National Library of Energy BETA

Sample records for basin east oil

  1. Oil and gas development in East Siberia

    SciTech Connect (OSTI)

    Sagers, M.J.

    1994-03-01

    The East Siberian region, which comprises nearly 43% of Russia`s territory (including the Sakha (Yakut) republic), has substantial hydrocarbon potential that is impeded by significant logistical problems, the daunting physical environment, and technical challenges posed by the geological complexity of the region. The area`s three major oil and gas provinces are the Lena-Tunguska (with the greatest potential), Lena-Vilyuy, and Yenisey-Anabar. The paper focuses on assessment of reserves, production potential, and history, as well as joint-venture activity involving foreign capital. Foreign investment is targeting gas deposits in the Vilyuy basin and elsewhere in the Sakha republic and small oil deposits serving local markets in the Yakutsk and Noril`sk areas. Forecasts do not envisage substantial production of oil from the region before the year 2010. Future gas production levels are less predictable despite the ambitious plans to export gas from Sakha to South Korea. 14 refs., 1 fig., 1 tab.

  2. International oil companies in the Far East

    SciTech Connect (OSTI)

    Mlotok, P.

    1984-10-01

    All of the major international oil companies have extensive operations in the Far East, and in most cases, these operations account for a significant part of their worldwide earnings. In the refining and marketing end of the business, near-term profitability could be hampered by problems in the Singapore refining center. An expansion of Indonesian refining capacity has reduced profits from processing arrangements, and new Saudi product exports will enter Singapore starting this year. Longer term, however, the strong economic growth in the region renders it a highly attractive area in which to operate. On the producing end, rising output will boost profits for the international oil companies in Indonesia and Malaysia. Caltex (a 50/50 joint venture between Chevron and Texaco) is one of the largest marketers in the Far East. It will not initially be affected greatly by the Singapore refinery problem, as its production from this area goes directly into its own marketing system rather than into the open market. Exxon is a medium-size marketer with especially strong positions in Japan, Malaysia and Thailand. However, the company could be vulnerable to near-term problems in Singapore. Mobil, another medium-size marketer, has a very strong position in Japan but problems in Australia. As those problems are corrected, earnings should grow over time. The Royal Dutch Shell Group is one of the largest marketers in the Far East, with good positions in Singapore, Malaysia and Australia. Shell will have difficulty adjusting to the changing conditions in Singapore, but once this is complete, downstream earnings growth should resume. British Petroleum (BP) has a smaller upstream and downstream presence than the other international oils. Estimated 1983 Far East earnings are tabulated for these five companies. 5 figures.

  3. New Mexico - East Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. New Mexico - East Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  7. New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. New Mexico - East Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  10. East Basin Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEast Basin Creek

  11. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  12. Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa

    SciTech Connect (OSTI)

    Tiercelin, J.J.; Lezzar, K.E. ); Richert, J.P. )

    1994-07-01

    Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

  13. Risk analysis in oil and gas projects : a case study in the Middle East

    E-Print Network [OSTI]

    Zand, Emad Dolatshahi

    2009-01-01

    Global demand for energy is rising around the world. Middle East is a major supplier of oil and gas and remains an important region for any future oil and gas developments. Meanwhile, managing oil and gas projects are ...

  14. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  15. Geology reinterpretation of an inactive old field-Mata 3, Venezuelan East Basin-using computer methods

    SciTech Connect (OSTI)

    Rodriguez, O.; Rivero, C.; Abud, J.

    1996-08-01

    Nowadays to find a new oil field is a very dificult task that the petroleum people know very well; therefore the reactivation of an old oil field that had important production is the best way to increase the economic benefits for the Corporation and for the country in general. In this paper, the most important point was the Geology Study regarding the reopening of the Mata-3 oil field, which ceased to be active 15 years ago, after producing 30 mmbls of light oil. There are 30 prospective sands but only 3 of them have produced 70% of the primary production. Thus, the principal objectives were the S2, S3, 4 sands of Oficina Formation (Venezuelan East Basin) in 476 wells located in this area. The following computer systems that were available to us: GIPSIE System, Vax (Intergraph Co.); PMSE System, Vax (Intergraph Co.); CPS-3 System, Unix (Radian Co.); and SIGEMAP System PC (Corpoven, S.A.). All of them assist in the different tasks that must be done by the geologists working in the interpretation area. In the end, we recommended 40 wells to workover (2 wells/year for 20 years) and thereby to increase the POI (petroleum in situ) and increase the reserves by 13.4 mmbls of fight oil, important commercial production. The estimate of the total investment is about $2 million (340 mmBs.).

  16. Helminth Parasites of Freshwater Fishes of the Pnuco River Basin, East Central Mexico

    E-Print Network [OSTI]

    Mercado-Silva, Norman

    Helminth Parasites of Freshwater Fishes of the Pµnuco River Basin, East Central Mexico GUILLERMO Biologi´a, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 70-153, CP 04510, Me´xico D. F., Mexico (e-mail: gsalgado@mail.ibiologia.unam.mx), 2 Laboratorio de Ictiologi´a y Limnologi´a, Escuela

  17. FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

  18. Oil and gas development in Middle East in 1987

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

    1988-10-01

    Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

  19. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  20. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  1. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect (OSTI)

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  2. Seismic facies and growth history of Miocene carbonate platforms, Wonocolo Formation, North Madura area, East Java Basin, Indonesia 

    E-Print Network [OSTI]

    Adhyaksawan, Rahadian

    2002-01-01

    The Miocene Wonocolo Formation in the North Madura area, East Java Basin, contains numerous isolated carbonate platforms that are broadly distributed across a ~3000 sq km area of the Indonesian back-arc region. The Wonocolo platforms provide...

  3. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  4. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  5. Niger Delta basin oil and gas prospects evaluated

    SciTech Connect (OSTI)

    Not Available

    1992-09-28

    This paper reports that an ambitious project to map African oil and gas prospects has produced its first findings in a report on the Niger Delta basin. In Nigeria, 73% of discoveries are smaller than 50 million bbl, with a 42% success rate for wildcats. There are 'out of round prospects off Nigeria, too, with a number of companies currently in discussions. Petroconsultants the there are further opportunities for exploration in the Northern Onshore Fringe Belt, which has an estimated potential of 500 million bbl of reserves. Three OPLs are open.

  6. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  7. East African coast overlooked. [Oil and gas potential of the east African coast

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This paper reviews the petroleum and gas potential of the Tanzania-Mozambique basinal areas. It discusses the locations of the various sedimentary basins in the onshore and near offshore areas, including the central African rift zone. The paper describes the structure, stratigraphy, and petroleum geology of these basins. Finally the paper reviews the exploration history and the outlook for the future of these basins.

  8. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    SciTech Connect (OSTI)

    Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

    1996-11-01

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  9. Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK University of Birmingham expert academics from across the CDT and also experienced oil and gas industry professionals of a CDT cohort, you will receive 20 weeks bespoke, residential training of broad relevance to the oil

  10. Effects of oil charge on illite dates and stopping quartz cement: calibration of basin models

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Abstract Effects of oil charge on illite dates and stopping quartz cement: calibration of basin Oil can fill pores in reservoir sandstones at any burial depth by long or short distance migration. There has been a debate since 1920 concerning the effect of oil charge. We have made detailed local

  11. ,"NM, East Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. Oil and gas developments in Middle East in 1986

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1987-10-01

    Petroleum production in Middle East countries during 1986 totaled 4,493,973,000 bbl (an average rate of 12,312,254 BOPD), up 22.3% from the revised 1985 total of 3,673,729,000 bbl. Iraq, Kuwait, Saudi Arabia, Abu Dhabi, and Oman had significant increased; Iran was the only Middle East country with a significant decrease. New fields went on production in Oman and Yemen Arab Republic, and significant discoveries were reported in Iraq, Yemen Arab Republic, Oman, and Syria. However, exploration was generally down in most countries. Exploration and production operations continued to be affected by war in Iraq and Iran. 8 figures, 7 tables.

  13. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  14. Oil discoveries and basin resource prediction in Latin America: Past, present, and future

    SciTech Connect (OSTI)

    Kronman, G.E.; Aleman, A.M.; Rushworth, S.W. (Amoco Production Company, Houston, TX (United States))

    1993-02-01

    Over 350 oil discoveries were made in Latin America during the 1980s. About 12% are estimated to contain reserves greater than 100 MMBO. Several of the larger finds (>500 MMBO), such as Cusiana (Colombia), Furrial/Musipan (Venezuela), Cano Lima (Colombia) and Marlim (Brazil) represent an important part of the giant field found worldwide since 1980. Most of the larger discoveries were made by national oil companies in Venezuela, Mexico and Brazil. Undiscovered oil resources of 40-80 BBO are estimated to remain in the highest potential Latin American basins, including those in Mexico, based on historical field size data and current geological knowledge. Over 150 BBO of produced oil and proven reserves has been found in the same group of basins. The probability of finding large undiscovered oil and gas fields (>100 MMBOE) in selected established and mature Latin American basins is high. The Campos (Brazil), Llanos (Colombia), Magadalena (Colombia), Maracaibo (Venezuela), Marahon-Oriente-Putomayo (Peru-Ecuador-Colombia), Maturin (Venezuela), Reforma-Campeche (Mexico) and Ucayali (Peru) basins have the best possibility for such accumulations. Another tier of frontier and emerging basins may also contain significant resources, but limited data makes it difficult to estimate their undiscovered resources. Some of the higher potential basins in this group include the Sierra de Chiapas (Mexico/Guatemala), Huallaga (Peru), Yucatan (Mexico), Sabinas, and Burgos (Mexico) basins.

  15. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    SciTech Connect (OSTI)

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  16. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  17. The sup 36 Cl ages of the brines in the Magadi-Natron basin, east Africa

    SciTech Connect (OSTI)

    Kaufman, A.; Margaritz, M.A.; Hollos, G. ); Paul, M.; Boaretto, E. ); Hillaire-Marcel, C. ); Taieb, M. )

    1990-10-01

    The depression in the East African Rift which includes both Lake Magadi and Lake Natron forms a closed basin within which almost all the dissolved chloride originates in precipitation, since there is no important source of very ancient sedimentary chloride. This provides an ideal setting for the evaluation of the {sup 36}Cl methodology as a geochemical and hydrological tracer. The main source of recent water, as represented by the most dilute samples measured, is characterized by a {sup 36}Cl/Cl ratio of 2.5 {times} 10{sup {minus}14}, in agreement with the calculated value expected in precipitation. Surface evaporation increases the chlorinity of the local freshwater inflow by about a factor of 110 without changing the isotopic ratio, indicating that little chloride enters the system in the form of sediment leachate. A second type of brine found in the basin occurs in a hot deep groundwater reservoir and is characterized by lower {sup 36}Cl/Cl ratios (<1.2 {times} 10{sup {minus}14}). By comparing this value with the 2.5 {times} 10{sup {minus}14} in recent recharge, one obtains an approximate salt accumulation age of 760 Ka which is consistent with thee time of the first appearance of the lake. These older brines also have lower {sup 18}O and {sup 2}H values which indicate that they were recharged during a climatically different era. The {sup 36}Cl/Cl ratios in the inflowing waters and in the accumulated brine, together with the known age of the Lake Magadi basin, may be used to estimate the importance of the hypogene and epigene, as opposed to the meteoric, mode of {sup 36}Cl production. Such a calculation shows that the hypogene and epigene processes together contribute less than 6% of the total {sup 36}Cl present in the lake.

