Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Paluxy of the Central Basin-East Texas  

SciTech Connect

The Paluxy Formation (Lower Cretaceous) has been a consistent sandstone exploration objective in the central East Texas basin, occurring at moderate depths on the order of 5000-8000 ft with oil in reservoirs with good permeability and porosity and reserves in the range of 200,000 to 500,000 bbl per well. Since the 1940s, the pace of Paluxy field discovery has been steady, generally a new field or two every one or two years, and there is every reason to believe that there is continued potential for the Paluxy in the future. The central part of the East Texas basin, in Smith County and adjacent areas, has complex structure with numerous salt domes and intervening sediment wedges (turtles) that formed during movement of the salt. Paluxy oil and gas in this area occurs mainly in combination structural-stratigraphic traps along normal faults that cut turtles. Major exploration trends in the central basin include (1) the Lindale turtle with a number of widely spaced fields, generally with only a few wells but with relatively good per-well reserves, (2) the Tyler turtle with the largest fields and some of the most prolific Paluxy production in the central basin, (3) the Flint and Irene turtles with relatively thin sandstones and modest production, (4) the Lane Chapel turtle with some exciting new Paluxy discoveries, and (5) the rim areas of salt domes.

Presley, M.W. (Pentra Research, McKinney, TX (United States))

1993-09-01T23:59:59.000Z

2

A depositional model for late Jurassic Reef Building in the East Texas Basin  

SciTech Connect

The authors propose a depositional setting for the Upper Jurassic reef facies occurring at the upper Cotton Valley Lime, (Gilmer) sequence boundary in the East Texas Basin. The development of uncommonly thick, microbially bound reefal buildups positioned near the western margin of the basin was controlled by sea-level variations and gravity faulting, suggested to be concurrent. Gas bearing reefs occur as isolated features along faulted margins and have been successfully located using 3-D seismic. Reefs of this type and age appear to be rare in their occurrence worldwide. Structurally generated circumstances facilitated margin bypass of terrigenous clastics shed from the north and west. Protection from clastic influx contributed to conditions required for development of the 400 feet of reefal buildup penetrated by the Marathon Oil Company Poth No. 1 during early 1993. Core from this well provides insight into character, composition, and depositional setting of reefs along the western flank of the East Texas Basin during Late Jurassic time.

Norwood, E.M. [Marathon Oil Co., Tyler, TX (United States); Brinton, L. [Marathon Oil Co., Littleton, CO (United States)

1996-12-31T23:59:59.000Z

3

A depositional model for late Jurassic Reef Building in the East Texas Basin  

SciTech Connect

The authors propose a depositional setting for the Upper Jurassic reef facies occurring at the upper Cotton Valley Lime, (Gilmer) sequence boundary in the East Texas Basin. The development of uncommonly thick, microbially bound reefal buildups positioned near the western margin of the basin was controlled by sea-level variations and gravity faulting, suggested to be concurrent. Gas bearing reefs occur as isolated features along faulted margins and have been successfully located using 3-D seismic. Reefs of this type and age appear to be rare in their occurrence worldwide. Structurally generated circumstances facilitated margin bypass of terrigenous clastics shed from the north and west. Protection from clastic influx contributed to conditions required for development of the 400 feet of reefal buildup penetrated by the Marathon Oil Company Poth No. 1 during early 1993. Core from this well provides insight into character, composition, and depositional setting of reefs along the western flank of the East Texas Basin during Late Jurassic time.

Norwood, E.M. (Marathon Oil Co., Tyler, TX (United States)); Brinton, L. (Marathon Oil Co., Littleton, CO (United States))

1996-01-01T23:59:59.000Z

4

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

5

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

7

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

8

Oil and gas resources in the West Siberian Basin, Russia  

SciTech Connect

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

9

PADD 1 (East Coast) Heating Oil Stocks Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The East Coast (PADD 1) is the primary heating oil region, and it depends heavily on production from the Gulf Coast (PADD 3) as well. The biggest decline in U.S. stocks has taken place in the heating oil markets of PADD 1 (East Coast), which consumed 86 percent of the nation’s heating oil in 1998. It also is the region with the largest volume of heating oil stocks. PADD 1 was down over 8.4 million barrels on January 21 from the 5-year average stock level for end of January PADD 3, which supplies PADD 1, was down 4.6 million barrels from its 5-year January ending levels. During the week ending January 21, weather in New England was nearly 20% colder than normal for this time of year. This cold weather on top of low stocks was pushing prices up, with

10

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

11

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

12

Williston basin oil exploration: Past, present, and future  

SciTech Connect

Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

Jennings, A.H.

1991-06-01T23:59:59.000Z

13

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

14

The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit  

E-Print Network (OSTI)

of transi- tional crust on the Australian flank (Great Australian Bight and Eucla Basin) and finallyThe breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data

Müller, Dietmar

15

Economic appraisal of oil potential of Williston basin  

SciTech Connect

An economic appraisal was made of the potential of more than 80 producing fields in the Williston basin of Montana, North Dakota, and South Dakota. The major oil producing formations investigated were in the Mississippian, Devonian, Silurian and Ordovician. Data for the study came from field production and drilling statistics. An extrapolated oil production decline curve for a theoretical average producing well first was made for each field. The value of the total extrapolated amount of producible oil for the average well was then calculated, discounted for royalty, taxes, etc., and divided by the estimated cost for a completed producing well. This gave an estimate of the return per dollar invested. No considerations were given for exploration and land acquisition costs. The estimated return per dollar values, after posting on Williston basin geologic maps, show relative economic comparisons of producing formations and where within the basin the best economic returns can be expected.

Jennings, A.H.

1983-08-01T23:59:59.000Z

16

Savannah River Site - D-Area Oil Seepage Basin | Department of...  

Office of Environmental Management (EM)

D-Area Oil Seepage Basin Savannah River Site - D-Area Oil Seepage Basin January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

17

Seismic facies and growth history of Miocene carbonate platforms, Wonocolo Formation, North Madura area, East Java Basin, Indonesia.  

E-Print Network (OSTI)

??The Miocene Wonocolo Formation in the North Madura area, East Java Basin, contains numerous isolated carbonate platforms that are broadly distributed across a ~3000 sq (more)

Adhyaksawan, Rahadian

2012-01-01T23:59:59.000Z

18

Oil and gas developments in Middle East in 1985  

SciTech Connect

Petroleum production in Middle East countries during 1985 totaled 3,837,580,000 bbl (an average rate of 10,513,917 BOPD), down 2.2% from the revised 1984 total of 3,924,034,000 bbl. Iran, Iraq, Dubai, Oman, and Syria had significant increases; Kuwait, Kuwait-Saudi Arabia Divided Neutral Zone, Saudi Arabia, and Qatar had significant decreases. New fields went on production in Iraq, Abu Dhabi, Oman, and Syria. In North Yemen, the first ever oil production in that country was nearing the start-up stage at year end. 9 figures, 9 tables.

Hemer, D.O.; Gohrbandt, K.H.A.

1986-10-01T23:59:59.000Z

19

Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin  

E-Print Network (OSTI)

and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China b China Offshore Oil after the late Mesozoic. These basins, both onshore and offshore, have a similar age and structural

Lin, Andrew Tien-Shun

20

Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Award No.: DE-FE0001243 DOE Award No.: DE-FE0001243 Topical Report CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380 Salt Lake City, UT 84112 Prepared for: United States Department of Energy National Energy Technology Laboratory April 2011 Oil & Natural Gas Technology Office of Fossil Energy Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah Topical Report Reporting Period: October 31, 2009 through March 31, 2011 Authors: Lauren P. Birgenheier, Energy and Geoscience Insitute, University of Utah

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oil and gas development in Middle East in 1987  

SciTech Connect

Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

1988-10-01T23:59:59.000Z

22

Analysis of sludge from K East basin floor and weasel pit  

SciTech Connect

Sludge samples from the floor of the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and possibly assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements.

Makenas, B.J., Westinghouse Hanford

1996-05-04T23:59:59.000Z

23

FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,  

E-Print Network (OSTI)

Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

24

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

25

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

26

Seismic reflection evidence for two phase development of Tertiary basins from east-central Nevada  

SciTech Connect

Two east-west seismic reflection profiles crossing Antelope Valley, Smokey Valley, Railroad Valley and Big Sand Springs Valley demonstrate the evolution of Tertiary extension from broad sags to narrow, fault-bounded basins. Seismic reflection data was acquired for the Anschutz Corporation by the Digicon Corporation during the winter of 1988/1989. Reprocessing of a 480 channel, 60 fold, dynamite source experiment enabled good imaging of the basin stratigraphy. These data suggest two distinct phases of basin development occurred, separated by a regional unconformity. The early phase is characterized by development of a broad basin riddled with many small offset normal faults. The later phase shows a narrowing of the basin and subsidence along one dominant structure, an apparent planar normal fault. The unconformity separating the two phases of extension marks a transition from broad subsidence to local asymmetric tilting that took place over a short period of time relative to sedimentation rates. Antelope Valley and Railroad Valley clearly show strong evidence for two phase development, whereas Smokey Valley represents mostly the early phase and Big Sand Springs Valley represents only the later phase of extension. The absence of dating within the basins precludes the authors from determining if the abrupt tectonic transition within the basins resulted from differences in local strain rates or amounts, or was due to changes in regional stress fields.

Liberty, L.M.; Heller, P.L.; Smithson, S.B. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics)

1993-04-01T23:59:59.000Z

27

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

28

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

29

Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky  

SciTech Connect

The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

1985-02-01T23:59:59.000Z

30

Oil, politics, society and the state in the middle east: Enduring authoritarianism in Iran and Saudi Arabia.  

E-Print Network (OSTI)

?? This thesis examines the relationship between oil and the persistence of authoritarianism in the Middle East. Specifically, it analyzes and critiques the rentier state (more)

Martorell, Benjamin E

2012-01-01T23:59:59.000Z

31

Effects of oil charge on illite dates and stopping quartz cement: calibration of basin models  

E-Print Network (OSTI)

Abstract Effects of oil charge on illite dates and stopping quartz cement: calibration of basin Oil can fill pores in reservoir sandstones at any burial depth by long or short distance migration. There has been a debate since 1920 concerning the effect of oil charge. We have made detailed local

Haszeldine, Stuart

32

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK  

E-Print Network (OSTI)

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK University of Birmingham expert academics from across the CDT and also experienced oil and gas industry professionals of a CDT cohort, you will receive 20 weeks bespoke, residential training of broad relevance to the oil

Henderson, Gideon

33

Dominant Middle East oil reserves critically important to world supply  

SciTech Connect

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z

34

Oil and gas developments in Middle East in 1986  

SciTech Connect

Petroleum production in Middle East countries during 1986 totaled 4,493,973,000 bbl (an average rate of 12,312,254 BOPD), up 22.3% from the revised 1985 total of 3,673,729,000 bbl. Iraq, Kuwait, Saudi Arabia, Abu Dhabi, and Oman had significant increased; Iran was the only Middle East country with a significant decrease. New fields went on production in Oman and Yemen Arab Republic, and significant discoveries were reported in Iraq, Yemen Arab Republic, Oman, and Syria. However, exploration was generally down in most countries. Exploration and production operations continued to be affected by war in Iraq and Iran. 8 figures, 7 tables.

Hemer, D.O.; Gohrbandt, K.H.A.

1987-10-01T23:59:59.000Z

35

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

36

Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

SciTech Connect

This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

Not Available

1995-01-01T23:59:59.000Z

37

New evidence for the origin of natural gas in Ordos Basin from hydrocarbons of oil water  

Science Journals Connector (OSTI)

The chief aim of the present work is to investigate the controversy origin of natural gas in the Ordos Basin by using the hydrocarbons of oil water. New evidence has been found: There is relatively high content o...

Dujie Hou; Xianqing Li; Youjun Tang

2002-05-01T23:59:59.000Z

38

Oil and gas developments in Middle East in 1983  

SciTech Connect

Petroleum production in Middle East countries during 1983 totaled 4,275,054,000 bbl (an average rate of 11,712,476 BOPD), down 3.7% from the revised total of 4,440,841,000 bbl produced in 1982. Iran, Kuwait, the Kuwait-Saudi Arabia Divided Neutral Zone, and Oman had significant increases. Saudi Arabia, Qatar, and Abu Dhabi had significant decreases. 8 figures, 9 tables.

Hemer, D.O.; Pickford, P.J.

1984-10-01T23:59:59.000Z

39

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

40

Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary  

SciTech Connect

The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

Not Available

1993-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Facies, stratigraphic architecture, and lake evolution of the oil shale bearing Green River Formation, Eastern Uinta Basin, Utah.  

E-Print Network (OSTI)

??Lacustrine basin systems have historically been valued for their abundant conventional oil and gas reserves, but they also contain a vast potential for unconventional petroleum (more)

Rosenberg, Morgan Joshua

2013-01-01T23:59:59.000Z

42

Uinta Basin Oil and Gas Development Air Quality Constraints  

E-Print Network (OSTI)

Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

Utah, University of

43

CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field  

E-Print Network (OSTI)

Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

Lu, Ping

2012-08-31T23:59:59.000Z

44

Mechanism of formation of the oil and gas basins of the Persian Gulf  

SciTech Connect

Earlier investigations have shown that most sedimentary basins on continental crust were formed without significant extension. These basins are of two main types. Cratonic sedimentary basins, 3 to 15 km deep, form as a result of slow compensated subsidence at a rate of 10 to 100 m/m.y. over a long period of time (300-1000 m.y.). Miogeosynclines usually form by rapid uncompensated subsidence at a rate of 0.2-1 km/m.y., in a short period of time (1-10 m.y.). In this paper, the authors examine the evolution and distribution of hydrocarbon deposits in the oil and gas basins of the Persian Gulf, which contain more than 60% of the oil and 40% of the gas reserves of non-Soviet countries. They conclude that the oil and gas basins of the Persian Gulf were formed by repeated rapid subsidence without crustal extension. The rapidity of the subsidence was responsible for high heat flow, intensive local tectonics, and the deposition of suitable source beds, reservoir rocks and caprocks, factors that are responsible for the immense oil and gas resources. 44 references, 2 figures.

Artyushkov, E.V.; Beer, M.A.

1987-02-01T23:59:59.000Z

45

Synoptic-Scale Environments of Predecessor Rain Events Occurring East of the Rocky Mountains in Association with Atlantic Basin Tropical Cyclones  

Science Journals Connector (OSTI)

The synoptic-scale environments of predecessor rain events (PREs) occurring to the east of the Rocky Mountains in association with Atlantic basin tropical cyclones (TCs) are examined. PREs that occurred during 19882010 are subjectively classified ...

Benjamin J. Moore; Lance F. Bosart; Daniel Keyser; Michael L. Jurewicz

2013-03-01T23:59:59.000Z

46

Oil exploration and development in the North Dakota Williston Basin: 1981 update  

SciTech Connect

This article gives recent and historical development of the Williston Basin of North Dakota, along with numerous maps, oil and gas well data, and discoveries. Tabular data gives operators, fields, well depth, production, and producing horizons. The maps show locations of oil fields and new discoveries. Some information on production, taxes, profits and drilling activity is also given in graphical means. 14 figures, 3 tables.

Anderson, S.B.; Bluemle, J.P.

1982-01-01T23:59:59.000Z

47

Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama  

SciTech Connect

This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

Kugler, R.L.; Pashin, J.C.

1992-05-01T23:59:59.000Z

48

Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production  

SciTech Connect

The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

Guy, W.J.

1987-05-01T23:59:59.000Z

49

Oil exploration and development in the North Dakota Williston basin: 1986-1987 update  

SciTech Connect

A review of North Dakota's history of oil and gas discoveries and production includes an analysis of the several exploration cycles the Williston basin has undergone and the development of significant reservoirs there, emphasizing activity in 1986 and 1987. The writers analyze current conditions and offer their best prognosis of future possibilities.

Fischer, D.W.; Bluemle, J.P.

1988-07-01T23:59:59.000Z

50

Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins  

SciTech Connect

Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

Blackwelder, B.W.

1989-03-01T23:59:59.000Z

51

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.  

SciTech Connect

Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

John Jackson; Katherine Jackson

2008-09-30T23:59:59.000Z

52

East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for  

Gasoline and Diesel Fuel Update (EIA)

Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Total 60,122 54,018 52,671 54,668 52,999 47,100 1981-2013 Crude Oil 27,587 25,670 24,699 27,070 27,065 18,146 1981-2013 Total Products 32,535 28,348 27,972 27,598 25,934 28,954 1995-2013 Other Liquids 24,957 20,056 20,754 17,137 16,653 17,339 1981-2013 Unfinished Oils 4,375 2,077 2,253 1,874 1,960 1,500 1981-2013

53

Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways  

SciTech Connect

Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. (Geological Survey of Canada, Calgary, Alberta (Canada))

1991-06-01T23:59:59.000Z

54

Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Gasoline and Diesel Fuel Update (EIA)

5(94) 5(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Information General information regarding preparation of this report may be obtained from Craig H. Cranston at 202/586-6023, in Washington, D.C. Specific information regarding the contents of the report may be obtained from the authors: Jack S.

55

GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN  

SciTech Connect

Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

Beverly Seyler; John Grube

2004-12-10T23:59:59.000Z

56

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, M.B.

1997-10-30T23:59:59.000Z

57

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

58

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

59

Soviet perceptions of the oil factor in U. S. foreign policy: The Middle East-Gulf Region  

SciTech Connect

How Soviet leaders perceive U.S. intentions, capabilities, and actions plays an important role in the formulation of the Soviet Union's foreign policy and its relations with the United States. This book focuses on one such set of Soviet perceptions - how the oil factor and subsequent developments have influenced U.S. policy in the Middle East-Gulf region and what the implications of that policy are for the Soviet Union.

Sawyer, H.L.

1984-01-01T23:59:59.000Z

60

Late-Quaternary Stratigraphy and Geoarchaeology of the Upper Neosho River Basin, East-Central Kansas  

E-Print Network (OSTI)

C o. L yo n C o. C of fe y C o. 15 0 22 5 30 0 km 75 0 20 30 40 k m 10 0 N K an sa s U pp er N eo sh o R iv er B as in Cr F ig ur e 1. 1. U pp er N eo sh o R iv er b as in in K an sa s, U SA 2 3 settlement patterns (Mandel, 2006a: 28... Arkansas River Basin Upper Neosho River Basin (Study Area) Gulf of Mexico M ississippi R i ver 6 S m ok y H il ls B lu e H il ls C ha lk B ut te s H ig h P la in s A rk an sa s R iv er L ow la nd s F li nt H il ls O sa ge...

Gottsfield, Andrew Stefan

2009-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network (OSTI)

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units, (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

62

Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea  

E-Print Network (OSTI)

to store CO2, particularly in its oil and gas fields. Its storage capacity was evaluated because it is well capacity in the oil and gas fields of the East Irish Sea Basin is approximately 1047 million tonnes, the fact that they do not contain hydrocarbons suggests the possibility that they may not be gas- tight

Watson, Andrew

63

Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea  

SciTech Connect

Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

2007-11-16T23:59:59.000Z

64

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

65

High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin  

SciTech Connect

The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

Goldhammer, R.K. [Texas Bureau of Mines and Geology, Houston, TX (United States)

1996-12-31T23:59:59.000Z

66

Lagrangian analysis of the vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea  

E-Print Network (OSTI)

The output from an eddy-resolved multi-layered circulation model is used to analyze the vertical structure of simulated deep-sea eddies in the Japan Basin of the Japan/East Sea constrained by bottom topography. We focus on Lagrangian analysis of anticyclonic eddies, generated in the model in a typical year approximately at the place of the mooring and the hydrographic sections, where such eddies have been regularly observed in different years (1993--1997, 1999--2001). Using a quasi-3D computation of the finite-time Lyapunov exponents and displacements for a large number of synthetic tracers in each depth layer, we demonstrate how the simulated feature evolves of the eddy, that does not reach the surface in summer, into a one reaching the surface in fall. This finding is confirmed by computing deformation of the model layers across the simulated eddy in zonal and meridional directions and in the corresponding temperature cross sections. Computed Lagrangian tracking maps allow to trace the origin and fate of wa...

