SciTech Connect

Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

1988-10-01T23:59:59.000Z

58

Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Award No.: DE-FE0001243 DOE Award No.: DE-FE0001243 Topical Report CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380 Salt Lake City, UT 84112 Prepared for: United States Department of Energy National Energy Technology Laboratory April 2011 Oil & Natural Gas Technology Office of Fossil Energy Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah Topical Report Reporting Period: October 31, 2009 through March 31, 2011 Authors: Lauren P. Birgenheier, Energy and Geoscience Insitute, University of Utah

59

Many new ventures in the Middle East focus on old oil, gas fields  

SciTech Connect

This paper reviews the oil and supplies of the world and then focuses on the Middle East as the primary source of oil and gas for the world in the future. It provides data on the total world production and reserves and compares that to the Middle East production and reserves. Data is also provided on pricing and consumption from 1965 to 1995. It goes on to provide information on petroleum exports for the major users and makes predictions on future trends. Finally the paper presents aspects of investment opportunities, sources or needs for capital investments, and the politics associated with the Middle East oil and gas industry.

Takin, M. [Centre for Global Energy Studies, London (United Kingdom)

1996-05-27T23:59:59.000Z

60

Recultivation work in the oil shale basin of Estonia, USSR  

SciTech Connect

Soviet Estonia is situated in the northwestern part of the Soviet Union. The most important mineral resources are oil shale, phosphorite, peat and construction materials. Oil shale production is about 30 x 10/sup 6/ tonnes a year. The oil shale is partly surface mined but the majority is deep mined. Recultivation of exhausted oil shale pits started in 1959 and has proceeded at an average of 150 ha per annum. In the course of recultivation a process of selective mining is adopted, this is followed quickly by physical recontouring and cultivation work. Particular attention is given to the maintenance and improvement of soil fertility. Afforestation is the main form of biological recultivation with more than 2450 ha of exhausted oil shale workings having been planted. The most successful trees have been Pinus sylvestris, Betula verrucosa, Larix europea and Larix japonica. The development of mining and land use in the oil shale basin is closely regulated. To ensure efficient mining development and to maximise nature conservation and recreation potential a scheme of functional zoning has been drawn up and a policy of progressive recultivation has been adopted.

Luik, H.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

Science Conference Proceedings (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

62

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

63

Fluvial-deltaic heavy oil reservoir, San Joaquin basin  

SciTech Connect

Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

Miller, D.D.; McPherson, J.G.; Covington, T.E.

1989-03-01T23:59:59.000Z

64

Middle East: Production expansion projects roar ahead. [Oil and gas industry statistics and outlooks in the Middle East  

SciTech Connect

In the Middle East, rig count is at its highest level since 1985. Every major producer in the region is working towards a goal of maximizing its sustainable producing rate, except Iraq which would if it could. Saudi Arabia may even reach its ambitious target a year early. This paper reviews the goals and forecasts for the oil and gas industry in the Middle East. It summarizes the exploration activity over the past year and includes information of geophysical methods used, numbers of wells drilling, types of well drilled, total footages, number of completions, and the political influence on all of these aspects. Both on and offshore sites are discussed.

Not Available

1993-08-01T23:59:59.000Z

65

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels  

E-Print Network (OSTI)

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels modern industries and societies worldwide, oil in the Middle East has become a key strategic commodity influencing international affairs

66

Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky  

SciTech Connect

The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

1985-02-01T23:59:59.000Z

67

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

68

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

69

Oil, politics, society and the state in the middle east: Enduring authoritarianism in Iran and Saudi Arabia.  

E-Print Network (OSTI)

?? This thesis examines the relationship between oil and the persistence of authoritarianism in the Middle East. Specifically, it analyzes and critiques the rentier state… (more)

Martorell, Benjamin E

70

East Coast (PADD 1) Crude Oil Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

71

Middle East leads global crude oil and condensate production ...  

U.S. Energy Information Administration (EIA)

Growth in North American crude oil production (including lease condensate) contributed to record global production of 75.6 million barrels per day (bbl/d) in 2012 ...

72

Dominant Middle East oil reserves critically important to world supply  

Science Conference Proceedings (OSTI)

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z

73

,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

74

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network (OSTI)

The petroleum engineering literature clearly shows that large proppant volumes and concentrations are required to effectively stimulate low-permeability gas sands. To pump large proppant concentrations, one must use a viscous fluid. However, many operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment sizes in the Cotton Valley sands of the East Texas basin. This study shows that large proppant volumes and viscous fluids are necessary to optimally stimulate tight gas sand reservoirs. When large proppant volumes and viscous fluids are not successful in stimulating tight sands, it is typically because the fracture fluids have not been optimal for the reservoir conditions. This study shows that waterfracs do produce comparable results to conventional large treatments in the Cotton Valley sands of the East Texas basin, but we believe it is because the conventional treatments have not been optimized. This is most likely because the fluids used in conventional treatments are not appropriate or have not been used appropriately for Cotton Valley conditions.

Tschirhart, Nicholas Ray

2005-08-01T23:59:59.000Z

75

Evaluation of Travis Peak gas reservoirs, west margin of the East Texas Basin  

E-Print Network (OSTI)

Gas production from low-permeability (tight) gas sandstones is increasingly important in the USA as conventional gas reservoirs are being depleted, and its importance will increase worldwide in future decades. Travis Peak tight sandstones have produced gas since the 1940s. In this study, well log, 2D seismic, core, and production data were used to evaluate the geologic setting and reservoir characteristics of the Travis Peak formation. The primary objective was to assess the potential for basinward extension of Travis Peak gas production along the west margin of the East Texas Basin. Along the west margin of the East Texas Basin, southeast-trending Travis Peak sandstones belts were deposited by the Ancestral Red River fluvial-deltaic system. The sandstones are fine-grained, moderately well sorted, subangular to subrounded, quartz arenites and subarkoses; reservoir quality decreases with depth, primarily due to diagenetic quartz overgrowths. Evaluation of drilling mud densities suggests that strata deeper than 12,500 ft may be overpressured. Assessment of the geothermal gradient (1.6 °F/100 ft) indicates that overpressure may be relict, resulting from hydrocarbon generation by Smackover and Bossier formation potential source rocks. In the study area, Travis Peak cumulative gas production was 1.43 trillion cubic feet from January 1, 1961, through December 31, 2005. Mean daily gas production from 923 wells was 925,000 cubic ft/well/day, during the best year of production. The number of Travis Peak gas wells in “high-cost” (tight sandstone) fields increased from 18 in the decade 1966-75 to 333 in the decade 1996-2005, when high-cost fields accounted for 33.2% of the Travis Peak gas production. However, 2005 gas production from high cost fields accounted for 63.2% of the Travis Peak total production, indicating that production from high-cost gas wells has increased markedly. Along the west margin of the East Texas Basin, hydrocarbon occurs in structural, stratigraphic, and combination traps associated with salt deformation. Downdip extension of Travis Peak production will depend on the (1) burial history and diagenesis, (2) reservoir sedimentary facies, and (3) structural setting. Potential Travis Peak hydrocarbon plays include: updip pinch-outs of sandstones; sandstone pinch-outs at margins of salt-withdrawal basins; domal traps above salt structures; and deepwater sands.

Li, Yamin

2007-05-01T23:59:59.000Z

76

TCLP Preparation and Analysis of K East Basin Composite Sludge Samples  

Science Conference Proceedings (OSTI)

Sludge samples from the Hanford K East Basin were analyzed by the Toxicity Characterization Leaching Procedure (TCLP) to assist in the appropriate Resource Conservation and Recovery Act (RCIL4) designation of this material. Sludge samples were collected by Fluor Hanford, Inc. using the consolidated sludge sampling system (system that allows collection of a single sample from multiple sample locations). These samples were shipped to the Postirradiation Testing Laboratory (PTL, 327 Building) and then transferred to the Pacific Northwest National Laboratory (PNNL) Radiochemical Processing Laboratory (RPL, 325 Building) for recovery and testing. Two sludge composites were prepared, using the consolidated sludge samples, to represent K East canister sludge (sample KC Can Comp) and K East floor sludge (sample KC Floor Comp). Each composite was extracted in duplicate and analyzed in duplicate following pre-approved(a) TCLP extraction and analyses procedures. In addition, these samples and duplicates were analyzed for total RCRA metals (via acid digestion preparation). The work was conducted in accordance with the requirements of the Hanford Analytical Quality Assurance Requirements Document (HASQARD). A PNNL Quality Assurance Program compliant with J HASQARD was implemented for this effort. The results from the TCLP analyses showed that all RCRA metal concentrations were less than the TCLP limits for both the canister and floor composite samples and their respective duplicates.

KL Silvers; JJ Wagner; RT Steele

2000-08-15T23:59:59.000Z

77

Trends in oil production costs in the Middle East, elsewhere  

SciTech Connect

This article focuses on the costs of oil production in the major areas of the world, including OPEC and non-OPEC countries. The question of production costs has become even more important since 1986, when the Saudis unilaterally undercut the oil price. Shaikh Yamani slashed oil prices in 1986 with three clearly articulated objectives: (1) to reduce conservation; (2) to stimulate global economic growth; and (3) to discourage non-OPEC energy supplies of all kinds. Here the authors address the last of those strategic objectives -- squeezing out non-OPEC oil -- by comparing oil production costs around the world. The analysis is framed with respect to five questions: How great is the variation in full costs of production within OPEC itself Are the costs of OPEC and non-OPEC producers radically different Are there producing areas today that are cost-constrained, meaning where E P activity is limited by high costs in relation to expected prices Has the Saudi market share strategy been successful in curbing non-OPEC oil development Is it probably, as is often bruited, that lack of capital for new E P projects might constrain future oil production, especially in the OPEC states

Stauffer, T.R. (Stauffer, (Thomas R.), Washington, DC (United States))

1994-03-21T23:59:59.000Z

78

Effects of oil charge on illite dates and stopping quartz cement: calibration of basin models  

E-Print Network (OSTI)

Abstract Effects of oil charge on illite dates and stopping quartz cement: calibration of basin Oil can fill pores in reservoir sandstones at any burial depth by long or short distance migration. There has been a debate since 1920 concerning the effect of oil charge. We have made detailed local

Haszeldine, Stuart

79

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

80

Pricaspian depression - the unique oil & gas-bearing basin of the World  

SciTech Connect

The Pricaspian depression is a unique oil and gas-bearing basin. The total sedimentary rock volume in the basin is about 8 million km{sup 3}. More than 100 oil and gas fields have been discovered in the basin including extremely large fields, such as Tengiz, Astrakhan, and Karachaganak. The basin is filled with Devonian to Neogene sediments, a very wide range in age for a single sedimentary basin. The range in age and composition of the rocks results in complex geology, complex conditions for producing oil and gas, and complex phase states of the hydrocarbons present. The basin fill comprises the Paleozoic section below the Kungurian salt, the Kungurian and Kungurian to Permian salt-bearing section, and the upper Permian to Paleogene and Neogene sedimentary complexes above the salt. The thick sedimentary succession and specific oil and gas productivity are what make the Pricaspian basin a unique sedimentary basin. The geologic structure and basin evolution during the Paleozoic, details of sedimentation in the Devonian to Early Permian, initial salt deposition and the dynamic evolution of salt domes, hydrocarbon generation and accumulation zones, various trap types, field types, hydrodynamic regimes, and hydrochemical content of groundwater are discussed in the paper.

Abdulin, A.A.; Daukeev, S.Z.; Votsalevsky, E.S. [Kazakh Academy of Sciences, Almaty (Kazakhstan)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization  

SciTech Connect

Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

2007-10-12T23:59:59.000Z

82

Thermal & Chemical Behavior of Uranium Metal Bearing Hanford K East Basin Sludge  

DOE Green Energy (OSTI)

Uranium-metal-bearing sludge from the Hanford site K East Basin is to be loaded into containers and moved to interim storage in a dry cell at T Plant on the Hanford site. Thermal and chemical behavior of this sludge in its storage container are of interest to design and safety, because oxidation of its uranium generates power and hydrogen gas, with resulting implications for flammability of the container and cell headspaces, and the potential for local temperature escalation. Key aspects of experimental work and model development necessary to support the technical basis for design and safety analyses are reported here: (1) Experimental data supporting the oxidation rate law, including reactive surface area depletion, (2) Experimental data defining the maximum allowable heat generation rate in wet sludge, the so-called dryout heat flux, and (3) Integral modeling of physical and chemical processes to predict temperature and hydrogen concentration histories during loading, shipping, handling, and storage.

DUNCAN, D.R.

2003-05-16T23:59:59.000Z

83

Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Science Conference Proceedings (OSTI)

This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

Not Available

1995-01-01T23:59:59.000Z

84

Oil shale in the Piceance Basin: an analysis of land use issues  

SciTech Connect

The purpose of this study was to contribute to a framework for establishing policies to promote efficient use of the nation's oil shale resources. A methodology was developed to explain the effects of federal leasing policies on resource recovery, extraction costs, and development times associated with oil shale surface mines. This report investigates the effects of lease size, industrial development patterns, waste disposal policies, and lease boundaries on the potential of Piceance Basin oil shale resource. This approach should aid in understanding the relationship between federal leasing policies and requirements for developing Piceance Basin oil shale. 16 refs., 46 figs. (DMC)

Rubenson, D.; Pei, R.

1983-07-01T23:59:59.000Z

85

Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas  

SciTech Connect

Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

Haeberle, F.R. (Consultant Geologist, Dallas, TX (United States))

1992-04-01T23:59:59.000Z

86

The Middle East  

Science Conference Proceedings (OSTI)

The Middle East currently produces more than a fifth of the world's oil output, yet still holds two-thirds of world published proved liquid oil reserves. The first part of the book reviews the structural evolution and stratigraphic development of the Middle East region, between Pre-Cambrian-Infra Cambrian and the Cenozoic. The second part provides a country-by-country survey of producing fields, unproduced discoveries, and future reserves as well as a summary of the main producing basins and formations in the region.

Beydoun, Z.R. (American Univ., Beirut (LB))

1988-01-01T23:59:59.000Z

87

Oil and gas in the Junggar basin the People`s Republic of China  

SciTech Connect

The Junggar Basin, located in the north of Xinjiang, China, and with an area of 130000 km{sup 2}, is a compressional inland basin formed during the late Hercynian. Exploration and development of oil and gas in the basin has been run by Karamay Oil & Gas Corporation (KOC). The basin has two basements, Precambrian crystalline basement and Early to Middle Hercynian fold basement. Maximum sedimentary cover from Late Permian to Quaternary is above 20,000m thick. There are six source rocks developed in Carboniferous, Permian, Triassic, Jurassic, Cretaceous and Paleogene, respectively. Of the most important Permian and Jurassic source rocks, the former is oil-prone and the latter gas-prone. Total oil and gas resources in the basin are about 80-100x10 8t. In the mid 1950`s, Karamay oilfield, which is closely, related to the overthrust belt, was discovered in the northwest margin of the basin. Since then, the proven oil reserves in the up to 250km long overthrust belt with Karamay oilfield being the center can be compared to the Cordilleran Overthrust Belt in North America. By the end of 1993, fifteen oil and gas fields have been discovered, and the oil and gas reservoirs are found in all strata from Carboniferous to Tertiary except Cretaceous. The reservoir lithologies are mainly low mature sandstones, conglomerates as well as late Paeleozoic volcanic rocks. The proven reserves are dominantly distributed in the northwest margin, which illustrated unbalanced exploration. The exploration degree in most part of the basin is still low. Since 1961, the crude oil production has been increasing year after year.

Zhang Ji-Yi [Karamay Oil Corp., Xinjing (China)

1995-08-01T23:59:59.000Z

88

Questions cloud outlook for oil production capacity growth in the Middle East  

SciTech Connect

Future expansion of crude oil production capacity in the Middle East is anything but certain-at least with crude prices at recent levels. There is little doubt that the world will need more production capacity than now exists unless petroleum consumption sags. And there is even less doubt about where prospects are best for production capacity growth. The paper discusses the normal surplus, growing demand, financial conditions, and political stability.

Tippee, B.

1994-07-11T23:59:59.000Z

89

Synoptic-Scale Environments of Predecessor Rain Events Occurring East of the Rocky Mountains in Association with Atlantic Basin Tropical Cyclones  

Science Conference Proceedings (OSTI)

The synoptic-scale environments of predecessor rain events (PREs) occurring to the east of the Rocky Mountains in association with Atlantic basin tropical cyclones (TCs) are examined. PREs that occurred during 1988–2010 are subjectively classified ...

Benjamin J. Moore; Lance F. Bosart; Daniel Keyser; Michael L. Jurewicz

2013-03-01T23:59:59.000Z

90

Evaluation and Recommendation of Waste Form and Packaging for Disposition of the K East Basin North Loadout Pit Sludge  

SciTech Connect

This report discusses the recommendation from the Pacific Northwest National Laboratory (PNNL) to Fluor Hanford regarding the treatment of the Hanford K East Basin North Loadout Pit (KE NLOP) sludge to produce contact handled transuranic waste (CH-TRU) for disposal at the Waste Isolation Pilot Plant (WIPP). The recommendation was supported in part by chemical and radiochemical characterization analyses (provided in this report) performed on a sample of KE NLOP sludge.

