National Library of Energy BETA

Sample records for basin destination state

  1. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0192 0.0202 W 0.0188 W W W W 0.0246 3.1 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  2. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0174 0.0186 W 0.0182 W W W W 0.0269 5.6 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  3. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland 19.73 19.64 -0.4%...

  4. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Michigan 13.74 16.13 17.4% 99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W 40.18 W 94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W...

  5. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W...

  6. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year Jan

  7. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year Jan$0.0323

  8. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year Jan$0.032343

  9. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year

  10. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year4. Estimated

  11. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year4. Estimated

  12. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    20. Estimated rail transportation rates for coal, state to state, 2009 Percent transportation cost is of total delivered cost EIA Percent difference EIA vs. STB Shipments...

  13. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    19. Estimated rail transportation rates for coal, state to state, 2008 Percent transportation cost is of total delivered cost EIA Percent difference EIA vs. STB Shipments...

  14. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  15. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  16. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0 1.0Delaware W

  17. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0 1.0Delaware

  18. Roanoke River Basin Bi-State Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina. The purpose of the...

  19. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    9.80 3.32 -17.1 -66.1 Kentucky Maryland - W - - - Kentucky Minnesota W W - - - Kentucky North Carolina - - 34.18 - - Kentucky Pennsylvania - - W - - Kentucky South Carolina - -...

  20. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Carolina - - - - - - - - W - - Pennsylvania Ohio W 0.0363 0.0339 0.0482 W 0.0512 0.0555 0.0477 0.0464 W -2.8 Pennsylvania Pennsylvania 0.0422 0.0586 0.0531 0.0456...

  1. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    -4.9 -3.3 Illinois Pennsylvania - - W - - Illinois Tennessee 4.21 3.54 W W W Illinois West Virginia W 14.15 W W W Illinois Wisconsin - - W - - Indiana Alabama W 18.38 20.54 W...

  2. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0 1.0Delaware5.

  3. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0

  4. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07. Estimated

  5. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07. Estimated8.

  6. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.

  7. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4. Estimated

  8. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4.

  9. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4.6.

  10. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4.6.Estimated

  11. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9

  12. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual

  13. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0

  14. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual00

  15. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual000

  16. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0000

  17. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear

  18. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information

  19. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1 U.S.

  20. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1

  1. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information12

  2. The State of the Columbia River Basin

    E-Print Network [OSTI]

    .............................................................................. 16 Natural gas price forecast, 2014 Document 2014-07 #12;Submitted to the Committee on Energy and Natural Resources United States Senate Committee on Energy and Commerce United States House of Representatives and Committee on Natural

  3. The State of the Columbia River Basin

    E-Print Network [OSTI]

    30, 2013 Document 2013-07 #12;2 Submitted to the Committee on Energy and Natural Resources United on Natural Resources United States House of Representatives 851 S.W. Sixth Avenue Suite 1100 Portland, Oregon.................................................. 13 Effectiveness of actions taken under the fish and wildlife program

  4. UPPER COLORADO RIVER BASIN COMPACT The state of Arizona, the state of Colorado, the state of New Mexico, the state of Utah

    E-Print Network [OSTI]

    Johnson, Eric E.

    ; to secure the expeditious agricultural and industrial development of the upper basin, the storage of water Mexico, the state of Utah and the state of Wyoming, acting through their commissioners, Charles A. Carson the uses and deliveries of the water of the upper basin of the Colorado river, as follows: ARTICLE I (a

  5. Basin structure of optimization based state and parameter estimation

    E-Print Network [OSTI]

    Jan Schumann-Bischoff; Ulrich Parlitz; Henry D. I. Abarbanel; Mark Kostuk; Daniel Rey; Michael Eldridge; Stefan Luther

    2015-07-08

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e. the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  6. Interstate Commission on the Potomac River Basin (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

  7. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  8. ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R. Kalata, D. F. Oltz,

    E-Print Network [OSTI]

    Bethke, Craig

    ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R deformation along the plate margins. DONALD F. OLTZ Illinois State Geological Survey Champaign, Illinois

  9. AN ORIGIN FOR THE SOUTH POLE-AITKEN BASIN THORIUM. V.I. Chikmachev, S.G.Pugacheva, Sternberg State Astronomical institute. Moscow University.

    E-Print Network [OSTI]

    Shevchenko, Vladislav

    AN ORIGIN FOR THE SOUTH POLE-AITKEN BASIN THORIUM. V.I. Chikmachev, S.G.Pugacheva, Sternberg State, that within the limits of the possible Al-Khwarizmi/King basin [3]. The SPA basin thorium map: The using data Lunar Prospector [4] the thorium distribution map demonstrated a hemisphere of the Moon which contains

  10. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  11. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  12. Visual Representations of Puerto Rico in Destination Marketing Materials 

    E-Print Network [OSTI]

    Davila Rodriguez, Mary Ann

    2012-10-19

    In the last thirty years, a large number of studies have researched the destination image that visitors, travel industry representatives, students, and general consumers have of tourist destinations. However, few studies ...

  13. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.94.43 W $65.38 22.1%

  14. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.94.43 W $65.38

  15. Basin boundary, edge of chaos, and edge state in a two-dimensional model

    E-Print Network [OSTI]

    J. Vollmer; T. M. Schneider; B. Eckhardt

    2008-08-19

    In shear flows like pipe flow and plane Couette flow there is an extended range of parameters where linearly stable laminar flow coexists with a transient turbulent dynamics. When increasing the amplitude of a perturbation on top of the laminar flow, one notes a a qualitative change in its lifetime, from smoothly varying and short one on the laminar side to sensitively dependent on initial conditions and long on the turbulent side. The point of transition defines a point on the edge of chaos. Since it is defined via the lifetimes, the edge of chaos can also be used in situations when the turbulence is not persistent. It then generalises the concept of basin boundaries, which separate two coexisting attractors, to cases where the dynamics on one side shows transient chaos and almost all trajectories eventually end up on the other side. In this paper we analyse a two-dimensional map which captures many of the features identified in laboratory experiments and direct numerical simulations of hydrodynamic flows. The analysis of the map shows that different dynamical situations in the edge of chaos can be combined with different dynamical situations in the turbulent region. Consequently, the model can be used to develop and test further characterisations that are also applicable to realistic flows.

  16. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  17. Effects of Personalized Travel Destination Visual Image on Travel Motivation 

    E-Print Network [OSTI]

    Lee, Gwanggyu 1981-

    2012-11-12

    This study examines the personalization of shown travel destination visual images using professional photography upon travel motivations, feelings, and purchase intentions of consumers in the online environment. The research design was experimental...

  18. Observability of Origin-Destination matrices for Dynamic Traffic Assignment

    E-Print Network [OSTI]

    Gupta, Ashish, S.M. Massachusetts Institute of Technology

    2005-01-01

    The estimation of dynamic Origin-Destination (O-D) matrices from aggregated sensor counts is one of the most important and well-researched problems in Dynamic Traffic Assignment (DTA) systems. In practice, more often than ...