Prants, S V; Budyansky, M V; Uleysky, M Yu; Fyman, P A

2014-01-01T23:59:59.000Z

67

Causes of the unique concentration of oil and gas in the petroliferous basin of the Persian Gulf  

SciTech Connect

The extraordinarily high oil-gas potential of the Persian Gas basin could have resulted from a combination of factors which brought about the conditions necessary for oil accumulation. The author contends that active generation of hydrocarbons in the Persian Gulf basin has not yet ended. The high tectonic activity of the region, expressed by the extremely high velocity of sedimentation and in the intense horizontal compression during late Cenozoic time has created an ideal geologic environment for the metamorphism of the organic matter with maximum release of hydrocarbons. In addition, oil accumulation in the Mesozoic and Cenozoic sequences was not suppressed by gas accumulation because of the intense isolation of the predominantly gas bearing Paleozoic level. The extremely high degree of closure of the folded margin greatly restricted the loss of hydrocarbons. (JMT)

Solov'yev, N.N.

1982-11-01T23:59:59.000Z

68

Charging of the Penglai 9-1 oil field, Bohai Bay basin, China: Functions of the delta on accumulating petroleum  

Science Journals Connector (OSTI)

Abstract The Penglai 9-1 (PL9-1) oil field, which contains China's third largest offshore oil accumulation (in-place reserves greater than 2.28נ108ton or 1.49נ109bbl), was found in shallow reservoirs (7001700m, 22975577ft) within the most active fault zone in east China. The PL9-1 field contains two oil-bearing series, the granite intrusions in Mesozoic (Mz) and both the sandstone reservoirs in Neogene Guantao (Ng) and Neogene Minghuazhen (Nm) Formation. The origins of the PL9-1 field, both in terms of source rock intervals and generative kitchens, were determined by analyzing biomarker distributions for 61 source rock samples and 33 oil samples. The Mesozoic granite intrusions, which hold more than 80% of the oil reserves in the field, were charged in the west by oil generated from the third member (Es3) of the Shahejie Formation in the Bodong depression. The Neogene reservoirs of the PL9-1 field were charged in the west by oil generated from the third member (Es3) of the Shahejie Formation in the Bodong depression and in the south by oil generated from the first member (Es1) of the Shahejie Formation in the Miaoxibei depression. Interactive contact between the large fan delta and the mature source rocks residing in the Es3 Formation of the Bodong depression resulted in a high expulsion efficiency from the source rocks and rapid oil accumulation in the PL9-1 field, which probably explains how can this large oil field accumulate and preserve within the largest and most active fault zone in east China.

Jinqiang Tian; Fang Hao; Xinhuai Zhou; Huayao Zou; Lei Lan

2014-01-01T23:59:59.000Z

69

Controls of oil family distribution and composition in nonmarine petroleum systems: A case study from Inner Mongolia Erlian basin, Northern China  

Science Journals Connector (OSTI)

Abstract The Erlian basin is a continental rift basin located in Inner Mongolia, Northern China. It is a typical representative of Cretaceous Northeast Asian Rift System, which includes many small petroliferous basins in Mongolia Republic and Northern China. Although Lower Cretaceous source rocks are understood to be most important in the Erlian petroleum systems, the precise identification of these source rock intervals and their determination on oil families distribution and composition are poorly understood in this tectonically complicated, nonmarine basin. New bulk data have been gathered from source rock intervals, oil sands and crude oil samples in eight main oil-producing subbasins. Geochemical analyses indicate that Lower Cretaceous Aershan formation (K1ba) and Tengger 1 formation (K1bt1) are two main source intervals in the Erlian basin and their source rock facies vary from profundal lacustrine to marginal lacustrine according to biomarker and trace elements calibration, the profundal lacustrine facies is characterised by brackish water and anoxic environment, which is similar to their correlative oils (Family 1 oils). The marginal lacustrine facies is characterised by freshwater and suboxic environment, which sourced the most common Family 2 oils. Meanwhile, different maturation processes exercise the second control on oil groups and their compositions, the profundal lacustrine source rocks characterised by their sulphur-rich kerogens lead to two oil groups (group 1 and group 2 oils), whose maturity range from low to normal; while, the marginal lacustrine source rock only lead to normal-maturity oils. At last, biodegradation affected the composition of a certain oils and formed group 4 heavy oils. In addition, short migration distance in small subbasins made the contamination or fractionation less notable in the Erlian basin.

Zhelong Chen; Guangdi Liu; Zhilong Huang; Xuejun Lu; Qiang Luo; Xiujian Ding

2014-01-01T23:59:59.000Z

70

OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING  

SciTech Connect

Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright with development ongoing and a commercialization plan in place. We expect that this DOE sponsored technology will be a major technical and commercial success story in the coming years.

Michael Wilt

2004-02-01T23:59:59.000Z

71

Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea  

Science Journals Connector (OSTI)

Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH26 and UBGH210 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH26 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH26 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 58cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120cm) reaches about 25% with an average saturation of 11%. However, in the UBGH210 well, gas hydrate occupies a 5-m thick sand reservoir near 135mbsf with a maximum saturation of about 60%. In the UBGH210 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

M.W. Lee; T.S. Collett

2013-01-01T23:59:59.000Z

72

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

73

Hydrocarbon potential of basins along Australia's southern margin  

SciTech Connect

Seven discrete sedimentary basins are recognized along the southern margin of the Australian continent; namely, from east to west, the Gippsland, Bass, Sorell, Otway, Duntroon, Bight, and Bremer. All formed since the Late Jurassic in response to the separation of Australia and Antarctica, and to the opening of the Tasman Sea. Only the Gippsland basin, which has proved initial oil reserves exceeding 3.6 billion barrels, is a prolific oil province. The search for oil in the other basins has been virtually fruitless despite many similarities between these basins and the Gippsland in terms of stratigraphy and structural geology. Rift and drift components are discernible in the sedimentary successions of all basins but the precise tectonic controls on respective basin formation remain conjectural. The lack of drilling success in the Bremer, Bight, Duntroon, Otway, and Sorell basins has been attributed mainly to the paucity of mature, oil-prone source rocks. The common occurrence of stranded bitumens along the entire coastline, however, indicates oil generation. The Bass and Gippsland basins are both characterized by excellent oil-prone source rocks developed in Late Cretaceous to Early Tertiary sediments. Limited exploration success in the Bass basin is due to poorer reservoir development. The Gippsland basin is at a mature stage of exploration whereas the other basins are moderately to very sparsely explored. Consequently, there is a comparable potential for undiscovered hydrocarbons in all basins. Success in the under-explored basins will come only to those prepared to challenge the perception of low prospectivity. Many play types remain to be tested by the drill.

Willink, R.J. (SAGASCO Resources Limited, Adelaide (Australia))

1991-03-01T23:59:59.000Z

74

ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS  

SciTech Connect

A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

William L. Fisher; Eugene M. Kim

2000-12-01T23:59:59.000Z

75

CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH  

SciTech Connect

An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

Lauren P. Birgenheier; Michael D. Vanden Berg,

2011-04-11T23:59:59.000Z

76

Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)  

SciTech Connect

This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-02-01T23:59:59.000Z

77

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

78

Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana  

SciTech Connect

The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

1993-04-01T23:59:59.000Z

79

Soviet perceptions of the oil factor in US foreign policy: the Middle East-Gulf region  

SciTech Connect

The goal of this book is to understand Moscow's convictions regarding recent events in the Middle East-Persian Gulf region and the motivations underlying US policy there. It identifies and analyzes the Soviet view of how America's energy problem has influenced US-Soviet relations in that area. Some attention also goes to the implications for American policy in the region. Key topics include Soviet perceptions of American foreign policy aims, US goals in the Middle East, US-Iranian relations during the Shah's region and after his fall, and the negative aspects of the energy problems for Moscow. Some speculative remarks are made regarding likely future directions of Soviet policies and the implications of such policies for the US. 95 references.

Sawyer, H.L.

1983-01-01T23:59:59.000Z

80

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1997-04-30T23:59:59.000Z

82

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

83

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

84

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area 2007 2008 2009 2010 2011 2012 View History Total Crude Oil and Petroleum Products 1,009,989 959,458 1,099,509 1,131,797 1,168,599 1,191,766 1981-2012 Crude Oil -3,860 -5,544 8,672 5,983 5,106 4,126 1981-2012 Petroleum Products 1,013,849 965,002 1,090,837 1,125,814 1,163,493 1,187,640 1986-2012 Pentanes Plus -590 -452 -113 -19 1991-2012 Liquefied Petroleum Gases 32,846 32,207 20,384 34,725 33,545 26,723 1981-2012 Ethane/Ethylene 1989-2002 Propane/Propylene 32,199 31,673 19,415 33,585 33,025 26,601 1989-2012 Normal Butane/Butylene

85

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Crude Oil and Petroleum Products 96,936 96,489 98,076 99,950 102,408 98,737 1981-2013 Crude Oil -533 -654 -152 -479 -42 20 1981-2013 Petroleum Products 97,469 97,143 98,228 100,429 102,450 98,717 1986-2013 Pentanes Plus -2 1987-2013 Liquefied Petroleum Gases 2,739 1,357 1,555 1,342 1,959 2,568 1981-2013 Ethane/Ethylene 1989-2002 Propane/Propylene 2,739 1,357 1,555 1,342 1,959 2,483 1989-2013 Normal Butane/Butylene 85 1989-2013 Isobutane/Isobutylene 1989-2013

86

Food production after peak oil| Oregon's Willamette river basin as a bioregional case study.  

E-Print Network (OSTI)

?? Agriculture will experience radical new challenges in the next forty years. Peak oil, which is likely to occur before 2020, will result in potentially (more)

Hruska, Tracy

2010-01-01T23:59:59.000Z

87

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network (OSTI)

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and (more)

[No author

2012-01-01T23:59:59.000Z

88

Reservoir Characterization and Enhanced Oil Recovery Potential in Middle Devonian Dundee Limestone Reservoirs, Michigan Basin, USA.  

E-Print Network (OSTI)

?? Middle Devonian Rogers City and subjacent Dundee Limestone formations have combined oil production in excess of 375 MMBO. In general, hydrocarbon production occurs in (more)

Abduslam, Abrahim

2012-01-01T23:59:59.000Z

89

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect

The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

2001-05-08T23:59:59.000Z

90

Petroleum geochemistry of Lower Indus Basin, Pakistan: I. Geochemical interpretation and origin of crude oils  

Science Journals Connector (OSTI)

Abstract The study focused on the petroleum geochemistry of crude oils produced from Cretaceous reservoirs. Geochemical portrayal of crude oils has been carried out by means of diagnostic biomarker parameters like relative distribution of steranes (C27C28C29 ???-20R steranes), C19 and C23 tricyclic terpanes (TT), C24 tetracyclic terpanes (TeT) and hopanes. These parameters suggest that the crude oils contain terrigenous organic matter (OM) mixed with small input of marine OM. The OM of the source rocks was deposited in oxic depositional environment. Maturity parameters, C32 22S/(22S+22R) homohopanes and sterane isomerization ratios [20S/(20S+20R), ???/(???+???) for C29 steranes] indicate that these crude oil are produced from the source rocks at early mature stage to mature stage.

Arif Nazir; Tahira Fazeelat

2014-01-01T23:59:59.000Z

91

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

92

Rock-eval data relating to oil-source potential of shales of New Albany group (Devonian-Mississippian) in Illinois basin  

SciTech Connect

Only limited data on petroleum source rock potential of New Albany Group (Devonian-Mississippian) shales have been reported, with the exception of vitrinite reflectance and some petrographic analyses. The New Albany Group contains the thickest and most widespread continuous black shale beds in the Illinois basin. The New Albany extends from northwestern Illinois to southwestern Indiana and western Kentucky and is thought to have played a major role in petroleum generation throughout the basin. In this study, Rock-Eval pyrolysis was used to measure the petroleum-generative potential and production index of the shale. Seven geochemical logs, based on 143 core samples from across the basin, and a production index map, based on a total of 252 samples (cuttings and cores) in Illinois, were generated. Systematic variations of petroleum-generative potential of the shale were observed. The variations are related to the differences in shale lithofacies, depth, and geographic location. The upper portion of the New Albany - the Hannibal and Saverton Shales - has the lowest oil-generative potential. The Grassy Creek, Sweetland Creek, and other stratigraphically lower shales of the New Albany Group generally have good oil-generative potential. However, samples from the Hicks dome area of extreme southern Illinois are overmature and have no oil-generative potential. Source rocks that have both good oil-generative potential (> 6 kg hydrocarbons per ton of rock) and a higher production index (> 0.09) are generally located at depths of 2,500-5,300 ft.

Chou, Mei-In M.; Dickerson, D.R.; Sargent, M.L. (Illinois State Geological Survey, Champaign (USA))

1988-08-01T23:59:59.000Z

93

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)  

SciTech Connect

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

1999-06-08T23:59:59.000Z

94

Geology of oil fields and future exploration potential in west African Aptian Salt basin  

SciTech Connect

The Aptian Salt basin of west Africa, extends from Equatorial Guinea southward to Angola, contains recoverable reserves estimated at nearly 4 billion BOE, and is current producing 600,000 BOPD. The basin developed as a result of tensional forces between west Africa and South America initiated at the end of the Jurassic. The prospective sedimentary sequences ranged in age from Early Cretaceous (uppermost Jurassic in places) to Holocene and is divided by the Aptian transgressive sand and salt into a pre-salt, nonmarine, syn-rift sequence and a post-salt, marine, post-rift sequence. Both the pre- and post-salt sequences contain several successful exploration plays, the most prolific of which are the Early Cretaceous nonmarine sandstone fields in tilted fault blocks of Gabon and Cabinda; Early Cretaceous carbonate buildups on the margins of basement highs in Cabinda; Early Cretaceous transgressive marine sandstone fields in anticlines draped over basement highs in Gabon; Late Cretaceous shallow marine sandstone and carbonate fields in salt-related structures in the Congo, Zaire, Cabinda, and Angola; Late Cretaceous dolomites in structural/stratigraphic traps in Angola; Late Cretaceous/early Tertiary deltaic/estuarine sandstone traps formed by salt movement in Gabon, Cabinda, and angola; and Tertiary marine turbidite fields in Cabinda and Angola. Despite the exploration success in these trends, much of the basin is under or poorly explored. The major problems for exploration are the poor quality of seismic definition beneath the salt, which makes it difficult to predict pre-salt structure and stratigraphy, and the importance of a stratigraphic element in many of the post-salt traps, also difficult to detect on seismic.

Bignell, R.D.; Edwards, A.D.

1987-05-01T23:59:59.000Z

95

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

96

Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea  

Science Journals Connector (OSTI)

Abstract Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that gas hydrate occurrence zones (GHOZ) are present about 68155mbsf at Site UBGH2-2_2 and 110155mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as pore-filling type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

J.-J. Bahk; G.-Y. Kim; J.-H. Chun; J.-H. Kim; J.Y. Lee; B.-J. Ryu; J.-H. Lee; B.-K. Son; T.S. Collett

2013-01-01T23:59:59.000Z

97

A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins  

Science Journals Connector (OSTI)

Abstract This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 596h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups.

Tiago M. Alves; Eleni Kokinou; George Zodiatis

2014-01-01T23:59:59.000Z

98

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z

99

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

100

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

Murphy, Mark B.

1999-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ordovician Red River {open_quotes}B{close_quotes}: Horizontal oil play in the southern Williston basin  

SciTech Connect

Recent application of horizontal drilling technology to the Ordovician Red River {open_quotes}B{close_quotes} zone in the southern Williston basin has resulted in a successful oil play, with more than 100 wells drilled in 1995 and 1996. The Red River {open_quotes}B{close_quotes} reservoir is a dolomitized laminated carbonate with microsucrosic porosity of 8-25% and permeabilities in the range of 1-66 md. It occurs within the middle of three depositional cycles ({open_quotes}A,{close_quotes} {open_quotes}B,{close_quotes} and {open_quotes}C{close_quotes}) that form the upper Red River Formation. Each cycle consists of a lower burrowed limestone, middle laminated member, and capping anhydrite or lime mudstone. The {open_quotes}B{close_quotes} reservoir is confined to the {open_quotes}B{close_quotes} laminated member and consists of an upper portion, characterized by better reservoir quality, and a lower, less permeable portion. Horizontal drilling has the advantage of significantly increasing well-bore exposure to the upper, more permeable portion. Well data indicate the total Red River {open_quotes}B{close_quotes} porosity zone has remarkable extent over parts of southwestern North Dakota, southeastern Montana, and northwestern South Dakota. Productivity from horizontal well displays considerable variation that can be correlated with structure/tectonic patterns and with reservoir petrophysical character.

Montgomery, S.L.

1997-04-01T23:59:59.000Z

102

Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia  

Science Journals Connector (OSTI)

...including fragments within plantations. Only those studies...arthropod abundance and biomass across three microhabitats...forest fragments within plantations. Plantation matrix...2010 Can oil palm plantations become bird friendly...2007.09.008 ) 102 Wood, B. J. 1969 Studies...

2011-01-01T23:59:59.000Z

103

Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

104

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

105

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

106

Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea)  

Science Journals Connector (OSTI)

Abstract We analyzed the data consist of core digital images and X-rays, core-logs, LWD (logging-while-drilling), and sediment grain-size from the second Ulleung Basin Gas Hydrate Expedition (UBGH2) in the East Sea. Core digital images and X-rays were spliced as a complete composite core in meters below seafloor (mbsf) for five sites; UBGH2-1_1 (Hole D), 2_1 (B), 2_2 (B), 2-6 (B) and 2-10 (CD), and were correlated with the core-log and LWD measurements showing that possible gas hydrate bearing layers are between the depths of about 60180mbsf at these sites. Bulk densities generally increase with depth from 1.3 to 2.0g/cm3 in LWD data, and from 1.1 to 1.8g/cm3 onboard which measured lower than in-situ. Gas hydrate bearing sediments respond with an increase of LWD densities (1.41.6g/cm3) and a decrease in core-logs (1.11.4g/cm3). P-wave velocity values of LWD increase (1400 to 1700m/s) with depth for non-reservoirs, and are high (1500 and 2000m/s) within the gas hydrate bearing intervals depending on the hydrate saturations.Resistivity values logged onboard range from less than 1.0 to over 10.0?-m, while LWD records are around 1.0?-m and between 5.0 and 30.0?-m in background sediments and possible gas hydrate reservoirs, respectively. High resistivity values were observed (5.030.0?-m) within coarse-grained turbidites (mean grain-size between 2.9 and 5.1?; laminated sandy mud or muddy sands). Medium resistivities were observed (5.0?-m) within the silt-dominant hemi-pelagic and turbiditic sediments (5.17.4?; crudely laminated, bioturbated, homogeneous sand, and disintegrated sand and sandy mud facies) bearing pore-filling gas hydrates, or disseminated gas hydrates either formed in pores or small fractures of fine-grained sediments. Core-log measurements are highly fluctuating and sensitive but mostly lower (e.g., density and resistivity) than LWD records.