  18. Uinta Basin Oil and Gas Development Air Quality Constraints

    E-Print Network [OSTI]

    Utah, University of

    Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

  19. Sampling and analysis plan for sludge located in fuel storage canisters of the 105-K east basin

    SciTech Connect (OSTI)

    Baker, R.B., Westinghouse Hanford

    1996-05-20

    This Sampling and Analysis Plan (SAP) provides direction for the first sampling of sludge from the K East Basin spent fuel canisters. The specially developed sampling equipment used removes representative samples of sludge while maintaining the radioactive sample underwater in the basin pool (equipment is described in WHC-SD-SNF-SDD-004). Included are the basic background logic for sample selection, the overall laboratory analyses required and the laboratory reporting required. These are based on requirements put forth in the data quality objectives (WHC-SD-SNF-DQO-008) established for this sampling and characterization activity.

  20. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-Print Network [OSTI]

    Lu, Ping

    2012-08-31

    Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

  1. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect (OSTI)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

  4. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  5. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  6. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  7. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  9. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  10. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Beverly Seyler; John Grube

    2004-12-10

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

  11. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.

  12. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  13. Energy Management Program of an Integrated National Oil Company in the Middle-East 

    E-Print Network [OSTI]

    Kumana, J. D.; Aseeri, A. S.

    2007-01-01

    Saudi Aramco is the largest oil producer/exporter in the world, with a maximum sustained production capacity of over 10 MM bpd of crude oil and 8,000 MM scfd of natural gas. The Company operates approximately 32 large Gas-Oil Separation Plants...

  14. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  15. Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

    2007-01-01

    Structure and Seismic Stratigraphy of the southern part ofChough, S.K. , “Seismic Stratigraphy of the Ulleung Basin,

  16. Black Gold Rush in the Near East: A Century of Oil Relations

    E-Print Network [OSTI]

    Cooley, Chelsea

    2011-04-01

    owned this one exclusively, its size exceeding the combined states of Texas, New Mexico and Arizona. Socal soon formed a subsidiary company called the California Arabian Standard Oil Company (Casoc).5 Suddenly, there existed an alliance between... in the US and concern about foreign investment from oil producing countries. Oil companies soon found themselves in a political crossfire between Iran and Saudi Arabia, both Arab countries with economic interest in maintaining alliances with the US...

  17. ECMOR XIII 13th European Conference on the Mathematics of Oil Recovery

    E-Print Network [OSTI]

    Vallette, Bruno

    . Eymard (University Paris East), C. Guichard* (University of Nice Sophia Antipolis), R. Herbin (University and optimize the production of a reservoir. In sedimentary basin modelling, such models are used to simulate the migration of the oil and gas phases in a basin saturated with water at geological space and time scales

  18. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  19. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  20. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect (OSTI)

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  1. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  2. Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan

    SciTech Connect (OSTI)

    Sagers, M.J.

    1995-05-01

    The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

  3. Uncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab D. Mohaghegh, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Uncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab, and Maher Kenawy, ADCO ABSTRACT Simulation models are routinely used as a powerful tool for reservoir carry an inherent degree of uncertainty. Typical uncertainty analysis techniques require many

  4. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  5. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  6. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Murphy, Mark B.

    1999-11-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Riley, Ronald; Wicks, John; Perry, Christopher

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

  9. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Ronald Riley; John Wicks; Christopher Perry

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

  10. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    SciTech Connect (OSTI)

    Anderson, J.C.

    1995-02-01

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this study to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.

  11. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01

    Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

  12. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect (OSTI)

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  13. Tanzania wildcats to evaluate Jurassic Mandawa salt basin

    SciTech Connect (OSTI)

    Nagati, M.

    1996-10-07

    After 5 years of stagnant exploration in East Africa, Canadian independent Tanganyika Oil Co. of Vancouver, B.C., will drill two wildcats in Tanzania to evaluate the hydrocarbon potential of the coastal Jurassic Mandawa salt basin. Mita-1, spudded around Oct. 1, will be drilled to about 7,000 ft, East Lika-1 will be drilled in early December 1996 to approximately 6,000 ft. The two wells will test different structures and play concepts. The paper describes the exploration history, source rock potential, hydrocarbon shows, potential reservoir, and the prospects.

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  16. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  18. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  19. Savannah River Site - D-Area Oil Seepage Basin | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary ofEnergyD-Area Oil Seepage

  20. Geology of the Wilkes land sub-basin and stability of the East Antarctic Ice Sheet: Insights from rock magnetism at IODP Site U1361

    E-Print Network [OSTI]

    Tauxe, Lisa

    2014-01-01

    M. , 2014. The subglacial geology of Wilkes Land, EastE. , Fedorov, L. , 2001. Geology of the Pince CharlesAntarctic deglaciation. Geology 40, 407–410. Pagani, M. ,

  1. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  2. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01

    Energy Agency, Caspian Oil and Gas. Paris: Energy Charteras the actual volumes of oil and gas lying under the Caspianterm impact of offshore oil and gas development and undersea

  3. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  4. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  5. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  6. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  7. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  8. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  9. Structural and stratigraphic evolution of Shira Mountains, central Ucayali Basin, Peru? 

    E-Print Network [OSTI]

    Sanchez Alvarez, Jaime Orlando

    2008-10-10

    The Ucayali Basin is a Peruvian sub-Andean basin that initially formed during the extensive tectonics of the Early Paleozoic. Originally, the Ucayali Basin was part of a larger basin that extended east of the current ...

  10. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01

    state wants to distribute oil rents politically—in effect,in oil prices can shake up the thick network of rent-seekersoil companies, with each player trying to extract the maximum rent

  11. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01

    Pipelines on the seabed will add oil spills and other hazards such as leakage or rupture due to corrosion

  12. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01

    alliance of Russia and Iran on this issue became possible because both countries do not have any significant oil

  13. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  14. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

  15. The extraction of bitumen from western oil sands: Volume 1. Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  16. The extraction of bitumen from western oil sands: Volume 2. Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  17. Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's

    E-Print Network [OSTI]

    Watson, Andrew

    ) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

  18. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrude Oil

  19. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude OilCrude OilCoalbed

  20. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    SciTech Connect (OSTI)

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    2012-11-01

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fl

  1. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  2. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrudeCrude

  3. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    SciTech Connect (OSTI)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO? reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH? flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.

  4. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  5. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumptionmore »of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO? reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH? flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.« less

  6. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  7. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  8. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  9. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  10. Nigeria: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that Middle East events have renewed interest in Nigeria's proven and potentially productive oil basins and fueled an upsurge in exploration and production activity. Increased oil revenues during the Gulf crisis were a bonus that will help pay for projects to boost production. Official goals are to increase production from current levels to 2.2 million bopd by the end of 1991 and 2.5 million bopd by 1995, and to raise reserves to 22 billion bbl by 1995. Shell, the largest operator, will spend $6.6 billion over five years on exploration and production to up its capacity from 1 million bopd to 1.3 million bopd, primarily with a $750-million investment for four new fields in South Forcados permit. Shell also announced reserve estimates of 400 million bbl of crude and 500 Bcf of gas for the Gharan structure onshore in Rivers State north of Yenogoa. Initial discovery was in January 1967, but the field was considered to be gas until Gbaran 4 was drilled in May 1990.

  11. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1987

    SciTech Connect (OSTI)

    Wiman, W.D.

    1988-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1987 showed significant increases in seismic acquisition in Belize, Bolivia, Brazil, Costa Rica, Guatemala, Mexico, Paraguay, and Peru, and a decrease in Chile and Venezuela. Exploratory drilling increased in most major producing countries but was accompanied by a decline in development drilling. Most of the increase could be attributed to private companies fulfilling obligations under risk contracts; however, state oil companies in Bolivia, Chile, and Colombia showed significant increased activity, with only Mexico showing a decrease. Colombia again had a dramatic increase in production (29% from 1986). Noteworthy discoveries were made in Bolivia (Villamontes-1); Brazil, in the Solimoes basin (1-RUC-1-AM); Chile (Rio Honda-1); Colombia, in the Llanos basin (Austral-1, La Reforma-1, Libertad Norte-1, Cravo Este-1, and Cano Yarumal-1), in the Upper Magdalena basin (Toldado-1 and Los Mangos-1); Ecuador (Frontera-1, a joint-exploration venture with Colombia); Mexico, in the Chiapas-Tabasco region (Guacho-1 and Iridi-1), in the Frontera Norte area (Huatempo-1); Peru, in the Madre de Dios basin (Armihuari-4X); Trinidad (West East Queen's Beach-1); and Venezuela (Musipan-1X). Brazil's upper Amazon (Solimoes basin) discovery, Colombia's Upper Magdalena basin discoveries Toldado-1 and Los Mangos-1, Mexico's Chiapas-Tabasco discoveries, Peru's confirmation of the giant Cashiriari discovery of 1986, and Venezuela's success in Monagas state were the highlights of 1987. 5 figs., 8 tabs.

  12. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Mark B.

    2000-10-25

    The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

  13. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01

    only 57% of the world’s oil resources, and the Middle EastFree World access to oil resources, and the limitation offew years has made the oil resource in the Middle East more

  14. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  15. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1997-07-29

    This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  16. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    at Yuzovska in the eastern Dniepr-Donets Basin covers an area of 7,886 km 2 and assigns oil and gas rights to all strata to a depth of 10 km, including tight and basin-centered...

  18. Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

  19. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  20. Well blowout rates in California Oil and Gas District 4--Update and Trends

    E-Print Network [OSTI]

    Benson, Sally M.

    2010-01-01

    geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

  1. Well blowout rates in California Oil and Gas District 4--Update and Trends

    E-Print Network [OSTI]

    Benson, Sally M.

    2010-01-01

    geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andRates in California Oil and Gas District 4 – Update and

  2. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, S.

    1996-11-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

  3. Analysis of Ignition Testing on K-West Basin Fuel

    SciTech Connect (OSTI)

    J. Abrefah; F.H. Huang; W.M. Gerry; W.J. Gray; S.C. Marschman; T.A. Thornton

    1999-08-10

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).

  4. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  5. Characteristics of North Sea oil reserve appreciation

    E-Print Network [OSTI]

    Watkins, G. C.

    2000-01-01

    In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

  6. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  7. Palaeogeographic implications of differential inclination shallowing in permo-carboniferous sediments from the donets basin, Ukraine

    E-Print Network [OSTI]

    Utrecht, Universiteit

    -carboniferous sediments from the donets basin, Ukraine Alexandr G. Iosifidi a , Conall Mac Niocaill b, , Alexei N. Khramov, Ukraine, part of the Palaeozoic East European Platform. Detailed demagnetization of these units reveals

  8. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  9. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, S.

    2001-01-09

    The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

  10. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, Steven; Deo, Milind; Deets, Mike

    2002-02-21

    The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

  11. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China and the Middle East: Energy First,” Middle EastChina and the Middle East: Energy First,” Middle EastChina and the Middle East: Energy First,” Middle East

  12. SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet burning equipment

    E-Print Network [OSTI]

    Overviews 1 SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet. The DemoEast programme objective in Estonia was to promote the pellets firing technology, equipment and Kiltsi light oil fired boilers have been converted to wood pellets burning. The supplier

  13. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  14. Deep East Texas HTC 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    To better understand how the evolution of Cenozoic deep-water circulation related to changes in global climate and ocean basin configuration, we generated Nd isotope records from Ocean Drilling Program sites in the southeastern Atlantic to track...