  19. Impacts of a popular motion picture on destination images 

    E-Print Network [OSTI]

    Kim, Hyounggon

    2000-01-01

    The influence of popular motion pictures upon the formation of destination perceptions has received some attention in the tourism literature. Previous empirical studies have examined the effects of movies on visitation to places they depict...

  20. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242Consumers (Dollars per(Dollars4

  1. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242Consumers (Dollars

  2. Domestic Distribution of U.S. Coal by Destination State,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008 Final May 2010 2008

  3. A systematic determination of legends for destination and distance signs in Texas 

    E-Print Network [OSTI]

    McClure, Wesley Glen

    1998-01-01

    Destination and Distance signs are guide signs which are commonly used along rural highways in Texas to display the names of the destinations to be found along a highway, the direction to travel, and the distance in miles ...

  4. EIA - Distribution of U.S. Coal by Destination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination Glossary Home > Coal> Distribution of

  5. What courses do we offer Common misconceptions Applications Graduate Destinations Mathematics at Southampton

    E-Print Network [OSTI]

    Molinari, Marc

    What courses do we offer Common misconceptions Applications Graduate Destinations Mathematics 12, 2015 #12;What courses do we offer Common misconceptions Applications Graduate Destinations Outline 1 What courses do we offer Different Types of Courses First Year Second and subsequent years 2

  6. Destination Choice Model including panel data using WiFi localization in a pedestrian facility

    E-Print Network [OSTI]

    Bierlaire, Michel

    Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc data using WiFi localization in a pedestrian facility April 2015 EPFL Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc Tinguely, Antonin Danalet

  7. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  8. International Collaborative Tsunamis, Storm Surge, and Wave-Structure Interaction Research Opportunities Using the Oregon State Multidirectional Wave Basin and Large Wave Flume

    E-Print Network [OSTI]

    Yim, Solomon C.

    1 International Collaborative Tsunamis, Storm Surge, and Wave-Structure Interaction Research experimental facility for tsunami and wave- structure interaction research, supported by the US National Science Foundation's Network for Earthquake Engineering Simulation (NEES) program. The Tsunami Wave Basin

  9. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  10. annual report of the librarian yale university library 20072008 library destinations

    E-Print Network [OSTI]

    , China. Increasing Digital Access to Collections In November 2007, the Yale Library embarkedannual report of the librarian · yale university library 2007­2008 library destinations #12;Bringing the International Community to the Yale Library INTERNATIONAL ASSOCIATES PROGRAM Launched in 2005

  11. Investigating the Use of Destination Math in an Urban School District 

    E-Print Network [OSTI]

    Telford, William David

    2011-10-21

    Destination Math was a program utilized by Xcellence ISD. A determination if usage of the software had a significant positive effect on math performance was needed. In this study, the researcher created a student database that included the usage...

  12. Concentration in U.S. air transportation : an analysis of origin-destination markets since deregulation

    E-Print Network [OSTI]

    Van Acker, Jan

    1991-01-01

    The thesis examined the effects on competition of deregulation in the airline industry by analyzing changes in concentration over the ten-year period 1979-1989 in two sets of origin-destination city-pair markets: the top ...

  13. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  14. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  15. Columbia River Basin Accords -Narrative Proposal Form 1 200880000 ISRP FAN1B

    E-Print Network [OSTI]

    : The Columbia Basin Fish Accords (Accords) are ten-year agreements between the federal action agencies and states and tribes. The Accords supplement the Columbia Basin Fish and Wildlife Program and are intended substantial biological benefits for Columbia Basin fish. The Accords also acknowledge the tribes' and states

  16. Who Else Hires a Somali? The Challenges of Incorporating Newcomers in New Immigration Destinations: The Case of Emporia, Kansas

    E-Print Network [OSTI]

    Shields, Autumn

    2008-01-01

    leads to low job security and high turnover rates (Parrado and Kandel 2008). Workers on the ?disassembly lines? continuously make repetitive motions, often with razor-sharp knives. The work often leads to carpal-tunnel syndrome among 11 other... of resettlement in any destination. However, immigration to new immigration destinations presents unique challenges and deserves focused attention. Douglas Massey (2008) refers to traditional destinations ? the ?gateway? cities ? as ?assimilation machines? (p...

  17. Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin 

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

    1993-01-01

    The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

  18. Screening model optimization for Panay River Basin planning in the Philippines

    E-Print Network [OSTI]

    Millspaugh, John Henry

    2010-01-01

    The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

  19. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota 

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01

    The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

  20. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  1. Small Boat Fishing in Hawaii: A Random Utility Model of Ramp and Ocean Destinations1

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Small Boat Fishing in Hawaii: A Random Utility Model of Ramp and Ocean Destinations1 Timothy C@arec.umd.edu Abstract: This paper investigates small boat fishing on the island of Oahu, Hawaii. We develop a model allows us to study spatial aspects of small boat fishing, including the benefits and costs of attributes

  2. Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*

    E-Print Network [OSTI]

    Pedram, Massoud

    Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

  3. NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN

    E-Print Network [OSTI]

    NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN: OVERLAND PRECIPITATION, 1972-73 David C. BASIC DATA 3. PROCEDURE 4. ACKNOWLEDGMBNTS APPENDIX. LAKE ONTARIO STATION SUMMARY Page iv 1 1 2 5 10 FIGURES 1. The United States portion of the Lake Ontario drainage basin with the precipitation stations

  4. Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable

    E-Print Network [OSTI]

    Keinan, Alon

    Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

  5. TRUMAN STATE UNIVERSITY Department of Public Safety

    E-Print Network [OSTI]

    Gering, Jon C.

    TRUMAN STATE UNIVERSITY Department of Public Safety REIMBURSEMENT FORM for State Fleet Vehicles If an individual has to pay for gas or service to a State Fleet Vehicle rather than being able to use the assigned: ____________________________________________________ Destination: ____________________________________________________ LICENSE PLATE OF STATE VEHICLE

  6. Hydrology and Glaciers in the Upper Indus Basin

    E-Print Network [OSTI]

    Yu, Winston

    Examines the state of the science associated with the snow and ice hydrology in the Upper Indus Basin (IUB), reviewing the literature and data available on the present and projected role of glaciers, snow fields, and stream ...

  7. Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheast RegionFuture115,396 NATotalper Thousand2 (Thousand

  8. Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheast RegionFuture115,396 NATotalper Thousand2

  9. Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008 Final May 2010

  10. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  11. Bus passenger origin-destination estimation and travel behavior using automated data collection systems in London, UK

    E-Print Network [OSTI]

    Wang, Wei, S.M. Massachusetts Institute of Technology

    2010-01-01

    This research explores the application of archived data from Automatic Data Collection Systems (ADCS) to transportation planning with a focus on bus passenger Origin-Destination (OD) inferences at the bus-route level and ...

  12. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect (OSTI)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  13. Okanogan Basin Spring Spawner Report for 2007.