Senay Horozal; Gil Young Kim; Jang Jun Bahk; Roy H. Wilkens; Dong Geun Yoo; Byong Jae Ryu; Seong Pil Kim

2015-01-01T23:59:59.000Z

107

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

2001-04-19T23:59:59.000Z

108

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

2001-11-26T23:59:59.000Z

109

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network (OSTI)

large diameter oil pipeline from Baku to the Turkish port ofoil tanker traffic through the Bosporus (Proposed Turkish Pipeline

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

110

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (seventh quarter), April 1--June 30, 1997  

SciTech Connect

The overall objective of this project is to demonstrate that a development program -- based on advanced reservoir management methods -- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized.

NONE

1997-07-30T23:59:59.000Z

111

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

SciTech Connect

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing, vertical, field wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the third project year (April 6 through October 5, 2002). This work included capillary pressure/mercury injection analysis, scanning electron microscopy, and pore casting on selected samples from Cherokee and Bug fields, Utah. The diagenetic fabrics and porosity types found at these fields are indicators of reservoir flow capacity, storage capacity, and potential for enhanced oil recovery via horizontal drilling. The reservoir quality of Cherokee and Bug fields has been affected by multiple generations of dissolution, anhydrite plugging, and various types of cementation which act as barriers or baffles to fluid flow. The most significant diagenetic characteristics are microporosity (Cherokee field) and micro-boxwork porosity (Bug field), as shown from porethroat radii histograms, and saturation profiles generated from the capillary pressure/mercury injection analysis, and identified by scanning electron microscopy and pore casting. These porosity types represent important sites for untapped hydrocarbons and primary targets for horizontal drilling. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation, and publications. The project home page was updated for the Utah Geological Survey Internet web site.

Thomas C. Chidsey, Jr.

2002-12-01T23:59:59.000Z

112

African oil: past, present, and future  

SciTech Connect

Nearly 50% of Africa's total area is comprised of sedimentary basins. These basins number more than 80 and contain an estimated proven hydrocarbon reserve of 89 billion bbl (oil equivalent), about 8% of the world's resources. Of these reserves, 68% occur in North Africa, 22% in Nigeria, and 7% in the Aptian Salt basin, which encompasses the coastal parts of Cameroon, Gabon, Congo, Zaire, and Angola. The first discovery of hydrocarbons in Africa was in Egypt in 1886, and the most recent discoveries are in the Gulf of Guinea and the interior rift basins of central Africa. Africa's basins can be classified into six types. However, each type has modifiers and most basins have evolved through a polycyclic history from one type to another. Giant hydrocarbons accumulations are related to marine source strata and large, non-giant pools to nonmarine source strata. All sizes of fields occur in areas with marine source rocks, but giant fields very rarely occur in areas where nonmarine source rocks are thought to predominate. Estimates of future potential reserves for each basin have been established by conventional basin assessment, play assessment, and volumetric yield methods, where data were sufficient. Giant accumulations will be found in the future in Tunisia and Egypt, in east Africa (if a deeper Karroo-play is pursued), and in the interior sag basins of central Africa, which are remote and unexplored. Some chance of finding one or two giant fields exists in Algeria and Libya, and Aptian Salt basin, the Gulf of Guinea, and the interior rift basins of central Africa, but generally only large accumulations will be found.

Clifford, A.

1984-09-01T23:59:59.000Z

113

The Uinta Basin Case Robert J. Bayer  

E-Print Network (OSTI)

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

114

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect

The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-05-01T23:59:59.000Z

115

Zuni sequence in Williston basin - evidence for Mesozoic paleotectonism  

SciTech Connect

The Zuni sequence in the Williston basin is a largescale lithogenetic package bounded by interregional unconformities. Within the sequence, three major subdivisions are separated by unconformities or marker beds and correspond with chronostratigraphic units: (1) Middle and Upper Jurassic, (2) Lower Cretaceous, and (3) Upper Cretaceous and Paleocene. The basin has clear expression in the Jurassic subdivision, poor expression in the Lower Cretaceous, and good expression in the Upper Cretaceous. A series of seven marginal paleotectonic elements surround the basin center on the west, south, and east in the US. Five more marginal elements have been described in Canada. Occurrences of oil in the Jurassic and Lower Cretaceous and of natural gas in the Upper Cretaceous are broadly related to the pattern of marginal paleotectonic elements. 14 figures, 1 table.

Shurr, G.W.; Anna, L.O.; Peterson, J.A.

1989-01-01T23:59:59.000Z

116

The extraction of bitumen from western oil sands: Volume 2. Final report  

SciTech Connect

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

117

The extraction of bitumen from western oil sands: Volume 1. Final report  

SciTech Connect

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

118

File:EIA-Appalach3-eastPA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach3-eastPA-BOE.pdf Appalach3-eastPA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.04 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Pennsylvania File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

119

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach5-eastWV-BOE.pdf Appalach5-eastWV-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.26 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time.

120

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

RESULTS OF IONSIV IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES  

SciTech Connect

This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

DUNCAN JB; BURKE SP

2008-07-07T23:59:59.000Z

122

Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's  

E-Print Network (OSTI)

) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

Watson, Andrew

123

Williston basin Seislog study  

SciTech Connect

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

124

Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea  

Science Journals Connector (OSTI)

Abstract The Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) recovered various forms of gas-hydrate bearing sediments from 10 drill sites in the lower slope and basin floor of the Ulleung Basin. To characterize the gas-hydrate occurrences and the properties of the host sediments, whole-round core samples were taken from portions of recovered cores determined to be hydrate-bearing based on infrared (IR) scanning. These samples were further characterized by a variety of shipboard experiments such as imaging of the sediments with hand-held IR and visual cameras, measurements of pore water chlorinity within and around IR inferred cold regions in the core and grain-size analysis of pore-water squeeze cakes. Sediment compositions of selected samples were further characterized by X-ray diffraction and scanning electron microscopes during post-cruise analysis. The shipboard and post-cruise analysis results collectively indicate that the recovered gas hydrates mainly occur as 1) pore-filling type bounded by discrete silty sand to sandy silt layers, 2) fracture-filling veins and nodules, or 3) disseminated type in silt. In addition, minor but significant variation in gas hydrate concentrations were observed in diatomaceous silt where gas hydrates occur as pore-filling material in layers dominated by intact diatom frustules. Gas hydrate accumulations of fracture-filling type occur predominantly in regions where acoustic blanking features in the seismic record suggest gas migration from below the gas hydrate stability zone. Results from the UBGH2 core studies along with the analysis of similar samples from other expeditions, including those executed by the Ocean Drilling Program, the Integrated Ocean Drilling Program, and the First Ulleung Basin Gas Hydrate Drilling Expedition, greatly improved our understanding of lithologic controls on marine gas hydrate occurrences.

J.-J. Bahk; D.-H. Kim; J.-H. Chun; B.-K. Son; J.-H. Kim; B.-J. Ryu; M.E. Torres; M. Riedel; P. Schultheiss

2013-01-01T23:59:59.000Z

125

Oil and gas entrapment, Louisiana shelf, offshore Gulf Coast region  

SciTech Connect

Oil and gas accumulations in the Louisiana offshore are caused by vertical hydrocarbon migration. Source beds for both thermal gas and oil lie considerably deeper than reservoirs. The required vertical pathways are steeply dipping faults and salt structures (ridges and diapirs). Faults and salt structures indicate the continuing presence of rift structures that began along a normal passive continental margin during the Pennsylvanian. Tectonic trends are northeast, northwest, north, and west-east; they follow well-established regional stress systems. Listric and growth faults commonly are too shallow for vertical hydrocarbon migration and require connection with vertical faults. Vertical oil and gas migration is predictable in its directions. The underlying geological, geophysical, and geochemical processes are understood and are not different from such processes in other productive basins. Secondary salt layers at shallower levels cause interruptions of vertical oil and gas migration; at the same time these interruptions seem to indicate a large future exploration potential on the Louisiana shelf.

Pratsch, J.C.

1989-09-01T23:59:59.000Z

126

Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin  

SciTech Connect

Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

Putnam, P.E.; Moore, S. (Petrel Robertson Ltd., Calgary, Alberta (Canada)); Ward, G. (Ward Hydrodynamics, Calgary, Alberta (Canada))

1990-05-01T23:59:59.000Z

127

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)  

SciTech Connect

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1997-01-31T23:59:59.000Z

128

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

Murphy, M.B.

1996-07-26T23:59:59.000Z

129

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1996-10-31T23:59:59.000Z

130

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998  

SciTech Connect

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

NONE

1998-04-30T23:59:59.000Z

131

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

132

Petroleum geology of the Estancia basin, New Mexico: An exploration frontier  

SciTech Connect

The Estancia basin of central New Mexico is an asymmetric, north-south-trending structural depression that originated during the Pennsylvanian. The present-day basin covers 1600 mi[sup 2]. The basin is bounded on the east by the late Paleozoic Pedernal uplift, on the west by the Tertiary Manzano and Los Pinos Mountains, on the north by the Espanola basin, an do the south by Chupadera Mesa. The depth to the Precambrian ranges from 9000 ft in the eastern part of the basin to less than 1500 ft in the western part. Basin fill consists primarily of Pennsylvanian and Wolfcampian (Permian) clastics. The Pennsylvanian section contains significant shelf limestones in the western part of the basin. Forty-three exploratory wells have been drilled in the basin; only 17 have been drilled to Precambrian. Numerous shows of oil and gas have been reported. From the 1930s until the 1960s, CO[sub 2] was produced from lower Pennsylvanian sandstones in two small fields on the western flank of the basin. Dark-gray to black Pennsylvanian shales are probable source rocks. They are mature to marginally mature; TAI values range from less than 2.0 to 3.2. TOC is greater than 0.5% in many of these shales. Kerogen types are mixed amorphous, algal, herbaceous, and woody, indicating that gas, or both gas and oil, may have been generated. Pennsylvanian sandstones are good reservoirs. They are fine- to coarse-grained subarkosic arenites and quartz arenites. Porosity ranges from 10 to 20% in the more porous, coarser-grained sandstones.

Broadhead, R.F. (New Mexico Bureau of Mines Mineral Resources, Socorro, NM (United States))

1994-03-01T23:59:59.000Z

133

Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins  

SciTech Connect

The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

Goodrich, J.H.

1982-12-01T23:59:59.000Z

134

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

135

China`s impact on the world crude-oil  

SciTech Connect

China`s oil market is in transition, and this has dramatically shaped its crude and petroleum product balances. During the last five years (1989-1993), imports of crude and refined products increased rapidly, while exports of crude and refined products declined year after year. In 1993 petroleum product imports surged to a record high of 354,000 barrels per day (b/d) at the same time that crude imports also increased to a record high of 315,000 b/d. If we combine imports and exports of both crude oil and products, China was a net oil importer of about 200,000 b/d during 1993. This marked the first time since 1960s that China has fallen into net oil importer status. Four major changes have characterized China`s oil imports and exports during the last two decades. First, China has made vigorous efforts to diversify its total exports away from oil-based goods to non-oil items. Second, the composition of oil exports has changed, shifting from dependence on crude oil exports toward a greater proportion of finished or semi-finished products. Third, the oil import pattern has also shifted from primarily heavy products to primarily light products. Finally, Northern China has continued to export oil across the Pacific Basin, but Southern China has begun importing petroleum from Indonesia and the Middle East. These trends indicate that China will become increasingly vital to both the regional and global oil trade. Overall, Asian oil imports are expected to double in the next ten years.

Wang, H. [Energy Security Analysis, Inc., Washington, DC (United States)

1993-12-31T23:59:59.000Z

136

South Atlantic sag basins: new petroleum system components  

SciTech Connect

Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

Henry, S.G. [GeoLearn, Houston, TX (United States)] Mohriak, W.U. [Petroleo Brasileiro, S.A., Exploration and Production, Rio de Janeiro (Brazil); Mello, M.R. [Petroleo Brasieiro, S.A., Research Center, Rio de Janeiro (Brazil)

1996-08-01T23:59:59.000Z

137

Effect of flow and physical parameters on the wax deposition of Middle East crude oil under subsea condition: heat transfer viewpoint  

Science Journals Connector (OSTI)

Change in pressure, temperature, flow rate and concentration of oil causes precipitation and deposition of wax particles in the pipelines which has become a major problem for ... reserves increases. Change in tem...

Reza Gooya; Mehdy Gooya; Bahram Dabir

2013-08-01T23:59:59.000Z

138

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

139

Regional-scale flow of formation waters in the Williston basin  

SciTech Connect

The Williston basin is a structurally simple intracratonic sedimentary basin that straddles the United States-Canada border east of the Rocky Mountains and that contains an almost continuous stratigraphic record since the Middle Cambrian. Based on the wealth of data generated by the oil industry, the regional-scale characteristics of the flow of formation waters were analyzed for the Canadian side of the basin, and integrated with previous studies performed on the American side. Several aquifers and aquifer systems identified in the basin were separated by intervening aquitards and aquicludes. The Basal, Devonian, and Mannville (Dakota) aquifers are open systems, being exposed at the land surface in both recharge and discharge areas. Recharge takes place in the west-southwest at relatively high altitude in the Bighorn and Big Snowy mountains and at the Black Hills and Central Montana uplifts, whereas discharge takes place in the east and northeast at outcrop along the Canadian Precambrian shield in Manitoba and the Dakotas. The Mississippian and Pennsylvanian aquifer systems are semi-open, cropping out only in the west-southwest where they recharge, but discharging in the northeast into adjacent aquifers through confining aquitards. On regional and geological scales, the entire system seems to be at steady-state, although locally transient flow is present in places due to water use and hydrocarbon exploitation, and to some erosional rebound in the uppermost confining shales. On the western flank of the basin, the interplay between the northeastward structural downdip direction and the northeastward flow of formation waters creates conditions favorable for hydrodynamic oil entrapment.

Bachu, S. [Alberta Department of Energy, Edmonton (Canada); Hitchon, B. [Hitchion Geochemical Services Ltd., Alberta (Canada)

1996-02-01T23:59:59.000Z

140

Petroleum basin studies  

SciTech Connect

This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

Shannon, P.M. (Univ. College, Dublin (IE)); Naylor, D. (Westland Exploration Ltd., Dublin (IE))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

142

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

143

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996  

SciTech Connect

The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

Murphy, M.B.

1997-08-01T23:59:59.000Z

144

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

145

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-08-31T23:59:59.000Z

146

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

147

columbus east  

Office of Legacy Management (LM)

Columbus East, Ohio, Site (formerly the B&T Columbus East, Ohio, Site (formerly the B&T Metals site) is located at 425 West Town Street in southwest Columbus, Ohio. The site consists of a main building, a storage building, and an aluminum extrusion building and covers most of a city block. From March through August 1943, B&T Metals extruded uranium fuel rods from uranium metal billets (bars or ingots of uranium formed as an intermediate product) under contract to E.I. du Pont de Nemours and Company (DuPont). The rods were manufactured in support of Manhattan Engineer District (MED) opera- tions and were destined for use as fuel in the Hanford, Washington, nuclear reactor. It is estimated that more than 50 tons of uranium were extruded. The work performed for MED occurred in the northwest corner of the main building, the largest of the three site

148

columbus east  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Setting Regulatory Setting The Columbus East, Ohio, Site (formerly B&T Metals) is located at 425 West Town Street in southwest Columbus, Ohio. The site consists of a main building, a storage building, and an aluminum extrusion building and covers most of a city block. From March through August 1943, B&T Metals extruded uranium fuel rods from uranium metal billets (bars or ingots of uranium formed as an intermediate

149

Middle East  

SciTech Connect

Petroleum production in Middle East countries during 1980 totaled 6,747,719,000 bbl or an average rate of 18,436,390,000 bbl/d, down 13.9% from 1979. Increases were in Saudi Arabia and Syria. Significant decreases occurred in Iraq, Iran, Kuwait, and Turkey. New discoveries were made in Abu Dhabi, Iran, Saudi Arabia, Sharjah, and Oman. New areas were explored in Bahrain, Oman, Syria, and Yemen. 9 figures, 16 tables.

Hemer, D.O. (Mobil Oil Corp., New York, NY); Mason, J.F.; Hatch, G.C.

1981-10-01T23:59:59.000Z

150

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

151

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

Murphy, Mark B.

2000-10-25T23:59:59.000Z

152

East Gate  

NLE Websites -- All DOE Office Websites (Extended Search)

East East Gate to: Rt. 59 Fermilab Village Main Entrance B u tt e r fi e ld R d . to: Farnsworth Ave, I-88 Kirk Rd. Site 56 Site 55 Buffalo Farm Lederman Science Center (Public Welcome) Prairie Trails Dog Training Area Nature Area Lake Law A.E. Sea Technical Division Illinois Accelerator Research Center Feynman Computing Center Muon Delivery Ring Main Injector Tevatron Test Accelerators Site 37 Site 39 Site 38 Neutrino Experiments Silicon Detector Facility Test Beam Facility DAB Site 50 Wilson Hall & Ramsey Auditorium (Public Welcome) Wilson St. Gate (Deliveries, Employees) NML CMTF A 1 R D D R D B RD S E O LA R D B A T A V I A R D E WILSON ST WILSON ST P IN E S T P O W E R L I N E R D N E O LA R D MCCHESNEY RD A B C D E 5 4 3 2 1 ´ 0 0.5 1 0.25 Miles Trails Public Areas Buildings Roads/Parking Ponds Fermi National Accelerator Laboratory 2013 Fermilab Site Map

153

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network (OSTI)

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

154

Structurally dependent source rock maturity and kerogen facies, Estancia Basin, New Mexico  

SciTech Connect

The Estancia basin of central New Mexico is an asymmetric, north-south trending structural depression that originated during the Pennsylvanian. The present-day basin covers 1,600 mi{sup 2} (4,100 km{sup 2}). It is bounded on the east by the late Paleozoic Pedernal uplift, on the west by the Tertiary-age Manzano and Los Pinos Mountains, on the north by the Espanola basin, and on the south by Chupadera Mesa. Depth to Precambrian basement ranges from 9,000 ft (2,700 m) in a narrow graben in the eastern part of the basin to less than 1,500 ft (460 m) on a shelf to the west. Basin fill consists primarily of Pennsylvanian and Wolfcampian sandstones and shales in the graben and sandstones, shales, and marine limestones on the shelf Mature to marginally mature dark-gray to black Pennsylvanian shales are probable source rocks. Thermal Alteration Index ranges from 2.0 to 3.2. Shales become thermally mature with depth in the eastern graben. On the western shelf, shales become mature to the west as a result of increased heating from the Rio Grande rift. Total organic carbon exceeds 0.5% in many shales, sufficient for hydrocarbon generation. Kerogen types are mixed algal, herbaceous, and woody, indicating that gas, or possibly gas mixed with oil, was generated. Kerogens in shales of the eastern graben are entirely continental, gas-prone types. In limestones and shales of the western shelf, kerogens have a mixed marine and continental provenance, indicating that both oil and gas may have been generated on thermally mature parts of the shelf.