Mellinger, George B.; Delegard, Calvin H.; Schmidt, Andrew J.; Sevigny, Gary J.

2004-01-01T23:59:59.000Z

91

Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin  

Science Conference Proceedings (OSTI)

Analysis of multichannel seismic reflection profiles reveals that the northern East China Sea shelf basin experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous created a series of grabens and half grabens, filled by alluvial and fluviolacustrine deposits. Regional uplift and folding (Yuquan movement) in the late Eocene-early Oligocene terminated the initial rifting. Rifting resumed in the early Oligocene, while alluvial and fluviolacustrine deposition continued to prevail. A second phase of uplift in the early Miocene terminated the rifting, marking the transition to the postrift phase. The early postrift phase (early Miocene-late Miocene) is characterized by regional subsidence and westward and northwestward marine transgression. Inversion (Longjing movement) in the late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. The entire area entered a stage of regional subsidence again and has become a broad continental shelf. Source rocks include synrift lacustrine facies, fluvial shales, and coal beds. Synrift fluvial, lacustrine, and deltaic deposits, postrift littoral and/or shallow-marine sandstones, and fractured basement have the potential to provide reservoirs. Various types of hydrocarbon traps (e.g., faulted anticlines, overthrusts, rollover anticlines, faults, unconformity traps, combination structural-stratigraphic traps, weathered basement, and stratigraphic traps) are recognized, but many of these traps have not been tested.

Lee, G.H.; Kim, B.Y.; Shin, K.S.; Sunwoo, D. [Pukyong National University, Pusan (Republic of Korea). Dept. of Environmental Exploration Engineering

2006-02-15T23:59:59.000Z

92

Physical Behavior of Uranium Metal Bearing Hanford K East Basin Sludge Materials  

DOE Green Energy (OSTI)

Uranium-metal-bearing sludge from the Hanford's K-East (KE) Basin is to be retrieved, loaded into large-diameter containers, and moved to interim storage in a dry cell at T Plant on the Hanford site. Physical behavior of this sludge during loading and subsequent storage in large-diameter containers is of interest to design and safety because oxidation of its uranium generates power and hydrogen gas, with resulting implications for flammability of the container and cell headspaces, potential retention of gas in the settled sludge and subsequent expansion of the sludge material in the large-diameter container, and the potential for local temperature escalation. Key aspects of experimental work and model development necessary to support a robust technical basis for design and safety analyses are reported here: (1) Experimental data supporting the distribution of uranium metal in the large-diameter container, (2) Experimental data defining sludge thermal conductivity and shear strength (or yield stress), and (3) Experimental data and models demonstrating sludge plug movement, breakup, and limited atomization caused by internal gas generation.

DUNCAN, D.R.

2003-05-16T23:59:59.000Z

93

Uinta Basin Oil and Gas Development Air Quality Constraints  

E-Print Network (OSTI)

Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

Utah, University of

94

Hydrology of the Piceance Basin and its impact on oil shale development  

SciTech Connect

The Piceance Basin is a structural downwarp in NW. Colorado. The Green River Formation, the uppermost stratigraphic unit in the basin, contains the richest oil shale deposits in the U.S. The near-surface rocks are commonly jointed. The joint density is a function of the competency and thickness of the individual layers, the lateral distance to a free surface, and the depth below the surface. These joints provide permeable paths for the flow of ground water. Consequently, soluble elements in the rock have been leached, thereby enhancing the transmissivity by fracture enlargement. Thus, the oil-shale layers are part of the aquifer matrix, and the richest layers of oil shale occur between, below or are part of the basin's complex aquifer system. Well over 1 million acre-ft of potable water is contained in the Green River ground-water system.

Knutson, C.F.; Boardman, C.R.

1973-01-01T23:59:59.000Z

95

Observations on oil and gas production in the Timan-Pechora Basin  

SciTech Connect

The Timan-Pechora basin, a promising hydrocarbon-producing region in the European part of Russia, reportedly has an estimated 1.3 billion tons of {open_quotes}proven{close_quotes} (A+B+C{sub 1}) and 0.6 billion tons of C{sub 2} reserves of oil and 800 billion cubic meters of A+B+C{sub 1} reserves of natural gas. The distribution of the basin`s reserves, embracing federally subordinated, republican, and autonomous jurisdictions, tends to create opportunities as well as additional complications for foreign developers. Harsh climatic conditions, swampy terrain, and other difficulties (e.g., heavy and paraffinic oils) have impeded rapid development. Nevertheless, the Timan-Pechora basin has become a major focus of joint venture activity involving, among other multinational oil companies, Conoco, Texaco, Exxon, and Amoco. New projects, with previously discovered fields containing an estimated 2 to 5 billion barrels of oil, appear to offer potential yields of about 6 million tons per annum by the year 2000. 11 refs., 3 tabs.

Sagers, M.J. [PlanEcon, Inc., Washington, DC (United States)

1994-01-01T23:59:59.000Z

96

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

IOIP 7758 (1 S w) Bo IGIP 7758 (1 Sw) B g VO IOIP A h 1,000,000 VG IGIP A h 1,000,000 Energy Information Administration Oil and Gas Resources of the West ...

97

East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for  

Gasoline and Diesel Fuel Update (EIA)

Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Total 60,122 54,018 52,671 54,668 52,999 47,100 1981-2013 Crude Oil 27,587 25,670 24,699 27,070 27,065 18,146 1981-2013 Total Products 32,535 28,348 27,972 27,598 25,934 28,954 1995-2013 Other Liquids 24,957 20,056 20,754 17,137 16,653 17,339 1981-2013 Unfinished Oils 4,375 2,077 2,253 1,874 1,960 1,500 1981-2013

98

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.  

SciTech Connect

Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

John Jackson; Katherine Jackson

2008-09-30T23:59:59.000Z

99

Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico  

E-Print Network (OSTI)

Developing a Case History in the Permian Basin of New Mexico and West Texas A large new resource of recoverable oil has been identified in the San Andres dolomite Formation. Residual Oil Zones, ROZs, up to 300 ’ thick containing 20-40 % oil in pores of the dolomitic reservoir are present both below and between presently productive fields. The oil in the ROZs is residual, i.e., not recoverable by primary production methods or water flooding, but oil is recoverable using enhanced oil recovery (EOR) methods such as CO2 EOR. Although preliminary at this stage, the estimated oil in place in the ROZ’s

Basin Of New Mexico; West Texas; West Texas; Dr. Robert Trentham; L. Steven Melzer; David Vance; Arcadis U. S

2012-01-01T23:59:59.000Z

100

Simulated Physical Mechanisms Associated with Climate Variability over Lake Victoria Basin in East Africa  

Science Conference Proceedings (OSTI)

A fully coupled regional climate, 3D lake modeling system is used to investigate the physical mechanisms associated with the multiscale variability of the Lake Victoria basin climate. To examine the relative influence of different processes on ...

Richard O. Anyah; Fredrick H. M. Semazzi; Lian Xie

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin  

SciTech Connect

The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

Scott R. Reeves; Randal L. Billingsley

2004-02-26T23:59:59.000Z

102

Super-giant oil fields and future prospects in the Middle East  

Science Conference Proceedings (OSTI)

Upper Jurassic carbonates, Lower Cretaceous sands, Lower Cretaceous carbonates and Tertiary carbonates of the Middle East contain more than 50% of the worlds oil. Our area of interest covers SE Turkey and Syria in the north to the borders of Yemen and Oman in the south, and from the Red Sea across Saudi Arabia, the Emirates and the Arabian/Persian Gulf to Iran in the East. There are over 80 fields in this region with over 1 billion barrels of recoverable reserves. Yet only around 30,000 wells have been drilled in this territory. Regional structure and stratigraphy are discussed within the context of three major plays in the region as well as a new play in the Permo-Carboniferous. Numerous opportunities are available and countries such as Iraq and Iran may one day open their doors more to the industry than is presently the case. The dramatic petroleum geology of the region will stamp its influence on the nature of business and opportunities for years to come. While fiscal systems here already offer some of the toughest terms in the world, future deals in the more prolific areas will be even tougher. But, the economies of Middle Eastern scale will provide some of the great mega-opportunities of future international exploration.

Christian, L. [Consultant, Dallas, TX (United States); Johnston, D. [Daniel Johnston & Co., Inc., Dallas, TX (United States)

1995-06-01T23:59:59.000Z

103

Oil fields and new plays in the Rioni foreland basin, Republic of Georgia  

Science Conference Proceedings (OSTI)

The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

Robinson, A.G.; Griffith, E.T. (JKX Oil and Gas, Guildford (United Kingdom)); Sargeant, J. (RES-Source Limited, Banchory (United Kingdom))

1996-01-01T23:59:59.000Z

104

Tropical Indian Ocean Basin Warming and East Asian Summer Monsoon: A Multiple AGCM Study  

Science Conference Proceedings (OSTI)

A basin-scale warming is the leading mode of tropical Indian Ocean sea surface temperature (SST) variability on interannual time scales, and it is also the prominent feature of the interdecadal SST trend in recent decades. The influence of the ...

Shuanglin Li; Jian Lu; Gang Huang; Kaiming Hu

2008-11-01T23:59:59.000Z

105

New oil source rocks cut in Greek Ionian basin  

SciTech Connect

The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

Karakitsios, V. [Univ. of Athens (Greece); Rigakis, N. [Public Petroleum Corp., Athens (Greece)

1996-02-12T23:59:59.000Z

106

Revegetation research on oil shale lands in the Piceance Basin  

SciTech Connect

The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

Redente, E.F.; Cook, C.W.

1981-02-01T23:59:59.000Z

107

Resource appraisal of three rich oil-shale zones in the Green River Formation, Piceance Creek Basin, Colorado  

SciTech Connect

The main oil-shale-bearing member of the Eocene Green River Formation, the Parachute Creek Member, contains several distinct rich oil-shale zones that underlie large areas of Piceance Creek Basin in NW. Colorado. Three of these have been selected for an oil-shale resource-appraisal study. Two over-lie and one underlies the main saline zone in the Parachute Creek Member. The uppermost of these zones, the Mahogany Zone, is in the upper third of the Parachute Creek Member/ it ranges in thickness from less than 75 to more than 225 ft and is the most persistent oil- shale unit in the Green River Formation underlying an area of more than 1,200 sq miles in the Piceance Creek Basin. The second rich zone is separated from the Mahogany Zone by a variable thickness of sandstone, siltstone, or low- grade oil shale. This zone attains a maximum thickness of more than 250 ft and underlies an area of more than 700 sq miles. The third rich oil-shale zone is in the lower third of the Parachute Creek Member. It underlies an area of about 300 sq miles near the depositional center of the Piceance Creek Basin and attains a thickness of more than 150 ft. The 3 rich oil-shale zones have total resources of 317 billion bbl of oil in the areas appraised.

Donnell, J.R.; Blair, R.W. Jr.

1970-10-01T23:59:59.000Z

108

Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Gasoline and Diesel Fuel Update (EIA)

5(94) 5(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Information General information regarding preparation of this report may be obtained from Craig H. Cranston at 202/586-6023, in Washington, D.C. Specific information regarding the contents of the report may be obtained from the authors: Jack S.

109

GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN  

Science Conference Proceedings (OSTI)

Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

Beverly Seyler; John Grube

2004-12-10T23:59:59.000Z

110

Seismic facies and growth history of Miocene carbonate platforms, Wonocolo Formation, North Madura area, East Java Basin, Indonesia  

E-Print Network (OSTI)

The Miocene Wonocolo Formation in the North Madura area, East Java Basin, contains numerous isolated carbonate platforms that are broadly distributed across a ~3000 sq km area of the Indonesian back-arc region. The Wonocolo platforms provide an interesting test for comparing the different growth histories of closely spaced individual platforms, where eustatic history was the same for all the platforms, but where subtle differences in other extrinsic factors influenced their growth. A grid of 2D seismic data and information from several wells across the region were used to map all Wonocolo platforms across the study area. Five growth phases are recognizable in the platforms, based on seismic facies analysis and internal seismic-stratigraphic relationships. Platforms from the western part of the study area are larger in plan view than age-equivalent platforms to the east and record a complex history of platform initiation, backstepping, progradation, coalescence into larger composite platforms, and termination. Although all five growth phases are also recognizable in some Wonocolo platforms from the eastern part of the study area, the eastern platforms are different in that they: 1) are much smaller in plan view, 2) are spaced farther apart, 3) tend to have steeper platform margins, 4) have largely aggradational stratal geometries, 5) are slightly thicker overall than the western platforms, and 6) the tops of the platforms are at greater burial depths than the tops of the western platforms. Most of these differences in platform morphology and growth history can be attributed to slightly faster subsidence rates in the eastern part of the study area. Faster subsidence rates in the eastern part of the study area from 12 - 6 Ma (the age range for the Wonocolo platforms) are probably related to differential surface loading by the Indonesian volcanic arc.

Adhyaksawan, Rahadian

2002-01-01T23:59:59.000Z

111

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

112

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

113

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2002-12-31T23:59:59.000Z

114

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

Science Conference Proceedings (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-07-30T23:59:59.000Z

115

Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea  

Science Conference Proceedings (OSTI)

Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

2007-11-16T23:59:59.000Z

116

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network (OSTI)

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units,… (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

117

Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico  

SciTech Connect

Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

White, H.G. III

1992-04-01T23:59:59.000Z

118

Petroleum geology of heavy oil in the Oriente basin of Ecuador: Exploration and exploitation challenge for the 1990s  

Science Conference Proceedings (OSTI)

Published Ecuadorian government forecasts suggest that Oriente basin light oil (21-32{degree} API) production may start to decline in the early to mid-1990s. To maintain stabilized production into the next century, heavy oil reserves (10-20{degree} API) will have to be aggressively exploited. The Oriente's undeveloped proven plus probable heavy reserves are substantial and are expected to exceed 0.5 billion bbl. A recent discovery made by Conoc Ecuador Ltd., operator of Block 16 for a group which consists of O.P.I.C., Maxus, Nomeco, Murphy and Canam, is a good model for future exploration and exploitation of heavy oil in the remote eastern regions of the basin. Amo-1 tested a low-relief anticline (less than 100 ft vertical closure) and encountered 10-20{degree} API oil in five Cretaceous sandstone reservoirs (8,000-10,000 ft depth). Cumulative test production was 1,062 BOPD. Subsequent drilling along the trend resulted in three additional discoveries. The Cretaceous sands were transported from the Brazilian shield by the westward flowing proto-Amazon River and were deposited in fluviodeltaic, tidal, and high-energy marginal marine environments. Air permeabilities are high and geometric mean values approaching several darcies. Porosities average 18-22% in generally well-consolidated sands. The heavy oils are the result of mild biodegradation and/or expulsion from a thermally immature source. Oil-to-oil correlations suggest that all of the basin oils have the same or similar origin, probably marine calcareous shales of the Cretaceous Napo formation. The Block 16 project will provide a major step toward the strategic exploitation of the Oriente basin's heavy oil reserves, when it comes on stream in the early 1990s.

Leadholm, R.H. (Conoco Ecuador Ltd., Houston, TX (USA))

1990-05-01T23:59:59.000Z

119

Effects of in-phase and out-of-phase sediment supply responses to tectonic movement on the sequence development in the late Tertiary Southern Ulleung Basin, East (Japan) Sea  

Science Conference Proceedings (OSTI)

Stratigraphic inverse modeling using the SEDPAK stratigraphic simulator established the size of the physical parameters that together controlled the development of the stratal patterns in the late Tertiary Ulleung Basin, East (Japan) Sea. The modeling ... Keywords: Back-arc, Eustatic sea level, Stratigraphic modeling, Tectonic subsidence, Ulleung Basin

Wonsuck Kim; Daekyo Cheong; Christopher G. St. C. Kendall

2007-03-01T23:59:59.000Z

120

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

Science Conference Proceedings (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utahâ??s total crude oil production and 71 percent of Utahâ??s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water â?? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquiferâ??s areal extent, thickness, water chemistry, and relationship to Utahâ??s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utahâ??s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

122

ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS  

SciTech Connect

A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

William L. Fisher; Eugene M. Kim

2000-12-01T23:59:59.000Z

123

Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas  

SciTech Connect

Downhole oil/water separator (DOWS) technology is available to separate oil from produced water at the bottom of an oil well. Produced water can be injected directly to a disposal formation rather than lifting it to the surface, treating it there, and reinjecting it. Because of a lack of detailed performance data on DOWS systems, the U.S. Department of Energy (DOE) provided funding to secure DOWS performance data. A large U.S. oil and gas operator offered to share its data with Argonne National Laboratory. This report summarizes data from the DOWS installation in eastern Texas.

Veil, John A.; Layne, Arthur Langhus

2001-04-19T23:59:59.000Z

124

East Coast (PADD 1) Crude Oil Imports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

125

East Coast (PADD 1) Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

126

OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING  

SciTech Connect

Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright with development ongoing and a commercialization plan in place. We expect that this DOE sponsored technology will be a major technical and commercial success story in the coming years.

Michael Wilt

2004-02-01T23:59:59.000Z

127

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

128

Oil and the economic geography of the Middle East and North Africa  

Science Conference Proceedings (OSTI)

This book gives us the opportunity to follow the development of the field of economic geography as applied to the Middle East during the past half century. The materials are arranged under the following three headings: Geography and Petroleum: Boundaries and Boundary Disputes: and Social Geography.