    SciTech Connect (OSTI)

    Colville Tribes, Department of Fish & Wildlife

    2007-09-01

    The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

  14. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

  15. State of California County of Los Angeles

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Exhibit F #12;State of California County of Los Angeles West Basin Municipal Water District ) ) ) ) CERTIFICATION ss I, Charlene Jensen, Secretary of West Basin Municipal Water District and of the Board. 10-14-998 "A RESOLUTION OF THE BOARD OF DIRECTORS OF THE WEST BASIN MUNICIPAL WATER DISTRICT

  16. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  17. Modelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination Renewables 79 copyright

    E-Print Network [OSTI]

    , informally named "the Big Dish" that produces superheated steam via a receiver mounted monotube boilerModelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination Renewables 79 © copyright Reviewed as full Paper 26 to 29 November 2003 Modelling of a 400m 2 steam based

  18. The State of the Columbia River Basin

    E-Print Network [OSTI]

    for Heating, Cooling appliances 14 Natural Gas Price Forecast Revision 15 Wind Integration Forum 15 Assessment

  19. The State of the Columbia River Basin

    E-Print Network [OSTI]

    -fired power plant using the least- expensive natural gas. The Council's Fish and Wildlife Program directed.8 cents per kilowatt-hour. That is about half the cost of power from the most efficient natural gas

  20. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  1. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    SciTech Connect (OSTI)

    Saulsbury, Bo; Geerlofs, Simon H.; Cada, Glenn F; Bevelhimer, Mark S

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

  2. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    movements on an array of strike-slip and normal fault systems have resulted in the uplift and preservation of older basins in modern ranges. One of the best exposed of these is...

  3. Free energy basin-hopping

    E-Print Network [OSTI]

    Sutherland-Cash, K.H.; Wales, D.J.; Chakrabarti, D.

    2015-02-17

    A global optimisation scheme is presented using basin-hopping with the acceptance criterion based on approximate free energy for the corresponding local minima of the potential energy. The method is illustrated for atomic and colloidal clusters...

  4. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  5. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins 

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25

    in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America...

  6. Basin Shale Play State(s) Production Reserves Production Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RU Ntight oil plays: shale

  7. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  8. Improved Basin Analog System to Characterize Unconventional Gas Resource 

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02

    potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly...

  9. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  10. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  11. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish...

  12. Water War in the Klamath Basin

    E-Print Network [OSTI]

    Carchidi, Victoria

    2011-01-01

    Review: Water War in the Klamath Basin: Macho Law, CombatHolly and A. Dan Tarlock. Water War in the Klamath Basin:has rights to the limited water. Birds and ecosystems; fish

  13. Rainfall Generator for the Rhine Basin

    E-Print Network [OSTI]

    Brandsma, Theo

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables by nearest +31.320.249218 #12;2 Rainfall Generator for the Rhine Basin #12;Multi-site generation of weather

  14. Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes

    E-Print Network [OSTI]

    Weijer, Wilbert

    Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes et Approches Numériques, Paris, France SARAH T. GILLE Scripps Institution of Oceanography, La Jolla In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected

  15. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  16. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  17. Received 17 Oct 2014 | Accepted 6 Mar 2015 | Published 21 Apr 2015 Skilful multi-year predictions of tropical trans-basin

    E-Print Network [OSTI]

    Chikamoto, Yoshimitsu

    ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show and energy sectors worldwide. Climate predictions may exhibit enhanced skill on timescales of years-year predictions of tropical trans-basin climate variability Yoshimitsu Chikamoto1, Axel Timmermann1,2, Jing

  18. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  19. Basin and Petroleum System Dynamics

    E-Print Network [OSTI]

    Pfander, Götz

    and development costs of new reserves and existing fields is immense: drilling wells, for example, may consume up to 85% of the total exploratory funds. Thus, the decision to drill should be taken in a sensible way of sedimentary basins and their hydrocarbon fluids. Executive Master Programme Participants will be able

  20. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  1. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  2. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect (OSTI)

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  3. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin

    E-Print Network [OSTI]

    Pickart, Robert S.

    States b ExxonMobil Research and Engineering, 1545 Route 22 East, Annandale, NJ 08867, United States c analysis of the SCM in the Chukchi Sea and adjacent Canada Basin, drawing on data collected during of satellite ocean-color sensors. A seasonal analysis of historical data from the region shows that the SCM

  4. Transient Modelling of Cavity Receiver Heat Transfer Pye et al ANZSES 2003 Destination Renewables 69 copyright

    E-Print Network [OSTI]

    interior surface of the cavity is the focus of the incident concentrated solar radiation, and is compose. INTRODUCTION The Compact Linear Fresnel Reflector (CLFR) is a design concept for low -cost collection of solar Renewable Energy Targets of the State government. These Targets require power generators to produce 2

  5. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  6. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea 

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  7. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  8. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon:WattQuizWaunitaWauseon,Basin

  9. Data Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JVDaofu CoBasin Jump to:

  10. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  11. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  12. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration...

  13. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  14. EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project...

    Energy Savers [EERE]

    EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County, Washington EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County,...

  15. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  16. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  17. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  18. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  19. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 1993 January ...........................

  20. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 1993 January ...........................Origin

  1. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin OilVENTURA

  2. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  3. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  4. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  5. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  6. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  7. Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich

    E-Print Network [OSTI]

    Basin, David

    A Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich VINCENT JUG´E, MINES Paris: Basin, D., Jug´e, V., Klaedtke, F., Zalinescu, E. Enforceable Security Policies Revisited. To appear is an extended version of the conference paper [Basin et al. 2012a]. Author's addresses: D. Basin, F. Klaedtke

  8. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. 20.-A REPORT UPON INVESTIGATIONS IN THE MAUMEE RIVER BASIN DURING THE SUMMER OF 1893.

    E-Print Network [OSTI]

    (near Cecil, Ohio). Fish Lake. Tiffin River. Fish Creek. Devils Lake. Big Run. Manitou Beach Indian Lake20.-A REPORT UPON INVESTIGATIONS IN THE MAUMEE RIVER BASIN DURING THE SUMMER OF 1893. BY.PHILIP H. Evermann, assistant to the United States Fish Commission. THE MAUMEE RIVER SYSTEM, The Maumee River

  10. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarter’s report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  11. The spatial and temporal variability and distribution of aerosol optical depths throughout California and within its air districts and air basins

    E-Print Network [OSTI]

    Frank, Thomas D.

    , their causes, and their effects. The state of California has designated temporary air district and air basin in children (Gauderman et al., 2004), and development of asthma (Etzel, 2003). Aerosols also play an important

  12. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  13. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  14. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  15. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  16. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  17. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  18. Platform, Delaware Basin, and Midland Basin, West Texas and New...

    Office of Scientific and Technical Information (OSTI)

    The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening...