  15. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect (OSTI)

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  16. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  17. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin OilVENTURA

  18. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  19. Middle East sparking increase in world drilling

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    Global drilling outside the United States appears to have bottomed out last year if official numbers and estimates supplied to World oil prove accurate. The 1990:0090 forecast calls for a 7.8% boost to 22,316 wells (excluding the USSR, Eastern Europe and North Korea), and every region expects to see a net increase. Figures provided by governmental agencies, operating companies and other sources indicate Middle Eastern drilling last year hit a new high for the 1980's with 948 wells. These figures are also given for Western Europe, the Far East, Africa, South America, Canada, Mexico, Costa Rica, and Guatemala.

  20. Core description and analysis using X-radiography and cat-scanning: examples from Sacramento and San Joaquin basins, California

    SciTech Connect (OSTI)

    Fischer, P.J.; Setiawan, J.; Cherven, V.B.

    1986-04-01

    X-radiographs of cores from Forbes deep basin sands, the tar-saturated paralic sands of the Temblor and the Tulare fluvial sands and silts, as well as fractured siliceous units (the Monterey Formation and equivalents) reveal geologic features that are either not visible or barely discernible to the naked eye. These features include changes in grain size, grading, ripple lamination to cross-bedding, cyclic couplets in tidal sequences, bioturbation and burrowing, and fracture patterns and filling. Forbes core x-radiography from the northern Sacramento basin clearly shows a sequence of thinly bedded sand and mudstones that are microripple cross-laminated. Partial Bouma sequences (Ta-b or Tb with Ta-c) are characteristic of the thickly bedded sands below the ripple-laminated units. Cyclic sequences of mud-turbidites and finely laminated, very fine-grained sands to coarse silts characterize a sand-poor sequence that overlies a massive to indistinctly thin-bedded sand. Most of these features described above are barely discernible without x-radiography, yet all provide major input to the interpretation of the depositional environment of the Forbes Formation, as well as information regarding reservoir continuity. Tar or heavy-oil saturation of cores can be a severe problem when cores are examined. In a Tulare Formation core sequence that was x-radiographed, essentially no bedding was visible, even using UV photography. However, extensive fluvial cross-bedding throughout the core was revealed by the x-radiography. A similar, heavy oil masking problem in a Temblor Formation core near East Coalinga was also resolved by the x-ray technique. The reservoir is divided into multiple, thin, tidal couplets (4-6 in.) of oil-saturated sand separated by 1 to 3 in. thick mudstones.

  1. Crustal structure of mountain belts and basins: Industry and academic collaboration at Cornell

    SciTech Connect (OSTI)

    Allmendinger, R.; Barazangi, M.; Brown, L. [Cornell Univ., Ithaca, NY (United States)] [and others

    1995-08-01

    Interdisciplinary investigations of the large-scale structure and evolution of key basins and orogenic belts around the world are the focal point of academic-industry interaction at Cornell. Ongoing and new initiatives with significant industry involvement include: Project INDEPTH (Interdisciplinary Deep Profiling of Tibet and the Himalayas), a multinational effort to delineate deep structure across the type example of active continent-continent collision. 300 km of deep reflection profiling was collected across the Himalaya: and southern Tibet Plateau in 1992 and 1994. CAP (Cornell Andes Project), a long-standing interdisciplinary effort to understand the structure and evolution of the Andes, with a focus on Argentina, Chile and Bolivia. A deep reflection profile is tentatively planned for 1997. Intra-plate Orogeny in the Middle East and North Africa is the focus of multidisciplinary regional syntheses of existing seismic reflection and other databases in Syria (Palmyrides)and Morocco (Atlas), with an emphasis on reactivation and inversion tectonics. Project URSEIS (Urals Reflection Seismic Experiment and Integrated Studies) is a collaboration with EUROPROBE to collect 500 km of vibroseis and dynamite deep reflection profiling across the southern Urals in 1995. Project CRATON, an element in COCORP`s systematic exploration of the continental US, is a nascent multi-disciplinary effort to understand the buried craton of the central US and the basins built upon it. Global Basins Research Network (GBRN) is a diversified observational and computational effort to image and model the movement of pore fluids in detail and on a regional scale for a producing oil structure in the Gulf of Mexico.

  2. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  3. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  4. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  5. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  6. Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas 

    E-Print Network [OSTI]

    Jagoe, Bryan Keith

    1994-01-01

    This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

  7. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0192 0.0202 W 0.0188 W W W W 0.0246 3.1 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  8. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0174 0.0186 W 0.0182 W W W W 0.0269 5.6 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  9. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  10. Iraq: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that no reliable information on Iraqi E and P operations and only a few reports on oil field facilities damage have been available since last August. Most of what is known originated from the Middle East Economic Survey (MEES), the authoritative newsletter covering the Middle East. According to MEES reports in major northern oil fields (Kirkuk, Bai Hasan and Jambur) is put at 800,000 bpd. The northern fields and the pipeline system through Turkey to the Mediterranean Sea that serves as an export outlet for the area apparently were not damaged much by coalition air strikes or subsequent fighting by the Kurds. Last May production was estimated at 250,000 bpd, presumably from northern fields. If and when U.N. sanctions are lifted, Iraq should be able to export promptly through the Turkish line.

  11. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  12. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  13. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02

    is to generate field-wide production forecast of the Eagle Ford Shale (EFS). This study considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating...

  14. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01

    Tullow Oil won a bid in the December 2005 licensing roundoil, Cabinda’s Central remained unclaimed in Angola’s 2007 –2008 licensinglicensing round for smaller onshore opportuni- ties in the Congo and Kwanza Basins, the elites had formed domestic firms for oil

  15. Oil Price and the Dollar Virginie Coudert

    E-Print Network [OSTI]

    Boyer, Edmond

    , published in "Energy Studies Review 15, 2 (2008) ?" #12;1 Introduction Even after a decrease in the last 25 of primary energy and 95% of the transportation sector relies on it (Carnot & Hagege (2004)). The real oil to the situation in the Middle East (terrorism in Iraq and Saudi Arabia) and to the political troubles in Venezuela

  16. Oil and Gas CDT Anomalous compaction and lithification during early burial in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

  17. Plan for characterization of K Basin spent nuclear fuel and sludge

    SciTech Connect (OSTI)

    Lawrence, L.A.; Marschman, S.C.

    1995-06-01

    This plan outlines a characterization program that supports the accelerated Path Forward scope and schedules for the Spent Nuclear Fuel stored in the Hanford K Basins. This plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years and is limited to in-situ and laboratory examinations of the spent nuclear fuel and sludge in the K East and K West Basins. The program provides bounding behavior of the fuel, and verification and acceptability for three different sludge disposal pathways. Fuel examinations are based on two shipping campaigns for the K West Basin and one from the K East Basin. Laboratory examinations include physical condition, hydride and oxide content, conditioning testing, and dry storage behavior.

  18. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  19. East Asian Security in 2025 

    E-Print Network [OSTI]

    Heavin, Reagan; Hudson, Adam; Krueger, Brandon; O'Neil, Sean; Rozell, Griffin; Suma, Matt

    2008-01-01

    Are • Reagan Heavin – Energy • Adam Hudson – State Capacity • Brandon Krueger – Military • Sean O’Neil – Demographics • Griffin Rozell – Balance of Power • Matt Suma – Economy East Asian Security in 2025 China: Competition, Cooperation, Plateau? Reagan Heavin... Adam Hudson Brandon Krueger Sean O’Neil Griffin Rozell Matt Suma 24 April 2008 East Asian Security in 2025 Agenda • Conclusions • Projections • Drivers • Four Outcomes • Questions East Asian Security in 2025 Conclusions • China will rise to great power...

  20. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  1. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  2. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    SciTech Connect (OSTI)

    ROGERS, C.A.

    1999-06-04

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

  3. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1986

    SciTech Connect (OSTI)

    Wiman, W.D.

    1987-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1986 was considerably reduced compared to 1985. Brazil, Colombia, Ecuador, Guatemala, and Venezuela had increased oil production, with Colombia showing a dramatic 71% increase attributed mainly to bringing on-stream the pipeline connecting Occidental-Shell-Ecopetrol's Cano Limon complex to the port of Covenas. Significant discoveries were reported from Argentina in the Olmedo, Oran, and San Jorge basins; Brazil in the offshore Campos and Amazon basins; Colombia in the Llanos basin; Ecuador in the Oriente basin; Mexico in the Bay of Campeche; Peru in the Ucayali basin; and Venezuela in the Eastern Venezuela basin. Eastern Venezuela's Furrial discovery is reported to have recoverable reserves of more than 1 million bbl of oil, and Shell's Ucayali basin discovery is reported to hold more than 7 tcf of gas. 7 figures, 10 tables.

  4. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  5. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  6. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  7. East Berlin, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEast Basin

  8. East Blythe, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEast BasinBlythe,

  9. Reservoir characterization of the upper Merecure and lower Oficina Formations sands in the Leona Este Field, Eastern Venezuela Basin 

    E-Print Network [OSTI]

    Flores Millan, Maria Carolina

    2001-01-01

    Field, which is located in the southern portion of the Eastern Venezuela Basin. Two or more of these reservoir sands, which are interbedded with shales, have been simultaneously produced pursuing an increase in the oil production rate, but an unexpected...

  10. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  12. Managing large oil Spills in the Mediterranean

    E-Print Network [OSTI]

    Madrid, J A Jiménez; Poy, J Ballabrera; García-Ladona, E

    2015-01-01

    For the first time a statistical analysis of oil spill beaching is applied to the whole Mediterranean Sea. A series of probability maps of beaching in case of an oil spill incident are proposed as a complementary tool to vulnerability analysis and risk assessment in the whole basin. As a first approach a set of spill source points are selected along the main paths of tankers and a few points of special interest related with hot spot areas or oil platforms. Probability of beaching on coastal segments are obtained for 3 types of oil characterised by medium to highly persistence in water. The approach is based on Lagrangian simulations using particles as a proxy of oil spills evolving according the environmental conditions provided by a hincast model of the Mediterranean circulation.

  13. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect (OSTI)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  14. Latinas Crafting Sustainability in East Los Angeles

    E-Print Network [OSTI]

    Guajardo, Ana

    2010-01-01

    Dead, indigenismo, arts sustainability, East Los Angeles,Guajardo Latinas Crafting Sustainability in East Los Angelesin their growth and sustainability will help document their

  15. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996

    SciTech Connect (OSTI)

    Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

    1998-09-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  16. UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

  17. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin

    E-Print Network [OSTI]

    Pickart, Robert S.

    States b ExxonMobil Research and Engineering, 1545 Route 22 East, Annandale, NJ 08867, United States c analysis of the SCM in the Chukchi Sea and adjacent Canada Basin, drawing on data collected during of satellite ocean-color sensors. A seasonal analysis of historical data from the region shows that the SCM

  18. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  19. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect (OSTI)

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  20. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  1. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  2. Catalysts available from East Germany

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This paper reports that a company in East Germany manufactures catalytic reforming, hydrocracking, mild hydrocracking, hydrotreating, and hydrorefining catalysts, among others. The company offers almost 50 catalysts for these processing categories.