Broadhead, R.F. [New Mexico Institute of Mines and Mineral Resources, Socorro, NM (United States)

1995-06-01T23:59:59.000Z

155

Subsurface stratigraphy and depositional history of Madison Limestone (Mississippian), Williston Basin  

SciTech Connect

Cyclic carbonate-evaporite deposits of the Madison Limestone (Mississippian) in the Williston basin are made up of four main facies. From basin to shelf, the normal facies transition is from offshore deeper water (Lodgepole) facies to crinoidal-algal banks and back-bank fine carbonate, evaporite, and minor terrigenous clastic beds on the shallow shelf. Five major depositional cycles are correlated and mapped on the basis of shaley marker beds identified on gamma-ray-neutron or gamma-ray-sonic logs. The marker beds are interpreted as reworked and redistributed silt and clay-size sediments originally deposited, possibly by eolian processes, on the emergent shelf during low sea level phases of cycle development. From oldest to youngest, the first two cycles are characterized by increasing amounts of crinoidal-bioclastic and oolite-algal carbonates, culminating in the Mission Canyon facies of the middle cycle. The upper two cycles are characterized by increasing amounts of evaporite deposits, culminating in the Charles salt facies of the youngest cycle. Much of the Madison section on the south and east flanks of the basin consists of dolomite. Dolomite content decreased toward the basin center, where a major share of Madison petroleum production is located. Reservoir beds in the oil fields are primarily partially dolomitized oolite-algal or crinoidal-bioclastic bank carbonates. Most of the productive petroleum reservoirs are located in the middle cycles of the Madison.

Peterson, J.A.

1985-05-01T23:59:59.000Z

156

Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Quarterly report, January 1, 1996--March 31, 1996  

SciTech Connect

Work in conjunction with Marathon Oil Company in the Oregon Basin field utilizing Formation MicroImager and Formation MicroScanner logs has been completed. Tensleep outcrops on the western side of the Bighorn Basin are not of the quality necessary to do detailed study of stratification. This made the use of borehole imaging logs, in which stratification can be recognized, particularly attractive for the western side of the Bighorn Basin. The borehole imaging logs were used to determine the dip angle and dip direction of stratification as well as to distinguish different lithologies. It is also possible to recognize erosional bounding surfaces and classify them according to a process-oriented hierarchy. Foreset and bounding surface orientation data was utilized to create bedform reconstructions in order to simulate the distribution of flow-units bounded by erosional surfaces. The bedform reconstructions indicate that the bedforms on the western side of the basin are somewhat different from those on the eastern side of the Bighorn Basin. A report has been submitted to Marathon Oil Company, the principal cost-share subcontractor. Marine dolomitic units initially identified and correlated in the Bighorn Basin have been correlated into the Wind River Basin. Gross and net sand maps have been produced for the entire upper Tensleep in the Bighorn and Wind River Basins, as well as for each of the eolian units identified in the study. These maps indicate an overall thickening of the Tensleep to the west and south. This thickening is a result of both greater subsidence to the west and south and greater differential erosion to the north and east. An article documenting the North Oregon Basin field study will appear in the Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation Conference volume entitled {open_quotes}Stratigraphic Analysis Utilizing Advanced Geophysical, Wireline and Borehole Technology for Petroleum Exploration and Production{close_quotes}.

Dunn, T.L.

1996-04-26T23:59:59.000Z

157

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

158

Too early to tell on $100 oil  

U.S. Energy Information Administration (EIA) Indexed Site

Confidential Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the current oil cycle, with a possible turning point coming by the end of the year 1 Putting the GCC economy in global context u GCC = Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, Oman u GDP/capita in 2007: $19,000 - Nearly 3x China and 5x India u At $800 bn, GCC is a top 10 developing economy by size

159

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

160

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

162

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

163

Greater Burgan of Kuwait: world's second largest oil field  

SciTech Connect

Greater Burgan (Main burgan, Magwa, and Ahmadi) field is located in the Arabian Platform geologic province and the stable shelf tectonic environment of the Mesopotamian geosyncline, a sedimentary basin extending from the Arabian shield on the west to the complexly folded and faulted Zagros Mountains on the east. The structural development in Cretaceous time represents a major anticlinorium bounded by a basin to the west and a synclinorium to the east. Greater Burgan is located within this anticlinorium. The field consists of three dome structures 25 km wide and 65 km long with gentle dips of only few degrees. Faults have little throw and did not contribute to the trapping mechanism. The structural deformation may have been caused by halokinetic movements and most likely by basement block faulting that may have started in the Paleozoic. Greater Burgan was discovered in 1938. All production during the last 40 years has been by its natural pressure. Although natural gas injection has been carried out for some time, no waterflooding has been initiated yet. Recoverable reserves of the field are 87 billion bbl of oil. During the last 5 years giant reserves have been added in this field from the deeper strata of Jurassic age. Several deep wells have been drilled to the Permian for the purpose of discovering gas. So far, no Permian gas has been found in Kuwait. The Permian is 25,000 ft deep, and it is unlikely gas will be found there in the future. However, the potential of the Jurassic reservoirs will be a major target in the future. Also, there is a great possibility of discovering oil in stratigraphic traps, as several producing strata in the nearby fields pinch out on the flanks of this giant structure. Enhanced oil recovery should add significant reserves in the future.

Youash, Y.Y.

1989-03-01T23:59:59.000Z

164

K Basins isolation barriers summary report  

SciTech Connect

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

165

Seismic stratigraphy and structure of the Progreso Basin, Ecuador  

E-Print Network (OSTI)

. Watkins Examination of seismic, well log and magnetic data across the Progreso Basin shows that more than 5. 5 km of sediment has been deposited in the basin with a thick sedimentary wedge io the east. The basin, bounded by two prominent normal faults... and the La Cruz fault a small sub-basin l, as been formed with considerable deposition onlv during the iast period of basin developnient. Facies, structurah isochron and velocity maps were produced for each of the five units identified on the seismic...

Goyes Arroyo, Patricio

2012-06-07T23:59:59.000Z

166

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

167

Bahrain oil and development 1929-1989  

SciTech Connect

This book describes the economic, political, and social elements of relations between international oil companies and Bahrain. It also provides insights into Middle East regional oil and gas development, oil pricing and production evolution, and relations between Persian Gulf states and such western powers as Great Britain and the U.S.

Clarke, A.

1990-01-01T23:59:59.000Z

168

Oil prices decline as concerns about supplies lessen  

Science Journals Connector (OSTI)

Expectations of shorter oil supplies in the case of a war in the Middle East pushed crude oil prices upwards for many months, but in March prices started to fall significantly even before the war against Iraq had...

Klaus Matthies

169

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil  

E-Print Network (OSTI)

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

Watts, A. B. "Tony"

170

Fluvial Perturbance in the Western Amazon Basin: Regulation by Long-Term Sub-Andean Tectonics  

Science Journals Connector (OSTI)

...in the Western Amazon basin: regulation by long-term...developed because no obvious historic or modern geomorphic...14, 16, 20). The basins and a major part of the...east) from the late Permian to the Quaternary (14-16...the sedi-ments in the basins have been mostly conti-nental...

MATTI E. RSNEN; JUKKA S. SALO; RISTO J. KALLIOLA

1987-12-04T23:59:59.000Z

171

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

172

Baltic oil: Moving offshore  

Science Journals Connector (OSTI)

... the consortium of Soviet, Polish and East German oil interests, will sink its first offshore bore-hole in the Baltic. This move follows four years of intensive prospecting, which ... findings. For a time, plans were afort to buy or hire a Vexco drilling rig, but when these had to be abondoned for lack of hard currency, the shut ...

Vera Rich

1980-06-19T23:59:59.000Z

173

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect

The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

Allison, M.L.; Morgan, C.D.

1996-05-01T23:59:59.000Z

174

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

175

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

176

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network (OSTI)

??The Upper DevonianLower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

177

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

178

File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information  

Open Energy Info (EERE)

Black.Warrior.Basin usgs.map.pdf Black.Warrior.Basin usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size of this preview: 742 × 600 pixels. Full resolution ‎(1,860 × 1,504 pixels, file size: 148 KB, MIME type: application/pdf) Description Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Sources USGS Related Technologies Oil, Gas Creation Date 2007 Extent Black Warrior Basin Province Countries United States UN Region Northern America States Alabama, Mississippi Location of the Black Warrior Basin Province in northwestern Alabama and northeastern Mississippi, published in the USGS report entitled, Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin

179

Evolution and hydrocarbon prospectivity of the Douala Basin, Cameroon  

SciTech Connect

The Douala Basin is a stable Atlantic-type, predominantly offshore basin and forms the northern terminal of a series of divergent passive margin basins located on the Southwest coast of Africa that resulted from the rifting of Africa from South America. An integration of new studies including detailed well, biostratigraphic, sedimentological, geochemical and seismic data has confirmed that the tectonostratigraphic evolution in the basin can be broadly divided into three developmental phases: the Syn-rift, Transitional and Drift phases. This basis has been explored intermittently for hydrocarbon for the past 40 years with two important gas fields discovered and no commercial oil found as yet. This early gas discovery and a corresponding lack of any significant oil discovery, led early operators to term this basin as essentially a gas province. However, recent geochemical analyses of various oil-seeps and oil samples from various localities in the basin, using state-of-the-art techniques have demonstrated that this basin is a potential oil prone basin. The results show that two models of oil sourcing are possible: a Lower Cretaceous lacustrine saline source, similar to the presalt basins of Gabon or a marine Upper Cretaceous to lower Tertiary source, similar to the neighbouring Rio del Rey/Niger Delta Complex. Additionally, seismic reflection data also demonstrate a variety of reservoir horizons, including submarine fans, channel-like features and buried paleohighs, all interbedded within regionally extensive, uniformity bounded mudstone units. Hence, it is now quite evident that within this basin, there exist a vast potential for a wide variety of stratigraphic, structural and combined traps. These features, which are considered to have significantly enhanced the prospectivity of this basin, will be discussed in this paper.

Batupe, M.; Tampu, S.; Aboma, R.S. [National Hydrocarbons Corporation, Yaounde (Cameroon)

1995-08-01T23:59:59.000Z

180

Advanced Chemistry Basins Model  

SciTech Connect

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

182

NOTES ON THE FISHES OF EAST TENNESSEE '"By Barton Warren Evermann and Samuel F. Hildebrand  

E-Print Network (OSTI)

dolomite. In the valley of Chattanooga' Creek west of the ridge, Chickamauga limestone occurs again, while, which is about the elevation of the western boundary of the great valley. Lookout Creek on the west has confined almost wholly to east Tennessee, and entirely to the Tennessee River Basin. The valley of east

183

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R. Aurand and Andrew J. Long  

E-Print Network (OSTI)

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R Cretaceous aquifer system in the Powder River and Williston structural basins. The study area covers about 75 production in the Powder River structural basin and oil production in the Williston structural basin

Torgersen, Christian

184

Big Stick/Four Eyes fields: structural, stratigraphic, and hydrodynamic trapping within Mission Canyon Formation, Williston basin  

SciTech Connect

The Mississippian Mission Canyon formation of the Williston basin is the region's most prolific oil producing horizon. Big Stick/Four Eyes is among the most prolific of the Mission Canyon fields. Primary production from 87 wells is projected to reach 47 million bbl of oil. An additional 10-20 million bbl may be recovered through waterflooding. The complex was discovered in 1977 by the Tenneco 1-29 BN, a wildcat with primary objectives in the Devonian Duperow and Ordovician Red River Formations. A series of Mission Canyon discoveries followed in the Big Stick, Treetop, T-R, and Mystery Creek fields. Early pressure studies showed that these fields were part of an extensive common reservoir covering 44.75 mi/sup 2/ (115.91 km/sup 2/). The reservoir matrix is formed from restricted marine dolostones deposited on a low-relief ramp. Landward are algal-laminated peritidal limestones and saline and supratidal evaporites of a sabkhalike shoreline system. Open-marine limestones, rich in crinoids, brachiopods, and corals, mark the seaward limit of reservoir facies. Regressive deposition placed a blanket of anhydrite over the carbonate sequence providing a seal for the reservoir. Lateral trapping is accomplished through a combination of processes. Upper reservoir zones form belts of porosity that parallel the northeasterly trending shoreline. The trend is cut by the northward plunging Billings anticline, which provides structural closure to the north. Facies changes pinch out porosity to the south and east. Trapping along depositional strike to the southwest is only partially controlled by stratigraphic or structural factors. A gentle tilt of 25 ft per mi (5 m per km) occurs in the oil-water contact to the east-northeast, due to freshwater influx from Mississippian outcrop on the southern and southwestern basin margins.

Breig, J.J.

1988-07-01T23:59:59.000Z

185

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

186

Characteristics of North Sea oil reserve appreciation  

E-Print Network (OSTI)

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

187

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

188

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

189

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

190

How Much Oil? It Depends on Whom You Ask  

Science Journals Connector (OSTI)

...the stresses that formed the Permian Basin itself. In view of this complex...opportunity for 24 APRIL 1981 40 r Permian Basin finding rate The historic finding rate for oil, 1920 to 1974, in the Permian Basin. After the early drilling...

RICHARD A. KERR

1981-04-24T23:59:59.000Z

191

Distillate Stocks are Low - Especially on the East Coast  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Distillate stocks are normally built during the summer for use during the winter as shown by the normal band. Currently, stocks are very low for this time of year. This graph shows East Coast inventories, which at the end of August, were well below the normal band (over 9 million barrels or 19% below the low end of the band). The East Coast is about 31% lower than its 10-year average level for this time of year. We focus on the East Coast (PADD 1 ) because this a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). December 1999 was the turning point. Stocks were well within the normal range through November 1999, but in December, they dropped below the

192

East Tennessee Technology Park | Department of Energy  

Office of Environmental Management (EM)

East Tennessee Technology Park East Tennessee Technology Park East Tennessee Technology Park | September 2012 Aerial View East Tennessee Technology Park | September 2012 Aerial...

193

Palaeogeographic implications of differential inclination shallowing in permo-carboniferous sediments from the donets basin, Ukraine  

E-Print Network (OSTI)

-carboniferous sediments from the donets basin, Ukraine Alexandr G. Iosifidi a , Conall Mac Niocaill b, , Alexei N. Khramov, Ukraine, part of the Palaeozoic East European Platform. Detailed demagnetization of these units reveals

Utrecht, Universiteit

194

Putting oil prices in perspective  

SciTech Connect

The author discusses the flawed'' energy policy of the US that seems to be: protect access to Persian Gulf oil with every means at its disposal. He discusses in general terms the real cost of oil which should include the military cost of the continuing conflicts in the Middle East. Full-cycle measurement (from the point of origin to the point of use) to determine energy costs would show natural gas and alternative fuels in their true cost.

Kauffmann, B.

1995-02-01T23:59:59.000Z

195

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

196

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1  

SciTech Connect

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

197

Middle East: Slow year on the Gulf  

SciTech Connect

This article surveys the petroleum outlook in the Middle East area. Observations include: Saudi Arabia's money crunch continues to keep the lid on exploration, production work; Abu Dhabi has also curtailed operations because of low oil prices, reduced budgets; Followup drilling has been disappointing around recent gas strikes in Sharjah, Dubai; Oman's aggressive EandP program will result in a 30% drilling increase this year; Kuwait isn't slowing down its development of light oil either; the goal is 40 new wells; Iran and Iraq are still boosting export capacities despite attacks on oil facilities; North Yemen's Alief field is a major find. Numerous structures remain to be drilled; Syria, Bahrain have development projects underway. Turkey is attracting U.S. majors.

Not Available

1986-08-01T23:59:59.000Z

198

Highlights: East & West Jerusalem  

E-Print Network (OSTI)

Zefat, Sea of Galilee 18 May Golan Heights, Hula Valley, Jordan River 19 May East Jerusalem 20 May WestHighlights: Tel Aviv East & West Jerusalem Zefat Sea of Galilee Jaffa Dead Sea Masada Jordan River & Valley Golan Heights Qumran (day-by-day itinerary and more details on reverse side) Priority application

199

East North Central Pa  

Gasoline and Diesel Fuel Update (EIA)

East East North Central Pa cif ic Contiguous Mountain West North Central West South Central Pacific Noncontiguous East South Central Sout h At lant ic Middle Atlantic New England 35. Average Price of Natural Gas Delivered to Consumers by Census Division, 1995-1996 (Dollars per Thousand Cubic Feet) Table Census Division Residential Commercial 1995 1996 1995 1996 New England ........................................................... 9.06 9.03 6.78 6.96 Middle Atlantic ......................................................... 7.75 8.00 6.04 6.57 East North Central ................................................... 5.05 5.44 4.57 4.94 West North Central .................................................. 4.97 5.54 4.08 4.71 South Atlantic........................................................... 6.89 7.50 5.33 6.14 East South Central...................................................

200

From pre-salt sources to post-salt traps: A specific petroleum system in Congo coastal basin  

SciTech Connect

The Bas Congo basin extends from Gabon to Angola and is a prolific oil province where both pre-salt and post salt sources and reservoirs have been found. In the northern part of the basin referred to as the Congo coastal basin, the proven petroleum system is more specific: mature source rocks are found only in pre-salt series whereas by contrast 99 % proven hydrocarbon reserves am located in post-salt traps. Such a system is controlled by the following factors: Source rocks are mostly organic rich shales deposited in a restricted environment developed in a rift prior to the Atlantic Ocean opening; Migration from pre-salt sources to post-salt traps is finalized by local discontinuities of the regional salt layer acting otherwise as a tight seal; Post-salt reservoirs are either carbonates or sands desposited in the evolutive shelf margin developped during Upper Cretaceous; Geometric traps are linked to salt tectonics (mostly turtle-shaped structures); Regional shaly seals are related to transgressive shales best developped during high rise sea level time interval. Stratigraphically, the age of hydrocarbon fields trends are younger and younger from West to East: lower Albian in Nkossa, Upper Albian and lower Cenomanian in Likouala, Yanga, Sendji, Upper Cenomanian in Tchibouela, Turonian in Tchendo, Turanian and Senonian in Emeraude.

Vernet, R.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

202

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

203

OIL SHALE  

E-Print Network (OSTI)

Seyitmer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kk; G. Guner; S. Bagci?

204

Controversy Bubbles Over Offshore Oil Development  

Science Journals Connector (OSTI)

When Chevron U.S.A. announced last year a major offshore oil discovery on tract 450 in California's Santa Maria Basin, the news didn't come as a surprise to the oil industry. Chevron and Phillips Petroleum, 50% partners in the tract, had bid, after all, a ...

RUDY BAUM

1983-05-23T23:59:59.000Z

205

Coalbed methane exploration in the Lorraine Basin, France  

SciTech Connect

DuPont Conoco Hydrocarbures has been involved in a Coalbed Methane (CBM) project in France since 1991. Coalbed methane exploration differs noticeably in several aspects from conventional oil and gas exploration. This paper is divided in three parts and discusses some geological, reservoir and drilling considerations relevant to the exploration and appraisal of a coalbed methane prospect. The first part presents geological issues such as data collection and evaluation of its associated value, building expertise to create a geological and geophysical model integrating the work of a multidisciplinary team, and assessing uncertainties of the data interpretation. A short review of the basin activity, geological and tectonic setting, and environment aspects is presented in order to illustrate some CBM exploration issues. The second part describes a comprehensive coalbed methane reservoir data acquisition program incorporating coal sample optical and chemical analyses, gas sample chromatography, canister desorption, fracture density of coal cores, and measurement of in-situ coal permeability and bounding-strata stress. Field practical concerns are then discussed such as on-site and off-site canister desorption, gas sample collection, rapid estimation of gas content, ash content, total bed moisture, and finally well testing alternatives for permeability and rock stress determination. The third part reviews drilling issues such as drilling and coring options for core hole size and casing size, rig site equipment requirements for continuous coring operations, including mud treatment equipment, core handling material and core work stations, alliance of national and foreign drilling contractors to optimize equipment and experience, and finally overview of coring procedures to identify best practices for pending operations. The paper is derived from Conoco`s experience in CBM exploration in the Lorraine Basin, North East of France.