  19. Geophys. J. Int. (1999) 139, 248260 The thermal evolution of sedimentary basins and its effect on the

    E-Print Network [OSTI]

    1999-01-01

    applied to borehole samples of actual source rocks. In contrast, the steady-state geotherm models give geothermal gradient (temperature); and duration of sedimentation (time). The standard approach to modelling this process assumes an evolving burial history, but in a basin with a steady-state geotherm, both

  20. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  1. Smoking Shelters FREQUENT DESTINATIONS

    E-Print Network [OSTI]

    Adali, Tulay

    Sideling (SDL) B6 Pocomoke (POC) B6 Manokin (MAN) B6 Patuxent (PTX) C6 Elk (ELK) C6 Deep Creek (DPC) C6 Casselman (CAS) C6 Breton (BRE) C6 West Hill Apartments Severn (SEV) C5 Chester (CHS) C4 Wye (WYE) C4 PLANT TERRACE APARTMENTS HILLSIDE APARTMENTS WEST HILL APARTMENTS CHILD CARE CENTER ERICKSON HALL HARBOR

  2. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  3. Structural and stratigraphic evolution of Shira Mountains, central Ucayali Basin, Peru? 

    E-Print Network [OSTI]

    Sanchez Alvarez, Jaime Orlando

    2008-10-10

    The Ucayali Basin is a Peruvian sub-Andean basin that initially formed during the extensive tectonics of the Early Paleozoic. Originally, the Ucayali Basin was part of a larger basin that extended east of the current ...

  4. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

    E-Print Network [OSTI]

    Swanson-Hysell, N. L; Maloof, A. C; Kirschvink, J. L; Evans, D. A. D; Halverson, G. P; Hurtgen, M. T

    2012-01-01

    carbonate rocks of the Paris Basin, France: implications forand Kodama, 2009) Paris Basin Limestones (Belkaaloul and

  5. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  6. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  7. Independent External Evaluation of The Columbia Basin Water Transactions Program

    E-Print Network [OSTI]

    Independent External Evaluation of The Columbia Basin Water Transactions Program (2003 of Water Transactions...............................................32 Program Administration......................................................................................................45 Annex 1: Evaluation Matrix Annex 2: Limiting Factors to Water Transactions in the Columbia Basin

  8. Fossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee

    E-Print Network [OSTI]

    van der Lee, Suzan

    .tecto.2006.06.003 #12;basin and mechanisms of basin formation, and interpret the Illinois basinFossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee August 2006 Abstract The Illinois basin is one of several well-studied intracratonic sedimentary basins

  9. Atlantic Mesozoic marginal basins: an Iberian view

    SciTech Connect (OSTI)

    Wilson, R.C.L.

    1987-05-01

    In the light of theoretical models for crustal stretching that precedes ocean opening, it is unlikely that Iberian basins have mirror image counterparts beneath North American or other European continental shelves. However, certain Iberian sedimentary sequences are comparable to those found in other basins. Of particular note are (1) the almost identical pre-rift sequences in all these areas, (2) the development of Upper Jurassic carbonate buildups in Portugal, Morocco, and beneath the Scotian Shelf, and (3) the hydrocarbon-bearing Upper Jurassic and Lower Cretaceous synrift and postrift siliciclastics of North America, Iberia, and Aquitaine. In the prerift sequences, Triassic red beds are capped by evaporites, which subsequently influenced the structural development of basins. Intertidal and supratidal carbonates occur at the base of the Jurassic and are overlain by Lower and Middle Jurassic limestone-shale sequences, which in places contain bituminous shales. In Portugal only, resedimented carbonates of Toarcian-Aalenian age are associated with an uplifted basement horst. In Portugal, Aquitaine, and eastern Canada, Middle Jurassic high-energy carbonate platforms developed. Synrift siliciclastic sequences show spectacular evidence for deposition within fault-bounded basins. In Portugal, lower Kimmeridgian clastics are up to 3 km thick, but Upper-Lower Cretaceous sequences are relatively thin (ca. 1 km), in contrast to those of the Basco-Cantabrian region where they exceed 10 km. In the latter region occurs the fluvially dominated Wealden (Upper Jurassic-Neocomian) and Urgonian carbonate platforms and associated basinal sediments. In the Asturias basin, Kimmeridgian shales and fluvially dominated deltaic sandstones succeed conglomeratic fluvial sandstones of uncertain age.

  10. Water balance in the Amazon basin from a land surface model ensemble

    SciTech Connect (OSTI)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  11. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  12. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

  13. Columbia River Basin Research Plan Northwest Power and Conservation Council

    E-Print Network [OSTI]

    Columbia River Basin Research Plan By the Northwest Power and Conservation Council February 2006................................................................................................................. 20 (11) Human Development

  14. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Characterizing Structural Controls of EGS Candidate and Conventional Geothermal Reservoirs in the Great Basin: Developing...

  15. Simplified vibratory characterization of alluvial basins

    E-Print Network [OSTI]

    Semblat, Jean-François; Duval, Anne-Marie

    2011-01-01

    For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement between modal numerical results and experimental ones is satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance.

  16. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  17. Modeling and Risk Assessment of CO{sub 2} Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-08-31

    Objectives. The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO{sub 2} permanence in geologic formations at the geologic basin scale. The main motivation was that carbon capture and storage (CCS) will play an important role as a climate change mitigation technology only if it is deployed at scale of gigatonne per year injections over a period of decades. Continuous injection of this magnitude must be understood at the scale of a geologic basin. Specifically, the technical objectives of this project were: (1) to develop mathematical models of capacity and injectivity at the basin scale; (2) to apply quantitative risk assessment methodologies that will inform on CO{sub 2} permanence; (3) to apply the models to geologic basins across the continental United States. These technical objectives go hand-in-hand with the overarching goals of: (1) advancing the science for deployment of CCS at scale; and (2) contributing to training the next generation of scientists and engineers that will implement and deploy CCS in the United States and elsewhere. Methods. The differentiating factor of this proposal was to perform fundamental research on migration and fate of CO{sub 2} and displaced brine at the geologic basin scale. We developed analytical sharp-interface models of the evolution of CO{sub 2} plumes over the duration of injection (decades) and after injection (centuries). We applied the analytical solutions of CO{sub 2} plume migration and pressure evolution to specific geologic basins, to estimate the maximum footprint of the plume, and the maximum injection rate that can be sustained during a certain injection period without fracturing the caprock. These results have led to more accurate capacity estimates, based on fluid flow dynamics, rather than ad hoc assumptions of an overall “efficiency factor.” We also applied risk assessment methodologies to evaluate the uncertainty in our predictions of storage capacity and leakage rates. This was possible because the analytical mathematical models provide ultrafast forward simulation and they contain few parameters. Impact. The project has been enormously successful both in terms of its scientific output (journal publications) as well as impact in the government and industry. The mathematical models and uncertainty quantification methodologies developed here o?er a physically-based approach for estimating capacity and leakage risk at the basin scale. Our approach may also facilitate deployment of CCS by providing the basis for a simpler and more coherent regulatory structure than an “individual-point-of-injection” permitting approach. It may also lead to better science-based policy for post-closure design and transfer of responsibility to the State.