  3. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReporting Guidelines VoluntaryStatement 1

  4. New Mexico - East Crude Oil + Lease Condensate Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetper Thousand

  5. East Coast (PADD 1) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving onEarth DayPipeline,MTBE

  6. NM, East Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (MillionandIndustrialYear1371,024,082474 523

  7. East Coast (PADD 1) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecastof

  8. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  9. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    SciTech Connect (OSTI)

    Hill, D.W.; Sande, J.J. [Shell Western E& P Inc., Bakersfield, CA (United States); Doe, P.H. [Shell Development Co., Houston, TX (United States)

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

  10. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect (OSTI)

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  11. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

  13. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  14. Biothem-based Mississippian transect from the Basin and Range Province to the Anadarko basin

    SciTech Connect (OSTI)

    Frye, M.W. ); Lane, H.R. ); Couples, G.D. )

    1991-03-01

    A west-to-east transect, constructed using the 'Biostratigraphic Package Approach' of Lane and Frye and illustrating the biostratigraphic, lithologic, and depositional sequence relationships within the Mississippian system, extends from the basin and range province across the Transcontinental Arch (TA) and into the Anadarko basin. The transect is based on both published and proprietary biostratigraphic data. It was constructed primarily to portray the regional distribution and exploration significance of biotherms relative to the axis of the TA. These biotherms are biostratigraphic units that are wedge- or lens-shaped bodies of strata that are bounded by paleontologically recognizable unconformities in their updip extents, are conformable with underlying and overlying biothems in their maximum shelfal development, are conformable or bounded by surfaces of nondeposition and or submarine erosion in their downdip, basinal extremities, and also contain a logical sequence of depositionally related facies. An unexpected result of constructing the transect was the recognition of an apparent compensatory temporal and spatial distribution of Mississippian biothems. This distribution is interpreted to imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. Platescale tilting, along with local subsidence and uplift, is suggested as the overriding mechanism controlling deposition along the extent of the transect.

  15. DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH

    SciTech Connect (OSTI)

    JOCHEN, R.M.

    2007-08-02

    The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting the six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.

  16. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  17. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    From EIA, “World Production of Crude Oil, NGPL, and Otherfrom EIA, “World Production of Crude Oil, NGPL, and Otherfrom EIA, “World Production of Crude Oil, NGPL, and Other

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. version 11apr11a Geopolitics of the Global Oil System

    E-Print Network [OSTI]

    O'Donnell, Tom

    ://menapetroleum.blogspot.com/ Short Description This course examines the political economy of global energy, especially oil, and its-group blogs: 1. China Oil Affairs http://chinaoilaffairs.blogspot.com/ 2. Rentismo & Dutch Disease http geopolitical consequences for the Middle East, Latin America, China, and U.S. policy. In Part 1, Resources, we

  3. Integration of nuclear power with oil sands extraction projects in Canada

    E-Print Network [OSTI]

    Finan, Ashley (Ashley E.)

    2007-01-01

    One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

  4. Trenton strata in western Illinois Basin, Brown and Schuyler Counties, Illinois

    SciTech Connect (OSTI)

    Pochel, R.M.

    1984-12-01

    Trenton strata in the western Illinois basin are very good prospects for oil exploration. Much drilling has been done in the area but, as yet, no producing wells have been completed. Oil stains and some tars have been found in some samples from most wells. The Trenton in the area of Brown and Schuyler Counties is a fine-grained limestone that underlies the Maquoketa Shale at an average depth of 800 ft (244 m). Because of its position near the edge of the Illinois basin, the stratigraphy varies considerably and inconsistencies are present in most samples viewed.

  5. Renewables East | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation, search Name: Renewables East

  6. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Schamel, S.

    1996-06-28

    This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  8. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  9. Indonesia's Arun LPG plant production is unique in Far East markets

    SciTech Connect (OSTI)

    Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

    1987-08-03

    Entry of the Arun (Indonesia) LNG plant into the LPG Far East markets is significant because its supplies for those markets are not tied to gas being extracted in association with crude oil. Arun LPG products are extracted from gas that is processed into and marketed as LNG. This article on the Arun LNG plant analyzes its LPG process and the significance of the LPG project on the plant's markets. Particular attention is paid to: 1.) LPG recovery; 2.) LPG fractionation; and 3.) Far East trade.

  10. Investigation and technique in the fluorescent spectra examination of crude oil 

    E-Print Network [OSTI]

    Chambers, Gilbert Vester

    1958-01-01

    INVESTIGATION AND TECHNIQUE IN THE FLUORESCENT SPECTRA EXAMINATION OF CRUDE OIL A THESIS by Gilbert V. Chambers Approved as to style and content by: ha man o zt 1 ead o Department or Stu ent Adv sor January 1958 AGKNOWLEDGEhlENT... 40 IX. BIBLIOGRAPHY . . ~ . . ~ ~ ~ ~ . ~ . ~ ~ . 42 X. APPEND IX ~ A. Development of Technique: Run Number 1. Run Number 2. Run Number 5. B. Results: g5 52 ~ ~ ~ ~ ~ ~ ~ 60 West Texas Sour Crude Oil . . . . . . 69 East Texas Crud. e Oil...

  11. MED CTR NORTH EAST GARAGE

    E-Print Network [OSTI]

    Palmeri, Thomas

    GARAGE MARKET 2525 GARAGE MRB III BIO/SCI LIGHT HALL SONY BMG PSYCHIATRIC HOSPITAL GENERAL LIBRARY EAST WEST WYATT CENTER POWER HOUSE V @ V APARTMENTS COMMONS CTR NORTH STUDENT LIFE BAKER BLDG BRYAN BLDG BLDG WESLEY PLACE RETAIL HOME ECONOMICS 1110 19TH AVE GARLAND HALL SC MOLEC BIOLOGY TOLMAN HALL MORGAN

  12. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  13. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  14. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    's share of world crude oil production has rebound5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil

  15. DECOUPLING AND BLOCK PRECONDITIONING FOR SEDIMENTARY BASIN SIMULATIONS IN TEMIS3D

    E-Print Network [OSTI]

    Bath, University of

    is then in the second stage preconditioned by eÆcient methods like AMG. The third step #12;nally consists in \\recoupling major oil companies. Ideally a basin simulator should span the entire process of source rock burial, hydrocarbon generation, expulsion, migration into a potential trap, and assessment of trap integrity

  16. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  17. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  18. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  19. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  20. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  1. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  2. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  4. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  5. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),the Predictive Accuracy of Crude Oil Futures Prices,” EnergyFigure 3. Price of crude oil contract maturing December of

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    and Income on Energy and Oil Demand,” Energy Journal 23(1),the faster its growth in oil demand over the last half ofthe income elasticity of oil demand to fall signi?cantly.

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  9. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  10. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  11. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    in U.S. real GDP and oil consumption, 1949-2006. slope =Historical Chinese oil consumption and projection of trend.1991-2006: Chinese oil consumption in millions of barrels

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

  14. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -ProductionWet After LeaseReserves (Million

  15. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -ProductionWet AfterWet After

  16. UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) PhD Projects at the University of Aberdeen

    E-Print Network [OSTI]

    Neri, Peter

    UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) PhD Projectsst January 2015 Interviews to be held on Wednesday 4th March 2015. #12;UK Oil and Gas Collaborative of deformation in multi-layers for unconventionals (tight gas /shale gas) 2. Mature Basins 30%. Improved

  17. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  18. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  19. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect (OSTI)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    geological limits, global production of crude oil next yearGlobal production of crude petroleum. Notes: Bold line: From EIA, “World Production of Crude Oil,

  1. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  2. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    historical data for claiming to be able to predict oil pricehistorical data. The second is to look at the predictions of economic theory as to how oil prices

  4. QER East, Newark, September 8

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: Julia Hamm [jhamm@solarelectricpower.org] Sent:East,

  5. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  6. East Kansas Agri-Energy, LLC

    SciTech Connect (OSTI)

    2007-12-01

    This is a combined heat and power (CHP) project profile on a 1.6 MW CHP application at East Kansas Agri-Energy, LLC in Garnett, Kansas.

  7. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  8. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  9. Petroleum geology of Benue trough and southeastern Chad basin, Nigeria

    SciTech Connect (OSTI)

    Petters, S.W.; Ekweozor, C.M.

    1982-08-01

    Cretaceous cyclic sedimentation in the southern Benue trough, together with unconformities, provide a tripartite subdivision of the sedimentary succession into (1) the Albian Asu River Group, (2) the late Cenomanian to early Santonian Cross River Group (new name) and interfingering marginal marine sandstones, and (3) the post-Santonian coal measures sequence. Most of the Albian to Eocene marine shales in the Benue trough and the Turonian shales in the southern Chad basin contain well over 0.5% total organic carbon, with values of up to 7.4% in Turonian anaerobic shales. Based on the high content of soluble organic matter, thermal maturity, and the predominantly terrigenous character of the Late Cretaceous shales, mostly natural gas was probably generated in both basins. The late Santonian folding and uplift would have disrupted petroleum reservoirs. Also, crude oil accumulations which were not dissipated by tectonism would be relocated at relatively shallow depths and hence become accessible to invading meteoric waters.

  10. Possible flexural mechanisms for origins of extensive, ooid-rich, carbonate environments, middle and early late Mississippian, east-central United States

    SciTech Connect (OSTI)

    Ettensohn, F.R. )

    1989-08-01

    During the earliest Mississippian, much of east-central US was a deep-water black-shale basin formed due to subsidence accompanying Acadian tectonism; by the middle Mississippian, this basin had been transformed into a very shallow epeiric sea characterized by ooid-rich carbonates. This transformation probably occurred in two parts due to flexural mechanisms accompanying the end of the Acadian orogeny and the beginning of the Ouachita orogeny. In the eastern part of the basin, with the end of active Acadian deformational loading, lithospheric relaxation caused uplift and eastward migration of the Acadian peripheral bulge from near the Cincinnati arch into the Appalachian basin. By the middle Meramecian, this uplift and a concomitant infilling of the basin with post-orogenic clastics created an extensive shallow-water platform conducive to ooid deposition well into the Appalachian basin. In western parts of the cratonic black-shale basin, from the western flanks of the Cincinnati arch to the eastern flanks of the Transcontinental arch, any infilling with postorogenic Acadian clastics was minor. However, by the Kinderhook-Osage transition, apparent collision and subduction leading to the Ouachita orogeny had begun, and with the inception of collision, the entire foreland as far north as the Illinois basin was upwarped by the cratonward (north and northeast) migration of the accompany peripheral bulge. As a result, by the early Meramecian, shallow-water conditions favorable for oolitic-carbonate deposition prevailed throughout the area.

  11. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  12. EAST CAROLINA UNIVERSITY East Fifth Street, Greenville, North Carolina 27858 U.S.A.