Kortepeter, C.M. (New York Univ., NY (United States))

1990-01-01T23:59:59.000Z

129

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

130

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

131

CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH  

Science Conference Proceedings (OSTI)

An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

Lauren P. Birgenheier; Michael D. Vanden Berg,

2011-04-11T23:59:59.000Z

132

Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)  

SciTech Connect

This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-02-01T23:59:59.000Z

133

Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan  

SciTech Connect

The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

Sagers, M.J. [PlanEcon, Inc., Washington, DC (United States)

1995-05-01T23:59:59.000Z

134

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect

The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

Dutton, Shirley P.; Flanders, William A.

2001-11-04T23:59:59.000Z

135

Energy Management Program of an Integrated National Oil Company in the Middle-East  

E-Print Network (OSTI)

Saudi Aramco is the largest oil producer/exporter in the world, with a maximum sustained production capacity of over 10 MM bpd of crude oil and 8,000 MM scfd of natural gas. The Company operates approximately 32 large Gas-Oil Separation Plants (GOSPs), 5 wholly-owned oil refineries processing 1600 MBD of crude, 5 gas-processing plants, and 2 condensate fractionation plants. The Company’s total in-Kingdom energy consumption in 2005 was over 50,000 MMBtu/h of fuel gas and liquids, and 1.55 GW of purchased power. In 2000, the Company published its corporate energy policy, which envisioned a 50% reduction in the corporate energy KPI over a 10-year period. A high-level Energy Management Steering Committee was established to develop strategies to achieve this objective. By the end of 2005, the corporate energy KPI was reduced to 76.5 from its baseline value of 100 in 2000, on track with projections. This paper addresses the critical elements of a successful energy management program. It describes the organizational structure, strategies employed, resources required, and results achieved. It also describes some of the challenges encountered, both expected and unexpected, especially with respect to non-technical issues such as culture change, knowledge sharing, human resources, project financing, and politics. The paper will provide valuable insights into how to organize and successfully execute a comprehensive energy management program for large bureaucratic corporations with multiple plants and that should be of interest to corporate energy managers and government energy policy makers.

Kumana, J. D.; Aseeri, A. S.

2007-01-01T23:59:59.000Z

136

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

Science Conference Proceedings (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

137

Middle East and Central Asia Department Oil Prices, External Income, and Growth: Lessons from Jordan 1  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. This paper extends the long-run growth model of Esfahani et al. (2009) to a labor exporting country that receives large inflows of external income—the sum of remittances, FDI and general government transfers—from major oil-exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic inflation rates. It is shown that real output in the long run is shaped by: (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper confirms the hypothesis that a large share of Jordan's output volatility can be associated with fluctuations in net income received from abroad. External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Prepared Kamiar Mohaddes; Mehdi Raissi

2011-01-01T23:59:59.000Z

138

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area 2007 2008 2009 2010 2011 2012 View History Total Crude Oil and Petroleum Products 1,009,989 959,458 1,099,509 1,131,797 1,168,599 1,191,766 1981-2012 Crude Oil -3,860 -5,544 8,672 5,983 5,106 4,126 1981-2012 Petroleum Products 1,013,849 965,002 1,090,837 1,125,814 1,163,493 1,187,640 1986-2012 Pentanes Plus -590 -452 -113 -19 1991-2012 Liquefied Petroleum Gases 32,846 32,207 20,384 34,725 33,545 26,723 1981-2012 Ethane/Ethylene 1989-2002 Propane/Propylene 32,199 31,673 19,415 33,585 33,025 26,601 1989-2012 Normal Butane/Butylene

139

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Crude Oil and Petroleum Products 96,936 96,489 98,076 99,950 102,408 98,737 1981-2013 Crude Oil -533 -654 -152 -479 -42 20 1981-2013 Petroleum Products 97,469 97,143 98,228 100,429 102,450 98,717 1986-2013 Pentanes Plus -2 1987-2013 Liquefied Petroleum Gases 2,739 1,357 1,555 1,342 1,959 2,568 1981-2013 Ethane/Ethylene 1989-2002 Propane/Propylene 2,739 1,357 1,555 1,342 1,959 2,483 1989-2013 Normal Butane/Butylene 85 1989-2013 Isobutane/Isobutylene 1989-2013

140

INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

Thomas C. Chidsey, Jr.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fluid transport properties and estimation of overpressure at the Lusi mud volcano, East Java Basin (Tanikawa et al., 2010)  

E-Print Network (OSTI)

Java Basin (Tanikawa et al., 2010) Richard Daviesa, , Michael Mangab , Mark Tingayc , Richard was caused by drilling of the Banjar Panji 1 gas exploration well (Davies et al., 2007; Manga, 2007; Davies et al., 2008; Tingay et al., 2008) or due to the Yogyakarta earthquake that occurred at 05:54 am

Manga, Michael

142

Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio  

SciTech Connect

The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

Riley, Ronald; Wicks, John; Perry, Christopher

2009-12-30T23:59:59.000Z

143

Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio  

Science Conference Proceedings (OSTI)

The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

Ronald Riley; John Wicks; Christopher Perry

2009-12-30T23:59:59.000Z

144

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

145

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

146

Western oil-shale development: a technology assessment. Volume 6: oil-shale development in the Piceance Creek Basin and potential water-quality changes  

SciTech Connect

This report brackets the stream quality changes due to pre-mining pumping activites required to prepare oil shale lease Tracts C-a and C-b for modified in situ retorting. The fluxes in groundwater discharged to the surface were identified for Tract C-b in a modeling effort by another laboratory. Assumed fluxes were used for Tract C-a. The quality of the groundwater aquifers of the Piceance Basin is assumed to be that reported in the literature. The changes are bracketed in this study by assuming all premining pumping is discharged to the surface stream. In one case, the pumped water is assumed to be of a quality like that of the upper aquifer with a relatively high quality. In the second case, the pumped water is assumed to come from the lower aquifer. Complete mixing and conservation of pollutants was assumed at sample points at the White River and at Lees Ferry of the Colorado River. A discussion of possible secondary effects of oil shale and coal mining is presented. In addition, a discussion of the uncertainties associated with the assumptions used in this study and alternative uses for the water to prevent stream contamination by oil shale development is provided.

1982-01-01T23:59:59.000Z

147

Food production after peak oil| Oregon's Willamette river basin as a bioregional case study.  

E-Print Network (OSTI)

?? Agriculture will experience radical new challenges in the next forty years. Peak oil, which is likely to occur before 2020, will result in potentially… (more)

Hruska, Tracy

2010-01-01T23:59:59.000Z

148

,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

149

,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

150

Design and safety basis sludge characterization from exposure-adjusted radioisotopic source terms for N reactor fuel stored at K-East and K-West basins  

Science Conference Proceedings (OSTI)

The Safeguards and Accountability database was used as the primary source document for exposure data for spent N Reactor fuel stored at the K-East and K-West basins. This database is a listing of all keys (ie., groups of fuel discharged from the reactor at the same time), and the exposure for that key, mass of uranium in the key, fuel type (whether Mark IV or Mark IA), and several other parameters. There are nearly five hundred records (keys) in this database. Figure 1 illustrates an N Reactor Mark IV fuel assembly. The axial length of the endcap is approximately 0.19 inch. Mark IA and Mark IV fuel are low enriched zircalloy-2 clad metallic uranium tube-in-tube assemblies held together with spacers and clips. Unexposed Mark IV fuel assemblies have an enrichment of 0.947 wt% {sup 235}U in both inner and outer tubes. Unexposed Mark IA assemblies have an enrichment of 1.25 wt% {sup 235}U in the outer tube and 0.947 wt% {sup 235}U in the inner tube.

SCHWINKENDORF, K.N.

2001-10-23T23:59:59.000Z

151

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

Energy Agency, Caspian Oil and Gas. Paris: Energy Charter33 Map of oil and gasstaff of the Office of Oil and Gas in the Department of the

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

152

Translocation, homing behavior and habitat utilization of oil platform-associated groundfishes in the east Santa Barbara Channel, California.  

E-Print Network (OSTI)

?? Several offshore oil platforms in the Santa Barbara Channel harbor large numbers of adult rockfishes, of which some species have been depleted on nearby… (more)

Anthony, Kim M.

2009-01-01T23:59:59.000Z

153

‹ Countries East China Sea Background - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

‹ Countries East China Sea Last Updated: September 25, 2012 Background Although the East China Sea may have abundant oil and natural gas resources, unresolved

154

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

155

Geologic and Engineering Characterization of East Ford Field, Reeves County, Texas  

SciTech Connect

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. The project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit: it contained an estimated 18.4 million barrels (MMbbl) of original oil in place.

Dutton, Shirley P.; Flanders, William A.; Guzman, Jose I.; Zirczy, Helena

1999-08-16T23:59:59.000Z

156

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z

157

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

Science Conference Proceedings (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

158

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is...

159

Recovery of bypassed oil in the Dundee Formation (Devonian) of the Michigan Basin using horizontal drains. Final report, April 28, 1994--December 31, 1997  

SciTech Connect

Total hydrocarbon production in the Michigan Basin has surpassed 1 billion barrels (Bbbls) and total unrecovered reserves are estimated at 1--2 BBbls. However, hydrocarbon production in Michigan has fallen from 35 MMbbls/yr in 1979 to about 10 MMbbls/yr in 1996. In an effort to slow this decline, a field demonstration project designed around using a horizontal well to recover bypassed oil was designed and carried out at Crystal Field in Montcalm County, MI. The project had two goals: to test the viability of using horizontal wells to recover bypassed oil from the Dundee Formation, and to characterize additional Dundee reservoirs (29) that are look alikes to the Crystal Field. As much as 85 percent of the oil known to exist in the Dundee Formation in the Michigan Basin remains in the ground as bypassed oil. Early production techniques in the 137 fields were poor, and the Dundee was at risk of being abandoned, leaving millions of barrels of oil behind. Crystal Field in Montcalm County, Michigan is a good example of a worn out field. Crystal Field was once a prolific producer which had been reduced to a handful of wells, the best of which produced only 5 barrels per day. The demonstration well drilled as a result of this project, however, has brought new life to the Crystal Field. Horizontal drilling is one of the most promising technologies available for oil production. The new well was completed successfully in October of 1995 and has been producing 100 barrels of oil per day, 20 times better than the best conventional well in the field.

Wood, J.R.; Pennington, W.D.

1998-09-01T23:59:59.000Z

160

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

Soviet Union Possible Oil Reserves per billion barrels 6 tocommon was their large oil reserves and the fact that theymore sober view. Proven oil reserves are currently put at

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report  

SciTech Connect

The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

1997-06-01T23:59:59.000Z

162

East Coast (PADD 1) Imports by PADD of Processing from ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Imports by PADD of Processing from Brazil of Crude Oil (Thousand Barrels per Day)

163

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

energy resources to the market; serve US oil companies’ interests in the Caspian; and develop alternate

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

164

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

165

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

2003-07-01T23:59:59.000Z

166

Secondary porosity and hydrocarbon reservoirs in Lower-Middle Miocene Sandstones, southern San Joaquin basin, California  

SciTech Connect

Immature lower to middle Miocene marine sandstones constitute important reservoir rocks in many southern San Joaquin basin oil fields. Surface samples from the east and west margins of the basin and subsurface samples from Round Mountain, Belridge, and Coalinga fields were examined. These localities have undergone recurrent uplift since middle Tertiary time and maximum burial probably did not exceed 2500-3000 m. Diagenetic features common to east- and west-side sandstones include phosphatization, early calcite cementation, pressure solution and replacement of silicate grains by calcite cement, framework grain dissolution and creation of secondary porosity, and replacement of biotite and hornblende by chlorite. Differences include recrystallization and dolomitization of early calcite on the west side, and massive carbonate dissolution followed by extensive crushing and pressure solution of silicate grains and late replacement of plagioclase by calcite and calcite by hematite on the east side. Replacement of biotite by chlorite occurred only in the deepest samples on either side of the basin. Basinwide differences in diagenesis reflect different tectonic evolutions between east and west sides of the basin. Local variations in diagenetic patterns are pronounced in all areas and are controlled by initial sediment composition. For example, in one core from Coalinga early calcite cement, recrystallized calcite cement, and dolomitized calcite cement are interbedded over the 60-m interval sampled. Hydrocarbons in all samples reside mainly in secondary pores created by cement and framework-grain dissolution, underscoring the importance of diagenesis in creating reservoirs in this basin.

Horton, R.A. Jr.; Menzie, R.J. Jr.

1987-05-01T23:59:59.000Z

167

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995  

SciTech Connect

Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

NONE

1996-01-22T23:59:59.000Z

168

Western oil-shale development: a technology assessment. Volume 5: an investigation of dewatering for the modified in-situ retorting process, Piceance Creek Basin, Colorado  

SciTech Connect

The C-a and the C-b tracts in the Piceance Creek Basin are potential sites for the development of oil shale by the modified in-situ retorting (MIS) process. Proposed development plans for these tracts require the disturbance of over three billion m/sup 3/ of oil shale to a depth of about 400 m (1312 ft) or more below ground level. The study investigates the nature and impacts of dewatering and reinvasion that are likely to accompany the MIS process. The purpose is to extend earlier investigations through more refined mathematical analysis. Physical phenomena not adequately covered in previous studies, particularly the desaturation process, are investigated. The present study also seeks to identify, through a parametric approach, the key variables that are required to characterize systems such as those at the C-a and C-b tracts.

1982-01-01T23:59:59.000Z

169

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect

The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-05-01T23:59:59.000Z

170

File:EIA-Appalach3-eastPA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach3-eastPA-BOE.pdf Appalach3-eastPA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.04 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Pennsylvania File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

171

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach5-eastWV-BOE.pdf Appalach5-eastWV-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.26 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time.

172

The Uinta Basin Case Robert J. Bayer  

E-Print Network (OSTI)

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

173

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

1998. OIL AND ECOLOGY Azerbaijan International OperatingCommitment to the Environment. Baku, Azerbaijan. 1996. ¾¾¾ .Export Pipeline. Baku, Azerbaijan. 1996. ¾¾¾ . Technical

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

174

Molecular organic geochemistry of the oil and source rocks in Railroad Valley, eastern Great Basin, Nevada, United States.  

E-Print Network (OSTI)

??A comprehensive geochemical study of oils from Railroad Valley, Nevada and two candidate source rock intervals from the nearby Egan Range, was conducted in order… (more)

Ahdyar, LaOde

2011-01-01T23:59:59.000Z

175

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

176

The extraction of bitumen from western oil sands: Volume 2. Final report  

Science Conference Proceedings (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

177

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

178

Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)  

Science Conference Proceedings (OSTI)

The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basin has been poorly explored so far, but it is highly promising for natural gas.

Li, R.X.; Li, Y.Z.; Gao, Y.W. [Changan University, Xian (China)

2007-05-15T23:59:59.000Z

179

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Middle East (% of total) Oil and Gas Extraction Petroleumand industry category Oil and Gas Extraction Petroleum andMiddle East (million $) Oil and Gas Extraction Petroleum and

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

180

Assessing the role of ancient and active geothermal systems in oil-reservoir evolution in the eastern Basin and Range province, western USA. Annual progress report, June 1, 1992--May 31, 1993  

DOE Green Energy (OSTI)

Results of our research on the oil fields of the Basin and Range province of the western USA continue to support the following concept: Convecting, moderate-temperature geothermal systems in this region have fostered and in some cases critically influenced the generation, migration, and entrapment of oil. At one Basin-Range field (Grant Canyon), oil-bearing and aqueous fluid inclusions in late-stage hydrothermal quartz were entrapped at temperatures comparable to those now prevailing at reservoir depths (120--130{degrees}C); apparent salinities of the aqueous varieties match closely the actual salinity of the modern, dilute oil-field waters. The inclusion-bearing quartz has the oxygen-isotopic signature for precipitation of the mineral at contemporary temperatures from modern reservoir waters. Measured and fluid-inclusion temperatures define near-coincident isothermal profiles through the oil-reservoir interval, a phenomenon suggesting ongoing heat and mass transfer. These findings are consistent with a model whereby a still-active, convectively circulating, meteoric-hydrothermal system: (1) enhanced porosity in the reservoir rock through dissolution of carbonate; (2) hydrothermally sealed reservoir margins; (3) transported oil to the reservoirs from a deep source of unknown size and configuration; and (4) possibly accelerated source-rock maturation through an increase in the local thermal budget. Grant Canyon and other Basin-Range oil fields are similar to the oil-bearing, Carlin-type, sediment-hosted, disseminated gold deposits of the nearby Alligator Ridge district. The oil fields could represent either weakly mineralized analogues of these deposits, or perhaps an incipient phase in their evolution.

Hulen, J.B.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CO2 Emissions - Kuwait Oil Fires  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Middle East Kuwait Oil Fires Graphics CO2 Emissions from the 1991 Kuwait Oil Fires Data graphic Data...