  18. West Basin Municipal Water District, California; Water/Sewer

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Exhibit D #12;Summary: West Basin Municipal Water District, California; Water/Sewer Primary Credi90023!! #12;Sttmma1·y: West Basin Municipal Water District, California; Water/Sewer Credit Profile US$16.STANDARDANDPOORS.COM/RATJNGSDJRECT MAY31 2013 2 I126639 I 301008236 #12;Summary: West Basin Municipal Water District, California; Water/Sewer

  19. Part One: Overview I. The Columbia River Basin

    E-Print Network [OSTI]

    included the construction of dams throughout the basin for such purposes as hydroelectric power, flood tributaries comprise one of the most intensively developed river basins for hydroelectric power in the world. Hydroelectric dams in the basin (Links marked are external, not part of the adopted Program) 7 #12;produce

  20. POLLUTION IN THE LOWER COLUMBIA BASIN IN 1948-

    E-Print Network [OSTI]

    POLLUTION IN THE LOWER COLUMBIA BASIN IN 1948- With particular reference to the Willamette River, intended to aid or direct management or utilization praotices and as gi.\\ides for administrative POLLUTION IN THE LOTOR COLIMRIA BASIN IN 1948 WITH PARTI CirW.R REFERENCE TO THE WTLLAJTETTE BASIN

  1. NE Pacific Basin --Tagging Data Kate Myers, Ph.D.

    E-Print Network [OSTI]

    Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

  2. Modeling thermal convection in supradetachment basins: example from western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

  3. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  4. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  5. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01

    complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene...

  6. 8 River Basin Closure and Institutional Change in Mexico's LermaChapala Basin

    E-Print Network [OSTI]

    Scott, Christopher

    for irrigation expansion, and the drilling of new wells and the construction of new dams has been prohibited-exploitation, and influenced by the vested interests of the hydraulic ©CAB International 2005. Irrigation and River Basin

  7. Lower crustal ow and the role of shear in basin subsidence: an example from the Dead Sea basin

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Lower crustal £ow and the role of shear in basin subsidence: an example from the Dead Sea basin, MA 02543, USA Abstract We interpret large-scale subsidence (5^6 km depth) with little attendant that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is 9 7U1019 ^1

  8. Columbia Basin Data Center The development of a Columbia Basin Data Center will provide extensive benefits for the

    E-Print Network [OSTI]

    Columbia Basin Data Center 4/24/06 The Vision The development of a Columbia Basin Data Center, with the working title of the Columbia Basin Data Center would be charged with ensuring that important data. The Data Center would not be responsible for collecting and compiling data. That function would remain

  9. BLUE RIVER BASIN (Dodson Industrial District)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BLUE RIVER BASIN (Dodson Industrial District) Kansas City, Missouri MODIFICATION REQUEST capability to support this request. PROJECT PURPOSE Dodson Industrial District is located along the Blue of a 6,800 foot long levee- floodwall along the north bank of the Blue River from the Bannister Road

  10. TURKEY CREEK BASIN Kansas and Missouri

    E-Print Network [OSTI]

    US Army Corps of Engineers

    TURKEY CREEK BASIN Kansas and Missouri MODIFICATION REQUEST Modification to the authorized total the Turkey Creek channel and runoff from the adjacent hillsides, and the current depth of flooding along in the past decade. Additionally, the Turkey Creek tunnel constructed in 1919 to divert the channel away from

  11. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    cost and availability, and the effect of the hydropower system on fish and wildlife. columbia River, and fish and wildlife affected by, the columbia River Basin hydropower dams. the council is a unique of the Council under the Act are to: 1. Develop a regional power plan to assure the Northwest an adequate

  12. Geological Modeling of Dahomey and Liberian Basins 

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16

    in the last 10 years or so. We proposed geological descriptions of these two Basins. The key characteristics of the two models are the presence of channels and pinch-outs for depths of between 1 km and 2 km (these values are rescaled for our numerical purposes...

  13. Summary status of K Basins sludge characterization

    SciTech Connect (OSTI)

    Baker, R.B.

    1995-01-20

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline.

  14. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  15. Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi-ring basin formation

    E-Print Network [OSTI]

    Fassett, Caleb I.

    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation ...

  16. Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,

    E-Print Network [OSTI]

    Denver, University of

    Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

  17. 336 BULLETIN O F THE UNlTED STATES FISH COMMISSIOR. 6. ECONOXICRESULTS.-The cultivation of fish is destined to bo

    E-Print Network [OSTI]

    , the fish over a sufficiently heated sur- face, or through or in contact wit11 heated air or superheated steam, itt or about ;L temperature of 4000 Fahrenheit, so a8 to superficially heat the fish

  18. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  19. ABSTRACT: FRANKEL K.L. & PAZZAGLIA F.J., Tectonic geomorpholo-gy, drainage basin metrics, and active mountain fronts. (IT ISSN 1724-

    E-Print Network [OSTI]

    Frankel, Kurt L.

    and deformational style in the western United States and Italy. Our study is guided by initial results obtained from United States. We attribute the higher variance to the effects of overall larger drainage basin size settings. Here we report results from test cases on five mountain fronts with variable rates of rock uplift

  20. Caribbean basin framework, 2: Northern Central America

    SciTech Connect (OSTI)

    Tyburski, S.A.; Gordon, M.B.; Mann, P. (Univ. of Texas, Austin (United States))

    1991-03-01

    There are four Jurassic to Recent basin-forming periods in northern Central America (honduras, Honduran Borderlands, Belize, Guatemala, northern Nicaragua): (1) Middle Jurassic-Early Cretaceous rifting and subsidence along normal faults in Honduras and Guatemala; rifts are suggested but are not well defined in Honduras by the distribution of clastic sediments and associated volcanic rocks. Rifting is attributed to the separation of Central America from the southern margin of the North American plate; (2) Cretaceous subsidence recorded by the development of a Cretaceous carbonate platform in Honduras, Guatemala, and Belize; subsidence is attributed to thermal subsidence of the rifted margins of the various blocks; (3) Late Cretaceous-Recent development of a volcanic arc along the western margin of Middle America and the northern margin of Honduras; (4) Late Cretaceous large-scale folding in Honduras, ophiolite obduction, and formation of a foredeep basin in Guatemala (Sepur trough); deformation is attributed to the collision between a north-facing arc in northern Honduras and the Nicaraguan Rise and the passive margin of Guatemala and Belize; and (5) Eocene to Recent strike-slip faulting along the present-day North American-Caribbean plate boundary in Guatemala, northern Honduras, and Belize. Strike-slip faults and basins form a California-type borderlands characterized by elongate basins that appear as half-grabens in profile. Counterclockwise rotation of the central honduras plateau, a thicker and topographically higher-than-average block within the plate boundary zone, is accommodated by rifting or strike-slip faults at its edges.

  1. San Juan Basin EC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin EC Jump to:

  2. Erosion potential from Missoula floods in the Pasco Basin, Washington

    SciTech Connect (OSTI)

    Craig, R.G.; Hanson, J.P.