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    EAST CAROLINA UNIVERSITY East Fifth Street, Greenville, North Carolina 27858 U.S.A. Undergraduate, North Carolina, a city of more than 70,000 people that is a business, cultural, educational, and medical, East Carolina University (ECU) has grown to become an emerging, national research university

  13. East Tennessee Technology Park 3-1 3. East Tennessee Technology Park

    E-Print Network [OSTI]

    Pennycook, Steve

    1 East Tennessee Technology Park 3-1 3. East Tennessee Technology Park ETTP was originally built to the "East Tennessee Technology Park." Environmental management and remediation operations consist by the private sector) also became a major mission at ETTP. Reindustrialization allows private industry to lease

  14. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  15. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  16. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  17. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Strathclyde, University of

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  18. East Carolina University Pre-Professional Advising

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    East Carolina University Pre-Professional Advising Health Professions Manual 2014-2015 East://www.ecu.edu/ppac #12;Health Professions Advising Manual 1) Introduction 3 2) Deciding on a health profession 4 3) Health professions requirement four years or more of education 8 4) Fastest growing health professions

  19. East Carolina University Department of Public Health

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    East Carolina University Department of Public Health Master of Public Health: Competencies Brody School of Medicine Department of Public Health | Lakeside Annex 7 Updated: 11/20/13 #12;MPH Competencies The Master of Public Health (MPH) Program at East Carolina University expects each MPH graduate to possess

  20. EAST CAMPUS / MIT GATEWAY Alternative Approaches

    E-Print Network [OSTI]

    Reif, Rafael

    EAST CAMPUS / MIT GATEWAY Alternative Approaches Prepared by The Design Committee July 19. 2013 #12;East Campus / MIT Gateway - Alternative Approaches 1 This report lays out strategic options for design space on the campus south of Main Street. The report examines alternative approaches to achieving

  1. East Tennessee State University Web Privacy Statement

    E-Print Network [OSTI]

    Karsai, Istvan

    East Tennessee State University Web Privacy Statement A Note to Children and Parents East Tennessee through a university Web site is handled. ETSU understands the importance of protecting the privacy of personal information, especially in today's electronic environment. This privacy policy covers the Web

  2. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  3. The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stuwe a,*, H. Fritz a

    E-Print Network [OSTI]

    Fritz, Harald

    The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stu¨we a,*, H. Fritz, Austria b Department of Geology, Mansoura University, Mansoura, Egypt Received 8 September 2004; received of kilometres of the East- ern Desert of Egypt. Its sedimentary record shows that deposition occurred in two

  4. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    movements on an array of strike-slip and normal fault systems have resulted in the uplift and preservation of older basins in modern ranges. One of the best exposed of these is...

  5. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  6. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan, 1974) Exploration Activity Details Location Kilauea East...

  7. Evolution of the Llanos Basin and the deformation of the Eastern Cordiller, Columbia

    SciTech Connect (OSTI)

    Addison, F.; Cooper, M.; Hayward, A.; Howe, S. O'Leary, J. (BP Exploration Co. Ltd., Santafe de Bogota (Colombia))

    1993-02-01

    The Llanos Basin is located on the flank of the Eastern Cordillera in northeast Colombia. Basin development commenced with the deposition of a synrift Triassic and Jurassic megasequence related to the separation of North and South America in the Caribbean. Basin development continued with the Cretaceous Back Arc Megasequence deposited in a back arc basin behind the Andean subduction zone. Three major sequences can be recognized corresponding to extensional pulses in the Tithonian, Albian, and the Santonian which control thickness and facies distributions. The primary reservoir in the basin is the Late Eocene Mirandor Formation which was deposited in a fluvial system which prograded from the Guyana Shield to the west-northwest. This was deposited as part of the Pre-Andean Foreland Basin Megasequence (Bartonian to Serravallian) which developed as a result of uplift onset and deformation in the Central Cordillera. This megasequence covered the Magdalena Valley the Eastern Cordillera ad the Llanos Basin. In the foothills of the Eastern Cordillera, the Mirador Formation begins to show evidence of marine influence and was probably deposited in a series of shoreface sands and offshore bar complexes in the Cordillera. The Pre-Andean Foreland Basin Megasequence includes the Eocene-Oligocene Carbonera Formation which was deposited in a low every fluvial system that was mud dominated. Within the Carbonera Formation, a series of major, grossly coarsening upward cycles can be seen which are separated by maximum flooding surfaces that approximate to time lines. These cycles correspond to the early phases of development of the Central Cordillera with each pulse being seen as an influx of coarser clastics to the basin. The deformation style in the Eastern Cordillera is a mixture of thin-skinned thrust structures and the inversion of the thick-skinned basement involved extension faults. The inversion structures include the Cuisana field, a giant oil and gas-condensate discovery.

  8. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  9. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  10. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    in the oil and gas sectors . . . . . . . . . . . . . .of regime change, using oil and gas income per capita as aregime change, using fitted oil and gas income per capita as

  11. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  12. Free energy basin-hopping

    E-Print Network [OSTI]

    Sutherland-Cash, K.H.; Wales, D.J.; Chakrabarti, D.

    2015-02-17

    A global optimisation scheme is presented using basin-hopping with the acceptance criterion based on approximate free energy for the corresponding local minima of the potential energy. The method is illustrated for atomic and colloidal clusters...

  13. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  14. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins 

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25

    in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America...

  15. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  16. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  17. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEastEast BrawleyEast

  18. Spot-Oiling Johnsongrass. 

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01

    -treat Johnsongrass in cotton in 19 54. Power-driven sprayers normally used for in- tect control in row crops were modified for Yose. A spray pressure of 12 pounds re inch was used. Two systems of the grass were tried. In one system the crenr applying the oil... crown-oilings with naphtha, 83 percent in 7 tests by 3 oil- ings, 95 percent in 6 tests by 4 oilings and 98 percent in 4 tests by 5 to 7 oilings. The use of mixtures of 50 percent naphtha and 50 per- cent kerosene or diesel fuel oil reduced...

  19. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  20. flow beneath the East Pacific Rise. Nature 402, 282285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds

    E-Print Network [OSTI]

    1999-01-01

    flow beneath the East Pacific Rise. Nature 402, 282­285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. Dick, H. J. B. in Magmatism in the Ocean Basins (eds Sounders, A. D. & Norry, M. J.) 71­105 (Geol. Soc

  1. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  2. Producing Pine Straw in East Texas Forests 

    E-Print Network [OSTI]

    Taylor, Eric; Foster, C. Darwin

    2004-01-09

    Managing pine forests for the production of pine straw is a promising new enterprise in East Texas. This publication explains the processes and equipment needed to harvest and market pine straw....

  3. MIDDLE EAST TECHNICAL UNIVERSITY Faculty of Architecture

    E-Print Network [OSTI]

    Hasýrcý, Vasýf

    MIDDLE EAST TECHNICAL UNIVERSITY Faculty of Architecture Department of City & Regional Planning #12 I N G V i s i o n PLANNERS in Turkey should be capable of: ...developing alternative views (utopian/

  4. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www government that allowed tax-supported institutions (like the University of Minnesota) to acquire these works: The Weisman is located at 333 E. River Road in

  5. Campus Services 1951 East-West Road

    E-Print Network [OSTI]

    Campus Services 1951 East-West Road Honolulu, Hawai`i 96822 Telephone: (808) 956-2980 Fax: (808 the current economic climate and the salary cuts that many of our employees are experiencing. We arrived

  6. Plan for characterization of K Basin Spent Nuclear Fuel and sludge. Revision 1

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-05

    This plan outlines a Characterization Program that provides the necessary data to support the Integrated Process Strategy scope and schedules for the Spent Nuclear Fuel (SNF) and sludge stored in the Hanford K Basins. The plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years (i.e., FY 1995 through FY 1998) and is limited to in-situ and laboratory examinations of the SNF and sludge in the K East and K West Basins. In order to assure the scope and schedule of the Characterization Program fully supports the Integrated Process Strategy, key project management has approved the plan. The intent of the program is to provide bounding behavior for the fuel, and acceptability for the transfer of the sludge to the Double Shell Tanks. Fuel examinations are based on two shipping compains from the K West Basin and one from the K East Basin with coincident sludge sampling campaings for the associated canister sludge. Sampling of the basin floor and pit sludge will be conducted independent of the fuel and canister sludge shipping activities. Fuel behavior and properties investigated in the laboratory include physical condition, hydride and oxide content, conditioning testing, oxidation kinetics, and dry storage behavior. These laboratory examinations are expected to provide the necessary data to establish or confirm fuel conditioning process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery precesses, tank farm acceptance, simulant development, measurement of corrosion products, and measurements of drying behavior.

  7. Mining problems caused by tectonic stress in Illinois basin

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01

    The Illinois basin coalfield is subject to a contemporary tectonic stress field in which the principal compressive stress axis ({sigma}1) is horizontal and strikes N60{degree}E to east-west. This stress is responsible for widespread development of kind zones and directional roof failures in mine headings driven perpendicular to {sigma}1. Also, small thrust faults perpendicular to {sigma}1 and joints parallel to {sigma}1 weaken the mine roof and occasionally admit water and gas to workings, depending upon geologic setting. The direction of magnitude of stress have been identified by a variety of techniques that can be applied both prior to mining and during development. Mining experience shows that the best method of minimizing stress-related problems is to drive mine headings at about 45 to {sigma}1.

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  10. Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new| Department of Energy

  11. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  12. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  13. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. Depositional environment of Red Fork sandstones, deep Anadarko Basin, western Oklahoma 

    E-Print Network [OSTI]

    Whiting, Philip Howard

    1982-01-01

    of constructional channel-fill sandstones of the Red Fork, East Clinton Field. Location of cross section shown in Fig. 17. Datum level is an overlying highly conductive shale marker 51 19 Core analysis plot showing porosity, permeability, and fluid saturation...- ducers of oil and gas. Huch of the Red Fork production 'n this area has occurred while drilling for the deeper Morrow sandstones. The excellent natural gas productior. from the shallower Red Fork reservoirs has recently generated much interest...

  15. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    SciTech Connect (OSTI)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

  16. Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil 

    E-Print Network [OSTI]

    Fu, Xuebing

    2012-08-20

    Solids-stabilized water-in-oil emulsions have been suggested as a drive fluid to recover viscous oil through a piston-like displacement pattern. While crude heavy oil was initially suggested as the base oil, an alternative oil ? used engine oil...

  17. Improved Basin Analog System to Characterize Unconventional Gas Resource 

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02

    potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly...

  18. Oil Quantity : The histori

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba returns plan n in percent m 0% to 300% 968 1973 Oil Productio Productio 5000600 4000500 3000400 2000300 model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically

  19. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  20. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  1. Oil spill response resources 

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01

    source in an effective manner. Oil spills are fast becoming pollution sources that are causing the maximum damage to the environment. This is owing to the compounds that are released and the way oil spreads in both water and land. Preventing the oil spill...

  2. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  3. Oil and Gas CDT Cenomanian-Turonian Palaeoenvironments of NE Brazil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Cenomanian-Turonian Palaeoenvironments of NE Brazil Margin University of Birmingham, biostratigraphy, Brazil, Cretaceous Overview The Late Cretaceous stratigraphy of the Equatorial margin of North East Brazil holds a unique record of the final stages of the opening of the South Atlantic. During

  4. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  5. Terry sandstone member of the Pierre Shale, Upper Cretaceous, Spindle field, Denver Basin, Colorado 

    E-Print Network [OSTI]

    Helsley, Robert James

    1985-01-01

    of the first oil produc- tion was discovered in 1901 from the Upper Cretaceous Terry and Hygiene members of the Pierre Shale. After that initial production, the Terry and Hygiene members did not again become important reser- voirs for some 70 years despite...TERRY SANDSTONE MEMBER OF THE PIERRE SHALE, UPPER CRETACEOUS, SPINDLE FIELD, DENVER BASIN, COLORADO A Thesis by ROBERT JAMES HELSLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  6. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  7. Modelling the costs of non-conventional oil: A case study of Canadian bitumen

    E-Print Network [OSTI]

    Méjean, A.; Hope, Chris

    of the parameter range. However, the issue about non-conventional oil is less to do with the size of the resources than the rate at which they can be produced, (ASPO, 2003). According to the 2004 World Energy Outlook (IEA, 2004a), total non-conventional oil... transformations of the oil market, including 3 the erosion of spare capacity due to lack of investment and strong world economic growth driven by China, the U.S. and the Middle East (EIA, 2007b), see also (Stevens, 2005). Some analysts claim that the recent...