182

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III  

Science Conference Proceedings (OSTI)

The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

2000-05-24T23:59:59.000Z

183

Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's  

E-Print Network (OSTI)

) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

Watson, Andrew

184

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

185

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

186

Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Final report for the period October 1992--October 1993  

SciTech Connect

Badger Basin Field, discovered in 1931, produces at stripper rates from low-permeability fractured sandstones of the Upper Cretaceous Frontier Formation. Only 15% of the estimated 25 million barrels of oil originally in-place will be produced from the twenty-two attempted vertical completions. This project will increase recoverable reserves through a better understanding of the reservoir and factors which control production. Characterization of the reservoir has been accomplished through an integrated engineering, geological and geophysical approach. Production data, drilling and completion techniques, and relative location of wells on the anticline were reviewed and related to productivity. Literature was reviewed for interpretations on preferred flow directions on anticlinal structures. A structure map of the producing Frontier reservoir was constructed. Porosity development and its relationship to fracture networks was examined petrographically. Fractures in core were described and oriented using paleomagnetic techniques. Azimuths of fractures in outcrop were compared to fracture azimuths measured in the core. A 17 square-mile 3D seismic survey was designed, acquired and processed. Interpretation is being performed on a Sun workstation using Landmark Graphics software. Time-structure and amplitude-distribution maps will be constructed on three Frontier horizons. A location for a high-angle well will be chosen. The slant/horizontal test will be drilled and completed to increase recovery of reserves. Transfer of successful technologies will be accomplished by technical publications and presentations, and access to project materials, data, and field facilities.

Walker, J.P.; Fortmann, R.G.

1994-12-01T23:59:59.000Z

187

Perestroika, Soviet oil, and joint ventures  

SciTech Connect

Glaznost, the freedom of expression in both the public and private sectors of the Soviet Union, has rapidly transformed the country form a largely isolated and closed society to one that is rapidly becoming more cosmopolitan and open to the West. Now that the Soviet Union is moving toward a free-market economy, a number of new laws are being generated to create a favorable environment for Western investment, especially joint ventures. First, crude oil sales have provided over 75% of much-needed hard currency, and oil has been the principal barter for manufactured goods produced in eastern Europe. Second, joint oil ventures with Western companies can reverse declining production levels and provide sufficient stimulus to turn around the economic recession. The Soviet Union has a very large inventory of discovered but undeveloped oil and gas fields. Most of these fields are difficult for the Soviets to produce technically, financially, and environmentally safely, and they are actively seeking appropriate Western partners. From an exploration point of view, the Soviet Union has probably the largest number of undrilled and highly prospective oil basins, which may replenish declining reserves in the West. Finally, the Soviet Union represents in the long term a large unsaturated market eager to absorb the surplus of goods and services in the Western world. Again, joint oil ventures could provide the convertible currency to increase East-West trade.

Churkin, M. Jr.

1991-08-01T23:59:59.000Z

188

Copyright 1999, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 1999 SPE Middle East Oil Show held in  

E-Print Network (OSTI)

Engineers. Electronic reproduction, distribution, or storage of any part of this paper for commercial O. Allen and Alan. P. Rberts.: "Production Work over and Stimulation," Vol-1, Oil and Gas Condensate

Al-Majed, Abdulaziz Abdullah

189

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

190

SOME OPTIONS FOR THE EAST CHINA SEA  

E-Print Network (OSTI)

Abstract: 1 This paper analyzes the critical analytical and policy issues relating to the management of seabed hydrocarbon exploitation in transboundary and disputed areas. First, I examine various domestic and external factors that either promote or prevent the Sino-Japanese joint/cooperative development of seabed oil/gas deposits in the East China Sea. I will then define some principles and rules of cross-border petroleum exploitation and classify into five development models existing international agreements and treaties relating to seabed oil/gas exploitation in various disputed areas throughout the world. On the basis of the simplified spatial cost-benefit analysis of seabed oil/gas exploitation, different development models are suggested to fit in with the various zones of the East China Sea. Finally, I put forward several policy options for bilateral or multilateral cooperation on the exploration, exploitation, and transportation of the seabed oil/gas deposits in the East China Sea. 1.

Guo Rongxing

2010-01-01T23:59:59.000Z

191

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Unita Basin, Utah. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

This project aspires to increase the productivity and reserves in the Uinta Basin by demonstration of improved completion techniques. Subsurface studies were performed this period.

Allison, M.L.

1995-04-07T23:59:59.000Z

192

Security in the Middle East  

Science Conference Proceedings (OSTI)

The full range of U.S. security interests in the Middle East is covered in this volume of original contributions from prominent international scholars. Case studies of key countries emphasize the prospects for peaceful political, economic, and cultural change in the region. The Arab-Israeli conflict is examined with particular attention to the ''Palestine problem,'' U.S. policy and diplomacy, and the peace process. Finally, the involvement of the U.S. and the USSR and the policy options open to them are considered. Includes chapters on oil and its role in Middle-East security issues.

Wells, S.F. Jr.; Bruzonsky, M.A.

1986-01-01T23:59:59.000Z

193

columbus east  

Office of Legacy Management (LM)

Columbus East, Ohio, Site (formerly the B&T Columbus East, Ohio, Site (formerly the B&T Metals site) is located at 425 West Town Street in southwest Columbus, Ohio. The site consists of a main building, a storage building, and an aluminum extrusion building and covers most of a city block. From March through August 1943, B&T Metals extruded uranium fuel rods from uranium metal billets (bars or ingots of uranium formed as an intermediate product) under contract to E.I. du Pont de Nemours and Company (DuPont). The rods were manufactured in support of Manhattan Engineer District (MED) opera- tions and were destined for use as fuel in the Hanford, Washington, nuclear reactor. It is estimated that more than 50 tons of uranium were extruded. The work performed for MED occurred in the northwest corner of the main building, the largest of the three site

194

columbus east  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Setting Regulatory Setting The Columbus East, Ohio, Site (formerly B&T Metals) is located at 425 West Town Street in southwest Columbus, Ohio. The site consists of a main building, a storage building, and an aluminum extrusion building and covers most of a city block. From March through August 1943, B&T Metals extruded uranium fuel rods from uranium metal billets (bars or ingots of uranium formed as an intermediate

195

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

Coastal Region Onshore ... Los Angeles Basin Onshore. . . 330 0 31 24 31 26 3 0 0 16 319 ... the net loss of proved reserves of crude oil in 2003.

196

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network (OSTI)

Hanford K-Basin Sludge Characterization Overview February 2005 1 Hanford K-Basin Sludge Characterization Overview February 2005 1. Summary The Hanford K-East and K-West Basins were used to store of the irradiated fuel reprocessing facility at Hanford (the PUREX facility) the N-Reactor irradiated fuel remained

197

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

198

East Gate  

NLE Websites -- All DOE Office Websites (Extended Search)

East East Gate to: Rt. 59 Fermilab Village Main Entrance B u tt e r fi e ld R d . to: Farnsworth Ave, I-88 Kirk Rd. Site 56 Site 55 Buffalo Farm Lederman Science Center (Public Welcome) Prairie Trails Dog Training Area Nature Area Lake Law A.E. Sea Technical Division Illinois Accelerator Research Center Feynman Computing Center Muon Delivery Ring Main Injector Tevatron Test Accelerators Site 37 Site 39 Site 38 Neutrino Experiments Silicon Detector Facility Test Beam Facility DAB Site 50 Wilson Hall & Ramsey Auditorium (Public Welcome) Wilson St. Gate (Deliveries, Employees) NML CMTF A 1 R D D R D B RD S E O LA R D B A T A V I A R D E WILSON ST WILSON ST P IN E S T P O W E R L I N E R D N E O LA R D MCCHESNEY RD A B C D E 5 4 3 2 1 ´ 0 0.5 1 0.25 Miles Trails Public Areas Buildings Roads/Parking Ponds Fermi National Accelerator Laboratory 2013 Fermilab Site Map

199

Geochemical controls on production in the Barnett Shale, Fort Worth Basin.  

E-Print Network (OSTI)

??The Newark East field (Barnett Shale) in the Fort Worth Basin, Texas currently has the largest daily production of any gas field in Texas. Major… (more)

Klentzman, Jana L.

2009-01-01T23:59:59.000Z

200

What's changing in East Coast fuels markets?  

Reports and Publications (EIA)

The U.S. East Coast petroleum product market is undergoing fundamental changes from the standpoint of supply and demand. In addition to the announced idling and potential closure of several major refineries, a number of Northeastern states plan a transition to ultra-low sulfur diesel for heating oil use beginning with New York in the summer of 2012. This article provides an overview of EIA's recent analyses related to East Coast fuels markets.

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

202

Building for Oil: Corporate Colonialism, Nationalism and Urban Modernity in Ahmadi, 1946-1992  

E-Print Network (OSTI)

oil reserves on the part of foreign oil companies was mostEast to Western Europe foreign oil companies like KOC whoseand the presence of foreign oil companies. Although each

Alissa, Reem IR

2012-01-01T23:59:59.000Z

203

Southern Mozambique basin: most promising hydrocarbon province offshore eat Africa  

Science Conference Proceedings (OSTI)

Recent offshore acquisition of 12,800 km (8,000 mi) of seismic reflection data, with gravity and magnetic profiles encompassing the southern half of the Mozambique basin, reveals new facets of the subsurface geology. Integrated interpretation of these new geophysical data with old well information results in the development of depositional and tectonic models that positively establish the hydrocarbon potential of the basin. The recent comprehensive interpretation affords the following conclusions. (1) Significant oil shows accompany wet gas discoveries suggest that the South Mozambique basin is a mature province, as the hydrocarbon associations imply thermogenic processes. (2) Super-Karoo marine Jurassic sequences have been encountered in Nhamura-1 well onshore from the application of seismic stratigraphy and well correlation. (3) Steeply dipping reflectors truncated by the pre-Cretaceous unconformity testify to significant tectonic activity preceding the breakup of Gondwanaland. Hence, preconceived ideas about the depth of the economic basement and the absence of mature source rocks of pre-Cretaceous age should be revised. (4) Wildcats in the vicinity of ample structural closures have not been, in retrospect, optimally positioned nor drilled to sufficient depth to test the viability of prospects mapped along a major offshore extension of the East African rift system delineated by this new survey.

De Buyl, M.; Flores, G.

1984-09-01T23:59:59.000Z

204

Applications: Oil and gas production  

E-Print Network (OSTI)

on Health, Safety & Environment in Oil & Gas E&P SPE/EAGE European Unconventional Resources Conference SPE International Conference PennWell Unconventional Oil and Gas Europe PennWell Underwater Intervention Marine Exploration Society Conference UGAS SPE Middle East Unconventional Gas Conference WHOC World Heavy Oil

205

Horizontal well taps bypassed Dundee oil in Crystal field, Mich.  

SciTech Connect

The Dundee formation (Middle Devonian) has yielded more oil than any other producing interval in Michigan. The Dundee trend, which forms an east-west band across the central Michigan basin, consists of 137 fields which together have yielded more than 350 million bbl of oil. The first commercial Dundee production was established at Mt. Pleasant field in 1928, and most Dundee fields were discovered and brought on production during the 1930s--40s. Wells in many of the fields had very high initial production (IP) rates. IPs in excess of 1,000 b/d of oil were common, with values as high as 9,000 b/d reported. These high flow rates, combined with a thin (10--30 ft) oil column and a strong water drive, resulted in water coning that left significant volumes of oil unrecovered in some fields. One such field, Crystal field in Montcalm County, is the focus of a US Department of energy (DOE) Class 2 Reservoir Demonstration Project designed to demonstrate that horizontal drilling can recover significant volumes of this bypassed oil. The paper describes the demonstration project, regional setting, and the history of the Crystal field.

Wood, J.R.; Allan, J.R.; Huntoon, J.E.; Pennington, W.D. [Michigan Technological Univ., Houghton, MI (United States); Harrison, W.B. III [Western Michigan Univ., Kalamazoo, MI (United States); Taylor, E.; Tester, C.J. [Cronus Development Corp., Traverse City, MI (United States)

1996-10-21T23:59:59.000Z

206

Barnett shale rising star in Fort Worth basin  

Science Conference Proceedings (OSTI)

The Mississippian-age Barnett shale of the Fort Worth basin, North Texas, has emerged as a new and active natural gas play. Natural gas production from the Barnett shale at Newark East field in Denton and Wise counties, Texas, has reached 80 MMcfd from more than 300 wells. However, very little publicly available information exists on resource potential and actual well performance. The US Geological Survey 1995 National Assessment of US Oil and Gas Resources categorized the Mississippian Barnett shale play (play number 4503) as an unconventional gas play but did not quantitatively assess this resource. This article, which expands upon a recent USGS open-file resource assessment report, provides an updated look at the Barnett shale and sets forth a new quantitative assessment for the play.

Kuuskraa, V.A.; Koperna, G. [Advanced Resources International Inc., Arlington, VA (United States); Schmoker, J.W.; Quinn, J.C. [Geological Survey, Denver, CO (United States)

1998-05-25T23:59:59.000Z

207

What countries are the top world oil net importers? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

What's changing in East Coast fuels markets? ... What countries are the top world oil net importers? There are 15 top world oil net importers. Last revised: ...

208

Energy News: The Structure of Fuel Oil Use in US Households.  

U.S. Energy Information Administration (EIA)

Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, ... home heating oil prices in the Northeast and New England, ...

209

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5152012 DE-NT0005671 Goal The goal of...

210

Report of Flood, Oil Sheen, and fish Kill Incidents on East Fork Poplar Creek at the Oak Ridge Y-12 Plant  

Science Conference Proceedings (OSTI)

Water quality and plant opemtion irriiormation provided by the Y-12 Plant strongly suggest that a dechlorinating agent, applied to the raw water released below the North-South Pipes was responsible for the toxicity resulting in the fish kill of July 24. Dissolved oxygen (DO) measurements in upper EFPC indicai e that low oxygen levels (3-5 ppm) occurred for a period of up to 30 min. This slug of low DO water traveling down EFPC to the lake could easily explain the massive fish kill and the resulting observations. Dissolved oxygen levels of 5.2 ppm or lower are documented as causing problems for warmwater fish species (Heath 1995). The presence of other stressors, including a range of petrochemicals, tends to lower resistance to low oxygen conditions. Given the sequence of events in upper EFPC in the few days prior to July 24, where extremely high flows were followed by inputs of a wide range of low concentrations of oils, the sensitivity to low DO conditions might be heightened. The possible toxic impact of ::he oils and other contaminants reaching EFPC as a result of the heavy rainfidl on July 22 doesn't appear significant enough to be the sole cause of the kill on July 24. Even during the height of the kill, a large school of fish remained immediately downstream of the North-South Pipes. If the toxicity of waters flowing through this outlet were the primary cause of the kill, then it would be expected that this school of fish would not have been present immediately below the pipes. Any impact of waters entering from other sources, such as pumping of basements WOUIC1 have produced a staggered pattern of mortality, with fishing dying in different localities at different times and rates. Further, it would be expected that the morta.lhy observed would have continued over several days at least, as more resistant individuals succumbed slowly to the toxic exposure. This would have provided freshly dead or dying fish for the surveys of July 25 and 28. In previous fish kills in this stream section, the impact on the fish community has been judged to be short-term only, with no significant long-term ecological effects. In fact, the numerous fish kills over the past 7 years do not appear to have dampened the growth of the stream fish populations. The magnit~de of these kills was far less than that of the July 24 kill; maximum mortality of 10-20o/0 of th{~ total population above Lake Reality. Because the current kill has tiected a much larger proportion of the resident population, the impacts are expected to extend for a longer period in this situation, perhaps up to a year. Decreased population levels should be evident through the fhll 1997 and spring 1998 samples. Depending on the success rate of reproduction during the summer cf 1998, the recovery of fish populations should be observed in the fdl 1998 population sample. However, complete recovery may take several reproductive seasons to reach the densities seen in 1997. The cyprinid species occurring in upper EFPC have tremendous reproductive capacities and should be able to repopulate this area with little or no long-term ecological impact. Even the redbreast sunfish should, at the worst, only endure a narrowing of its available gene pool, with little if any long-term impacts.

Skaggs, B.E.

1997-09-01T23:59:59.000Z

211

Middle east crisis has varied effect on wastewater utilities  

Science Conference Proceedings (OSTI)

The jump in oil prices that followed Iraq's invasion of Kuwait in early August of 1990 was felt throughout the US economy. The authors particularly discuss the impact of the Middle East Crisis as it relates to wastewater utilities.

Nichols, A.B.

1990-10-01T23:59:59.000Z

212

Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin  

SciTech Connect

Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-09-01T23:59:59.000Z

213

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

214

Petroleum geochemistry of the Zala basin, Hungary  

Science Conference Proceedings (OSTI)

The Zala basin is a subbasin within the Pannonian basis on Hungary. Oil and smaller amounts of gas are produced from Upper Triassic through Miocene reservoirs. Our geochemical study of oils and rocks in the basin indicate that two, and possibly three, genetic oil types are present in the basin. Miocene source rocks, previously believed by explorationists to be the predominant source rock, have expelled minor amounts of hydrocarbons. The main source rock is the Upper Triassic (Rhaetian) Koessen Marl Formation or its stratigraphic equivalent. Oils derived from the Triassic source rock are recognizable by their isotopic and biological marker composition, and high content of metals. In other areas of Europe, Upper Triassic source rocks have been correlated with large oil accumulations (e.g., Molassa and Villafortuna fields, Po basin, and other fields in Italy) or are postulated to be good potential source rocks (e.g., Bristol channel Trough). Knowledge of the geochemical characteristics of oils derived from these Upper Triassic source rocks and understanding of the source rock distribution and maturation history are important for recognizing Triassic oil-source bed relationships and for further exploration in other basins in Hungary and other parts of Europe where Triassic source rocks are present.