    1985-12-01

    Localities within the Pasco Basin preserve evidence of Missoula floods. Deposits are 46% sand-sized, 36% gravel-sized, and 18% finer than sand-sized. Mean thickness is 39 meters. High water marks at Wallula Gap require a discharge of approximately 12.5 Mcms. At Sentinel Gap, the slope-area method shows that the high water marks require a discharge of 34.6 Mcms. Since this discharge greatly exceeds any estimated for Missoula floods, there must have been backwater ponding from Wallula Gap. Projecting the slope of the water surface at the upper end of Wallula Gap to the downstream cross section at Gable Mountain leads to a discharge of 9.5 Mcms at Sentinel Gap. The HEC-6 steady state code and four sediment transport equations were applied. Assuming sand-sized particles, DuBoys function estimated 4 to 9 meters of scour. Yang's equation estimated 3 to 4 meters of scour. These are a minimum. A hydrograph synthesized for the boundaries of the Pasco Basin shows the maxima of the flood would occur after 90 h at Sentinel Gap, and at 114 h at Wallula Gap. The 200 areas will remain inundated for four days and six hours. With a quasi-dynamic sediment transport computation, HEC-6 scour estimates range from 0.61 meters to 0.915 meters. This is a minimum amount and erosion is highly variable suggesting reworking of sediment. The Meyer-Peter Meuller equations show less than 1 meter of net scour in the 200 areas. More extensive erosion was achieved during particular time steps of this analysis suggesting that sediment re-working would occur.

  3. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  4. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    SciTech Connect (OSTI)

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a single estimate of porosity throughout the entire potential reservoir domains. The second approach resulted in storage resource estimates of 3.0 to 31.6 Gt in the Michigan Basin, and 0.6 to 6.1 Gt in the Illinois Basin. The third approach attempted to account for the local-scale variability in reservoir quality as a function of both porosity and permeability by using core and log analyses to calculate explicitly the net effective porosity at multiple well locations, and interpolate those results throughout the two basins. This approach resulted in storage resource estimates of 10.7 to 34.7 Gt in the Michigan Basin, and 11.2 to 36.4 Gt in the Illinois Basin. A final approach used advanced reservoir characterization as the most sophisticated means to estimating storage resource by defining reservoir properties for multiple facies within the St Peter formation. This approach was limited to the Michigan Basin since the Illinois Basin data set did not have the requisite level of data quality and sampling density to support such an analysis. Results from this approach led to storage resource estimates of 15.4 Gt to 50.1 Gt for the Michigan Basin. The observed variability in results from the four different approaches is evaluated in the context of data and methodological constraints, leading to the conclusion that the storage resource estimates from the first two approaches may be conservative, whereas the net porosity based approaches may over-estimate the resource.

  5. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect (OSTI)

    Gustavson, T.C. (Univ. of Texas, Austin, TX (United States)); Holliday, V.T. (Univ. of Wisconsin, Madison, WI (United States))

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  6. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  7. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  8. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect (OSTI)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  9. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness...

  10. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown...

  11. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  12. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  13. Targeting Of Potential Geothermal Resources In The Great Basin...

    Open Energy Info (EERE)

    From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  14. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The...

  15. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    php?titleVariableCrustalThicknessInTheWesternGreatBasin-ACompilationOfOldAndNewRefractionData&oldid793047" Categories: Missing Required Information Reference...

  16. Refraction Survey At Northern Basin & Range Region (Heimgartner...

    Open Energy Info (EERE)

    Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin & Range Region (Heimgartner, Et Al., 2005)...

  17. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  18. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  19. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  20. Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  1. Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  2. Geographic Information System At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  3. Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher...

    Open Energy Info (EERE)

    Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nw...

  4. Trace Element Analysis At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element...

  5. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  6. Geographic Information System At Nw Basin & Range Region (Blewitt...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  7. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  8. Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  9. Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids

    E-Print Network [OSTI]

    Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids Kimberly Lau resulted in a better understanding of the paleoecology and paleobiogeography of a poorly studied group

  10. Direct-Current Resistivity Survey At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Direct-Current Resistivity Survey At Nw Basin & Range Region...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  12. Geothermal Reservoir Assessment Case Study, Northern Basin and...

    Open Energy Info (EERE)

    Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  13. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  14. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstrationn Project, outlining the technical aspects of the User Group System.

  15. Two-Phase Westward Encroachment of Basin and Range Extension...

    Open Energy Info (EERE)

    Nevada Abstract 1 Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude 39N...

  16. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  18. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  19. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Preparing T Plant to Store K-Basin Sludge

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2003-01-01

    This paper will explain the history and status of the modification of the Hanford T Plant facility for storage of K Basin sludge.

  1. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    SciTech Connect (OSTI)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  2. Linear depressions and collapse features in the Northwest Hueco Basin, West Texas 

    E-Print Network [OSTI]

    Henderson, Scott D

    1997-01-01

    The Northwest Hueco Basin, located in the Northern Chihuahuan Desert, is a fault bounded basin filled predominantly with Plio-Pleistocene unconsolidated sediments. The basin contains long linear depressions that dominate the surface topography...

  3. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal Area Jump to:

  4. Alden Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia:Wave Basin Jump to:

  5. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

  6. Enhancing Sustainability in River Basin Management through Conflict

    E-Print Network [OSTI]

    Delaware, University of

    11 Enhancing Sustainability in River Basin Management through Conflict Resolution: Comparative channels, and effluents of massive quantities of point and non-point pollution from pipe, earth and sky .to be achieved. Conflict is inherent in river basin management,1 wherein diverse 'stakes' are held

  7. Progress in Understanding the Structural Geology, Basin Evolution,

    E-Print Network [OSTI]

    and local geologic mapping, drilling and coring, and seismic reflection profiling have in- creased vastly by intrabasinal highs. 4. Integration of stratigraphy and structural geology. The sedimentary deposits of half-graben are influenced by basin geometry; consequently, stratigraphy can be used to infer aspects of basin evolution

  8. Fraser River Basin &ssment Program Conceptual Monitoring Design

    E-Print Network [OSTI]

    #12;Fraser River Basin &ssment Program Conceptual Monitoring Design Prepared for Environment Canada Vancouver, B.C. V6J 5C6 Michael Paine EVS Environment Consultants 195 Pemberton Avenue North Vancouver, B. 1993. Fraser River Basin Assessment Program: Conceptual Monitoring Design. Pqared for Conservation

  9. Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers homogenization temperatures indicate thatburial ofLower andUpperPennsylvanian strata of theAppalachianPlateau in

  10. Analysis of Ignition Testing on K-West Basin Fuel

    SciTech Connect (OSTI)

    J. Abrefah; F.H. Huang; W.M. Gerry; W.J. Gray; S.C. Marschman; T.A. Thornton

    1999-08-10

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).