  8. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish...

  9. Water War in the Klamath Basin

    E-Print Network [OSTI]

    Carchidi, Victoria

    2011-01-01

    Review: Water War in the Klamath Basin: Macho Law, CombatHolly and A. Dan Tarlock. Water War in the Klamath Basin:has rights to the limited water. Birds and ecosystems; fish

  10. Rainfall Generator for the Rhine Basin

    E-Print Network [OSTI]

    Brandsma, Theo

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables by nearest +31.320.249218 #12;2 Rainfall Generator for the Rhine Basin #12;Multi-site generation of weather

  11. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  12. Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes

    E-Print Network [OSTI]

    Weijer, Wilbert

    Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes et Approches Numériques, Paris, France SARAH T. GILLE Scripps Institution of Oceanography, La Jolla In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected

  13. Design review report for the Hanford K East and K West Basins MCO loading system

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1997-10-28

    This design report presents the final design of the MCO Loading System. The report includes final design drawings, a system description, failure modes and recovery plans, a system operational description, and stress analysis. Design comments from the final design review have been incorporated.

  14. Evaluation of Travis Peak gas reservoirs, west margin of the East Texas Basin 

    E-Print Network [OSTI]

    Li, Yamin

    2009-05-15

    produced gas since the 1940s. In this study, well log, 2D seismic, core, and production data were used to evaluate the geologic setting and reservoir characteristics of the Travis Peak formation. The primary objective was to assess the potential...

  15. The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin 

    E-Print Network [OSTI]

    Tschirhart, Nicholas Ray

    2005-11-01

    Concentration In itia lD el iv er ab ilit y, M Mc f/d ay - HPC - - MPC - Comparison of Average Deliverability for Different Treatment Sizes 1.307 3.562 0 1 2 3 4 MPC HPC Average Maximum Proppant Concentration Av er ag e OG IP ,B CF - MPC - - HPC - Comparison... er ab ilit y, M Mc f/d ay Av er ag e OG IP ,B CF Av er ag e Dr ai na ge A re a, ac re s Fig 7. ? Results of Large Treatments in the Wilcox-Lobo Sand 24 Table 4 ? Wilcox-Lobo Case History Data Treatment Size Well Proppant Quantity (lbs) Lf (ft) Gas...

  16. Late-Quaternary Stratigraphy and Geoarchaeology of the Upper Neosho River Basin, East-Central Kansas

    E-Print Network [OSTI]

    Gottsfield, Andrew Stefan

    2009-12-17

    ACKNOWLEDGEMENTS The University of Kansas Odyssey Research Fund provided the majority of funding for this study. Support for this investigation was also provided by the Kansas Geological Survey, the Archaeological Research Center at the University... of Kansas, the U.S. Department of the Fish and Wildlife Services, and the Carlyle Smith and Carroll Clark Research Grants. This research would not have been possible without the guidance, support, and instruction provided by Dr. Rolfe D. Mandel. Dr...

  17. Seismic reprocessing, interpretation and petroleum prospectivity of the East Cano Rondon Area, Llanos Basin, Colombia 

    E-Print Network [OSTI]

    Molina, German D

    1999-01-01

    was to reprocess approximately 200 km of mid 1980s seismic, integrate the interpretation of the seismic data with the available well and geologic data, create a sequence stratigraphic framework and describe the hydrocarbon potential of the area. Reprocessing...

  18. Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference

    E-Print Network [OSTI]

    Aamodt, Agnar

    to 170 000 $ during 1985 - 1988, and represented 3 - 5 % of the total drilling costs. The cause of goingProceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid

  19. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  20. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  1. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  2. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    REVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil of operational problems. Nowadays various test-systems are utilized for microbial monitoring in crude oils

  3. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  4. Basin and Petroleum System Dynamics

    E-Print Network [OSTI]

    Pfander, Götz

    and development costs of new reserves and existing fields is immense: drilling wells, for example, may consume up to 85% of the total exploratory funds. Thus, the decision to drill should be taken in a sensible way of sedimentary basins and their hydrocarbon fluids. Executive Master Programme Participants will be able

  5. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  6. Analysis of Long-range Clean Energy Investment Scenarios for Eritrea, East Africa

    E-Print Network [OSTI]

    Van Buskirk, Robert D.

    2004-01-01

    Clean Energy Investment Scenarios for Eritrea, East Africaand renewable energy development scenarios for Eritrea, EastEritrea, East Africa in an effort to facilitate clean energy

  7. Oil and gas developments in South America, Central America, Caribbean Area, and Mexico in 1982

    SciTech Connect (OSTI)

    Deal, C.S.

    1983-10-01

    Petroleum developments in the region in 1982 had a more varied pattern than in 1981 when all aspects were upbeat with varying degrees of increases. In 1982, Brazil, Mexico, and Guatemala had striking increases in oil production; Bolivia, Chile, and Colombia had moderate increases; and Argentina, Trinidad, and Venezuela reported declines. In exploration, Argentina reported several additional offshore Tierra del Fuego discoveries in the Cretaceous Springhill and 2 more encouraging gas discoveries in the Noroeste basin. Bolivia reported an oil discovery from Silurian rocks more generally considered a gas objective. Brazil extended and confirmed the Western Amazonas gas area with 2 discoveries. Colombia added 2 more spectacular oil discoveries in the Llanos basin to follow up 2 similar finds in 1981. Several countries reported that discoveries have increased the national reserves of hydrocarbons. Considering the social, political, and economic problems in several countries, along with the worldwide depression and petroleum surplus, developments in the region have been on the whole favorable.

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  10. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEastEast Brawley

  11. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEastEast

  12. East Tennessee Technology Park | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis theEVERETTA N ADepartmentEastEast|

  13. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  14. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; ORGILL TK; DAGAN EB

    2008-11-25

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar open-air demolition ofcontaminated structures can be performed successfully.

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

  16. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II (Continued) PAD District...

  17. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II (Continued) PAD District...

  18. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II (Continued) PAD District...

  19. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II (Continued) PAD District...

  20. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2002 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II (Continued) PAD District...

  1. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  2. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Petroleum Resources Project An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela along a forebulge that formed south of the foreland basin (Bartok, 2003). The heavy oil in the Orinoco

  3. East Asia Institute September 12, 2012 Taiwan Today

    E-Print Network [OSTI]

    Dodla, Ramana

    East Asia Institute September 12, 2012 Taiwan, and staff on Taiwan. On Wednesday, September 12, 2012, the East Asia Institute "Taiwan Today". The Taipei Economic and Cultural Office in Houston made

  4. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

  5. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  6. The Middle East Roads, Bridges and Tolls

    E-Print Network [OSTI]

    Nagurney, Anna

    EconomicCrisis ­ Expatriatejobscut ­ Overconges8on · DubaiWorld'sDebt ­ Slowedexpansion ­ AbuDhabiBailout #12;Negatives Low Housing#12;#12;The Middle East #12;Dubai #12;#12;#12;#12;#12;#12;Roads, Bridges and Tolls RTA Two Major longest automatic driverless system in the world Red (2009) and Green Line (2010) 87 Trains 74

  7. East Carolina University Enterprise Risk Management Committee

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    East Carolina University Enterprise Risk Management Committee Membership: Consists of 38 members and Responsibilities: Facilitate discussion of enterprise risk management topics, best practices, and items of inter- departmental concern in the areas of internal controls, safety, risk management, and compliance. Serve

  8. Explosive demolition of K East Reactor Stack

    ScienceCinema (OSTI)

    None

    2010-09-02

    Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

  9. EAST Current Status and Future Plans

    E-Print Network [OSTI]

    (Te & Ne, V) Core: CO2 laser scattering (CTS), ECEI (Te, 16ch×26ch, 2.5-2.8T) Polarimetry on EAST · High bootstrap fraction >80% with N 3 and q95 ~10. · Excellent energy confinement quality H98y2

  10. Weisman Art Museum 333 East River Road

    E-Print Network [OSTI]

    Thomas, David D.

    Weisman Art Museum 333 East River Road Minneapolis, MN 55455 Contact: Erin Lauderman (612) 625 TREASURES: HIGHLIGHTS FROM THE MINNESOTA MUSEUM OF AMERICAN ART Exhibition dates: February 2 ­ May 12, 2013 MINNEAPOLIS ­ The Weisman Art Museum at the University of Minnesota, will feature the Minnesota Museum

  11. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, mn 55455 www through May 24, 2009 at the Weisman Art Museum. Changing Identity is the first-ever major U.S. exhibition the country opened itself to the West twenty years ago. Contempo- rary Vietnamese art has seen newfound

  12. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www available upon request (continued) Changing Hands: Art Without Reservation Contemporary Native North American Art from the West, Northwest, and Pacific Exhibition dates: October 26, 2007­January 13, 2008

  13. weisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    weisman art museum press release 333 east river road minneapolis, mn 55455 www through January 10, 2010 Opening reception: October 23, 2009, 5­8 p.m. Minneapolis, MN--The Weisman Art from 5 to 8 p.m.. The exhibition showcases a gift to the Weisman of fifty works of art from New York

  14. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, mn 55455 www images available upon request (see last page of release) WEISMAN ART MUSEUM 2009­2010 EXHIBITION SEASON REFLECTS "ART AND THE EVERYDAY" Minneapolis, MN--Home videos posted on YouTube. Personal photos shared

  15. weisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    and rules about what art should be. "Pop artists like Warhol were using ordinary subject matter to critiqueweisman art museum press release 333 east river road minneapolis, mn 55455 www images available (see thumbnails on final page of this document) EXHIBITION COMMON SENSE: ART

  16. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www per person (current Individual and Dual level members) FREE for members at the Sustainer level: The Weisman is located at 333 E. River Road in Minneapolis. There is no admission fee to the Weisman

  17. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    model specifications Oil production in the 1930-1950 period,NOCs by type, 1947-2005 . . Oil production, before and afterThe Political Economy of Oil Production in Latin America. ”

  18. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    revenues (adjusted for real oil price) before and after es-to the volatility of oil prices – and thus the volatility ofSonin (2011) shows that oil prices and executive constraints

  19. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    assessment of political and economic factors of oilAssessment of PEMEX’s Performance and Strategy. In Oil andOil Company resembled more of a regulator NOC). I will combine this assessment

  20. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    Markus Br¨ uckner. 2012. “Oil Rents, Corruption, and Statewithin-country variance in oil rents and their effects onshift in the capture of oil rents – but I show why more work

  1. The Legacy of Oil Spills

    E-Print Network [OSTI]

    Trevors, J. T.; Saier, M. H.