Clayton, J.L. (Geological Survey, Denver, CO (United States)); Koncz, I. (Hungarian Oil and Gas Corp., Nagykanizsa (Hungary))

1994-01-01T23:59:59.000Z

215

Application of Advanced Exploration Technologies for the Development of Mancos Formation Oil Reservoirs, Jicarilla Apache Indian Nation, San Juan Basin, New Mexico  

SciTech Connect

The objectives of this project are to: (1) develop an exploration rationale for the Mancos shale in the north-eastern San Juan basin; (2) assess the regional prospectivity of the Mancos in the northern Nation lands based on that rationale; (3) identify specific leads in the northern Nation as appropriate; (4) forecast pro-forma production, reserves and economics for any leads identified; and (5) package and disseminate the results to attract investment in Mancos development on the Nation lands.

Reeves, Scott; Billingsley, Randy

2002-09-09T23:59:59.000Z

216

Sand-rich submarine fans, Mio-Pliocene of Santa Monica Basin, offshore California: Untapped exploration targets  

Science Conference Proceedings (OSTI)

Santa Monica Basin lies directly west of Los Angeles Basin, one of the world's most prolific oil provinces. Published literature suggests that Santa Monica Basin was starved of coarse clastics during the late Miocene through Pliocene. However, seismic sequence stratigraphy indicates that deposition of sand-rich fans alternated with mixed-load systems throughout the Delmontian and Repettian stages. Seismic sequences and facies are calibrated to seismic and well data from Beta Oil Field, in San Pedro Basin to the south. Eustasy evidently played a dominant role in controlling sedimentation. Variations in tan lithology, thickness, and basinward extent correspond to worldwide changes in sea level. Regional erosion surfaces apparently signify drops in sea level. Overlying thick seismic packages display hummocky to chaotic seismic facies separated by high- to low-amplitude continuous reflections. These configurations are interpreted as inner- to mid-fan channels separated by overbank deposits in sand-rich lowstand fans. High-amplitude basinwide reflections bound the tops of the sand-rich intervals, and likely represent condensed sections formed during sea-level rises. Thin seismic intervals above the condensed sections display downlap, and are interpreted as interbedded sandstones and shales of prograding highstand fans. Sediment input to Santa Monica Basin, based on seismic-facies and isochron patterns, was predominantly from the (present-day) north, with subordinate input from the east. High-amplitude eustatic variations dominated deposition and sequence development even in this tectonically active basin Previously unidentified sand-rich fans are present, and have not been drilled.

May, J.A.; McMillen, K.J.

1996-01-01T23:59:59.000Z

217

Too early to tell on $100 oil  

U.S. Energy Information Administration (EIA) Indexed Site

Confidential Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the current oil cycle, with a possible turning point coming by the end of the year 1 Putting the GCC economy in global context u GCC = Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, Oman u GDP/capita in 2007: $19,000 - Nearly 3x China and 5x India u At $800 bn, GCC is a top 10 developing economy by size

218

East Brawley East MesaHeber  

E-Print Network (OSTI)

East Brawley Glamis Dunes East MesaHeber Salton Sea South Brawley Randsburg Sespe Hot Springs Coso Randsburg Sespe Hot Springs Coso Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Lassen Wendel - Amedee Glass

219

Caspian countries are developing new oil and natural gas export ...  

U.S. Energy Information Administration (EIA)

The Caspian Sea region has the potential to export oil and natural gas to European, South Asian, and East Asian markets. With rising energy prices and growing global ...

220

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, September 30, 1993--September 30, 1994  

SciTech Connect

The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment, sandstones deposited in fluvial-dominated deltas; and carbonates and some interbedded sandstones of the lower Wasatch transition deposited in mud flats. Bluebell project personnel are studying ways to improve completion techniques used in the field to increase primary production in both new wells and recompletions. The study includes detailed petrographic examination of the different lithologic reservoir types in both the outcrop and core. Outcrop, core, and geophysical logs are being used to identify and map important depositional cycles. Petrographic detail will be used to improve log calculation methods which are currently highly questionable due to varying water chemistry and clay content in the Green River and Wasatch Formations. Field mapping of fractures and their relationship to basin tectonics helps predict the orientation of open fractures in the subsurface. The project includes acquiring bore-hole imaging logs from new wells in the Bluebell field thereby obtaining detailed subsurface fracture data previously not available. Reservoir simulation models are being constructed to improve the understanding of pressure and fluid flow within the reservoir. A detailed database of well completion histories has been compiled and will be studied to determine which were the most and the least effective methods used in the past.

Allison, M.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil  

E-Print Network (OSTI)

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

Watts, A. B. "Tony"

222

Bahrain oil and development 1929-1989  

Science Conference Proceedings (OSTI)

This book describes the economic, political, and social elements of relations between international oil companies and Bahrain. It also provides insights into Middle East regional oil and gas development, oil pricing and production evolution, and relations between Persian Gulf states and such western powers as Great Britain and the U.S.

Clarke, A.

1990-01-01T23:59:59.000Z

223

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

224

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Epifluorescence Techniques The Use of Epifluorescence Techniques to Determine Potential Oil-Prone Areas in the Mississippian Leadville Limestone, Northern Paradox Basin, Utah...

225

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the...

226

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

227

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

228

Yankee Mine oil seep: New research yields additional evidence of thrusting; original oil volume in the seep was possibly two orders of magnitude greater than previously calculated  

SciTech Connect

Mesomic thrusting combined with subsequent Eocene hydrothermal activity have created a regime favorable to major accumulation of both oil and gold in the Long Valley - Buck Mountain - Maverick Springs Range area of northeastern Nevada. Discoveries from ongoing exploration include: Numerous economic accumulations of hydrocarbon associated gold; various thrust relationships from surface geologic mapping and drill holes identifying Devonian rocks faulted onto Permian, Pennsylvanian (?) and Mississippian age rocks; numerous small scale compressional folds and faults indicative of both cast vergent (expected) and west vergent (unexpected) structural elements. Seismic data indicates that oil source rocks, primarily Chainman Shale and Pilot Shale formations, are present to the west in a downdip, subthrust position where hydrocarbon generation and migration would provide large oil volumes to migrate easterly (updip) prior to the formation of the Basin and Range. The Eocene age hydothermal cell which emplaced gold and oil bearing fluids into the Yankee and associated gold mines probably initiated directly below or east of the Yankee area, but certainly not west of it since no hydrothermal mineralization is present in the Yankee Mine 27-23X Well drilled by Pioneer Oil and Gas west of the mines.

Pinnell, M.L. [Pioneer Oil and Gas, Midvale, UT (United States); Anderson, D.W. [Anderson Geological Corp., Westminster, CO (United States)

1995-06-01T23:59:59.000Z

229

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

230

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

231

East Coast Infrastructure  

U.S. Energy Information Administration (EIA)

East Coast Infrastructure. Uncheck or check an item to hide or show it in the map. ... Infrastructure—Energy Information Administration (GasTran System), ...

232

Distillate Stocks are Low - Especially on the East Coast  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Distillate stocks are normally built during the summer for use during the winter as shown by the normal band. Currently, stocks are very low for this time of year. This graph shows East Coast inventories, which at the end of August, were well below the normal band (over 9 million barrels or 19% below the low end of the band). The East Coast is about 31% lower than its 10-year average level for this time of year. We focus on the East Coast (PADD 1 ) because this a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). December 1999 was the turning point. Stocks were well within the normal range through November 1999, but in December, they dropped below the

233

Geothermal and heavy-oil resources in Texas  

Science Conference Proceedings (OSTI)

In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

Seni, S.J.; Walter, T.G.

1994-01-01T23:59:59.000Z

234

File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information  

Open Energy Info (EERE)

Black.Warrior.Basin usgs.map.pdf Black.Warrior.Basin usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size of this preview: 742 × 600 pixels. Full resolution ‎(1,860 × 1,504 pixels, file size: 148 KB, MIME type: application/pdf) Description Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Sources USGS Related Technologies Oil, Gas Creation Date 2007 Extent Black Warrior Basin Province Countries United States UN Region Northern America States Alabama, Mississippi Location of the Black Warrior Basin Province in northwestern Alabama and northeastern Mississippi, published in the USGS report entitled, Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin

235

African sedimentary basins - Tectonic controls on prospectivity  

Science Conference Proceedings (OSTI)

An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. (Robertson Group plc, Gwynedd (England))

1991-03-01T23:59:59.000Z

236

East North Central Pa  

Gasoline and Diesel Fuel Update (EIA)

East East North Central Pa cif ic Contiguous Mountain West North Central West South Central Pacific Noncontiguous East South Central Sout h At lant ic Middle Atlantic New England 35. Average Price of Natural Gas Delivered to Consumers by Census Division, 1995-1996 (Dollars per Thousand Cubic Feet) Table Census Division Residential Commercial 1995 1996 1995 1996 New England ........................................................... 9.06 9.03 6.78 6.96 Middle Atlantic ......................................................... 7.75 8.00 6.04 6.57 East North Central ................................................... 5.05 5.44 4.57 4.94 West North Central .................................................. 4.97 5.54 4.08 4.71 South Atlantic........................................................... 6.89 7.50 5.33 6.14 East South Central...................................................

237

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

238

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

239

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

240

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Characteristics of North Sea oil reserve appreciation  

E-Print Network (OSTI)

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

242

SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet burning equipment  

E-Print Network (OSTI)

burning equipment SUMMARY DemoEast programme is a part of Baltic Billion Fund 2 with the overall aim and Kiltsi light oil fired boilers have been converted to wood pellets burning. The supplier

243

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

244

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

245

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

Science Conference Proceedings (OSTI)

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

246

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

247

The post-war Middle East  

SciTech Connect

The Middle East remains today the global energy fulcrum. One year after the Persian Gulf war, the region is in greater turmoil and political uncertainty than it has known in modern times. The Iraqi invasion of Kuwait and subsequent external military intervention forced neighboring states to question the need for a foreign military presence in the future. The rift between the secular revolutionary states in the region led by Iraq, Libya, Yemen, Algeria, and Syria and the traditional monarchy of Saudi Arabia and the emirates of the gulf has widened. Egypt provides, at present, an uncomfortable bridge. The balance of political forces may be shifting. This paper attempts to answer the following questions: Where will we see the new leadership in the Middle East Will it again play a role through the Organization of Petroleum Exporting Countries and determination of the oil price in shaping the structure of global energy supply and demand

Tempest, P.

1992-03-09T23:59:59.000Z

248

The effect of biofuel on the international oil market  

E-Print Network (OSTI)

barrel of crude oil in the Middle East was 14.85 US$ between5,000 US$ mark). Although consumption of crude oil in theUS$ for o?shore drilling; in other words, the marginal cost of a barrel of crude oil

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

249

Secretary Bodman Travels to the Middle East | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Middle East the Middle East Secretary Bodman Travels to the Middle East November 10, 2005 - 2:22pm Addthis Four-nation swing to emphasize domestic energy needs and goals WASHINGTON, DC - Secretary of Energy Samuel W. Bodman embarked upon a four-nation tour through the Middle East to enhance the United States' relationship with major oil-producing nations, promote economic liberalization and increased foreign investment in the region, and reaffirm U.S. energy policy goals. "Both consumers and producers of energy depend on a vibrant, growing world economy. By working together we can increase the energy and economic security of the United States and our international partners and pursue continued growth and prosperity in developed and developing nations," Secretary Bodman said.

250

Middle East future line plans muddled following Gulf War  

Science Conference Proceedings (OSTI)

This paper reports that the recent Gulf War has left the middle East in an awkward situation on current and future pipe line projects. Much of Kuwait's production capacity was destroyed and its ability to regain its previous position as an oil producer in the Middle East in the near term is questionable. Iraq's production remains severely curtailed by international agreement. Saudi Arabia and the other Middle Eastern states continue to produce at the higher than normal levels instigated in the early days of the crisis. The continuing efforts to bring the Kuwait oilfields under control, coupled with ongoing excessive production by some Middle eastern countries and the world response to Sadam Hussein's questionable intentions leave the Middle East pipe line construction picture muddled. The war forestalled pipe line projects in Kuwait and Iraq and many of the planned projects now are questionable. In other areas of the Middle East, the war may have firmed tentative plans for pipe line construction.

Not Available

1991-11-01T23:59:59.000Z

251

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

252

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

253

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

254

Permian evolution of sandstone composition in a complex back-arc extensional to foreland basin: The Bowen Basin, eastern Australia  

SciTech Connect

The Bowen Basin is a Permo-Triassic, back-arc extensional to foreland basin that developed landward of an intermittently active continental volcanic arc associated with the eastern Australian convergent plate margin. The basin has a complex, polyphase tectonic history that began with limited back-arc crustal extension during the Early Permian. This created a series of north-trending grabens and half grabens which, in the west, accommodated quartz-rich sediment derived locally from surrounding, uplifted continental basement. In the east, coeval calc-alkaline, volcanolithic-rich, and volcaniclastic sediment was derived from the active volcanic arc. This early extensional episode was followed by a phase of passive thermal subsidence accompanied by episodic compression during the late Early Permian to early Late Permian, with little contemporaneous volcanism. In the west, quartzose sediment was shed from stable, polymictic, continental basement immediately to the west and south of the basin, whereas volcanolithic-rich sediment that entered the eastern side of the basin during this time was presumably derived from the inactive, and possibly partly submerged volcanic arc. During the late Late Permian, flexural loading and increased compression occurred along the eastern margin of the Bowen Basin, and renewed volcanism took place in the arc system to the east. Reactivation of this arc led to westward and southward spread of volcanolithic-rich sediment over the entire basin. Accordingly, areas in the west that were earlier receiving quartzose, craton-derived sediment from the west and south were overwhelmed by volcanolithic-rich, arc-derived sediment from the east and north. This transition from quartz-rich, craton-derived sediments to volcanolithic-rich, arc-derived sediments is consistent with the interpreted back-arc extensional to foreland basin origin for the Bowen Basin.

Baker, J.C. (Univ. of Queensland, (Australia). Centre for Microscopy and Microanalysis); Fielding, C.R. (Univ. of Queensland, (Australia). Dept. of Earth Sciences); Caritat, P de (Australian National Univ., Canberra (Australia). Dept. of Geology); Wilkinson, M.M. (Santos Petroleum, Queensland (Australia))

1993-09-01T23:59:59.000Z

255

Greece licensing round to focus on western sedimentary basins  

SciTech Connect

New opportunities for international oil companies to explore for hydrocarbons in Greece will emerge shortly. Parliament ratified a new petroleum law in January 1995, and DEP-EKY SA will undertake an international licensing round for offshore-onshore areas mainly in western Greece during second half 1995. The paper describes the fold and thrust belt of western Greece; the Katakolon oil field; the tertiary basins of eastern Greece; the Prinos and Prinos North oil fields; and the Epanomi gas field.

Roussos, N.; Marnelis, F. (Public Petroleum Corp. of Greece, Athens (Greece))

1995-03-06T23:59:59.000Z

256

ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN.  

E-Print Network (OSTI)

?? The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the… (more)

Afsar, Fatima

2013-01-01T23:59:59.000Z

257

U.S. monthly crude oil production reaches highest level since ...  

U.S. Energy Information Administration (EIA)

... Eagle Ford formation in South Texas and the Permian Basin in West Texas. North Dakota's increase in oil production comes from the Bakken formation in the ...

258

Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California  

E-Print Network (OSTI)

California coastal zone and offshore areas. Vol. II. ,shelf of the mainland and offshore islands, deep sea basins,and Oil/Gas Platforms Offshore California MBC Applied

MBC Applied Environmental Sciences

1987-01-01T23:59:59.000Z

259

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

260

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

262

Distillate Stocks on the East Coast Were Very Low Entering Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So, what happened last winter? At last year's SHOPP conference, my renowned colleague, Joanne Shore, warned of the potential for high prices. At this time last year, distillate stocks were very low. This graph shows East Coast inventories, which at the end of July 2000, were well below the normal band. We focus on the East Coast (PADD 1) because this is a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). East Coast stocks were well below normal last year from July through December, but then actually increased in January, when they typically decline. In fact, the increase was only the 2nd time East Coast distillate stocks have increased in January since EIA has kept PADD level data (1981)!

263

Western oil-shale development: a technology assessment. Volume 3: air-quality impacts  

SciTech Connect

The effects of a mature oil shale industry on the air quality over the Green River Oil Shale Formation of Colorado, Utah, and Wyoming is described. Climate information is supplied for the Piceance Creek Basin. (ACR)

1982-01-01T23:59:59.000Z

264

CO2 Emissions - East and West Pakistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East East and West Pakistan CO2 Emissions from East and West Pakistan Data graphic Data CO2 Emissions from East and West Pakistan image Per capita CO2 Emission Estimates for...