Michaud, B. [DuPont Conoco Hydrocarbures, Paris (France); Briens, F.; Girdler, D.

1995-08-01T23:59:59.000Z

206

Corn oil exposure increases inflammatory cytokine production in human white preadipocytes but canola oil exposure does not  

Science Journals Connector (OSTI)

...Prevention and Epidemiology Dietary Fish Oil Alters T Lymphocyte Cell Populations and...East Lansing, Michigan Findings that fish oil enriched with DHA can promote colitis and...docosahexaenoic acid (DHA) is present in fish oil and has potent anti-inflammatory properties...

Gabriela Ion and W. Elaine Hardman

2007-12-01T23:59:59.000Z

207

Mississippian Lodgepole Play, Williston Basin: A review  

SciTech Connect

Waulsortian-type carbonate mud mounds in the lower Mississippian Lodgepole formation (Bottineau interval, Madison Group) comprise an important new oil play in the Williston basin with strong regional potential. The play is typified by wells capable of producing 1000-2500 bbl of oil per day and by reserves that have as much as 0.5-3.0 million bbl of oil per well. Currently centered in Stark County, North Dakota, along the southern flank of the basin, the play includes 38 wells, with 21 producers and 6 new fields. Initial discovery was made at a Silurian test in Dickinson field, traditionally productive from Pennsylvanian sands. The largest pool discovered to date is Eland field, which has 15 producers and estimated total reserves of 12-15 million bbl. This report summarizes geologic, well-log, seismic, and production data for this play, which promises to expand considerably in the years to come.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-06-01T23:59:59.000Z

208

U.S. crude oil production expected to top 9 million barrels per...  

U.S. Energy Information Administration (EIA) Indexed Site

oil prices should be strong enough to support most drilling in North Dakota's Bakken shale formation and in the tight oil basins of Texas which account for the majority of the...

209

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

210

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

211

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

212

An unknown active fault revealed by microseismicity in the south-east Francoise Courboulex, Christophe Larroque, Anne Deschamps, Celine Gelis,  

E-Print Network (OSTI)

oceanic basin (Figure 1). The southern French Alps are part of the broad plate boundary zone between in the south-east of France in December 2000, about 15 km north of the densely populated cities of the French between the southern French Alps and the Ligurian Basin, several faults are supposed to be seismogenic (e

Vallée, Martin

213

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

214

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

215

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

216

The post-war Middle East  

SciTech Connect

The Middle East remains today the global energy fulcrum. One year after the Persian Gulf war, the region is in greater turmoil and political uncertainty than it has known in modern times. The Iraqi invasion of Kuwait and subsequent external military intervention forced neighboring states to question the need for a foreign military presence in the future. The rift between the secular revolutionary states in the region led by Iraq, Libya, Yemen, Algeria, and Syria and the traditional monarchy of Saudi Arabia and the emirates of the gulf has widened. Egypt provides, at present, an uncomfortable bridge. The balance of political forces may be shifting. This paper attempts to answer the following questions: Where will we see the new leadership in the Middle East Will it again play a role through the Organization of Petroleum Exporting Countries and determination of the oil price in shaping the structure of global energy supply and demand

Tempest, P.

1992-03-09T23:59:59.000Z

217

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

218

Secretary Bodman Travels to the Middle East | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Middle East the Middle East Secretary Bodman Travels to the Middle East November 10, 2005 - 2:22pm Addthis Four-nation swing to emphasize domestic energy needs and goals WASHINGTON, DC - Secretary of Energy Samuel W. Bodman embarked upon a four-nation tour through the Middle East to enhance the United States' relationship with major oil-producing nations, promote economic liberalization and increased foreign investment in the region, and reaffirm U.S. energy policy goals. "Both consumers and producers of energy depend on a vibrant, growing world economy. By working together we can increase the energy and economic security of the United States and our international partners and pursue continued growth and prosperity in developed and developing nations," Secretary Bodman said.

219

Petroleum systems of the Southwest Caspian Basin  

SciTech Connect

The Southwest Caspian Basin, located in offshore Azerbaijan, contains significant accumulations of oil and gas in Upper Tertiary siliciclastic sediments. The central basin contains up to 25 km of sediments. The relatively low geothermal gradients and low degree of compaction from rapid burial provide favorable conditions or the retention of hydrocarbons at relatively great depths. A variety of structural styles occur, ranging from anticlinal folds to monoclines, with various degrees of reverse faulting and brecciation. Molecular characterization of selected oil samples indicate most of the oils have been sourced form the same or similar facies; a Tertiary Type II, slightly calcareous, marine clastic facies. Insufficient organic-rich rocks are available for a reliable oil-source correlation. Examination of oil molecular characteristics, oil-oil correlations, molecular characteristics of key stratigraphic horizons, paleofacies maps, maturation, and potential migration pathways suggest the oil was not syngenetic but most likely sourced from deeper Oligo-Miocene or older marine shales. Compositional data for a single offshore gas sample suggest the gas is a mixture of low maturity Type III and biogenic. A multi-stage model of hydrocarbon emplacement for evolving structural traps has been postulated. The first phase of emplacement occurred in the Middle Pliocene when tectonic movement and significant subsidence initiated early trap/reservoir formation, migration, and hydrocarbon generation. Late Quaternary tectonic activity lead to the replenishment of older depleted traps, additional hydrocarbons for enhanced traps, and charging of new traps. In addition, late tectonic activity caused extensive redistribution of hydrocarbon accumulations, degassing due to breached faults, and destruction of selected oil pools.

Abrams, M.A.; Narimanov, A.A. [State Oil Company of Azerbaijan, Baku (Azerbaijan)

1995-08-01T23:59:59.000Z

220

Geological development, origin, and energy and mineral resources of Williston Basin, North Dakota  

SciTech Connect

The Williston Basin of North Dakota, Montana, South Dakota, and S.-Central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Located on the western periphery of the Phanerozoic North American Craton, the Williston Basin has undergone only relatively mild tectonic distortion during Phanerozoic time. This distortion is related largely to movement of Precambrian basement blocks. Oil exploration and development in the US portion of the Williston basin from 1972 to present have given impetus to restudy of basin evolution and geologic controls for energy resource locations. Major structures in the basin, and the basin itself, may result from left-lateral shear along the Colorado-Wyoming and Eromberg zones during pre-Phanerozoic time. Deeper drilling in the basin has established several major new structures with indications of others.

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

222

Neogene stratigraphic relationships within the Nam Con Son Basin, offshore Vietnam resulting from tectonics, eustasy, and sediment flux  

E-Print Network (OSTI)

in the East Nam Con Son Basin. Age constraints were assigned to key stratigraphic horizons by correlating sequence boundaries with published sea level curves. Accommodation in the study area is controlled by shelf -edge compaction, rift-related thermal...

Wright, Christine M.

2009-05-15T23:59:59.000Z

223

Peak Oil  

Science Journals Connector (OSTI)

Wissenschaftliche Voraussagen deuten auf Peak Oil, das Maximum globaler Erdlfrderung, in unserer ... der demokratischen Systeme fhren. Psychoanalytische Betrachtung darf Peak Oil fr die Zivilisation als e...

Dr. Manuel Haus; Dr. med. Christoph Biermann

2013-03-01T23:59:59.000Z

224

Distillate Stocks on the East Coast Were Very Low Entering Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So, what happened last winter? At last year's SHOPP conference, my renowned colleague, Joanne Shore, warned of the potential for high prices. At this time last year, distillate stocks were very low. This graph shows East Coast inventories, which at the end of July 2000, were well below the normal band. We focus on the East Coast (PADD 1) because this is a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). East Coast stocks were well below normal last year from July through December, but then actually increased in January, when they typically decline. In fact, the increase was only the 2nd time East Coast distillate stocks have increased in January since EIA has kept PADD level data (1981)!

225

Identification of petroleum acids in Liaohe super-heavy oil  

Science Journals Connector (OSTI)

In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-I...

Bencheng Wu; Jianhua Zhu

2009-12-01T23:59:59.000Z

226

Depositional systems and petroleum potential, Mesaverde Formation southeastern Wind River basin, Wyoming  

SciTech Connect

Depositional environments and systems of the Wind River basin Mesaverde Formation were interpreted from an analysis of outcrops along the Casper arch and Rattlesnake Hills anticline and cores and wireline logs from the adjacent subsurface. The Fales Sandstone and Parkman Sandstone/unnamed middle member are deposits of eastward progradational, wave-dominated strand-plain and deltaic complexes. Basal portions of the Fales Sandstone and the Parkman Sandstone are composed of a thickening- and coarsening-upward sandstone sequence whose facies represent storm-dominated inner-shelf and wave-dominated shore-zone environments. Facies sequences in the upper Fales Sandstone interval and the unnamed middle member are interpreted as deposits of lower coastal plain (marshes, bay fills, distributary channels, and crevasse splays) and upper coastal plain (alluvial channels, crevasse splays and fine-grained flood basin) sequences. The Teapot Sandstone is interpreted as an alluvial deposit. Analysis of facies sequences in the Teapot suggests a change in fluvial style, from braided-belt deposits along the southwest flank to meander-belt deposits along the northeast flank of the basin. These fluvial systems fed the Teapot deltas to the east. Stratigraphic plays for oil and gas include alluvial valley fills and point-bar deposits in the Teapot Sandstone, storm-dominated shelf sands in the upper Cody Shale and the Fales and Parkman Sandstones, and a transgressive barrier-bar sequence in the upper Fales Sandstone. Laterally continuous shore-zone sandstones may form combination traps where pinch-outs occur on structure.

Hippe, D.J.; Needham, D.W.; Ethridge, F.G.

1986-08-01T23:59:59.000Z

227

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

228

Appendix D Draft Oil Spill Response Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Draft Oil Spill Response Plan U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix D Draft Oil Spill Response Plan DRAFT Oil Spill Response Plan CAPE WIND ASSOCIATES, LLC BOSTON, MASSACHUSETTS PREPARED FOR Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 PREPARED BY ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915 Project No. E159-601 December 2005 DRAFT OIL SPILL RESPONSE PLAN Cape Wind Associates, LLC Boston, Massachusetts Prepared For: Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 Prepared By: ESS Group, Inc. 401 Wampanoag Trail, Suite 400

229

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

230

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type [open quote]inverted Gaussian function[close quote] that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. (Univ. of Saskatchewan, Saskatoon (Canada))

1996-01-01T23:59:59.000Z

231

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type {open_quote}inverted Gaussian function{close_quote} that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. [Univ. of Saskatchewan, Saskatoon (Canada)

1996-12-31T23:59:59.000Z

232

Gravity-driven structures and rift basin evolution: Rio Muni Basin, offshore equatorial West Africa  

SciTech Connect

Offshore Equatorial Guinea, west Africa, gravity-driven nappes, more than 1 km thick and 15 km from head to toe, provide key evidence in reconstructing the late synrift: evolution of this part of the South Atlantic margin basin system. Furthermore, Aptian-Cenomanian carbonate and clastic rocks in the nappes` allochthonous hanging walls are attracting interest as a new exploration play in west Africa. The nappes exhibit a range of geometries that suggest they share many of the same deformation processes as thin-skin thrust and linked extensional fault systems. Not only are these structures significant in their own right, representing a rare example of gravity tectonics in the virtual absence of major halokinesis, but their presence may record an other-wise undetectable process active during the transition from a rift basin to a passive continental margin. A review of Equatorial Guinea in its pre-Atlantic configuration, alongside neighboring basins in Brazil (the Sergipe-Alagoas basin) and Gabon, suggests that gravity gliding was sustained by a relatively steep, westward paleoslope promoted by east-ward offset of the locus of thermal uplift from the rift basin (i.e., a simple shear model of basin formation). In contrast to gravity-driven structures in most postrift settings, the Equatorial Guinea nappes developed at the close of the Aptian-Albian synrift episode in response to a growing bathymetric deep caused by rapid subsidence outpacing restricted sedimentation.

Turner, J.P. [Univ. of Birmingham (United Kingdom)

1995-08-01T23:59:59.000Z

233

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Authors: Danielle Lehle and Michael D. Vanden Berg, Utah Geological Survey. Venue: Economic Geology of the Rocky Mountain Region session, May 11, 2009, Geological Society of America-Rocky Mountain Section annual meeting, Orem, Utah, May 11-13, 2009. http://www.geosociety.org/sectdiv/rockymtn/09mtg/index.htm [external site] Abstract: The upper Green River formation’s oil shale deposits located within the Uinta Basin of Utah and the Piceance Creek Basin of Colorado contain remarkably similar stratigraphic sequences despite being separated by the Douglas Creek arch. Individual horizons, as well as individual beds, can be traced for hundreds of miles within and between the two basins. However, changes in the topography-controlled runoff patterns between the basins, as well as changes in localized climate conditions throughout upper Green River time, created significant differences between basin-specific deposits. These variations affected the richness and thickness of each oil shale zone, resulting in basin-specific preferred extraction techniques (i.e., in-situ in Colorado and mining/retort in Utah). Colorado’s oil-shale resource was mapped and quantified by the USGS in the late 1970s, whereas this study is the first attempt at quantifying Utah’s overall resource by specific oil shale horizon. This presentation focuses on the Mahogany zone (MZ) and the stratigraphically lower R-6 zone; subsequent work will define other important horizons.

234

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

235

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

236

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

237

Imperial South Imperial East  

E-Print Network (OSTI)

LS6 Round Mountain LS2 SL1 Imperial Valley SB20 PU2 LS3 Vaca Dixon LS7 LS1 Gates Independence FalconImperial South Imperial East Twentynine Palms San Bernardino - Lucerne San Bernardino - Baker Solano Round Mountain - B Lassen South - A Fairmont San Diego North Central San Diego South Imperial

238

Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report  

SciTech Connect

Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

1994-04-01T23:59:59.000Z

239

East Asian Security in 2025  

E-Print Network (OSTI)

East Asian Security in 2025 Who We Are Reagan Heavin Energy Adam Hudson State Capacity Brandon Krueger Military Sean ONeil Demographics Griffin Rozell Balance of Power Matt Suma Economy East Asian Security in 2025 China...: Competition, Cooperation, Plateau? Reagan Heavin Adam Hudson Brandon Krueger Sean ONeil Griffin Rozell Matt Suma 24 April 2008 East Asian Security in 2025 Agenda Conclusions Projections Drivers Four Outcomes Questions East Asian Security in 2025...

Heavin, Reagan; Hudson, Adam; Krueger, Brandon; O'Neil, Sean; Rozell, Griffin; Suma, Matt

2008-01-01T23:59:59.000Z

240

Lower East Fork Poplar Creek  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Lower East Fork Poplar Creek.

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Upper East Fork Poplar Creek  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Upper East Fork Poplar Creek.

242

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope & Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft (Figure 1), but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, Steven

1999-11-09T23:59:59.000Z

243

Gasflooding experiments for the east side of the Yates field unit--  

SciTech Connect

This paper reports on a series of immiscible gasflood experiments at current conditions for the east side of the Yates field unit (450 psi, 82{degrees}F (3.10 MPa, 301 K)). The oil recovery efficiency of CO{sub 2} was compared with that of gas-cap gas (GCG). Flooding rates in vertically mounted, preserved-state cores were near the critical velocities for gravity-stable displacement. Oil recoveries with CO{sub 2} were 6 to 11% of original oil in place (OOIP) greater than those of GCG. Flooding results were interpreted with a modified Buckley-Leverett end-effect simulator. With this simulator, the gas/oil saturation profile that results from capillary end effects could be modeled. The modeling study showed that incremental oil recovery with CO{sub 2} resulted from oil swelling, oil-viscosity reduction, and gas/oil interfacial-tension (IFT) reduction.

Christiansen, R.L. (Marathon Oil Company E and P Center, Littleton, CO (US))

1990-02-01T23:59:59.000Z

244

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

245

Hydrothermal circulation in an anisotropic sedimentary basin: Application to the Okinawa back arc basin  

SciTech Connect

The authors explore the pattern of two-dimensional convection in an highly anisotropical porous medium. This physical situation is relevant to passive margin sedimentary basins consisting of interbedded coarse-grained pervious and shale matrix. They show that permeability anisotropies of the order of 10{sup 2}-10{sup 4} allow for long convective cells, of aspect ratio greater than 10, but that a combination of this parameter with a slight slope of the order of a few percent of the sedimentary layers is required to stabilize these long cells. As an example, they present the Okinawa basin, an active submarine back arc basin, with a sedimentary thickness of about 2 km and a heat flow profile across this basin, varying from 32 to 232 mWm{sup {minus}2} over a distance of 30 km. It is shown that this heat flow variation is difficult to explain with conductive mechanisms only but is well reproduced by different convective models relying on permeability anisotropy plus slope. Although the insufficient thermal and structural constraints did not allow them to build a unique model, the whole set of possible fits to the heat flow data may restrict the mean hydraulic parameters of the basin. A vertical permeability of a few tens of milidarcy and an anisotropy greater than 100 are required to produce the expected stable and active large-scale circulation. It is suggested in conclusion that this type of circulation might be active in oil- or oil-forming element migration.

Genthon, P.; Rabinowicz, M. (Groupe de Recherches de Geodesie, Spatiale (France)); Foucher, J.P.; Sibuet, J.C. (Inst. Francais de Recherches pour l'Exploitation de la Mer, Plouzane (France))

1990-11-10T23:59:59.000Z

246

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network (OSTI)

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

Jagoe, Bryan Keith

2012-06-07T23:59:59.000Z

247

Oil/Liquids | Open Energy Information  

Open Energy Info (EERE)

Oil/Liquids Oil/Liquids < Oil Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 93. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 11. Liquid Fuels Supply and Disposition Table 12. Petroleum Product Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South

248

Minturn Formation of Eagle basin: an exploration frontier  

SciTech Connect

The Eagle basin, a predominantly Desmoinesian evaporite basin in northwestern Colorado, contains many targets for oil and gas reserves. Facies patterns of the Minturn Formation of the Eagle basin are strikingly similar to those of the prolific Paradox Formation of the Paradox basin. Both basins and formations also contain lens-shaped carbonate algal-bioherms. These algal-bioherms are particularly attractive reservoirs where they flank halite-basin margins, the areas of optimum dolomitization. The Minturn formation has been subdivided into individual rock packages using subsurface control. Facies maps constructed for individual units indicate the Eagle basin is a series of smaller basins, each having served as a center for halite deposition. Data support a deep-water model for the deposition of halite; however, a sabkhalike environment existed between the halite basins and the normal marine facies. Halite depocenters appear to have been structurally controlled. The Minturn Formation is very thick and may contain multiple prospective zones at any one location. Within the past year, two and possibly three Minturn discoveries have been made in northwestern Colorado.

Dodge, C.J.N.; Bartleson, B.