    2010-01-01

    010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

  2. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  3. Integrating diverse methods to understand climateland interactions in East Africa

    E-Print Network [OSTI]

    Integrating diverse methods to understand climate­land interactions in East Africa Jennifer M-disciplinary scientists examining climate­land dynamics at multiple scales in East Africa. East Africa is a region Ltd. All rights reserved. Keywords: Climate change; Land use; Africa; Modeling; Biocomplexity; Human

  4. Shock interactions between Sgr A East and its environments

    E-Print Network [OSTI]

    Pak, Soojong

    energy excludes a single normal supernova for the origin of Sgr A East. We examine other hypotheses that the energy, size, and elongated morphology of Sgr A East cannot have been produced by a typical supernova [3 NH3 data [8] estimated the energy of the progenitor explosion of Sgr A East as 2 ­ 9 �1051 ergs

  5. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  6. Oil & Gas Science and Technology

    E-Print Network [OSTI]

    F. DAÏM

    2002-11-12

    update of the mechanical displacement and porosity field. In ... water and oil pressures are equal. ... o or w, denote the cell values of the oil and water phase.

  7. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01

    Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

  8. Heavy oil hydroprocessing

    SciTech Connect (OSTI)

    Pratt, R.E.; Nongbri, G.; Clausen, G.A. [Texaco R& D, Port Arthur, TX (United States)] [and others

    1995-12-31

    Many of the crude oils available worldwide are classified as heavy oils (API gravity less than 20). In addition, many of the heavier crude oils are also high in sulfur content. Both the low gravity and high sulfur content make these crude oils difficult to process in many refineries and additional processing equipment is required. Often, deasphalting of the vacuum residuum is one of the processing routes chosen. However, the deasphalted oil (DAO) is often of poor quality and presents problems in processing in existing refinery units. Fixed bed hydrotreater and hydrocracker catalysts are quickly fouled and fluid catalytic cracking units (FCCU) reach regenerator temperature limits with only small amounts of DAO in the feed. Use of the T-STAR ebullated bed process to hydrocrack and upgrade the DAO is an excellent route for making the DAO more palatable to refinery units.

  9. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  10. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  11. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    htm ENVIRONMENTAL AND SOCIAL IMPACTS OF OIL Dutch Shell andAnalysis ENVIRONMENTAL AND SOCIAL IMPACTS OF OIL Briefs:ENVIRONMENTAL AND SOCIAL IMPACTS OF OIL Oil obviously

  12. An informal description of Standard OIL and Instance OIL

    E-Print Network [OSTI]

    Murawski, Andrzej

    An informal description of Standard OIL and Instance OIL 28 November 2000 Sean Bechhofer (1) Jeen to be specified in some language. This paper introduces the newest version of OIL ­ the ontology inference layer of the DAML language, with working name DAML-OIL, was proposed in a message to the rdf-logic mailing list

  13. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change of Contents Scope Executive Summary 1. Background 2. Pyrolysis Oil-Char Supply and Export Potential 2 Competitiveness 3.1. Substitute Fuels 3.2. Price of Fossil Fuels 3.3. Delivered Costs of Pyrolysis Oil/Char 4

  14. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  15. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland 19.73 19.64 -0.4%...

  16. Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?

    Reports and Publications (EIA)

    2006-01-01

    This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.

  17. Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus

    E-Print Network [OSTI]

    , Tatiana T. Souza-Chies2 and Sophie Nadot1 1 Universite´ Paris-Sud, Laboratoire Ecologie Syste´matique et, Brazil and 7 MNHN, UMR 7205 Origine, Structure et Evolution de la Biodiversite´, Paris, F-75005, France between Chile and Argentina and to the extended area of the Parana´ river basin. The distribution of oil

  18. A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America

    SciTech Connect (OSTI)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-03-22

    An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g. Coso, Long Valley, Steamboat,and the Cascade volcanic complex). Moving towards the east, the ratiosdecline systematically to a background value of ~;0.1 Ra. The regionaltrend is consistent with extensive mantle melting concentrated along thewestern margin and is coincident with an east-to-west increase in themagnitude of northwest strain. The increase in shear strain enhancescrustal permeability resulting in high vertical fluid flow rates thatpreserve the high helium isotope ratios at the surface. Superimposed onthe regional trend are "helium spikes", local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.

  19. Blackberry and Dewberry Varieties in East Texas. 

    E-Print Network [OSTI]

    Morris, H. F. (Harry Forrest)

    1938-01-01

    STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 558 JANUARY, 1938 DIVISION OF HORTICULTURE Blackberry and Dewberry Varieties in East Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President... Results of a 5-year test of 72 varieties and selections of black- berries and dewberries are presented in this bulletin. Greatest yields were obtained from the varieties maturing from early to mid-season, all having trailing canes. Lawton is the only...

  20. Panzhihua east district government | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages RecentPalomarPanich,east district

  1. East Tennessee Technology Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EMMarket Applications forEast

  2. New Products TACKLING OIL SPILLS

    E-Print Network [OSTI]

    Rock, Chris

    New Products TACKLING OIL SPILLS Low-grade nonwoven cotton Texas Tech University researchers its own weight in oil. The results strengthen the use of cotton as a natural sorbent for oil, said Mr Engineering and Environmental Toxicology. "With the 2010 crude oil spill in the Gulf of Mexico. which resulted

  3. World heavy oil and bitumen riches - update 1983: Part one, reserves

    SciTech Connect (OSTI)

    Not Available

    1983-05-25

    The fact that there are several OPEC members with significant non-conventional petroleum reserves, coupled with the economic interdependence of OPEC with oil-importing industrialized countries, means it is very much in OPEC's interest to promote international cooperation on non-conventional oil. The rationale behind the goal of decreasing dependence on conventional oil, particularly in the case of imports, is promotive of reducing pressure not only on oil-importing nations, but exporters as well. Thus it is in the interests of all countries to plan for the heavying up of the petroleum barrel, as this will inevitably accompany the decreases in conventional supplies and any increases of non-petroleum participation in the world energy diet. Although the megaprojects in Canada and Venezuela and other ambitious plans for development of heavy oil and bitumen have been shelved or delayed indefinitely due to lower light oil prices and reduced financial support, it was found that these setbacks have been superficial. Both Canada and Venezuela continue to pursue joint research with foreign countries and private companies. Like conservation, non-conventional petroleum-resource development is seen as internationally constructive. In this updating of reserves, it is noted that the geopolitics are inescapable when most of the light and medium oil is in the Middle East, and most heavy oil and tar sands are in the Western Hemisphere. This issue presents the Energy Detente fuel price/tax series and industrial fuel prices for May 1983 for countries of the Western Hemisphere.

  4. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea 

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  5. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  6. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon:WattQuizWaunitaWauseon,Basin

  7. Data Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JVDaofu CoBasin Jump to:

  8. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  9. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  10. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration...

  11. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  12. EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project...

    Energy Savers [EERE]

    EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County, Washington EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County,...

  13. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  14. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  15. Oil Mill Operators 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Natural gas and petroleum are non-renewable and scarce energy sources. Although, it is well known that hydrocarbon reserves are depleting through the years, oil and gas remain the principal source of energy upon which our ...

  16. Crude Oil Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  17. Crude Oil Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  18. Using Oils As Pesticides 

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. ...

  19. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01

    that the income elasticity of U.S. petroleum demand hasincome growth over the period and 1.11 for 11 oil-exporting countries.. And it is the latter countries where petroleum

  1. Imbibition assisted oil recovery 

    E-Print Network [OSTI]

    Pashayev, Orkhan H.

    2004-11-15

    analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

  2. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  3. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  4. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  5. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  6. South Belridge fields, Borderland basin, U. S. , San Joaquin Valley

    SciTech Connect (OSTI)

    Miller, D.D. (Mobil Exploration and Producing U.S., Inc., Denver, CO (United States)); McPherson, J.G. (Mobil Research and Development Corp., Dallas, TX (United States))

    1991-03-01

    South Belridge is a giant field in the west San Joaquin Valley, Kern County. Cumulative field production is approximately 700 MMBO and 220 BCFG, with remaining recoverable reserves of approximately 500 MMBO. The daily production is nearly 180 MBO from over 6100 active wells. The focus of current field development and production is the shallow Tulare reservoir. Additional probable diatomite reserves have been conservatively estimated at 550 MMBO and 550 BCFG. South Belridge field has two principal reservoir horizons; the Mio-Pliocene Belridge diatomite of the upper Monterey Formation, and the overlying Plio-Pleistocene Tulare Formation. The field lies on the crest of a large southeast-plunging anticline, sub-parallel to the nearby San Andreas fault system. The reservoir trap in both the Tulare and diatomite reservoir horizons is a combination of structure, stratigraphic factors, and tar seals; the presumed source for the oil is the deeper Monterey Formation. The diatomite reservoir produces light oil (20-32{degree} API gravity) form deep-marine diatomite and diatomaceous shales with extremely high porosity (average 60%) and low permeability (average 1 md). In contrast, the shallow ({lt}1000 ft (305 m) deep) overlying Tulare reservoir produces heavy oil (13-14{degree} API gravity) from unconsolidated, arkosic, fluviodeltaic sands of high porosity (average 35%) and permeability (average 3000 md). The depositional model is that of a generally prograding fluviodeltaic system sourced in the nearby basin-margin highlands. More than 6000 closely spaced, shallow wells are the key to steamflood production from hundreds of layered and laterally discontinuous reservoir sands which create laterally and vertically discontinuous reservoir flow units.

  7. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  8. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  9. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-18

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  10. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect (OSTI)

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  11. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  12. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    H. H. Peters, Shale Oil Waste Water Recovery by Evaporation,treatment of oil shale waste products. Consequently, bothmost difficult and costly oil shale waste stream requiring

  13. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  14. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

  15. Lopatin Analysis of maturation and petroleum generation in the Illinois basin

    SciTech Connect (OSTI)

    Cluff, R.M. ); Byrnes, A.P. )

    1991-08-01

    A modified Lopatin approach was used to evaluate the present-day maturity of Paleozoic source rock units across the Illinois basin, timing of generation, regional porosity trends, and basin paleostructure during major generative events. Ten cases were modeled at 100 locations to test assumed paleogeothermal gradients, post-Pennsylvanian overburden thicknesses, and rates of erosional stripping. Lopatin predicted maturities for the Herrin ({number sign}6) Coal and the New Albany Shale are in good agreement ({plus minus}0.02% R{sub O}) with measured maturities if 500-3,000 ft of post-Middle Pennsylvanian strata and were deposited and subsequently eroded between the Permian and mid-Cretaceous and if paleogeothermal gradients were within a few {degree}C/km of present-day gradients. Predicted mean reflectance levels range from 1.0 to 4.0% R{sub O} at the base of the Potsdam Megagroup, 0.7 to 3.5% at the base of the Know Megagroup, and 0.6 to 1.3% at the base of the Maquoketa Shale, excluding only a small high-maturity area in southeastern Illinois. The Knox and Potsdam section attained oil generation 475-300 Ma, while the Maquoketa and the younger New Albany Shale reached the oil window much later: 300-250 Ma. Because most significant structures in the basin formed after 300 Ma, any pre-Maquoketa source rocks were already within the gas zone and may have been largely spent by the time known structures formed. Any Know or deeper traps in the basin will probably contain gas, be restricted to old structures (earlier than 300 Ma) or stratigraphic traps, and will hold pre-300 Ma generated hydrocarbons which subsequently cracked to gas.