265

Megaregional seismic lines as indicators of oil and gas  

Science Conference Proceedings (OSTI)

One way to quickly identify the most attractive plays in a given basin is through interpretation of regional seismic profiles in combination with adjacent well data and other geologic data. Such transects can provide insights into: (1) the location of economic basement, (2) maturation history and migration pathways, and (3) regional structure and stratigraphy and can thereby help understand present plays and recognize new plays. This poster session presents seismic data from the Megaregional Project and includes examples from the Magallanes, Oriente and Maranon basins. These foreland basins, located east of the Andes, underwent extension followed by a compression which resulted in east-vergent thrusting or high angle reverse faulting. Each basin includes productive plays although reserves depend largely on reservoir quality and size of structures. Future exploration in these basins will focus on deeper objectives and in the structurally complex areas near their western boundaries.

Bertagne, A.J.; Smith, N.G. [CGG American Services, Inc., Houston, TX (United States)

1996-08-01T23:59:59.000Z

266

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of prices for domestic and imported oil. F IGURE 15-2.THE VALUE OF P ERSIAN -G ULF OIL IMPORTS , Source: Tables 4Middle East (% of total) Oil and Gas Extraction Petroleum

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

267

East | OpenEI  

Open Energy Info (EERE)

97 97 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278797 Varnish cache server East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 81, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO East EIA Electric Power

268

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA)

Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 ... The Middle East has 13 times that amount and Central and South America has 5 times that amount.

269

EIA forecasts increased oil demand, need for additional supply ...  

U.S. Energy Information Administration (EIA)

World oil demand is forecast to increase by 1.7 million barrels per day (bbl/d) ... Cooling demand in the Middle East is expected to rise to record levels this summer.

270

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

271

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

272

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

273

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

274

Appendix D Draft Oil Spill Response Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Draft Oil Spill Response Plan U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix D Draft Oil Spill Response Plan DRAFT Oil Spill Response Plan CAPE WIND ASSOCIATES, LLC BOSTON, MASSACHUSETTS PREPARED FOR Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 PREPARED BY ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915 Project No. E159-601 December 2005 DRAFT OIL SPILL RESPONSE PLAN Cape Wind Associates, LLC Boston, Massachusetts Prepared For: Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 Prepared By: ESS Group, Inc. 401 Wampanoag Trail, Suite 400

275

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

276

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

277

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

278

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

279

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Ruppel and R. G. Loucks (http:www.aapg.org) Abstract: The Woodford Formation, a key oil and gas source rock in the Permian Basin of Texas and New Mexico, is part of an...

280

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Authors: Danielle Lehle and Michael D. Vanden Berg, Utah Geological Survey. Venue: Economic Geology of the Rocky Mountain Region session, May 11, 2009, Geological Society of America-Rocky Mountain Section annual meeting, Orem, Utah, May 11-13, 2009. http://www.geosociety.org/sectdiv/rockymtn/09mtg/index.htm [external site] Abstract: The upper Green River formationÂ’s oil shale deposits located within the Uinta Basin of Utah and the Piceance Creek Basin of Colorado contain remarkably similar stratigraphic sequences despite being separated by the Douglas Creek arch. Individual horizons, as well as individual beds, can be traced for hundreds of miles within and between the two basins. However, changes in the topography-controlled runoff patterns between the basins, as well as changes in localized climate conditions throughout upper Green River time, created significant differences between basin-specific deposits. These variations affected the richness and thickness of each oil shale zone, resulting in basin-specific preferred extraction techniques (i.e., in-situ in Colorado and mining/retort in Utah). ColoradoÂ’s oil-shale resource was mapped and quantified by the USGS in the late 1970s, whereas this study is the first attempt at quantifying UtahÂ’s overall resource by specific oil shale horizon. This presentation focuses on the Mahogany zone (MZ) and the stratigraphically lower R-6 zone; subsequent work will define other important horizons.

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

West-east stratigraphic transect of Cretaceous rocks - Southwestern Montana to western Minnesota  

SciTech Connect

In Montana, North and South Dakota, and Minnesota, Cretaceous strata of the Western Interior foreland basin are preserved today in Laramide structural and cratonic basins. The Western Interior basin was asymmetric: more than 17,000 ft of strata are present in southwestern Montana, less than 1,000 ft in eastern South Dakota. Asymmetry resulted from varying rates of subsidence due to tectonic and sediment loading. Cretaceous rocks consist primarily of sandstone, siltstone, claystone, and shale. Conglomerate is abundant along the western margin, whereas limestone is generally restricted to the eastern shelf. A west-east transect of the Cretaceous system from southwestern to east-central Montana, the Black Hills and Williston basin, and eastern South Dakota and western Minnesota includes regional facies relations, sequence boundaries, and biostratigraphic and radiometric correlation. These strata include more than 10,000 ft of synorogenic conglomerate facies of the Late Cretaceous Beaverhead Group. Cretaceous strata in east-central Montana (about 4,500 ft thick) lie at the approximate depositional axis of the basin and are mostly marine terrigenous rocks. Chert-pebble units in these rocks reflect unconformities to the west. The Cretaceous system in North and South Dakota (1,500 - 2,000 ft thick) represents a marine shelf sequence dominated by shale and limestone overlain by coastal sandstone and nonmarine rocks. Major sequence boundaries are at the base of the Lakota Formation, Fall River Sandstone, and Muddy Sandstone, and bracket the Niobrara Formation.

Dyman, T.S.; Cobban, W.A.; Rice, D.D. (Geological Survey, Denver, CO (United States)); Anderson, S.B. (North Dakota Geological Survey, Bismark (United States)); Fox, J.E. (South Dakota School of Mines, Rapid City (United States)); Hammond, R.H. (South Dakota Geological Survey, Vermillion (United States)); Setterholm, D.R. (Minnesota Geological Survey, St. Paul (United States)); Shurr, G.U. (St. Cloud State Univ., MN (United States)); Porter, K.W.

1991-06-01T23:59:59.000Z

282

Contemporary Tectonic Deformation of the Basin and Range Province, Western  

Open Energy Info (EERE)

Contemporary Tectonic Deformation of the Basin and Range Province, Western Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Abstract [1] We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ∼39° north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ± 1.0 mm/yr, and motion normal to this small circle is 3.9 ± 0.9 mm/yr compared to the east end of our network. On the Colorado

283

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

284

Oil/Liquids | Open Energy Information  

Open Energy Info (EERE)

Oil/Liquids Oil/Liquids < Oil Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 93. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 11. Liquid Fuels Supply and Disposition Table 12. Petroleum Product Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South

285

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

286

Iraq: World Oil Report 1991  

Science Conference Proceedings (OSTI)

This paper reports that no reliable information on Iraqi E and P operations and only a few reports on oil field facilities damage have been available since last August. Most of what is known originated from the Middle East Economic Survey (MEES), the authoritative newsletter covering the Middle East. According to MEES reports in major northern oil fields (Kirkuk, Bai Hasan and Jambur) is put at 800,000 bpd. The northern fields and the pipeline system through Turkey to the Mediterranean Sea that serves as an export outlet for the area apparently were not damaged much by coalition air strikes or subsequent fighting by the Kurds. Last May production was estimated at 250,000 bpd, presumably from northern fields. If and when U.N. sanctions are lifted, Iraq should be able to export promptly through the Turkish line.

Not Available

1991-08-01T23:59:59.000Z

287

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

288

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

289

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-03-01T23:59:59.000Z

290

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

291

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-12-31T23:59:59.000Z

292

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

293

Plan for characterization of K Basin spent nuclear fuel and sludge  

SciTech Connect

This plan outlines a characterization program that supports the accelerated Path Forward scope and schedules for the Spent Nuclear Fuel stored in the Hanford K Basins. This plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years and is limited to in-situ and laboratory examinations of the spent nuclear fuel and sludge in the K East and K West Basins. The program provides bounding behavior of the fuel, and verification and acceptability for three different sludge disposal pathways. Fuel examinations are based on two shipping campaigns for the K West Basin and one from the K East Basin. Laboratory examinations include physical condition, hydride and oxide content, conditioning testing, and dry storage behavior.

Lawrence, L.A.; Marschman, S.C.

1995-06-01T23:59:59.000Z

294

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...  

Office of Legacy Management (LM)

EAST PITTSBURGH, PENNSYLVANIA At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the Westinghouse Electric Corporation's East...

295

Latinas Crafting Sustainability in East Los Angeles  

E-Print Network (OSTI)

Dead, indigenismo, arts sustainability, East Los Angeles,Guajardo Latinas Crafting Sustainability in East Los Angelesin their growth and sustainability will help document their

Guajardo, Ana

2010-01-01T23:59:59.000Z

296

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

297

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Natural Gas in Sub-Saharan Africa Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 2 Sub-Saharan Africa Source: U.S. Department of State Liquid Fuels Reserves and Production in Sub-Saharan Africa 3 4 Sub-Saharan Africa (SSA) produced nearly 6 million bbl/d of liquid fuels in 2012, which was about 7% of total world oil production. Overview Sub-Saharan Africa contains 62.6 billion barrels of proved crude oil reserves. The Middle East has 13 times that amount and Central and South America has 5 times that amount. Middle East 30% North America 20% Eurasia 15% Sub-Saharan Africa 7% North Africa 5% Asia & Oceania 10% Central & South America 9% Europe 4% Global Liquid Fuels Production, 2012 Source: EIA, International Energy Statistics 0 200 400 600 800 1,000 Middle East Central & South America

298

Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105  

SciTech Connect

A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

ROGERS, C.A.

1999-06-04T23:59:59.000Z

299

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

300

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

302

Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California  

Science Conference Proceedings (OSTI)

Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

Janice Gillespie

2004-11-01T23:59:59.000Z

303

Staking claims to China's borderland : oil, ores and statebuilding in Xinjiang Province, 1893-1964  

E-Print Network (OSTI)

produced a certain quantity of oil at first, but ceased toand oil in the Zungar Basin were re-opened and the flow of minerals once again began flowing west in substantial quantities.oil was not the only natural resource making an impact on China’s national planning, as an increasing quantity

Kinzley, Judd Creighton; Kinzley, Judd Creighton

2012-01-01T23:59:59.000Z

304

The Oquirrh basin revisited  

SciTech Connect

The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

Erskine, M.C.

1997-04-01T23:59:59.000Z

305

Basin Play States  

U.S. Energy Information Administration (EIA) Indexed Site

WY 2 8 Subtotal 204 3,375 Other tight oil plays (e.g. Monterey, Woodford) 24 253 All U.S. tight oil plays 228 3,628 Note: Includes lease condensate. Source: U.S. Energy Information...

306

K Basin safety analysis  

DOE Green Energy (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

307

Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)  

Science Conference Proceedings (OSTI)

Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

2012-09-01T23:59:59.000Z

308

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

309

West-east stratigraphic transect of Cretaceous rocks - Southwestern Montana to western Minnesota  

SciTech Connect

In Montana, North and South Dakota, and Minnesota, Cretaceous strata of the Western Interior foreland basin are preserved today in Laramide structural and cratonic basins. The Western Interior basin was asymmetric: more than 17,000 ft of strata are present in southwestern Montana, less than 1,000 ft in eastern South Dakota. Asymmetry resulted from varying rates of subsidence owing to tectonic and sediment loading. Cretaceous rocks consist primarily of sandstone, siltstone, claystone, and shale. Conglomerate is abundant along the western margin, whereas limestone is generally restricted to the eastern shelf. Sediment was deposited in both marine and nonmarine environments as the shoreline fluctuated during major tectonic and eustatic cycles. A west-east transect of the Cretaceous System from southwestern to east-central Montana, the Black Hills and Williston basin, and eastern South Dakota and western Minnesota include regional facies relations, sequence boundaries, and biostratigraphic and radiometric correlations. More than 17,000 ft of Cretaceous strata in southwestern Montana typify thick nonmarine facies of the rapidly subsiding westernmost part of the basin.

Dyman, T.S.; Cobban, W.A.; Rice, D.D. (Geological Survey, Denver, CO (United States)); Anderson, S.B. (North Dakota Geological Survey, Bismark (United States)); Fox, J.E. (South Dakota School of Mines, Rapid City (United States)); Hammond, R.H. (South Dakota Geological Survey, Vermillion (United States)); Setterholm, D.R. (Minnesota Geological Survey, St. Paul (United States)); Shurr, G.W. (St. Cloud State Univ., MN (United States)); Campen, E.B.; Porter, K.W.

1991-03-01T23:59:59.000Z

310

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin sludge by radiolytic decay and the reaction of uranium metal with water. To maintain thermal stability, the sludge must be retrieved, staged, transported, and stored in systems designed to provide a rate of heat removal that prevents the temperature in the sludge from increasing beyond acceptable limits. To support the dispositioning of the sludge to T Plant, modeling and testing and analyses are being performed to predict the behavior of sludge when placed into the storage containers. Two physical properties of the sludge that are critical to the modeling and analyses efforts are thermal conductivity and the sludge shear strength (yield stress). This report provides the results of thermal conductivity and shear strength measurements performed on representative sludge samples from the K East Basin.

Poloski, Adam P. (BATTELLE (PACIFIC NW LAB)); Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Swoboda, Robert G. (BATTELLE (PACIFIC NW LAB)); Chenault, Jeffrey W. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2002-05-17T23:59:59.000Z

311

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

312

East Coast (PADD 1) Product Supplied of Distillate Fuel Oil ...  

U.S. Energy Information Administration (EIA)

456: 302: 387: 408: 475: 588: 487: 820: 2006: 712: 977: 806: 474: 442: 286: 440: 364: 436: 504: 533: 728: 2007: 860: 1,059: 779: 565: 422: 319: 277: 347: 416: 294 ...

313

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

198 119 2004-2013 Japan 4 4 2 109 5 291 1993-2013 Kazakhstan 126 151 44 1995-2013 Korea, South 249 335 211 112 96 1995-2013 Kyrgyzstan 1995-2003 Latvia 332 328 320 324 322...

314

NM, East Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

315

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

316

Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.

Allison, Edith

1996-12-01T23:59:59.000Z

317

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan provides a blueprint for the development of a 28,000 acre holding on Clear Creek in Garfield County, Colorado on property acquired by Standard Oil of California in the late 1940's and early 1950's. The paper describes these planning activities and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits, plans for development of required retorting and mining technology and a preliminary description of the commercial project which will ultimately emerge from these activities. General financial impact of the project and the case for additional tax incentives to encourage it will be described.

Loper, R. D.

1982-01-01T23:59:59.000Z

318

MAJOR OIL PLAYS IN UTAH AND VICINITY  

Science Conference Proceedings (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

2003-07-01T23:59:59.000Z

319

OPEC Middle East plans for rising world demand amid uncertainty  

Science Conference Proceedings (OSTI)

The Middle Eastern members of the Organization of Petroleum Exporting Countries must plan for huge increases in oil production capacity yet wonder whether markets for the new output will develop as expected. With worldwide oil consumption rising and non-OPEC output likely to reach its resource limits soon, OPEC member countries face major gains in demand for their crude oil. To meet the demand growth, those with untapped resources will have to invest heavily in production capacity. Most OPEC members with such resources are in the Middle East. But financing the capacity investments remains a challenge. Some OPEC members have opened up to foreign equity participation in production projects, and others may eventually do so as financial pressures grow. That means additions to the opportunities now available to international companies in the Middle East. Uncertainties, however, hamper planning and worry OPEC. Chief among them are taxation and environmental policies of consuming-nation governments. This paper reviews these concerns and provides data on production, pricing, capital investment histories and revenues.

Ismail, I.A.H. [Organization of Petroleum Exporting Countries, Vienna (Austria)

1996-05-27T23:59:59.000Z

320

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and petroleum products/ Petroleum wholesale trade TotalEast (% of total) Oil and Gas Extraction Petroleum andcoal products Petroleum and petroleum products/ Petroleum

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

322

Minerals yearbook: Mineral industries of the Middle East. Volume 3. 1989 international review  

SciTech Connect

The production and processing of crude petroleum and natural gas are the dominant economic sectors of the Middle East. The 15 countries that constitute the region accounted for 26% of world crude petroleum output, 17% of world natural gas plant liquid production, and almost 5% of world dry natural gas production. About 66% of total world crude petroleum reserves and 31% of total world natural gas reserves are in the Middle East. U.S. imports of mineral-based materials from the region were primarily energy products. U.S. net oil imports from the Middle East, which include crude petroleum, natural gas liquids, and petroleum refinery products, were about 26% of total U.S. net oil imports or about 680 million barrels in 1989.

Not Available

1989-01-01T23:59:59.000Z

323

In search of an oasis: Opportunity in the Middle East  

SciTech Connect

Across the Middle East, people contend with heat, dust, lack of rainfall, and a harsh geography. In this century, industrial development, political upheaval, and war have left a legacy of environmental and health problems. Scarce arable land is being lost to desertification. Fresh water is diverted, misused, and polluted with hazardous wastes, sewage, and agricultural and other chemicals. Coastal zones are polluted with oil, threatening pristine coral reefs, wild fowl, and fishing areas. Unprecedented urbanization and migration of traditionally rural peoples and resettlement of political refugees and foreign workers strain city services. Yet there is reason for optimism in the Middle East. Peace in the region is in sight, bringing an opportunity to stop the rapid environmental decline. Technology is available to assess the degradation, and the impact of environmental conditions on human health can be quantified.

VanderMeer, D.C.