  11. Basin Resonances in the Equatorial Indian Ocean WEIQING HAN

    E-Print Network [OSTI]

    Han, Weiqing

    Basin Resonances in the Equatorial Indian Ocean WEIQING HAN Department of Atmospheric and Oceanic, LOCEAN, Paris, France BENE´ T DUNCAN Department of Atmospheric and Oceanic Sciences, University in the equatorial Indian Ocean (IO) interact to form basin resonances at the semiannual (180 day) and 90-day periods

  12. Current Trends in Logical Frameworks and Metalanguages David Basin

    E-Print Network [OSTI]

    Basin, David

    Current Trends in Logical Frameworks and Metalanguages David Basin Universitat Freiburg, Institut-Level Programming Languages (PLI'99) in Paris in September 1999. This workshop brought together designers, im Academic Publishers. Printed in the Netherlands. intro-final.tex; 24/01/2001; 17:13; p.1 #12; 2 Basin

  13. Licking River Basin, Cynthiana, Kentucky 24 March 2006

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Licking River Basin, Cynthiana, Kentucky 24 March 2006 Abstract: The recommended project would reduce flood damages in the communities of Cynthiana, Millersburg, and Paris, in the Licking River B Kentucky, by the construction of two dry bed detention basins on tributaries of the South Fork

  14. Modal Decay in the AustraliaAntarctic Basin WILBERT WEIJER

    E-Print Network [OSTI]

    Griesel, Alexa

    Modal Decay in the Australia­Antarctic Basin WILBERT WEIJER Los Alamos National Laboratory, Los VIVIER LOCEAN IPSL, Paris, France (Manuscript received 5 January 2009, in final form 11 June 2009) ABSTRACT The barotropic intraseasonal variability in the Australia­Antarctic Basin (AAB) is studied

  15. QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2012

    E-Print Network [OSTI]

    Connors, Daniel A.

    QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2012 We are discontinuing our early December quantitative hurricane forecast for the next year and giving a more qualitative discussion of the factors which will determine next year's Atlantic basin hurricane activity. Our early

  16. QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2015

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    1 QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2015 We discontinued our early December quantitative hurricane forecast in 2012 and are now giving a more qualitative discussion of the factors which will determine next year's Atlantic basin hurricane activity. One of the big uncertainties

  17. Radioactive air emissions notice of construction for the 105N Basin Stabilization

    SciTech Connect (OSTI)

    Coenenberg, E.T. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations.

  18. Characterization of the surface properties of Illinois Basin Coals. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Demir, I.

    1991-12-31

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  19. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-18

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  20. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    technical constraints on the injection of CO2 into deep (>1.5 km) reservoirs under supercritical75 this amount of annual CO2 production. Assuming that CO2 is emplaced as a80 supercritical fluid havingPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4

  1. THE INTRACONTINENTAL BASINS (ICONS) ATLAS APPLICATIONS IN EASTERN AUSTRALIA PESA Eastern Australasian Basins Symposium III Sydney, 1417 September, 2008 275

    E-Print Network [OSTI]

    Müller, Dietmar

    & Johnson 2001). Up to eleven different mechanisms are listed by Klein (1995) to explain the cause crustal and lithospheric structure data of intracontinental basins extracted from our global analysis data. Secondly, the crustal structure of these basins is put into a plate kinematic and geodynamic

  2. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    SciTech Connect (OSTI)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated.

  3. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; STEVENS JM; DAGAN EB; ORGILL TK; GREEN MA; LARSON CH; ZINSLI LC

    2009-01-12

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that contaminated structures can be torn down successfully using similar open-air demolition techniques.

  4. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; ORGILL TK; DAGAN EB

    2008-11-25

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar open-air demolition ofcontaminated structures can be performed successfully.

  5. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect (OSTI)

    James R. Wood; William B. Harrison

    2000-04-01

    Progress in year 2 of this project is highlighted by the completing of the writing and testing of the project database, ''Atlas'', and populating it with all the project data gathered to date. This includes digitization of 17,000+ original Scout Tickets for the Michigan Basin. Work continues on the Driller's Reports, where they have scanned about 50,000 pages out of an estimated 300,000 pages. All of the scanned images have been attached to ''Atlas'', the visual database viewer developed for this project. A complete set of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan has been downloaded from the USGS Web sites, decompressed and converted to ArcView Grid files. A large-scale map (48 inches x 84 inches) has been constructed by mosaicking of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan. It presents unusual problems due to its size and they are working with vendors on compression and display algorithms (e.g. MrSID{copyright}) in an attempt to make it available over the Internet, both for viewing and download. A set of aeromagnetic data for the Michigan Basin has been acquired and is being incorporated into the study. As reported previously, the general fracture picture in the Michigan Basin is a dominant NW-SE trend with a conjugate NE-SW trend. Subsurface, DEM and gravity data support the interpretation of a graben-type deep basement structural trend coincident with the Michigan Basin Gravity High. They plan to incorporate the aeromagnetic data into this interpretation as well.

  6. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RU Ntight oil plays:

  7. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect (OSTI)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

  8. 1 | T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y GRADUATE DESTINATION REPORT 2011

    E-Print Network [OSTI]

    and Statistical Services, ANU evaluations@anu.edu.au http://unistats.anu.edu.au/surveys/gds/ #12;2 0 1 1 J C S G r1 | T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y GRADUATE DESTINATION REPORT 2011 at The Australian National University approximately four months after they have completed their program. This report

  9. Biothem-based Mississippian transect from the Basin and Range Province to the Anadarko basin

    SciTech Connect (OSTI)

    Frye, M.W. ); Lane, H.R. ); Couples, G.D. )

    1991-03-01

    A west-to-east transect, constructed using the 'Biostratigraphic Package Approach' of Lane and Frye and illustrating the biostratigraphic, lithologic, and depositional sequence relationships within the Mississippian system, extends from the basin and range province across the Transcontinental Arch (TA) and into the Anadarko basin. The transect is based on both published and proprietary biostratigraphic data. It was constructed primarily to portray the regional distribution and exploration significance of biotherms relative to the axis of the TA. These biotherms are biostratigraphic units that are wedge- or lens-shaped bodies of strata that are bounded by paleontologically recognizable unconformities in their updip extents, are conformable with underlying and overlying biothems in their maximum shelfal development, are conformable or bounded by surfaces of nondeposition and or submarine erosion in their downdip, basinal extremities, and also contain a logical sequence of depositionally related facies. An unexpected result of constructing the transect was the recognition of an apparent compensatory temporal and spatial distribution of Mississippian biothems. This distribution is interpreted to imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. Platescale tilting, along with local subsidence and uplift, is suggested as the overriding mechanism controlling deposition along the extent of the transect.

  10. Climate-and eustasy-driven cyclicity in Pennsylvanian fusulinid assemblages, Donets Basin (Ukraine)

    E-Print Network [OSTI]

    Montañez, Isabel Patricia

    to the formation of economically productive coal seams in the Donets Basin, western Europe, North America

  11. The geochemistry of uranium in the Orca Basin 

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01

    in each sample was also measur. ed to gain insight concerning the origin and nature of Urea Basin deposits. For comparison, cores from the brine- filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Ores Basin sediments show... Deep where no uranium enrichment was also observed. The Atlantis II Deep, however, contains sediments significantly enriched in uranium. This basin differs from the other two in that its brin. e temperature is close to 40'C warmer. than average Red...