1986-08-01T23:59:59.000Z

249

Iraq: World Oil Report 1991  

SciTech Connect

This paper reports that no reliable information on Iraqi E and P operations and only a few reports on oil field facilities damage have been available since last August. Most of what is known originated from the Middle East Economic Survey (MEES), the authoritative newsletter covering the Middle East. According to MEES reports in major northern oil fields (Kirkuk, Bai Hasan and Jambur) is put at 800,000 bpd. The northern fields and the pipeline system through Turkey to the Mediterranean Sea that serves as an export outlet for the area apparently were not damaged much by coalition air strikes or subsequent fighting by the Kurds. Last May production was estimated at 250,000 bpd, presumably from northern fields. If and when U.N. sanctions are lifted, Iraq should be able to export promptly through the Turkish line.

Not Available

1991-08-01T23:59:59.000Z

250

Water Basins Civil Engineering  

E-Print Network (OSTI)

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

251

East | OpenEI  

Open Energy Info (EERE)

97 97 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278797 Varnish cache server East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 81, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO East EIA Electric Power

252

Contemporary Tectonic Deformation of the Basin and Range Province, Western  

Open Energy Info (EERE)

Contemporary Tectonic Deformation of the Basin and Range Province, Western Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Abstract [1] We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ∼39° north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ± 1.0 mm/yr, and motion normal to this small circle is 3.9 ± 0.9 mm/yr compared to the east end of our network. On the Colorado

253

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

254

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

255

Nonseasonal sea level variations in the Japan//East Sea from satellite altimeter data  

E-Print Network (OSTI)

in the south, and the Japan Basin in the north (Figure 1a). The Yamato Rise is located in the middle. Water Current (EKWC) along the east coast of Korea, and the Offshore Branch (OB) into the south of the Ulleung° gridded hydrographic data. [5] Instantaneous co

256

Williston in the family of cratonic basins  

SciTech Connect

The Williston basin is one of a clan of subcircular to elliptical elements in the interiors of all cratons; such basins are distinguished by characteristics common to all. In each, the basement consists of continental crust and each basin is surrounded by areas of continental crust. Subsidence rates are typically low, so that conditions near depositional base level prevailed during much of the history of sediment accumulation. Episodic subsidence occurred over time spans of 10/sup 7/-10/sup 8/ years; major episodes of subsidence are broadly concurrent on all cratons. Tectonic tempo and mode of subsidence evolved synchronously on all cratons; therefore, similar isopach and facies patterns (and similar oil or gas maturation, migration, and trap potentials) occur on all cratons. All members of the clan exhibit a range of individual variations imposed by latitude and climate. Intraplate tectonism and volcanism, approach to or distance from source areas, and distribution paths of detrital sediment. Nevertheless, facts and concepts developed by intensive study of basins with high-density documentation (outcrop and subsurface) are commonly applicable to basins such as the Williston, which is in a less mature stage of exploration.

Sloss, L.L.

1985-05-01T23:59:59.000Z

257

Middle East fuel supply & gas exports for power generation  

SciTech Connect

The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

Mitchell, G.K. [Merrimack Energy Co., LTD, Lowell, MA (United States); Newendorp, T. [Taylor-DeJongh, Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

258

Peak Oil  

Science Journals Connector (OSTI)

At the start of the new millennium, the expression Peak Oil was unknown. Nevertheless, a discussion about when the worlds rate of oil production would reach its maximum had already ... . King Hubbert presented...

Kjell Aleklett

2012-01-01T23:59:59.000Z

259

Peak Oil  

Science Journals Connector (OSTI)

Between 2000 and 2010, world oil prices advanced from approximately $25 per barrel to more than $100 per barrel. The price appreciation of oil over the decade was around ten times the rate of inflation.

Robert Rapier

2012-01-01T23:59:59.000Z

260

Divergent/passive margin basins  

SciTech Connect

This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

Edwards, J.D. (Shell Oil Company (US)); Santogrossi, P.A. (Shell Offshore Inc. (US))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Natural Gas in Sub-Saharan Africa Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 2 Sub-Saharan Africa Source: U.S. Department of State Liquid Fuels Reserves and Production in Sub-Saharan Africa 3 4 Sub-Saharan Africa (SSA) produced nearly 6 million bbl/d of liquid fuels in 2012, which was about 7% of total world oil production. Overview Sub-Saharan Africa contains 62.6 billion barrels of proved crude oil reserves. The Middle East has 13 times that amount and Central and South America has 5 times that amount. Middle East 30% North America 20% Eurasia 15% Sub-Saharan Africa 7% North Africa 5% Asia & Oceania 10% Central & South America 9% Europe 4% Global Liquid Fuels Production, 2012 Source: EIA, International Energy Statistics 0 200 400 600 800 1,000 Middle East Central & South America

262

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network (OSTI)

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

263

Conference assesses world oil supply scene  

SciTech Connect

This paper reports that the Offshore Northern Seas conference heard a number of long term outlooks in Stavanger, Norway, last week, all with the same conclusion: the oil and gas industry needs massive investment if it is to match future demand. Norwegian Prime Minister Gro Harlem Bruntland built her scenario on a doubling of world population every 40 years. Mrs. Bruntland emphasized the growing dependence of the world economy on Middle East developments. Two thirds of the world's oil reserves are in the Persian Gulf region, she said, but only 28% of production comes from there. As the rest of the world depletes its reserves, dependence on Persian Gulf oil will grow.

Not Available

1992-08-31T23:59:59.000Z

264

Successful Alternatives to Conventional Cement Designs in the Williston Basin  

SciTech Connect

Since mid-1981, 36 wells have been cemented in the Williston Basin with a cementing system diametrically opposed to conventional cementing designs used for bonding across massive salt members. Since implementation, along with the use of relaxed invert emulsion oil mud, not one casing problem has arisen in the wells where these systems were used.

Bryant, G.A.

1984-05-01T23:59:59.000Z

265

Regional stratigraphy and general petroleum geology, Williston Basin  

SciTech Connect

Paleozoic sedimentary rocks in the Northern Great Plains and northern Rocky Mountain region include a sequence of dominantly shallow-water marine carbonate, clastic, and evaporite deposits of Middle Cambrian through Early Permian age. The lower part of the Paleozoic section is a sequence of marine sandstone, shale, and minor limestone, rangeing in age from Middle Cambrian through Middle Ordovician. Some porous sandstone beds occur in this section, mainly in the eastern and southern bordering areas of the Williston basin and Central Montana trough. Upper Ordovician through middle Upper Mississippian rocks are primarily carbonate beds, which contain numerous widespread cyclic interbeds of evaporite and fine-grained clastic deposits. Carbonate mounds or banks were deposited through most of this time in the shallow-water areas of the Williston basin and northern Rocky Mountains. Porous units, mainly dolomite or dolomitic limestone, are common but discontinuous in most of this sequence, and are more widespread in the eastern and southern margins of the Williston basin. Cumulative petroleum production (January 1982) in the United States part of the Williston basin was about 1.1 billion bbl of oil and 1.6 tcf gas. Estimated remaining recoverable reserves are about 400 million bbl of oil and 0.8 tcf gas. U.S. Geological Survey 1980 estimates of undiscovered recoverable oil and gas resources are about 900 million bbl of oil and 3.5 tcf gas.

Peterson, J.A.; Maccary, L.M.

1985-05-01T23:59:59.000Z

266

Coalbed methane potential assessed in Forest City basin  

SciTech Connect

This paper reports that the Forest City basin is a shallow cratonic depression located in northeastern Kansas, southeastern Nebraska, southern Iowa and northern Missouri. Historically, the Forest City basin in northeastern Kansas has been a shallow oil and gas province with minor coal production. The Iowa and Missouri portion has had minor oil production and moderate coal mining. In recent years there has been little coal mining in the Forest City in Iowa and Kansas and only minor production in Missouri. Before 1940, gas was produced from coal beds and shales in the Kansas portion of the Forest City basin. The Cherokee group (Altokan and Desmoinesian age) includes section containing the largest number of actively mined coals and has the greatest available data for coalbed methane evaluation.

Tedesco, S.A. (CST Oil and Gas Corp., Denver, CO (US))

1992-02-10T23:59:59.000Z

267

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

268

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

269

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

270

Origin of cratonic basins  

SciTech Connect

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

271

Stratigraphy and depositional environments of Fox Hills Formation in Williston basin  

SciTech Connect

The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided both stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.

Daly, D.J.

1988-07-01T23:59:59.000Z

272

Regional hydrocarbon generation, migration, and accumulation pattern of Cretaceous strata, Powder River Basin  

SciTech Connect

A cell of abnormally high fluid pressure in the deep part of the Powder River basin is centered in an area where oil-generation-prone source rocks in the Skull Creek (oldest), Mowry, and Niobrara (youngest) formations are presently at their maximum hydrocarbon-volume generation rate. The overpressures are believed to be caused by the high conversion rate of solid kerogen in the source rocks to an increased volume of potentially expellable fluid hydrocarbons. In this area, hydrocarbons appear to be the principal mobile fluid species present in reservoirs within or proximal to the actively generating source rocks. Maximum generation pressures within the source rocks have caused vertical expulsion through a pressure-induced microfracture system and have charged the first available underlying and/or overlying sandstone carrier-reservoir bed. Hydrocarbons generated in the Skull Creek have been expelled downward into the Dakota Sandstone and upward into the Muddy Sandstone. Hydrocarbons generated in the Mowry have been expelled downward into the Muddy or upward into lower Frontier sandstones. Hydrocarbons generated in the Niobrara have been expelled downward into upper Frontier sandstones or upward into the first available overlying sandstone in the Upper Cretaceous. The first chargeable sandstone overlying the Niobrara, in ascending order, may be the (1) Shannon, (2) Sussex, (3) Parkman, (4) Teapot, or (5) Tekla, depending on the east limit of each sandstone with respect to vertical fracture migration through the Cody Shale from the underlying area of mature overpressured Niobrara source rocks.

Meissner, F.F.

1985-05-01T23:59:59.000Z

273

Characterization of Sodium Emulsion Soaps Formed from Production Fluids of Kutei Basin, Indonesia  

Science Journals Connector (OSTI)

The Kutei Basin soap emulsions are resolved by heating and treatment with relatively high dosages of acid demulsifiers. ... Two main types of soaps can form in production fluids:1 calcium naphthenate scales, which can manifest as in situ sticky or hardened deposits, and sodium emulsion soaps, which can create severe oil dehydration problems and lead to excessive slop oil/sludge volumes at crude-oil terminals. ... Similar sodium carboxylate soaps are also common to other basins around Borneo (e.g., Sarawak, Brunei, and Sabah)2 and in other parts of southeast Asia (e.g., the South China Sea, Malaysia, offshore Vietnam, Bohai Bay in China, and elsewhere in Indonesia). ...

Darrell L. Gallup; Joseph A. Curiale; P. Colin Smith

2007-05-02T23:59:59.000Z

274

Fragment of the chemical structure of type II and II-S kerogen in the Upper Jurassic and Upper Devonian formations of the East European Platform  

Science Journals Connector (OSTI)

A model is proposed for a fragment of the chemical structures of the geopolymers based on elemental ... Jurassic and Devonian formations in the East European Platform. The Sorg/C ratio in kerogen from oil shales ...

N. S. Burdelnaya; D. A. Bushev

2010-05-01T23:59:59.000Z

275

California Basin Studies (CaBS). Final contract report  

SciTech Connect

The California Continental Borderland`s present configuration dates from about 4 to 5 X 10{sup 6} years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10{sup 6} years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation.

Gorsline, D.S.

1991-12-31T23:59:59.000Z

276

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

277

Agenda: Electricity Transmission and Distribution - East | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission and Distribution - East Agenda: Electricity Transmission and Distribution - East A Public Meeting on the Quadrennial Energy Review, Hosted by the United...

278

Independent Oversight Inspection, East Tennessee Technology Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park This report...

279

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

280

K Basin sludge dissolution engineering study  

SciTech Connect

The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel reprocessing plants in Europe, Japan, and the USA. Ash and sludge containing uranium compounds also have been dissolved in reprocessing or plutonium scrap recovery plants, but only a limited amount of information is available on how the ferric oxyhydroxide, aluminum compounds and silicates in the sand will behave during nitric acid dissolution. Laboratory work with simulants and hot cell work with actual K Basin sludge is in progress to obtain data in these areas.

Westra, A.G.

1998-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini

2004-02-05T23:59:59.000Z

282

Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview  

Science Journals Connector (OSTI)

Abstract During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main hot shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the LudlowPridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly EW trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (?N), deep Resistivity (Rt) and Bulk Density (?b) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete geochemical review has been undertaken from published papers and unpublished internal reports to better assess these important source intervals.

Mohamed Soua

2014-01-01T23:59:59.000Z

283

Interpretation of subhorizontal crustal reflections by metamorphic and rheologic effects in the eastern part of the Pannonian Basin  

Science Journals Connector (OSTI)

......the deep basins has modified this model. Heating up of basin sediments was relatively late...framework of an agreement between MOL Hungarian Oil and Gas Co. and Eotvos Lorand Geophysical...Tectonophysics, 282, 129-145. Fyfe W.S. , Price N.J., Thompson A.B.,1978. Fluids......

Kroly Posgay; Tams Bodoky; Zoltn Hajnal; Tivadar M. Tth; Tams Fancsik; Endre Heged?s; Attila Cs. Kovcs; Ern? Takcs

2006-10-01T23:59:59.000Z

284

Depth to bedrock using gravimetry in the Reno and Carson City, Nevada, basins Robert E. Abbott and John N. Louie  

E-Print Network (OSTI)

of geothermal wells, and one wildcat oil well. Depths in Carson City are consistent with depths from existing needed to model ground motion in the Mexico City basin. Frankel and Vidale (1992) used water well depth shaking at the surface. Poor existing gravity and well-data coverage of the basins below the rapidly

285

Petroleum geochemistry of Atrau region, Pre-Caspian Basin, Kazakhstan  

SciTech Connect

Pre-Caspian Basin covers an area of approx. 500,000 sq. km. and is characterized mainly by thick (0-5000 m) Kungurian salts. Atrau region occupies 100,000 sq.km. and is located at the southern part of the basin. Oils of this basin are found in the sub-salt (Carboniferous reefs) and supra-salts (Triassic red beds and Jurassic-Cretaceous clastics) reservoirs. Seventeen crude oil samples analyzed from different wells appear to be paraffinic and paraffinic-naphthenic type. Some of the oils hardly contained any n-alkanes, probably owing to biodegradation. Biomarker signatures of saturate and aromatic fractions and stable carbon isotopes of whole oils revealed two genetically different oil families; family I and family II. Family I was generated from clastic supra-salt sediments having immature (%Rc=0.55) terrestrial organic matter. Family II was generated from carbonate rich sub-salt sediments, containing mature (%Rc=0.65-0.80) marine organic matter. Majority of Triassic, Kungurian and Upper Cretaceous successions contained enough organic matter with considerably low total petroleum potential (S1+S2). Upper Carboniferous sediments, on the other hand, contain enough and oil prone organic matter that reached peak oil generation stage (233.1 Ma) and hydrocarbon saturation level for expulsion as a result of high sedimentation rates in the Lower to Middle Triassic succession in Kobyekovskaya-2 well. Maximum paleotemperature reached in the area was not enough for H{sub 2}S formation and cracking of already generated hydrocarbons to natural gas.

Guerge, K. [TPAO dis Projeler Grup Baskanligi, Ankara (Turkey)

1995-08-01T23:59:59.000Z

286

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

287

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

288

Two-Phase Westward Encroachment of Basin and Range Extension into the  

Open Energy Info (EERE)

Two-Phase Westward Encroachment of Basin and Range Extension into the Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Abstract [1] Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude ∼39°N suggest ∼100 km westward encroachment of Basin and Range extensional deformation since the middle Miocene. Extension, accommodated primarily by east dipping normal faults that bound west tilted, range-forming fault blocks, varies in magnitude from <2% in the interior of the Sierra Nevada crustal block to >150% in the Wassuk and

289

Regional And Local Trends In Helium Isotopes, Basin And Range Province,  

Open Energy Info (EERE)

And Local Trends In Helium Isotopes, Basin And Range Province, And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Regional And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Details Activities (1) Areas (1) Regions (0) Abstract: Fluids from the western margin of the Basin and Range have helium isotope ratios as high as ~6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to 'background' values of around 0.6 Ra, and then gradually decrease toward the east to low values of ~0.1 Ra at the eastern margin of the Basin and

290

Overview of the petroleum industry in the Middle East (18691950)  

Science Journals Connector (OSTI)

...was put in charge of locating an English investor for...evolving scenarios that set the stage for dividing...European (mainly British) domination of Middle East oil...share in the consortium set up to develop Iraqs oilfields...challenge Anglo-Persians domination of the southwest Asian...

Rami A. Kamal

291

East Coast (PADD 1) Total Crude Oil and Products Imports  

Annual Energy Outlook 2012 (EIA)

716 501 615 612 1993-2014 Gabon 650 649 32 1993-2014 Georgia, Republic of 1995-2010 Germany 107 35 14 24 8 125 1993-2014 Ghana 1995-2012 Gibralter 2012-2012 Greece 12 28 28...

292

Essays on Macroeconomics and Oil  

E-Print Network (OSTI)

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

293

Essays on Macroeconomics and Oil  

E-Print Network (OSTI)

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

294

East Tennessee Technology Park Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the East Tennessee Technology Park.

295

,"NM, East Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:57:21 AM" "Back to Contents","Data 1: NM, East...

296

Formation mechanism and geochemical characteristics of shallow natural gas in heavy oil province, China  

Science Journals Connector (OSTI)

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relat...

GuangYou Zhu; ShuiChang Zhang; WenZhi Zhao

2008-05-01T23:59:59.000Z

297

Where the offshore search for oil and gas is headed  

SciTech Connect

This overview of the world's potential offshore oil and gas frontiers points out that although solutions to technical and political problems have opened up some promising areas for exploration, many key frontier basins have yet to be explored by modern technology. Long-standing disputes between bordering countries over offshore rights have deterred exploration activities in the Malvinas basin off Argentina and in the Gulf of Venezuela. Political problems have also slowed activity in the US Atlantic offshore, where Mesozoic reef trends may be related to Mexico's large oil fields. In Canada's Labrador Sea and Grand Banks, the problems are largely operational because of the inclement weather and threatening icebergs. The thick sediments off northern Norway remain untapped due to the deep water, Arctic conditions, and boundary disputes with the USSR. The main areas of active exploration are the Gulf of Thailand-Penyu-Natuna basin in Southeast Asia and Ireland's Porcupine Bight basin.

King, R.E.

1980-10-01T23:59:59.000Z

298

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

299

K Basin sludge treatment process description  

SciTech Connect

The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

Westra, A.G.

1998-08-28T23:59:59.000Z

300

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. Quarterly report, June 14--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class 3 reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress discusses the literature compilation, assembly of digitized log suites, development of a stratigraphic framework, installation of lease production facilities, return wells to production, drill producer and observation wells, and reservoir characterization.

Schamel, S.