1996-03-01T23:59:59.000Z

324

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini

2004-02-05T23:59:59.000Z

325

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

326

Two-Phase Westward Encroachment of Basin and Range Extension into the  

Open Energy Info (EERE)

Two-Phase Westward Encroachment of Basin and Range Extension into the Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Abstract [1] Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude ∼39°N suggest ∼100 km westward encroachment of Basin and Range extensional deformation since the middle Miocene. Extension, accommodated primarily by east dipping normal faults that bound west tilted, range-forming fault blocks, varies in magnitude from <2% in the interior of the Sierra Nevada crustal block to >150% in the Wassuk and

327

Regional And Local Trends In Helium Isotopes, Basin And Range Province,  

Open Energy Info (EERE)

And Local Trends In Helium Isotopes, Basin And Range Province, And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Regional And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Details Activities (1) Areas (1) Regions (0) Abstract: Fluids from the western margin of the Basin and Range have helium isotope ratios as high as ~6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to 'background' values of around 0.6 Ra, and then gradually decrease toward the east to low values of ~0.1 Ra at the eastern margin of the Basin and

328

Sandstone cementation and fluids in hydrocarbon basins R.S. Haszeldinea,*, C.I. Macaulaya  

E-Print Network (OSTI)

of Geology and Geophysics, University of Edinburgh Edinburgh, EH9 3JW, UK b Isotope Geology Unit, SUERC, East-specific and difficult to model in general terms. Combining techniques from petrography, isotopic and ion microprobe; North Sea; permeability; porosity; aquifer; isotope 1. Fluid motion or stasis in basins Two main goals

Haszeldine, Stuart

329

Secretary Bodman to Travel to the Middle East to Advance International  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Travel to the Middle East to Advance to Travel to the Middle East to Advance International Energy Cooperation Secretary Bodman to Travel to the Middle East to Advance International Energy Cooperation January 10, 2008 - 10:23am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman next week will embark on a five-nation tour through the Middle East to enhance the United States' relationship with oil-producing nations, promote sustained investment in conventional and alternative energy sources, and encourage improvements in global energy efficiency. Secretary Bodman will depart on Monday, January 14, 2008 and travel to Jordan, Saudi Arabia, United Arab Emirates, Qatar and Egypt. "To increase global energy security, producing and consuming nations alike must make robust investments in a diversity of energy sources, accelerate

330

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

331

Need for refining capacity creates opportunities for producers in Middle East  

SciTech Connect

Oil industry interest in refining has revived in the past few years in response to rising oil consumption. The trend creates opportunities, for countries in the Middle East, which do not own refining assets nearly in proportion to their crude oil reserved. By closing this gap between reserves and refining capacity, the countries can ease some of the instability now characteristic of the oil market. Some major oil producing countries have begun to move downstream. During the 1980s, Venezuela, Kuwait, Saudi Arabia, Libya, and other members of the Organization of Petroleum Exporting Countries acquired refining assets through direct total purchase or joint ventures. Nevertheless, the oil industry remains largely unintegrated, with the Middle East holding two thirds of worldwide oil reserves but only a small share downstream. As worldwide refining capacity swings from a period of surplus toward one in which the need for new capacity will be built. The paper discusses background of the situation, shrinking surplus, investment requirements, sources of capital, and shipping concerns.

Ali, M.S.S. (Bahrain National Oil Co., Awali (Bahrain))

1994-07-11T23:59:59.000Z

332

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

333

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)  

Science Conference Proceedings (OSTI)

This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

Porro, C.; Augustine, C.

2012-04-01T23:59:59.000Z

334

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

335

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

336

Figure 97. Total U.S. tight oil production by geologic formation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 97. Total U.S. tight oil production by geologic formation, 2011-2040 (million barrels per day) Permian Basin Bakken Eagle Ford

337

Special issue - the emerging reality of oil shale: government plays a prominent role in leasing and developing oil shale  

SciTech Connect

The federal government announced in mid-1979 its intention to develop 400 dam3/day (2.5 million bpd) of oil substitutes by 1990, including 64 dam3/day (400,000 bpd) for oil shale. The federal government owns much of the oil shale reserves in Colorado's Piceance Creek Basin and Utah's Uinta Basin. State and private interests control the remaining 20% of the most marketable reserves. In most of Utah and Colorado, the US controls the richest and largest consolidated oil shale reserves. As a result, the federal government is in a unique position to spur rapid oil shale development through an expedited and expanded federal shale development program. In May 1980, the Department of Interior announced a broad new program for developing federal oil shale reserves. Also in May and June, 1980, the Supreme Court announced 2 decisions, Andrus vs. Utah and Shell Oil vs. Andrus, that opened up for federal development vast oil shale reserves in Utah and clarified in part, the status of private oil shale claims. These developments, coupled with substantial financial inducements soon to emerge from the Synthetic Fuels Corp., suggest the long-awaited promise of oil shale development may finally arrive.

Israel, D.H.

1981-01-01T23:59:59.000Z

338

Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective  

Science Conference Proceedings (OSTI)

This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

Greene, David L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Li, Jia [University of Tennessee, Knoxville (UTK)

2005-01-01T23:59:59.000Z

339

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

Science Conference Proceedings (OSTI)

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01T23:59:59.000Z

340

Oil shale resources of the Naval Oil Shale Reserve No. 1, Colorado  

SciTech Connect

The resource of potential oil represented by Green River Formation oil shale on Naval Oil Shale Reserve No. 1 (NOSR No. 1) in the southeast corner of Colorado's Piceance Creek Basin is evaluated in detail. NOSR No. 1 is the site of intensive long-term oil-shale development studies and is the source of innumerable oil-shale samples for all manner of testing. A brief history of these studies is presented. This oil-shale resource is defined from oil-yield assay data on 33 cores plotted as histograms and correlated into cross sections. Contour maps of thickness, richness and oil resource in place are presented for the Mahogany Zone, the rich zone in the Mahogany zone, and for 2 units beneath and 5 units above the Mahogany zone. Total oil shale resource on NOSR No. 1 is 20.4 billion barrels of which 17.4 billion barrels are particularly suitable for development by vertical modified in-place processes. A previously unknown Mahogany zone outcrop providing much additional development access is described. Now under sole control of the US Department of Energy (DOE), NOSR No. 1 offers DOE a unique site for oil shale testing and development.

Smith, J.W.; Beard, T.N.; Trudell, L.G.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evolutionary sequences and hydrocarbon potential of Kenya sedimentary basins  

Science Conference Proceedings (OSTI)

Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustatic sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.

Cregg, A.K. (Western Atlas International, Inc., Carrollton, TX (United States))

1991-03-01T23:59:59.000Z

342

The ecology of Barataria Basin, Louisiana: An estuarine profile  

SciTech Connect

The Barataria Basin lies entirely in Louisiana between the natural levees of the active Mississippi River and the abandoned Bayou Lafourche distributary. It is characterized by a network of interconnecting water bodies which allows transport of water, materials, and migrating organisms throughout the basin. Natural and artificial levees and barrier islands are the only high, well-drained ground in the basin, which is otherwise characterized by extensive swamp forests and fresh, brackish, and salt marshes. These wetlands and water bodies are extremely productive biologically and provide valuable nursery habitat for a number of commercial and recreational fish and shellfish, as well as habitat for wintering waterfowl and furbearers. The basin is a dynamic system undergoing constant change because of geologic and human processes. The network of bays, lakes, and bayous has gradually enlarged over time due to natural subsidence and erosion. Superimposed on these natural processes has been the construction of levees for flood control and network of canals constructed for oil and gas exploration and extraction. These human activities have altered natural hydrologic patterns in the basin and may directly or indirectly contribute to wetland losses. Controlling wetland deterioration in the basin is a major management concern.

Conner, W.H.; Day, J.W. Jr. (eds.)

1987-07-01T23:59:59.000Z

343

Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration  

Science Conference Proceedings (OSTI)

Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

Hill, D.W.; Sande, J.J. [Shell Western E& P Inc., Bakersfield, CA (United States); Doe, P.H. [Shell Development Co., Houston, TX (United States)

1995-04-01T23:59:59.000Z

344

"ENDING STOCKS OF CRUDE OIL (excluding SPR)"  

U.S. Energy Information Administration (EIA) Indexed Site

ENDING STOCKS OF CRUDE OIL (excluding SPR)" ENDING STOCKS OF CRUDE OIL (excluding SPR)" "Sourcekey","WCESTP11","WCESTP11","WCESTP21","WCESTP21","WCESTP31","WCESTP31","WCESTP41","WCESTP41","WCESTP51","WCESTP51","WCESTUS1","WCESTUS1" "Date","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)"

345

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

346

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

347

4, 213231, 2008 East Asian monsoon  

E-Print Network (OSTI)

CPD 4, 213­231, 2008 East Asian monsoon and paleovegetation J. Guiot et al. Title Page Abstract East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view J. Guiot 1 , W. Haibin 2 Publications on behalf of the European Geosciences Union. 213 #12;CPD 4, 213­231, 2008 East Asian monsoon

Paris-Sud XI, Université de

348

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

349

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

350

The role of Cretaceous seal to the hydrocarbon potential of the Salawati and Bintuni basins, Irian Jaya, Indonesia  

SciTech Connect

The Salawati and Bintuni basins are late Tertiary depocenters located in the westernmost part of Irian Jaya, Indonesia. The two basins are closely located and only separated by a 50-km-wide structural high known as the Ajamaru Plateau. Petroleum exploration results in the Salawati basin are very successful. This basin has produced around 300 Mbbl of oil from the Miocene carbonates of the Kais Formation. Exploration with similar objectives in the Bintuni basin, however, gave only little success. Some oil was obtained from small Wasian and Mogoi fields, which jointly produced around 7 Mbbl of oil between 1951 and 1960. Extensive exploration campaigns between 1970 and 1980 with Miocene Kais Limestone as the objective resulted only in the discovery of the small Wiriagar field. The big difference in petroleum potentially of the Salawati and Bintuni basins has attracted explorationists to evaluate what significant geological factors had influenced it. Evaluation on available exploration data of the basins had some interesting results. In terms of geologic factors controlling hydrocarbon accumulation (presence of mature source rock, migration pathway, good reservoir quality, valid trap, and effective seal), it seems that shales of Cretaceous age have played the most important role. If this regional seal is absent or noneffective, oil could migrate vertically from pre-Tertiary sources to the Tertiary reservoirs. On the contrary, if the Cretaceous shales are present and sealing, then the underlying Mesozoic sequence is attractive and may trap hydrocarbon, if supported by the other geologic factors.

Samuel, L.; Kartanegara, L. (PERTAMINA, Jakarta (Indonesia))

1991-03-01T23:59:59.000Z

351

Indonesia's Arun LPG plant production is unique in Far East markets  

Science Conference Proceedings (OSTI)

Entry of the Arun (Indonesia) LNG plant into the LPG Far East markets is significant because its supplies for those markets are not tied to gas being extracted in association with crude oil. Arun LPG products are extracted from gas that is processed into and marketed as LNG. This article on the Arun LNG plant analyzes its LPG process and the significance of the LPG project on the plant's markets. Particular attention is paid to: 1.) LPG recovery; 2.) LPG fractionation; and 3.) Far East trade.

Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

1987-08-03T23:59:59.000Z

352

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

353

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for  

E-Print Network (OSTI)

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 NEWS Safety first: Oil rigs off for future successful tight gas exploration projects in Western Australia has been set up and studies the tight gas sand field at its exploration permit in the South Perth Basin. Professor Rezaee said

354

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation of information is presented on geology and drilling activity in the four primary study areas of the Western Gas Sands Project. The areas of interest are the Greater Green River Basin, the Piceance Basin, the Uinta Basin, and the Northern Great Plains Province. Drilling activity is discussed for the months of October, November, and December, 1977, with the major emphasis on wells located in low permeability sandstone areas, having significant gas production and utilizing hydraulic fracturing treatments. The drilling information was obtained primarily from ''The Rocky Mountain Region Report'' published by Petroleum Information Corporation on a daily basis. Another source of information was the ''Montana Oil and Gas Journal'' which is released weekly.

1978-01-01T23:59:59.000Z

355

Enforcement Letter - Argonne-East  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 1997 3, 1997 Dr. William H. Hannum Argonne National Laboratory-East 9700 South Cass Avenue Argonne, Il 60439 Re: Noncompliance Report NTS-CH-AA-ANLE-ANLE-1996-0001 Dear Dr. Hannum: This letter refers to the Department of Energy's (DOE) evaluation of Argonne National Laboratory-East's (ANL-E) report of a potential noncompliance with the requirements of 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved the failure to complete the required radiological worker training or retraining for approximately 30 percent of ANL-E's 797 radiological workers, was identified by ANL-E on December 17, 1996, and reported to DOE on December 20, 1996. On November 22, 1996, ANL-E initiated a review of the personnel training records of a

356

[Outlook for 1997 in the global oil and gas industries  

SciTech Connect

This section contains 4 small articles which deal with the global outlook on the following: worldwide drilling (Middle East leads the charge); offshore drilling (US Gulf remains hot); worldwide oil production (Producers meet the challenge); and the Canadian outlook (Canada prepares for another brisk year by Hans Maciej). Tables are provided for the 1997 forecast of drilling outside the US, the 1997 forecast of offshore drilling worldwide, world crude oil/condensate production by country in 1995 and 1996, and Canadian drilling forecasts.

NONE

1997-02-01T23:59:59.000Z

357

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

358

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

359

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

360

Groundwater monitoring results for the 100-K Area fuel storage basins: January 1 to March 31, 1994  

SciTech Connect

Fuel storage basins associated with the 105-KE and 105-KW reactor buildings are currently being used to store irradiated fuel rods from past operations. Each reactor building contains a basin that holds approximately 1.3 million gal of water. The water provides a radiation shield, as well as a thermal sink for heat generated by the stored fuel. Some of the fuel rods stored in the K-East basin have damaged cladding and are stored in open canisters, allowing contact between the metallic uranium fuel and basin water. The interaction results in radionuclides being released to the basin water. Various exchange columns and filters associated with a closed-circuit circulation system are in place to reduce radionuclide concentrations in basin water. Tritium cannot be removed by these methods and is present in K-East basin water at a concentration of several million pCi/L. In contrast, K-West basin, where only fully encapsulated, undamaged fuel is stored, exhibits tritium concentrations at much lower levels--several hundred thousand pCi/L. The water budget for the basins includes water losses resulting from evaporation and possibly leakage, and the addition of make-up water to maintain a specific level. Water loss calculations are based on water level decreases during time intervals when no make-up water is added. A calculated loss rate beyond what is expected due to evaporation and uncertainty in the calculations, is assumed to be leakage to the soil column. Given sufficiently high leakage rates, and/or a preferential pathway for downward migration through the soil column, basin water may contaminate groundwater flowing beneath the basins.

Peterson, R.E.

1994-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

362

Integration of nuclear power with oil sands extraction projects in Canada  

E-Print Network (OSTI)

One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

Finan, Ashley (Ashley E.)

2007-01-01T23:59:59.000Z

363

Prospects for world oil supply  

SciTech Connect

Surprises lie ahead for world oil supplies, which are expected to increase rapidly throughout the 1990s before leveling off by the end of the century. The extent of this increase could be the major surprise of the decade. Large increases in the capacity in Gulf countries accompanied by smaller increases in the non-Middle East OPEC countries will be augmented by a gradual increase in non-OPEC capacity into the late 1990s. By 2000, declining capacity in the latter two areas will offset continued capacity increases in the Gulf countries. Overall capacity in the non-OPEC countries (excluding China, Eastern Europe, and the Soviet Union), is expected to increase by 1.1 million BOPD from the low point in the early 1990s to a mid 1990s peak. The increase will be led by a large increase in capacity from the United Kingdom and smaller contributions from the non-Middle East OPEC countries and Mexico. In the forecast, emphasis has been placed on a detailed evaluation of recent significant discoveries made in non-OPEC countries and non-Middle East OPEC countries since 1983, which when taken together, are expected to add 8 million BOPD new capacity as soon as 1995. These discoveries have taken place in both existing and evolving exploration hotspots that are expected to receive increasing industry emphasis in the 1990s.

Esser, R.W. (Cambridge Energy Research Associates, MA (United States))

1991-08-01T23:59:59.000Z

364

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

365

Groundwater quality assessment/corrective action feasibility plan: New TNX Seepage Basin  

SciTech Connect

The New TNX Seepage Basin is located across River Road east of the TNX Area at the Savannah River Site. Currently the basin is out of service and is awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the New TNX Seepage Basin was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater downgradient of the New TNX Seepage Basin had been impacted. Results from the data analysis indicate that the groundwater has been impacted by inorganic constituents with no associated health risks. The impacts resulting from elevated levels of inorganic constituents, such as Mn, Na, and Total PO{sub 4} in the water table, do not pose a threat to human health and the environment.

Nichols, R.L.