  16. Use of east Texas reservoirs by wintering bald eagles 

    E-Print Network [OSTI]

    Russell, Sandra Joy

    1982-01-01

    USE OF EAST TEXAS RESERVOIRS BY WINTERING BALD EAGLES A Thesis SANDRA JOY RUSSELL Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject...: Wildlife and Fisheries Sciences USE OF EAST TEXAS RESERVOIRS BY WINTERING BALD EAGLES A Thesis by SANDRA JOY RUSSELL Approved as to style and content by: Chairman of Committee Member Member Me er Head of Department May 1982 ABSTRACT Use of East...

  17. Security Policies in East Asia: Four Essays

    E-Print Network [OSTI]

    Lee, Chae-Jin

    1982-01-01

    of South Korea Young C. Kim 66 List of Contributors 79 Cover Painting by Dong Shouping (1904 - ) iii Preface In the spring semester of 1981 the Center for East Asian Studies at the University of Kansas sponsored a "Colloquium on Asian Security... Perceptions of Asian Security Akira Iriye After a hiatus following the war in Vietnam, the question of Asian security seems once again to be agitating the governments of America and Asia. Does the increasing naval presence of the Soviet Union in the region...

  18. Clean Cities: East Tennessee Clean Fuels Coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 2008 1BrowseCities to the eighthCleanEast

  19. East Mesa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation,Foothills,Lake-Orient Park,East Mesa Geothermal

  20. North East Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source History View New Pages RecentEast Energy Ltd

  1. Berkshire East Ski Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher Homes JumpCreekEast Ski Area Jump to:

  2. Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  3. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  4. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  5. Refraction Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  6. Reflection Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  7. Ground Magnetics At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  8. Chemical and isotopic characteristics of the coso east flank...

    Open Energy Info (EERE)

    Christenson, B. W.; Kennedy, B. M.; Adams, M. C.; Bjornstad, S. C.; Buck, C. . 182007. Chemical and isotopic characteristics of the coso east flank hydrothermal fluids:...

  9. Electrical Resistivity At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Electrical Resistivity At Kilauea East Rift Geothermal Area (KELLER, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical...

  10. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  12. GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD:...

    Open Energy Info (EERE)

    The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations...

  13. The nascent Coso metamorphic core complex, east-central California...

    Open Energy Info (EERE)

    complex, east-central California, brittle upper plate structure revealed by reflection seismic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  14. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Time-Domain Electromagnetics Activity Date 1978 - 1987 Usefulness useful...

  15. Border-Crossings between East and West Europe

    E-Print Network [OSTI]

    Redford , Renata

    2015-01-01

    BETWEEN EAST AND WEST EUROPE BY RENATA REDFORD “People? … [Belonging in Contemporary Europe. Oxford: Brghahn, 2007, p.4Belonging in Contemporary Europe. Oxford: Brghahn, 2007. 15.

  16. Oil and Gas Investor returns climb as oil

    E-Print Network [OSTI]

    Arizona, University of

    Oil and Gas Investor returns climb as oil and gas drilling ventures succeed. www #12;Eng-Tips Forum Medical News Building/Construction · Engineers Advance Fuel Cell Technology · Micro

  17. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  18. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  19. Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich

    E-Print Network [OSTI]

    Basin, David

    A Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich VINCENT JUG´E, MINES Paris: Basin, D., Jug´e, V., Klaedtke, F., Zalinescu, E. Enforceable Security Policies Revisited. To appear is an extended version of the conference paper [Basin et al. 2012a]. Author's addresses: D. Basin, F. Klaedtke

  20. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  1. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarter’s report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  2. Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".

    E-Print Network [OSTI]

    Maroncelli, Mark

    the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil addedUsed Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

  3. Oil and gas developments in South America, Central America, Carribbean area, and Mexico in 1981

    SciTech Connect (OSTI)

    Deal, C.S.

    1982-11-01

    Petroleum developments in 1981 continued in the pattern of recent years of increasing exploration and exploitation in response to the second catastrophic surge in crude oil prices thrust on the world economy in 1979. Production of crude oil increased in Argentina, Brazil, Chile, Colombia, Guatemala, and Mexico, whereas Venezuela, Trinidad, Peru, and Bolivia experienced declines. Exploratory surveys, exploratory drilling, and development drilling all increased in most of the countries reporting. Significant successful exploratory drilling is reported for several countries. In Argentina, the producing zone of the Austral basin has been extended farther offshore, and is reportedly productive in what is apparently the upper Malvinas basin. In Brazil, extensions to several producing areas are reported in the Campos basin. Also, the Jurua gas province of western Amazonas reportedly had an encouraging extension. Colombia had several discoveries in the Magdalena basins, but the 2 Llanos discoveries are considered much more significant. For a variety of reasons, several countries have undertaken or are undertaking changes in laws and regulations to attract foreign companies into exploration risk ventures. In some countries, exploitation ventures are also offered.

  4. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  5. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  6. Book Review: Heiduschke, Sebastian. East German Cinema: DEFA and Film History. New York: Palgrave MacMillan, 2013.

    E-Print Network [OSTI]

    Zelechowski, Jamie

    2014-01-01

    Sebastian. East German Cinema: DEFA and Film History. Newhas written East German Cinema: DEFA and Film History inworld of East German cinema. Despite the presence of

  7. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 ©Annual",2014 ,"Release

  8. New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226Underground Storage

  9. East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving onEarth DayPipeline, Tanker,

  10. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,Why Report Voluntary

  11. East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecastof Greenhouse

  12. East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecastof GreenhousePipeline,

  13. East Asia's Energy Outlook and Challenges

    E-Print Network [OSTI]

    Goda, Keisuke

    Geothermal Use · New Financing renewable energy Sustainable Fossil Fuel Use · Clean Coal Technology · N Transport Others N-Energy 0 1000 2000 3000 4000 5000 6000 1990 2011 2035 Coal Oil Natura Gas Electricity.00 100.00 91.50 100.00 1.30 Dependence on imported coal 21.42 32.40 NA 0.00 95.70 NA 73.90 82.03 0

  14. Virent is Replacing Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

  15. Business cycles in oil economies

    SciTech Connect (OSTI)

    Al-Mutairi, N.H.

    1991-01-01

    This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

  16. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; STEVENS JM; DAGAN EB; ORGILL TK; GREEN MA; LARSON CH; ZINSLI LC

    2009-01-12

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that contaminated structures can be torn down successfully using similar open-air demolition techniques.

  17. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014DepartmentCouncilOffice of the ChiefResearchOil Oil For

  18. Oil and gas outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodologyNorth093 *Oil andOil and

  19. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  20. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  1. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  2. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  3. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  4. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  5. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  6. Oil Conservation Division Environmental Bureau

    E-Print Network [OSTI]

    Oil Conservation Division Environmental Bureau Brine Well Collapse Evaluation Report June 18, 2009 Prukop of the Energy, Minerals and Natural Resources Department (EMNRD) ordered the Oil Conservation directed OCD to work with the Environmental Protection Agency, other states, technical experts, and oil

  7. Hypocholesterolemic Effects of Marine Oils

    E-Print Network [OSTI]

    Hypocholesterolemic Effects of Marine Oils UNITED STATES DEPART MENT OF THE INTERIOR FISH FISHERIES, H. E. Crowther, Director Hypocholesterolemic Effects of Marine Oils By JAMES J. PEIFER Excerpt from Chapter 23 of the book, "Fish Oils,·· M. E. Stansby, editor Avi Publishing Company, Westport

  8. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  9. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  10. The Politics of Oil Nationalizations

    E-Print Network [OSTI]

    Mahdavi, Paasha

    2015-01-01

    s ability to use oil wealth to finance its expenditures.Finance Bribes paid to SOCAR officials Bribes through agents to Sonangol, Iraqi oilFinance Act, and in the United States the effective tax rate is 16.7% for shallow-water oil

  11. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  12. Azania XLII 2007 East Africa, the Comoros Islands and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Azania XLII 2007 East Africa, the Comoros Islands and Madagascar before the sixteenth century interior and on outlying islands (Comoros, Madagascar) or were composed of lower classes in urban expansion and private enterprise. #12;16 East Africa, the Comoros Islands and Madagascar before

  13. Precipitation processes in the Middle East , R. Smitha

    E-Print Network [OSTI]

    Evans, Jason

    Precipitation processes in the Middle East J. Evansa , R. Smitha and R.Oglesbyb a Dept. Geology and topography in generating precipitation in the Middle East. The model is run for five years (1990 thru 1994 that exhibit precipitation regimes disparate from one-another are identified and examined. The models ability

  14. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01

    part of 40% share up to a maximum of $1.1 billion. North of these two projects are the two prot Federal lease projects in Colorado -- the we most operated by the Rio Blanco Shale Oil Co a limited partnership between Amoco and Gulf Their early...

  15. Dying for oil

    SciTech Connect (OSTI)

    Sachs, A.

    1996-05-01

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  16. World Oil Transit Chokepoints

    Reports and Publications (EIA)

    2012-01-01

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  17. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin (Westland, MI)

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  18. Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from

    E-Print Network [OSTI]

    2006-01-01

    of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range oil production, geological constraints on the rates at which oil can be produced are not represented. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil

  19. Department of Energy Begins Demolition on K-25's East Wing -...

    Energy Savers [EERE]

    East Wing - Moves closer to completing Oak Ridge's largest cleanup project Department of Energy Begins Demolition on K-25's East Wing - Moves closer to completing Oak Ridge's...

  20. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

  1. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    of the impacts of oil production and consumption. The reviewimpacts of oil production and consumption conclude theincreased oil production and consumption. But how well do

  2. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    AND SOCIAL IMPACTS OF OIL product, product that does notthe quantity of oil products that escapes from pipelines. ”transport of crude oil and petroleum products accounted for

  3. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    VII. IMPACTS OF OIL CONSUMPTION . . . . . . .and the location of oil consumption necessitates that crudere?neries. VII. IMPACTS OF OIL CONSUMPTION The combustion of

  4. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  6. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  8. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  9. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  10. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    SciTech Connect (OSTI)

    Lamy, Sylvie Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for angiogenesis. • Olive oil compounds inhibit specific autophosphorylation sites of VEGFR-2. • Hydroxytyrosol, taxifolin and oleic acid inhibit VEGFR-2 signaling pathway.

  11. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01

    EOR continues to unlock oil resources. Oil & Gas Journal, [of conventional oil resource availability. Estimates ofthe tar sands and heavy oil resource in Figure 10. Note that

  12. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil...

  13. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  14. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  15. Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado

    SciTech Connect (OSTI)

    Cole, R.D.

    1984-04-01

    Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

  16. The virtual oil company

    SciTech Connect (OSTI)

    Garibaldi, C.A.; Haney, R.M.; Ross, C.E. [Arthur D Little, Houston, TX (United States)

    1995-09-01

    In anticipation of continuing declines in upstream activity levels over the next 15 years, the virtual oil company model articulates a vision of fewer, leaner, but financially stronger firms that concentrate only on their core competencies and outsource the rest through well-structured partnering arrangements. Freed from the ``clutter,`` these leading companies will be in better position to focus on those opportunities that offer the potential for renewed reserve and revenue growth.

  17. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  18. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

    E-Print Network [OSTI]

    Swanson-Hysell, N. L; Maloof, A. C; Kirschvink, J. L; Evans, D. A. D; Halverson, G. P; Hurtgen, M. T

    2012-01-01

    carbonate rocks of the Paris Basin, France: implications forand Kodama, 2009) Paris Basin Limestones (Belkaaloul and

  19. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect (OSTI)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  20. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect (OSTI)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.