1995-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

302

"ENDING STOCKS OF CRUDE OIL (excluding SPR)"  

U.S. Energy Information Administration (EIA) Indexed Site

ENDING STOCKS OF CRUDE OIL (excluding SPR)" ENDING STOCKS OF CRUDE OIL (excluding SPR)" "Sourcekey","WCESTP11","WCESTP11","WCESTP21","WCESTP21","WCESTP31","WCESTP31","WCESTP41","WCESTP41","WCESTP51","WCESTP51","WCESTUS1","WCESTUS1" "Date","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)"

303

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

304

Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration  

SciTech Connect

Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

Weimer, R.J. [Colorado School of Mines, Golden, CO (United States)

1994-09-01T23:59:59.000Z

305

Generation of Oil-Like Pyrolyzates from Organic-Rich Shales  

Science Journals Connector (OSTI)

...CHARACTERIZATION OF OIL TYPES IN WILLISTON BASIN, AAPG BULLETIN-AMERICAN ASSOCIATION...the western margin of the North American basin should also be considered in this light...1976). 11. A. F. Amos, The New York Bight and Hudson Canyon in October 1974 (Technical...

M. D. LEWAN; J. C. WINTERS; J. H. MCDONALD

1979-03-02T23:59:59.000Z

306

OIL IMPORTS: For and Against  

Science Journals Connector (OSTI)

OIL IMPORTS: For and Against ... The eightAshland Oil, Atlantic Richfield, Cities Service, Marathon Oil, Mobil Oil, Standard Oil (Ind.), ...

1969-07-28T23:59:59.000Z

307

Secretary Bodman to Travel to the Middle East to Advance International  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Travel to the Middle East to Advance to Travel to the Middle East to Advance International Energy Cooperation Secretary Bodman to Travel to the Middle East to Advance International Energy Cooperation January 10, 2008 - 10:23am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman next week will embark on a five-nation tour through the Middle East to enhance the United States' relationship with oil-producing nations, promote sustained investment in conventional and alternative energy sources, and encourage improvements in global energy efficiency. Secretary Bodman will depart on Monday, January 14, 2008 and travel to Jordan, Saudi Arabia, United Arab Emirates, Qatar and Egypt. "To increase global energy security, producing and consuming nations alike must make robust investments in a diversity of energy sources, accelerate

308

Gabon: World Oil Report 1991  

SciTech Connect

This paper reports on Gabon's largest oil field, Rabi Kounga, and a flurry of smaller reservoirs which have boosted production to 300,000 bopd. Regional geology is so complex that it generates a large discovery only once every twenty years, and operators come and go due to low discovery ratios, following market ups and downs. A hard core four remain: Elf first, Shell, British Gas, which bought Tenneco, and Amoco. Shell's Rabi Kounga discovery, which stretches from shore to shelf, boosted exploration and renewed interest for onshore licenses. The low discovery rate, however, reflects the complexity of Gabonese basins.

Not Available

1991-08-01T23:59:59.000Z

309

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

SciTech Connect

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01T23:59:59.000Z

310

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

311

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

312

Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau  

Science Journals Connector (OSTI)

......consists mainly of the lake carbonate with some black oil shale (Liu Wang 1999). It disconformably overlies the Fenghuoshan...A, 326, 177-188. Liu Z. , Wang C., 1999. Oil shale in the Tertiary Hoh Xil basin, northern Qinghai-Tibet......

Zhifei Liu; Xixi Zhao; Chengshan Wang; Shun Liu; Haisheng Yi

2003-08-01T23:59:59.000Z

313

Bioconversion of Heavy oil.  

E-Print Network (OSTI)

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

314

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

315

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

316

Integration of nuclear power with oil sands extraction projects in Canada  

E-Print Network (OSTI)

One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

Finan, Ashley (Ashley E.)

2007-01-01T23:59:59.000Z

317

Mississippian ''Warsaw'' play makes waves in Illinois basin  

SciTech Connect

Recent completions of relatively prolific wells in the mid-Missippian Ullin limestone have generated considerable excitement about this Illinois basin play. Reservoirs found within this limestone, commonly referred to by industry as the Warsaw, are scattered and are prolific oil producers in some areas of the basin. The widespread development of reservoir quality facies at depths ranging from 2,400--4,400 ft and the stratigraphic proximity of thermally mature New Albany shale, the primary Illinois basin source rock are factors that make the Warsaw an excellent exploration target. The paper discusses a depositional model, reservoir development, reservoir facies of the upper and lower Warsaw, factors controlling porosity and permeability, and regional and structural considerations.

Lasemi, Z.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

1995-01-09T23:59:59.000Z

318

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

319

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

320

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

322

Understanding the economic power of oil. Master's thesis  

SciTech Connect

Oil has become a single global market in which oil price fluctuations now have the ability to rock the world economy. The purpose of this thesis is to examine the changing nature of this threat and by doing so, show that Saudi Arabia, which has acted as the primary stabilizing tool by American foreign policy makers, will no longer suffice in this capacity. Rather, Saudi Arabia, which has for the most part cooperated with the United States in helping to stabilize oil price and supply disruptions, will become increasingly less cooperative in a much shorter time frame than night be anticipated with regard to oil supplies. This thesis proposes possible avenues for US national security policy by exploring pathways that might further ensure economic security and stability of the Middle East region in light of the new nature of the oil threat. The goal of economic security and stability can only be realized through an understanding of the oil producing nations and their relationships with the international community and world economy.... Oil, Persian Gulf Security Policy, Middle East Oil Reserves.

Belanger, J.C.

1992-12-01T23:59:59.000Z

323

Little Knife field - US Williston basin  

SciTech Connect

Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

Wittstrom, M.D.; Lindsay, R.F. (Chevron USA, Inc., Midland, TX (United States))

1991-03-01T23:59:59.000Z

324

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

325

Hydrotreating of oil from eastern oil shale  

SciTech Connect

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

326

Middle East and African Partnerships and Projects  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) engages bilaterally with individual countries in the Middle East and Africa.

327

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

328

Crosswell seismic waveguide phenomenology of reservoir sands & shales at offsets >600 m, Liaohe Oil Field, NE China  

Science Journals Connector (OSTI)

......employed to lower the cost of hydrocarbon production monitoring (de Waal...2001. Development Production (Special Section...continuity logging for oil and gas field applications...from the Antrim Shale gas play, Michigan Basin......

P. C. Leary; W. Ayres; W. J. Yang; X. F. Chang

2005-10-01T23:59:59.000Z

329

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

330

The impact of oil revenues on Arab Gulf development  

SciTech Connect

This book presents papers on Middle East oil policy. Topics considered include oil production policies in the Gulf States, oil planning, the philosophy of state development planning, prospects for Gulf economic coordination, the philosophy of infrastructural development, industrialization in the Arab Gulf, the agricultural potential of the Arab Gulf states, the future of banking as a Gulf industry, manpower problems and projections in the Gulf, education as an instrument of progress in the Arab Gulf states, and the impact of development on Gulf society.

El Azhary, M.S.

1984-01-01T23:59:59.000Z

331

Near Shore Submerged Oil Assessment  

E-Print Network (OSTI)

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

332

Oil gravity segregation in the Monterey formation, California  

SciTech Connect

The Monterey Formation is a fractured siliceous shale that is the principal reservoir and source rock for oil fields in the Santa Maria basin and the western Santa Barbara Channel. Monterey crudes in producing offshore fields are high-sulfur oils that range from 10[degrees] to 35[degrees] API. The oils in Monterey fractured reservoirs display a systematic increase in API gravity with increasing height above the oil-water contact. The rate of change in API gravity with depth in Monterey oil fields generally ranges from 0.5[degrees] to 1.2[degrees] API/100 ft. The oil-water contact usually occurs at an oil gravity of 10[degrees] API (the gravity at which the density of the oil and the water is equal). The maximum API gravity in a Monterey oil field is related to the level of thermal exposure experienced by the formation in the adjacent depocenter. Monterey oils are sourced by high-sulfur kerogens that generate heavy oils at low levels of thermal exposure, but generate progressively higher gravity oils at higher levels of thermal maturity. Comparison of the maximum API gravity found in 33 Monterey-sourced oil fields with the maximum temperature experienced by the Monterey Formation within three miles of the field (the most likely migration distance) suggests that a temperature of 260[degrees]F (127[degrees]C) is required to generate 20[degrees] API oil, and a temperature of 330[degrees]F (166[degrees]C) is required to generate 30[degrees] API oil.

Hornafius, J.S. (Mobil Exploration and Producing, Bakersfield, CA (United States))

1994-04-01T23:59:59.000Z

333

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

334

Remote sensing analysis of natural oil and gas seeps on the continental slope of the northern Gulf of Mexico  

E-Print Network (OSTI)

. The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number.... The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number...

De Beukelaer, Sophie Magdalena

2004-11-15T23:59:59.000Z

335

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

336

FIRST DRAFT OF OUTLINE: RPSEA 1 RESIDUAL OIL ZONE RESEARCH  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Exploitation and the Origin of Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas RPSEA PROJECT NUMBER.FINAL Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas Contract 81.089 08123-19-RPSEA June 28, 2012 Dr. Robert Trentham Director, Center for Energy and Economic Diversification The University of Texas of the Permian Basin Odessa, Texas 79762 L. Steven Melzer Melzer Consulting Midland, Texas 79701 David Vance Arcadis, U. S. Midland, Texas 79701 LEGAL NOTICE This report was prepared by Dr Robert Trentham as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA

337

Applications of geographic information systems (GIS) to exploration studies in the San Juan basin, New Mexico  

SciTech Connect

The US Geological Survey (USGS) is currently applying geographic information systems (GIS) technology to develop a geologic knowledge base that will provide the framework for an integrated basin analysis for the San Juan basin. GIS technology involves the integration of mapping and data-base functions that enable the user to integrate and manipulate spatial (coordinate) data with attribute (thematic) data in order to combine complex geographic, geologic, and geophysical data sets into resultant overlay and composite maps and to conduct multivariate exploratory data analysis and have access to a variety of options for analyzing these databases. The San Juan basin, a 13,500-mi{sup 2} Laramide structural basin in northwestern New Mexico, was chosen for the pilot project. The basin encompasses a maximum of over 15,000 ft of Paleozoic to Eocene sedimentary rock and contains economic deposits of natural gas, oil, coal, and uranium. Successful exploration in this basin requires an understanding of the complex stratigraphy and structural geology controlling the distribution of these resources. GIS technology applied to the San Juan basin includes both surface and subsurface data sets that establish a three-dimensional perspective of the basin's fundamental stratigraphic and structural framework and aid in the identification of its temporal and tectonic relationships relative to origin and occurrence of its resources. Among the digital data bases used for surface mapping is the US GeoData system from the USGS's national mapping program, which includes digital elevation models (DEM) for terrain elevations: digital line graphs (DLG) for planimetric information on boundaries, transportation, hydrography, and the US Public Land Survey system; and land use and land cover (LULC) data. Additional data bases used for surface mapping include surficial geology, locations of oil and gas wells, well status, and oil and gas fields.

Miller, B.M. (Geological Survey, Reston, VA (USA))

1990-05-01T23:59:59.000Z

338

Proceedings of the North Aleutian Basin information status and research planning meeting.  

SciTech Connect

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

2007-10-26T23:59:59.000Z

339

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

340

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina  

Science Journals Connector (OSTI)

...Neuquen Basin, western Argentina, had significant activity...SRB). SRB derive energy for growth by coupling...11). Oil fields in Argentina conform to this worldwide...the same carbon and energy source. VFA consists...Neuquen Basin, western Argentina (see Fig. S1 in the...

Aleksandr A. Grigoryan; Sabrina L. Cornish; Brenton Buziak; Shiping Lin; Adriana Cavallaro; Joseph J. Arensdorf; Gerrit Voordouw

2008-05-23T23:59:59.000Z

342

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

343

Enforcement Letter - Argonne-East  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 1997 3, 1997 Dr. William H. Hannum Argonne National Laboratory-East 9700 South Cass Avenue Argonne, Il 60439 Re: Noncompliance Report NTS-CH-AA-ANLE-ANLE-1996-0001 Dear Dr. Hannum: This letter refers to the Department of Energy's (DOE) evaluation of Argonne National Laboratory-East's (ANL-E) report of a potential noncompliance with the requirements of 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved the failure to complete the required radiological worker training or retraining for approximately 30 percent of ANL-E's 797 radiological workers, was identified by ANL-E on December 17, 1996, and reported to DOE on December 20, 1996. On November 22, 1996, ANL-E initiated a review of the personnel training records of a

344

University of East Anglia Postgraduate  

E-Print Network (OSTI)

at our University. University of East Anglia Norwich Research Park Norwich NR4 7TJ T +44 (0)1603 456161 F +44 (0)1603 458553 www.uea.ac.uk UK and EU Students Admissions Office T +44 (0)1603 591515 F +44 (0)1603 T +44 (0)1603 593280 F +44 (0)1603 458596 intl.office@uea.ac.uk www

Joshi, Manoj

345

Why it will take more than a west-east pipeline to improve energy security in Atlantic Canada  

E-Print Network (OSTI)

the supply or price of crude oil could prove detrimental to energy security in Atlantic Canada. With over 701 Why it will take more than a west-east pipeline to improve energy security in Atlantic Canada, would contribute to Canadian energy security." Joe Oliver, Canada's Minister of Natural Resources, April

Hughes, Larry

346

Peak Oil profiles through the lens of a general equilibrium assessment  

Science Journals Connector (OSTI)

This paper disentangles the interactions between oil production profiles, the dynamics of oil prices and growth trends. We do so through a general equilibrium model in which Peak Oil endogenously emerges from the interplay between the geological, technical, macroeconomic and geopolitical determinants of supply and demand under non-perfect expectations. We analyze the macroeconomic effects of oil production profiles and demonstrate that Peak Oil dates that differ only slightly may lead to very different time profiles of oil prices, exportation flows and economic activity. We investigate Middle-East's trade-off between different pricing trajectories in function of two alternative objectives (maximisation of oil revenues or households welfare) and assess its impact on OECD growth trajectories. A sensitivity analysis highlights the respective roles of the amount of resources, inertia on the deployment of non conventional oil and short-term oil price dynamics on Peak Oil dates and long-term oil prices. It also examines the effects of these assumptions on OECD growth and Middle-East strategic tradeoffs.

Henri Waisman; Julie Rozenberg; Olivier Sassi; Jean-Charles Hourcade

2012-01-01T23:59:59.000Z

347

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

348

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

349

Caribbean basin framework, 3: Southern Central America and Colombian basin  

SciTech Connect

The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas of Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.

Kolarsky, R.A.; Mann, P. (Univ. of Texas, Austin (United States))

1991-03-01T23:59:59.000Z

350

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network (OSTI)

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

351

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Results of seismic surveys are presented.

NONE

1995-04-01T23:59:59.000Z

352

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

353

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

354

Top-down and bottom-up estimates of CO2 storage capacity in the United Kingdom sector of the southern North Sea basin  

Science Journals Connector (OSTI)

...formations oil and gas fields, if any...on the injection strategy, the reservoir properties...except in oil- and gas-bearing regions...Combined Cycle Gas Turbine power plant. Their...has been a prolific gas-producing basin...gas fields under development. This is realistic...

Sam Holloway; Ceri J. Vincent; Michelle S. Bentham; Karen L. Kirk

355

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

356

China's Global Oil Strategy  

E-Print Network (OSTI)

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

357

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

358

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

359

Understanding Crude Oil Prices  

E-Print Network (OSTI)

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

360

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

362

China's Global Oil Strategy  

E-Print Network (OSTI)

by this point, Chinas demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

363

Understanding Crude Oil Prices  

E-Print Network (OSTI)

and Income on Energy and Oil Demand, Energy Journal 23(1),2006. Chinas Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

364

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

365

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

366

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

367

China's Global Oil Strategy  

E-Print Network (OSTI)

Chinas domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, Chinas demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

368

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

369

China's Global Oil Strategy  

E-Print Network (OSTI)

Analysts agree that the Persian Gulf region will continue tos oil imports. 17 The Persian Gulf region is particularlyaccess to oil from the Persian Gulf because of conflict

Thomas, Bryan G

2009-01-01T23:59:59.000Z

370

oil1990.xls  

Annual Energy Outlook 2012 (EIA)

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

371

Oil Sands Feedstocks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National Centre...

372

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

373

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah  

SciTech Connect

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

374

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report  

SciTech Connect

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

375

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

376

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

377

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...  

Office of Legacy Management (LM)

EAST PITTSBURGH, PENNSYLVANIA Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL...

378

Science Co-Operation Office, Middle East  

Science Journals Connector (OSTI)

... THE Science Co-operation ... Co-operation Office, Middle East, of Unesco, in Cairo publishes a list of the scientific papers ...

1949-02-12T23:59:59.000Z

379

Independent Oversight Inspection, East Tennessee Technology Park...  

Office of Environmental Management (EM)

East Tennessee Technology Park, Summary Report - May 2003 May 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and...

380

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION  

SciTech Connect

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

Don L. Hanosh

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal history of Bakken shale in Williston basin  

SciTech Connect

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

382

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

383

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

384

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

385

Petroleum exploration of Winnipegosis Formation in north-central North Dakota (Williston basin)  

SciTech Connect

The Winnipegosis Formation (Middle Devonian) in north-central Dakota has the greatest potential for large oil reserves in the Williston basin. The Winnipegosis carbonate (50 to 325 ft thick) was deposited in the southeast end of the Elk Point restricted sea. During Winnipegosis deposition, the Williston basin could be divided into two distinct environments: (1) a deep starved basin with accompanying pinnacle reefs separated by interreef, laminated limestone and (2) a surrounding carbonate shelf. Within the carbonate shelf are patch reefs, banks, and tidal flats. Overlying the Winnipegosis carbonate is the Prairie Formation, which has a basal anhydrite (0 to 70 ft thick) and an overlying salt (0 to 650 ft thick). These were deposited in a regressive phase of the Elk Point sea and act as seals for Winnipegosis oil entrapment. Currently, oil production from the Winnipegosis in the Williston basin is from stratigraphic traps and from small structures on the carbonate shelf. The most significant accumulation to date is Temple field, in which 11 wells produce from +/- 20 ft of Winnipegosis dolomite. The pinnacle reef environment has potential for significant oil reserves from 250-ft thick reefs covering 160 ac or less. Two pinnacle reefs have had free-oil recoveries from thin pay zones. The Rainbow/Zama fields in northwest Alberta have an ultimate reserve of more than 1 billion bbl of oil from Keg River reefs, which are correlative and similar to the Winnipegosis reefs in North Dakota. The strong seismic reflection that originates from the Winnipegosis-Prairie evaporite interface provides an excellent means of detecting Winnipegosis reefs. Amplitude of the Winnipegosis reflection is reduced dramatically over the reefs. The resulting dim spot is one criteria used in identifying reefs.

Guy, W.J. Jr.; Braden, K.W.

1986-08-01T23:59:59.000Z

386

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

387

Evaluation of Devonian shale potential in the Michigan basin  

SciTech Connect

The purpose of this report is to inform interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Michigan basin. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented. However, a conservative estimate of in place resource for the Michigan basin is 76 TCF (Zielinski and McTver 1980. How much of this resource can be recovered using present technology has not been estimated. 27 refs., 15 figs., 2 tabs.

Not Available

1981-01-01T23:59:59.000Z

388

Ships After Oil  

Science Journals Connector (OSTI)

Ships After Oil ... Special self-propelled tenders planned for offshore drilling operations in Gulf ...