1989-12-05T23:59:59.000Z

366

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

367

Fluvial sedimentology and basin analyses of the Permian Fairchild and Buckley formations, Beardmore Glacier region, and the Weller Coal Measures, southern Victoria Land, Antarctica  

SciTech Connect

The Beardmore Glacier region contains a 1-km-thick Permian fluvial sequence that was deposited in an elongate basin along the margin of the East Antarctica craton. Fluvial architecture, sandstone composition and paleocurrents within the basin record a change from an early Permian cratonic to a late Permian foreland basin. The Lower Permian Fairchild Formation consists entirely of overlapping channel-form sandstone bodies deposited by braided streams. Arkosic sandstone was deposited by SE flowing streams. Fairchild strata record slow subsidence within a broad cratonic basin. The Lower to Upper Permian Buckley Formation consists of an arkosic lower member and a volcaniclastic upper member. Paleocurrents which consist of transverse and longitudinal paleocurrents, suggest a cratonward migration of the basin axis through time. The Buckley Formation was deposited within a braided stream setting and is an important unit because it contains interstratified channel-sandstone sheets, shale and coal, along with evidence of channel-belt avulsions. Sandstone sheets predominate at the base of the formation, while flood-plain deposits thicken and increase in abundance upward. The interaction between fluvial processes and subsidence rates produced this alluvial stratigraphy. The Lower Permian Weller Coal Measures in southern Victoria Land were deposited within a narrow basin located cratonward of the foreland basin. Basin geometry and depositional patterns are similar to those of fault-bounded basins. Although basin formation is not constrained, deposition of the Weller was contemporaneous with the development of the foreland basin. This suggests a relationship between subsidence within the two basins.

Isbell, J.L.

1990-01-01T23:59:59.000Z

368

Understanding the economic power of oil. Master's thesis  

SciTech Connect

Oil has become a single global market in which oil price fluctuations now have the ability to rock the world economy. The purpose of this thesis is to examine the changing nature of this threat and by doing so, show that Saudi Arabia, which has acted as the primary stabilizing tool by American foreign policy makers, will no longer suffice in this capacity. Rather, Saudi Arabia, which has for the most part cooperated with the United States in helping to stabilize oil price and supply disruptions, will become increasingly less cooperative in a much shorter time frame than night be anticipated with regard to oil supplies. This thesis proposes possible avenues for US national security policy by exploring pathways that might further ensure economic security and stability of the Middle East region in light of the new nature of the oil threat. The goal of economic security and stability can only be realized through an understanding of the oil producing nations and their relationships with the international community and world economy.... Oil, Persian Gulf Security Policy, Middle East Oil Reserves.

Belanger, J.C.

1992-12-01T23:59:59.000Z

369

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

370

Updated Volumetric Expansion Factors for K Basin Sludge During Storage  

SciTech Connect

Sludge has accumulated in the K East (KE) and K West (KW) Basins at the Hanford Site. This sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and generate and consume gases during containerized storage. From these corrosion reactions, two sludge expansion mechanisms can be expected: 1) expansion of the volume of the sludge solids from the generation of corrosion oxidation products that occupy more space than the starting-state sludge; and 2) expansion of the bulk sludge volume from the retention of hydrogen gas bubbles. This report provides a review and updated projections of the volumetric expansion occurring due to corrosion and gas retention during the containerized storage of K Basin sludge. New design and safety basis volume expansion values are provided for the following sludge streams: KW Floor, KW North Loadout Pit, KW canister, and fuel piece sludge.

Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Delegard, Calvin H. (BATTELLE (PACIFIC NW LAB))

2003-03-14T23:59:59.000Z

371

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

372

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

373

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

374

Future world oil supply and demand-the impact on domestic exploration  

SciTech Connect

Current world oil consumption (demand) of about 68 million B/D will increase to over 81 million B/D in 10 years. World oil production capacity (supply), currently 6-8% over current demand, cannot meet this demand without adequate investments to boost capacity, particularly in the Middle East. Because of low oil prices these investments are not being made. In 10 years the Middle East needs to supply over 50% of the worlds oil; the Far East will by then surpass North America in demand. It is very possible that there will soon be a period of time when the supply/demand balance will be, or will perceived to be failing. This may cause rapid rises in crude oil prices until the balance is again achieved. Crude oil prices are actually quite volatile; the steadiness and abnormally low prices in recent years has been due to several factors that probably won`t be present in the period when the supply/demand situation is seen to be unbalanced. Domestic oil exploration is strongly affected by the price of crude oil and domestic producers should soon benefit by rising oil prices. Exploration will be stimulated, and small incremental amounts of new oil should be economically viable. Oil has been estimated to be only 2% of the total cost of producing all U.S. goods and services-if so, then oil price increase should not create any real problems in the total economic picture. Nevertheless, certain industries and life styles heavily dependent on cheap fuel will have problems, as the days of cheap oil will be gone. Future undiscovered oil in the Earth could be one trillion barrels or more, equal to the amount now considered as proved reserves. There will soon be more of a challenge to find and produce this oil in sufficient quantity and at a competitive cost with other sources of energy. This challenge should keep us busy.

Townes, H.L.

1995-09-01T23:59:59.000Z

375

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

376

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

377

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

378

Major Oil Plays in Utah and Vicinity  

Science Conference Proceedings (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

2003-12-31T23:59:59.000Z

379

Distribution and origin of sulfur in Colorado oil shale  

SciTech Connect

The sulfur content of 1,225 samples of Green River oil shale from two core holes in the Piceance Creek Basin, Colorado, ranges from nearly 0 to 4.9 weight percent. In one core hole, the average sulfur content of a sequence of oil shale 555 m thick, which represents nearly the maximum thickness of oil shale in the basin, is 0.76 weight percent. The vertical distribution of sulfur through the oil shale is cyclic. As many as 25 sulfur cycles have lateral continuity and can be traced between the core holes. Most of the sulfur resides in iron sulfides (pyrite, marcasite, and minor. pyrrhotite), and small amounts are organically bound in kerogen. In general, the concentration of sulfur correlates moderately with oil shale yield, but the degree of association ranges from quite high in the upper 90 m of the oil shale sequence to low or none in the leached zone and in illitic oil shale in the lower part of the sequence. Sulfur also correlates moderately with iron in the carbonate oil shale sequence, but no correlation was found in the illitic samples. Sulfide mineralization is believed to have occurred during early and late stages of diagenesis, and after lithification, during development of the leached zone. Significant amounts of iron found in ankeritic dolomite and in illite probably account for the lack of a strong correlation between sulfur and iron.

Dyni, J.R.

1983-04-01T23:59:59.000Z

380

LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07  

SciTech Connect

Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

KNOLLMEYER PM

2007-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

382

EA-64-A Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin...

383

Gas projects surge in the Middle East as governments seek new revenue sources  

SciTech Connect

The rapid development of natural gas and condensate reserves in the Middle East results from a simple motivation: the desire of governments to earn revenues. For the past decade, Middle East governments have run budget deficits, which they funded by drawing down foreign assets and issuing debt. Now in the process of structural economic reform, they have begun to use an under-utilized resource--natural gas, of which Middle East governments own about one third of the world`s reserves. Governments receive revenues from several sources in natural gas developments, which makes the projects very attractive. Revenue comes from the sale of the natural gas in the domestic market and, if exported, the international market; the sale of associated condensates; the additional exports of crude oil or refined products if natural gas is substituted for refined products in domestic markets; the increased sale of crude oil if natural gas is injected into reservoirs to maintain pressure; and the sale of petrochemicals where natural gas is used as feedstock. Large projects under way in the Middle East highlight the consequences of multiple revenue sources and interlinked costs of natural gas and condensate development. Other countries in the region are undertaking similar projects, so examples cited represent only a portion of what is occurring. The paper describes Abu Dhabi, Qatar, Saudi Arabia, and Iran.

Williams, M.D. [International Energy Agency, Paris (France)

1997-02-24T23:59:59.000Z

384

Proceedings of the North Aleutian Basin information status and research planning meeting.  

Science Conference Proceedings (OSTI)

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

2007-10-26T23:59:59.000Z

385

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

386

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

387

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

388

FIRST DRAFT OF OUTLINE: RPSEA 1 RESIDUAL OIL ZONE RESEARCH  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Exploitation and the Origin of Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas RPSEA PROJECT NUMBER.FINAL Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas Contract 81.089 08123-19-RPSEA June 28, 2012 Dr. Robert Trentham Director, Center for Energy and Economic Diversification The University of Texas of the Permian Basin Odessa, Texas 79762 L. Steven Melzer Melzer Consulting Midland, Texas 79701 David Vance Arcadis, U. S. Midland, Texas 79701 LEGAL NOTICE This report was prepared by Dr Robert Trentham as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA

389

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

390

Foreign Oil Dependence  

E-Print Network (OSTI)

Public transportation provides greater freedom, access, opportunity and choice for Americans from all walks of life and from all across the country. Ridership is up 25.1 percent since 1995, and the millions of Americans who use public transportation each weekday know it saves money and gasoline. This independent analysis looks for the first time at what public transportation saves – both for individual households and for the nation as a whole. In addition, it explores a possible future where many more Americans would have the choice to take public transportation. It was commissioned from ICF International by the American Public Transportation Association. Public Transportation Reduces U.S. Foreign Oil Dependence Using conservative assumptions, the study found that current public transportation usage reduces U.S. gasoline consumption by 1.4 billion gallons each year. In concrete terms, that means: 108 million fewer cars filling up – almost 300,000 every day. 34 fewer supertankers leaving the Middle East – one every 11 days.

Linda Bailey

2007-01-01T23:59:59.000Z

391

Evaluation of injection well risk management potential in the Williston Basin  

SciTech Connect

The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

Not Available

1989-09-01T23:59:59.000Z

392

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

393

Rock bits equipped with extended nozzles lower drilling cost in the Middle East region  

Science Conference Proceedings (OSTI)

An analysis of three-cone rock bit runs using extended jet nozzles (EN) in the Middle East Region is presented. These runs were made from 1982 to 1984 in several Middle East countries. They represent wells drilled onshore and offshore, vertical and deviated, using oil and water based mud systems. The improvements in performance gained by enhanced hole cleaning with extended nozzles are well documented. This feature has been widely used in the South East Asia - Far East region and in certain areas of the continental U.S.A. and Alaska since the mid - 1970's. The result of the EN runs in the Middle East correlate well with results in the proven areas elsewhere in the world. Penetration rate increases over regular jet bits of 7-80% have been recorded. The high daily rig costs characteristic of Mideast drilling operations make it fairly easy to show a cost per foot decrease with only slight increases in performance. The increased bit cost due to the EN feature is found to be virtually negligible.

Selby, B.A.; Sauvageot, W.A.

1985-03-01T23:59:59.000Z

394

Evaluation and Prediction of Unconventional Gas Resources in Underexplored Basins Worldwide  

E-Print Network (OSTI)

As gas production from conventional gas reservoirs in the United States decreases, industry is turning more attention to the exploration and development of unconventional gas resources (UGR). This trend is expanding quickly worldwide. Unlike North America where development of UGRs and technology is now mature and routine, many countries are just beginning to develop unconventional gas resources. Rogner (1996) estimated that the unconventional gas in place, including coalbed methane, shale gas and tight-sand gas, exceeds 30,000 Tcf worldwide. As part of a research team, I helped to develop a software package called Unconventional Gas Resource Advisory (UGRA) System which includes the Formation Analog Selection Tool (FAST) and Basin Analog Investigations (BASIN) to objectively and rapidly identify and rank mature North American formations and basins that may be analogous to nascent international target basins. Based on BASIN and FAST results, the relationship between mature and underexplored basins is easily accessed. To quantify the unconventional resource potential in typical gas basins, I revised and used a computer model called the Petroleum Resources Investigation Summary and Evaluation (PRISE) (Old, 2008). This research is based on the resource triangle concept, which implies that all natural resources, including oil and gas, are distributed log-normally. In this work, I describe a methodology to estimate values of technically recoverable resources (TRR) for unconventional gas reservoirs by combining estimates of production, reserves, reserves growth, and undiscovered resources from a variety of sources into a logical distribution. I have also investigated mature North American unconventional gas resources, and predict unconventional resources in underexplored basins worldwide for case study. Based on the results of testing BASIN and PRISE, we conclude that our evaluation of 24 North American basins supports the premise that basins analysis can be used to estimate UGRs.

Cheng, Kun

2012-05-01T23:59:59.000Z

395

Quantifying sources of methane using light alkanes in the Los Angeles basin, California  

E-Print Network (OSTI)

operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use

Cohen, Ronald C.

396

Williston Basin crude oil production and takeaway capacity ...  

U.S. Energy Information Administration (EIA)

What is the role of coal in the United States? ... recently increased to more than 600 thousand barrels per day (bbl/d), ... However, in 2012, ...

397

Williston Basin crude oil production and takeaway capacity ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report › Monthly Energy Review › Residential Energy ... Solar › Energy in Brief. What's ... Energy, LLC (Bentek), testing the ...

398

California - Los Angeles Basin Onshore Crude Oil Reserves New ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 0: 0: 0: 1980's: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1990's: 0: 0: 0: 0: 0: 0: 0: 0: 0 ...

399

California - San Joaquin Basin Onshore Crude Oil Reserves New ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 2: 1: 0: 1980's: 0: 2: 0: 0: 7: 3: 0: 0: 2: 0: 1990's: 0: 0: 0: 0: 0: 0: 0: 0: 0 ...

400

California - Los Angeles Basin Onshore Crude Oil Reserves ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 4: 1: 0: 26: 0: 22: 49: 21: 10: 0: 2010's: 1: 9-

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

California - Los Angeles Basin Onshore Crude Oil Reserves Sales ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 4: 1: 1: 31: 0: 2: 47: 0: 13: 0: 2010's: 0: 2-

402

California - San Joaquin Basin Onshore Crude Oil Reserves Revision ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 115: 369: 423: 1980's: 297: 157: 146: 150: 409: 308: 232: 352: 459: 292: 1990's ...

403

CA, San Joaquin Basin Onshore Crude Oil Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

404

California - San Joaquin Basin Onshore Crude Oil Reserves ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 44: 4: 0: 11: 115: 0: 34: 8: 7: 18: 2010's: 1: 16-

405

CA, Los Angeles Basin Onshore Crude Oil Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

406

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy.

407

maxey.cdr  

Office of Legacy Management (LM)

cover and East Detention Basin are under construction. Regulatory Setting The National Oil and Hazardous Substances Pollution Contingency Plan (known as the National Contingency...

408

Abyssal Mixing in the Brazil Basin  

Science Conference Proceedings (OSTI)

One of the major objectives of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment, was to quantify the intensity and spatial distribution of deep vertical mixing within the Brazil Basin. In this study, basin-averaged ...

Michele Y. Morris; Melinda M. Hall; Louis C. St. Laurent; Nelson G. Hogg

2001-11-01T23:59:59.000Z

409

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

410

Crustal thinning between the Ethiopian and East African Plateaus from modeling Rayleigh wave dispersion  

Science Conference Proceedings (OSTI)

The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.

Benoit, M H; Nyblade, A A; Pasyanos, M E

2006-01-17T23:59:59.000Z

411

Dynamic heat capacity of the east model and of a bead-spring polymer model.  

SciTech Connect

In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.

McCoy, John Dwane (New Mexico Institute of Mining and Technology, Socorro, NM); Brown, Jonathan R. (New Mexico Institute of Mining and Technology, Socorro, NM); Adolf, Douglas Brian

2011-10-01T23:59:59.000Z

412

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

413

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

414

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

415

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

416

Radioactive air emissions notice of construction fuel removal for 105-KE basin  

SciTech Connect

This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KE Basin. The 105-K east reactor and its associated spent nuclear fuel (SNF) storage basin (105-KE Basin) were constructed in the early 1950s and are located in the 100-K Area about 1,400 feet from the Columbia River. The 105-KE Basin contains 1,152 metric tons of SNF stored underwater in 3,673 open canisters. This SNF has been stored for varying periods of time ranging from 8 to 24 years. The 105-KE Basin is constructed of unlined concrete and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The fuel is corroding and an estimated 1,700 cubic feet of sludge, containing radionuclides and miscellaneous materials, have accumulated in the basin. The 105-KE Basin has leaked radiologically contaminated water to the soil beneath the basin in the past most likely at the construction joint between the foundation of the basin and the foundation of the reactor. The purpose of the activities described in this Notice of Construction (NOC) is to enable the retrieval and transport of the fuel to the Cold Vacuum Drying Facility (CVDF). This NOC describes modifications, the installation of new equipment, and fuel removal and sludge relocation activities expected to be routine in the future. Debris removal activities described in this NOC will supersede the previously approved NOC (DOE/RL-95-65). The proposed modifications described are scheduled to begin in calendar year 1997.

Kamberg, L.D., Fluor Daniel Hanford

1997-02-11T23:59:59.000Z

417

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

418

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

419

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians East Borough, Alaska ASHRAE Standard ASHRAE 169-2006...

420

Oman: World Oil Report 1991  

SciTech Connect

This paper reports that for the sixth consecutive year, Oman should retain its title as the biggest driller in the Middle East in 1991. An accelerated program in 1990 pushed production to an all-time record 700,000 bpd late in the year. Although not a member of Opec, Oman has cooperated with the group in restraining output as needed to support oil prices. Petroleum Development Oman (PDO), a partnership of the government (60%), Royal Dutch Shell (34%), Total (4%) and Partex (2%), remains by far the biggest producer. This year, PDO will begin work on its $500-million effort to boost production from its Lekhwair field from a current 24,000 bpd to 110,000 bpd by 1994. Last year, PDO also drilled 15 horizontal wells, most of which were successful in increasing per well production compared to conventional vertical holes. The horizontal program has been continued this year with two rings.

Not Available

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

422

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

423

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

424

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

425

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

426

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

427

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

428

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z