1956-07-02T23:59:59.000Z

389

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

390

International energy outlook. Volume 1. Mideast, Far East, and Africa  

SciTech Connect

The developing nations of the Mideast, Far East, and Africa face a bleaker - and more-complicated - energy picture than that of the West. Rapid industrial and agricultural expansion in the region severely drains already-inadequate energy systems. Energy-importing countries find they must diversify and develop indigenous resources, but often lack the technical known-how to do so. Volume 1 is a compilation of official US government intelligence reports examining the way 22 countries in the Mideast, Far East, and Africa are responding to the energy problems. The countries covered are: Algeria, Australia, Burma, China, Egypt, Gabon, India, Indonesia, Ivory Coast, Japan, Korea, Kuwait, Lebanon, Morocco, Mozambique, Pakistan, Saudi Arabia, South Africa, Sudan, Taiwan, Tunisia and Turkey. The range and detail of country reports vary, due to availability of reports. Although the book details current energy situations, its main emphasis is on the future, including estimates of future production and consumption, and descriptions of energy development plans. Some of the countries in this region are fortunate to have petrochemical resources, while electric energy expansion is crucial to national development in all. Coal will be filling the gap left by diminishing oil supplies. 61 tables.

Jablonski, D.M. (ed.)

1982-01-01T23:59:59.000Z

391

Data Quality Objectives Process for Designation of K Basins Debris  

SciTech Connect

The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO process and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.

WESTCOTT, J.L.

2000-05-22T23:59:59.000Z

392

Regional Slip Tendency Analysis of the Great Basin Region  

DOE Data Explorer (OSTI)

- The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

Faulds, James E.

393

West Central North East Area of Tucson  

E-Print Network (OSTI)

0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson #Individuals Anna Broad-billed Costa Rufous Black-chinned 0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson not be conflicting, and urban areas may actually provide valuable surrogates for degraded habitats. Our knowledge

Hall, Sharon J.

394

East Tennessee State University Johnson City, Tennessee  

E-Print Network (OSTI)

#12;East Tennessee State University Johnson City, Tennessee Vol. XCVI April 2009 No. 10 Johnson City, Tennessee 37614-1707 The 2009-2010 Graduate Catalog of East Tennessee State University (USPS, 807 UNIVERSITY PARKWAY, JOHNSON CITY, TENNESSEE 37601. Periodicals postage paid at Johnson City

Karsai, Istvan

395

East Tennessee State University Web Privacy Statement  

E-Print Network (OSTI)

East Tennessee State University Web Privacy Statement A Note to Children and Parents East Tennessee through a university Web site is handled. ETSU understands the importance of protecting the privacy of personal information, especially in today's electronic environment. This privacy policy covers the Web

Karsai, Istvan

396

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

397

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

398

Turbine cooling waxy oil  

SciTech Connect

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

399

Lodgepole reef potential seen in Montana Williston basin  

SciTech Connect

The Williston basin Mississippian Lodgepole oil play has suffered a string of dry holes lately eroding the confidence of explorationists to find these prolific reefs, particularly in North Dakota. Detailed mapping of the Lodgepole trend suggests more Lodgepole reefs will be found in the Montana part of the trend than in North Dakota. Companies seeking impact plays should certainly give this area strong consideration. The paper discusses the delineation of a lower Lodgepole fairway extending into Montana with identification of reef facies in key wells (reef clusters), good source rocks, high quality seismic data, and impact reserve potential which makes Montana good hunting ground for significant new discoveries.

Brogdon, L. [H.A. Hedberg Trust, Fort Worth, TX (United States); Ball, S.M.; Ball, D.S. [Ball Exploration Inc., Fort Worth, TX (United States)

1996-12-16T23:59:59.000Z

400

Petrographic, geochemical, and paleohydrologic evidence of nature of petroleum migration in Illinois basin  

SciTech Connect

Detailed studies of the petrography and geochemistry of petroleum source rocks, the geochemistry of petroleum accumulations, and the paleohydrology of the Illinois basin suggest an episode of long-range migration of Devonian-sourced petroleum during a period of regional ground water flow. Petrographic analyses of samples of the New Albany Shale group (Devonian/Mississippian) were used to define lateral and vertical variation in composition and thermal maturity of organic matter within the basin. These data delineate likely New Albany Shale group petroleum source areas. GC, GCMS, and carbon isotopic analyses of thermally mature New Albany Shale in southeastern Illinois and Silurian-reservoired petroleum samples from central Illinois were used in making oil-oil and oil-source rock correlations. These correlations indicate long-range lateral and downward cross-stratigraphic net migration. Compaction-driven and elevation head-driven ground-water flows within the basin were numerically modeled using available stratigraphic, structural, and hydrologic data. Calculations based on compaction-driven flow show the possibility of down-stratigraphic migration. Compaction-driven flow, however, cannot explain the amount of lateral transport inferred. Regional ground-water flow due to the uplift of the Pascola arch could explain the long-range lateral migration. Calculations of the effects of advective heat transport by elevation head-driven flow agree with estimates of temperatures made from fluid inclusions in basin mineralization.

Bethke, C.M.; Pruitt, J.D.; Barrows, M.H.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chapter 7 - General Regularities in Oil and Gas Distribution  

Science Journals Connector (OSTI)

Publisher Summary The chapter provides a detailed geological description of the South Caspian Sea area, focusing on the major characteristics and patterns found in the distribution of oil and gas producing areas of the region. The chapter has divided the South Caspian Sea into three major areas: the Azerbaijan portion, the Turkmenistan portion, and the areas adjacent to the South Caspian basin. The chapter analyzes these areas, focusing on various topics related to the geological aspect of oil and gas production such as issues relating to depositional environments, oil and gas traps, lithology and properties of reservoir rocks, composition and properties of argillaceous rocks, effects of pressure and temperature, effects of abnormally high formation pressures, distribution of oil reserves, oil composition and its properties, properties of natural gas, the formation waters related properties, oil and gas migration and accumulation, and the potential of very deep oil and gas bearing deposits. The chapter also highlights the areas worthy of future exploration to find oil and gas reserves.

Leonid A. Buryakovsky; George V. Chilingar; Fred Aminzadeh

2001-01-01T23:59:59.000Z

402

The habitat of petroleum in the Brazilian marginal and west African basins: A biological marker investigation  

SciTech Connect

A geochemical and biological marker investigation of a variety of oils from offshore Brazil and west Africa, ranging in age from Lower Cretaceous to Tertiary, has been done, with the following aims: (1) assessing the depositional environment of source rocks, (2) correlating the reservoired oils, (3) comparing the Brazilian oils with their west African counterparts. The approach was based in stable isotope data; bulk, elemental, and hydrous pyrolysis results; and molecular studies involving quantitative geological marker investigations of alkanes using GC-MS and GC-MS-MS. The results reveal similarities between groups of oils from each side of the Atlantic and suggest an origin from source rocks deposited in five types of depositional environment: lacustrine fresh water, lacustrine saline water, marine evaporitic/carbonate, restricted marine anoxic, and marine deltaic. In west Africa, the Upper Cretaceous marine anoxic succession (Cenomanian-Santonian) appears to be a major oil producer, but in Brazil it is generally immature. The Brazilian offshore oils have arisen mainly from the pre-salt sequence, whereas the African oils show a balance between origins from the pre-salt and marine sequences. The integration of the geochemical and geological data indicate that new frontiers of hydrocarbon exploration in the west African basins must consider the Tertiary reservoirs in the offshore area of Niger Delta, the reservoirs of the rift sequences in the shallow-water areas of south Gabon, Congo, and Cuanza basins, and the reservoirs from the drift sequences (post-salt) in the deep-water areas of Gabon, Congo Cabinda, and Cuanza basins.

Mello, M.R.; Soldan, A.L. (Petrobras/Cenpes/Divex, Rio de Janeiro (Brazil)); Maxwell, J.R. (Univ. of Bristol (England)); Figueira, J. (Petrobras/Braspetro, Rio de Janeiro (Brazil))

1990-05-01T23:59:59.000Z

403

Subsurface structure of the eastern edge of the Zagros basin as inferred from gravity and satellite data  

SciTech Connect

A data set of 10,505 points of land gravity measurements from southeast Iran obtained from the Bureau Gravimetrique International, combined with Landsat imagery, was used to investigate crustal and Cenozoic lithospheric structure. Interpretation of the Bouguer anomalies reveals three primary structural features. The Zagros Mountain belt is characterized by a progressive decrease in gravity values from -70 mGal near the Persian Gulf to -160 mGal over the structure zone between the Arabian margin and central Iran crustal blocks. The second feature is marked by a backward-L-shaped pair of anomalies that extends from the eastern peripheries of the Zagros basin and wraps around southern Iranian shores. These 15- to 20-km-deep source anomalies, with amplitudes of as much as 10 mGal, are interpreted as intrabasement intrusions demarcating an ancient rift axis. The shallow (6-8)km east-west-trending anomalies are perhaps interbasement uplifts bordered by reverse faults. The third structure, observed on both gravity and Landsat displays, a north-striking eastward-facing topographic escarpment, has a gravity gradient of 0.85 mGal/km, and is right laterally offset approximately 100 km, and is right laterally offset approximately 100 km by the Zagros main recent fault. A comparison of gravity features with surface structures on Thematic Mapper and Landsat Multi-spectral Scanner imagery indicates that a northeast-trending fault system is the result of post-Miocene pervasive transpressive stress coupled with clockwise rotation of underlying basement blocks following the collision of Arabia and Iran. Accommodation structures such as forced folds and {open_quotes}rabbit-ear{close_quotes} anticlines may develop over and on the flanks of the basement blocks, providing remigration and trapping mechanisms for new oil and gas plays.

Bushara, M.N. [ARCO Alaska, Inc., Anchorage, AK (United States)

1995-09-01T23:59:59.000Z

404

A two-dimensional regional basin model of Williston basin hydrocarbon systems  

SciTech Connect

Institut Francais du Petrole`s two-dimensional model, TEMISPACK, is used to discuss the functioning of petroleum systems in the Williston basin along a 330-km-long section, focusing on four regional source intervals: Ordovician Yeoman formation, Lower Devonian Winnipegosis Formation, Upper Devonian-Lower Mississippian Bakken Formation, and Mississippian Lodgepole formation. Thermal history calibration against present temperature and source rock maturity profiles suggests that the Williston basin can be divided into a region of constant heat flow of about 55 mW/m{sup 2} away from the Nesson anticline, and a region of higher heat flow and enhanced thermal maturity in the vicinity of the Nesson anticline. Original kinetic parameters used in the calibration were derived for each of the four source rocks from Rock-Eval yield curves. Bakken overpressures are entirely due to oil generation, not compaction disequilibrium. Very low Bakken vertical permeabilities range from 0.01 to 0.001 and are matched against observed overpressures, whereas Bakken porosities based on the model and confirmed by measurements are inferred to be also unusually low, around 3%.

Burrus, J.; Wolf, S.; Doligez, B. [Institut Francais due Petrole, Rueil-Malmaison (France)] [and others

1996-02-01T23:59:59.000Z

405

Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa...

406

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...  

Open Energy Info (EERE)

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox, 1980) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Soil Gas Sampling...

407

Essays on Macroeconomics and Oil  

E-Print Network (OSTI)

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

408

Essays on Macroeconomics and Oil  

E-Print Network (OSTI)

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

409

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

410

The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stuwe a,*, H. Fritz a  

E-Print Network (OSTI)

The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stu¨we a,*, H. Fritz, Austria b Department of Geology, Mansoura University, Mansoura, Egypt Received 8 September 2004; received of kilometres of the East- ern Desert of Egypt. Its sedimentary record shows that deposition occurred in two

Fritz, Harald

411

Economics of Peak Oil  

Science Journals Connector (OSTI)

Abstract Peak oil refers to the future decline in world production of crude oil and the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This article argues that economic analysis is indeed appropriate for analyzing oil scarcity because standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced as peaking is not a good indicator of scarcity, peak oil techniques are overly simplistic, the catastrophes predicted by the peak oil literature are unlikely, and the literature does not contribute to correcting identified market failures. Efficiency of oil markets could be improved by instead focusing on remedying market failures such as excessive private discount rates, environmental externalities, market power, insufficient innovation incentives, incomplete futures markets, and insecure property rights.

S.P. Holland

2013-01-01T23:59:59.000Z

412

Microbial enhanced oil recovery and wettability research program  

SciTech Connect

This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

Thomas, C.P.; Bala, G.A.; Duvall, M.L.

1991-07-01T23:59:59.000Z

413

Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs  

E-Print Network (OSTI)

formations of the Middle East (Dukhan field in Qatar, the Jasjid-I-Sulamain, Kirkuk field and Haft- Kel fields in Iran) was made by Birks . Oil recoveries were mathematically determined as a function of time and saturations, for different fracture lengths...APPLICATION OF COMPUTED TOMOGRAPHY TO ENHANCED OIL RECOVERY STUDIES IN NATURALLY FRACTURED RESERVOIRS A Thesis by JAMES MARK FINEOUT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Fineout, James Mark

2012-06-07T23:59:59.000Z

414

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

415

Coal Supply Basin Destination State  

Annual Energy Outlook 2012 (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

416

Apparatus for distilling shale oil from oil shale  

SciTech Connect

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

417

Independent Oversight Inspection, Argonne National Laboratory - East,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Inspection, Argonne National Laboratory - Independent Oversight Inspection, Argonne National Laboratory - East, Summary Report - May 2002 Independent Oversight Inspection, Argonne National Laboratory - East, Summary Report - May 2002 May 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Argonne National Laboratory - East The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) programs and emergency management programs at the Department of Energy's (DOE) Argonne National Laboratory (ANL) in April and May 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight.

418

Hydrocarbon potential of Spearfish Formation in eastern Williston basin  

SciTech Connect

More than 36 million bbl of oil have been produced from stratigraphic traps in sandstones of the Triassic-Jurassic Spearfish Formation in the eastern part of the Williston basin. Newburg field has produced 32 million bbl of oil and Waskada field, discovered in 1980, is estimated to have over 10 million bbl of oil in reserves. A binocular microscopic and petrographic examination of cores from each of the fields has revealed considerable differences in the characteristics of producing sandstones. Cores and sample cuttings from 30 wells in the US and Canada form the basis for this comparison of the two fields. The Spearfish Formation consists of porous, permeable, well-sorted, very fine-grained sandstones with a sucrosic dolomite matrix that are interbedded with impermeable sandstones, siltstones, and shale. The environment of deposition is believed to be the intertidal zone (tidal flat). Sediments of the Spearfish Formation were deposited by a transgressive sea on an eroded Mississippian carbonate section. Oil found in the Spearfish sandstones is derived from the Mississippian.

Dodge C.J.N.; Reid, F.S.

1986-08-01T23:59:59.000Z

419

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

420

K Basins Sludge Treatment Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download K Basins Sludge Treatment Process Summary - K...

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

K Basins Sludge Treatment Project Phase 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Full Document and Summary Versions are available for download K Basins Sludge Treatment Project...

422

Price dynamics of crude oil and the regional ethylene markets  

Science Journals Connector (OSTI)

This paper is the first attempt to investigate: (i) is the crude oil (WTI) price significantly related to the regional ethylene prices in the Naphtha intensive ethylene markets of the Far East, North West Europe, and the Mediterranean? (ii) What drives the regional ethylene prices? The paper is motivated by the recent and growing debate on the lead-lag relationship between crude oil and ethylene prices. Our findings, based on the long-run structural modelling approach of Pesaran and Shin, and subject to the limitations of the study, tend to suggest: (i) crude oil (WTI) price is cointegrated with the regional ethylene prices (ii) our within-sample error-correction model results tend to indicate that although the ethylene prices in North West Europe and the Mediterranean were weakly endogenous, the Far East ethylene price was weakly exogenous both in the short and long term. These results are consistent, during most of the period under review (2000.12006.4) with the surge in demand for ethylene throughout the Far East, particularly in China and South Korea. However, during the post-sample forecast period as evidenced in our variance decompositions analysis, the emergence of WTI as a leading player as well, is consistent with the recent surge in WTI price (fuelled mainly, among others, by the strong hedging activities in the WTI futures/options and refining tightness) reflecting the growing importance of input cost in determining the dynamic interactions of input and product prices.

Mansur Masih; Ibrahim Algahtani; Lurion De Mello

2010-01-01T23:59:59.000Z

423

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

424

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

425

Upper Mission Canyon coated-grain producing facies in Williston basin  

SciTech Connect

The upper Mission Canyon formation, along the northeastern flank of the Williston basin, is a regressive carbonate and evaporite sequence, which has been informally divided into log-defined intervals. Oil production locally occurs at the transition from anhydrite to carbonate for each of the regressive intervals. These carbonate shoreline reservoirs are limestones dominated by coated grains. Porosity is intergranular and vuggy, and production from these reservoirs locally exceeds 400,000 bbl of oil/well. Upper Mission Canyon beds are also productive in island-shoal reservoirs, which developed basinward of of shorelines. These limestone reservoirs are also dominated by coated grains and porosity is intergranular and vuggy. Oil production from these reservoirs is variable, but wells within the Sherwood field along the US-Canadian border have produced over 2.0 MMbbl of oil/well.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (USA))

1989-08-01T23:59:59.000Z

426

East South Central | OpenEI  

Open Energy Info (EERE)

East South Central East South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

427

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

428

Yuanmingyuan East Gate of Peking University  

E-Print Network (OSTI)

Dingxiangyuan Cafeteria SupermarketI Parking 32 Northeast Gate C Building C Swimming Hall East Playground and New Energy Technology 32 Institute of Education Schools & Departments A Foreign Student Affairs

Gu, Jin

429

Producing Pine Straw in East Texas Forests  

E-Print Network (OSTI)

Managing pine forests for the production of pine straw is a promising new enterprise in East Texas. This publication explains the processes and equipment needed to harvest and market pine straw....

Taylor, Eric; Foster, C. Darwin

2004-01-09T23:59:59.000Z

430

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

431

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. Ying, Wang. China, Venezuela firms to co-developApril 21, China and Venezuela sign oil agreements. Chinaaccessed April 21, Venezuela and China sign oil deal. BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

432

Using Oils As Pesticides  

E-Print Network (OSTI)

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

433

Residential heating oil price  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

434

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

435

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

436

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

437

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

438

Geophysical study of the East African margin  

E-Print Network (OSTI)

to the Early Cretaceous in Tanzania. This event may mark the onset of separation of Malagasy from East Africa. Kent et al. (1971) infer that the Jurassic shoreline was located approximately 100 km. inland from the present coastline. The sea flooded... to the Early Cretaceous in Tanzania. This event may mark the onset of separation of Malagasy from East Africa. Kent et al. (1971) infer that the Jurassic shoreline was located approximately 100 km. inland from the present coastline. The sea flooded...

Matthias, Paul Kulman

2012-06-07T23:59:59.000Z

439

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900 to 1100 F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

440

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "basin east oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exploiting heavy oil reserves  

E-Print Network (OSTI)

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

442

Thermal analysis of the southern Powder River Basin, Wyoming  

SciTech Connect

Temperature and geologic data from over 3,000 oil and gas wells within a 180 km x 30 km area that transect across the southern Powder River Basin in Wyoming, U.S.A., were used to determine the present thermal regime of the basin. Three-dimensional temperature fields within the transect, based on corrected bottom-hole temperatures (BHTs) and other geologic information, were assessed using: (1) A laterally constant temperature gradient model in conjunction with an L{sub 1} norm inversion method, and (2) a laterally variable temperature gradient model in conjunction with a stochastic inversion technique. The mean geothermal gradient in the transect is 29 C/km, but important lateral variations in the geothermal gradient exist. The average heat flow for the s