  12. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect (OSTI)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  13. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect (OSTI)

    Grover, G. Jr. (Sauid Aramco, Dhahran (Saudi Arabia))

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  14. sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage

    SciTech Connect (OSTI)

    Waddell, Michael

    2014-09-30

    This study focuses on evaluating the feasibility and suitability of using the Jurassic/Triassic (J/TR) sediments of the South Georgia Rift basin (SGR) for CO2 storage in southern South Carolina and southern Georgia The SGR basin in South Carolina (SC), prior to this project, was one of the least understood rift basin along the east coast of the U.S. In the SC part of the basin there was only one well (Norris Lightsey #1) the penetrated into J/TR. Because of the scarcity of data, a scaled approach used to evaluate the feasibility of storing CO2 in the SGR basin. In the SGR basin, 240 km (~149 mi) of 2-D seismic and 2.6 km2 3-D (1 mi2) seismic data was collected, process, and interpreted in SC. In southern Georgia 81.3 km (~50.5 mi) consisting of two 2-D seismic lines were acquired, process, and interpreted. Seismic analysis revealed that the SGR basin in SC has had a very complex structural history resulting the J/TR section being highly faulted. The seismic data is southern Georgia suggest SGR basin has not gone through a complex structural history as the study area in SC. The project drilled one characterization borehole (Rizer # 1) in SC. The Rizer #1 was drilled but due to geologic problems, the project team was only able to drill to 1890 meters (6200 feet) instead of the proposed final depth 2744 meters (9002 feet). The drilling goals outlined in the original scope of work were not met. The project was only able to obtain 18 meters (59 feet) of conventional core and 106 rotary sidewall cores. All the conventional core and sidewall cores were in sandstone. We were unable to core any potential igneous caprock. Petrographic analysis of the conventional core and sidewall cores determined that the average porosity of the sedimentary material was 3.4% and the average permeability was 0.065 millidarcy. Compaction and diagenetic studies of the samples determined there would not be any porosity or permeability at depth in SC. In Georgia there appears to be porosity in the J/TR section based on neutron log porosity values. The only zones in Rizer #1 that appear to be porous were fractured diabase units where saline formation water was flowing into the borehole. Two geocellular models were created for the SC and GA study area. Flow simulation modeling was performed on the SC data set. The injection simulation used the newly acquired basin data as well as the Petrel 3-D geologic model that included geologic structure. Due to the new basin findings as a result of the newly acquired data, during phase two of the modeling the diabase unit was used as reservoir and the sandstone units were used as caprock. Conclusion are: 1) the SGR basin is composed of numerous sub-basins, 2) this study only looked at portions of two sub-basins, 3) in SC, 30 million tonnes of CO2 can be injected into the diabase units if the fracture network is continuous through the units, 4) due to the severity of the faulting there is no way of assuring the injected CO2 will not migrate upward into the overlying Coastal Plain aquifers, 5) in Georgia there appears to porous zones in the J/TR sandstones, 6) as in SC there is faulting in the sub-basin and the seismic suggest the faulting extends upward into the Coastal Plain making that area not suitable for CO2 sequestration, 7) the complex faulting observed at both study areas appear to be associated with transfer fault zones (Heffner 2013), if sub-basins in the Georgia portion of the SGR basin can be located that are far away from the transfer fault zones there is a strong possibility of sequestering CO2 in these areas, and 9) the SGR basin covers area in three states and this project only studied two small areas so there is enormous potential for CO2 sequestration in other portions the basin and further research needs to be done to find these areas.

  15. Diachroneity of Basin and Range Extension and Yellowstone Hotspot...

    Open Energy Info (EERE)

    against a direct link between the Yellowstone hotspot and the initiation of extension, casting additional doubt on the role of the hotspot in extension across the broader Basin and...

  16. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  17. Negotiating nature : expertise and environment in the Klamath River Basin

    E-Print Network [OSTI]

    Buchanan, Nicholas Seong Chul

    2010-01-01

    "Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

  18. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

  19. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  20. River Basin Economics and Management: International Trade, Allocation and Quality

    E-Print Network [OSTI]

    Kong, Wen

    2015-01-01

    Agricultural and Resource Economics, 27(1):16–39. Knapp, K.river basin. Agricultural Economics, 24:33–46. Schoup, G. ,satiable agents. Games and Economics Behavior, 64:35–50.

  1. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  2. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  3. Post-Formative Ceramics in the Eastern Grat Basin

    E-Print Network [OSTI]

    Forsyth, Donald W

    1986-01-01

    Great Salt Lake Fremont Ceramics. In: The Levee Site and the1986). Post-Formative Ceramics in the Eastern Great Basin: A1977 Prehistoric Ceramics of the Fremont. Museiun of

  4. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  5. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  6. Repository site definition in basalt: Pasco Basin, Washington

    SciTech Connect (OSTI)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  7. A gravity study of the Great Basin-Sonoran Desert transition zone, Basin and Range province, western United States 

    E-Print Network [OSTI]

    Brooks, Debra Ann

    1989-01-01

    120 118P 116 112 p QQg g, , h(Q ( ~pi Qpj -~, , ) go q t) ( g' 0 ~a ~ce i(( Q "I, ';;, ( (qy p, , ~, O, j ~, g r~~ g 9 I i i Q Q CI 0 D & OO i j~g ? - i (oft c QP. T28 g igO ~0~ (, . &, o ~ D -/gE. - . ~, ~ o Cj) 4 L ', 8 Q '0... '. i 0 ~ g ' 0 0 O& Qo 0 ' '5 -i-"'. "'~ Q~~ g D, fJ I , //) 'i) () j 0 f &yP// + /j, 1f g('. ((jj() (', ' i ' (iQ' /O Qo I 38' ), &, x. Ji, (n , gi, (0(, , 4. ~. (7'~(, , . , ) ?. ), ((, ($, 2, g(P) o )r~ C O gc 0 (fi ~~o 0 , :Qa 0...

  8. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  9. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect (OSTI)

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  10. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect (OSTI)

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  11. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  12. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  13. PETROGRAPHY AND PROVENANCE OF VOLCANICLASTIC SANDS AND SANDSTONES RECOVERED FROM THE WOODLARK RIFT BASIN AND TROBRIAND FOREARC BASIN, LEG 180 

    E-Print Network [OSTI]

    Sharp, Timothy R; Robertson, Alastair H F

    2002-01-01

    Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program ...

  14. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps Documentation DataDatastreamsxsacrcwrhiDatastreamsxsaprrhiAlaskaDefensive

  15. Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-05-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

  16. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  17. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  18. A STUDY OF ROCK-WATER-NUCLEAR WASTE INTERACTIONS IN THE PASCO BASIN, WASHINGTON -- Part: Distribution and Composition of Secondary and Primary Mineral Phases in Basalts of the Pasco Basin, Washington

    E-Print Network [OSTI]

    Benson, L.V.

    2010-01-01

    IN THE PASCO BASIN, WASHINGTON PART I DISTRIBUTION ANDOF THE PASCO BASIN, WASHINGTON L. V. Benson and L. S. TeagueBasin of southeastern Washington. In particular, we have

  19. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect (OSTI)

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  20. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  1. Reprinted from JOURNAL OF GEOLOGY, 1990, vol. 98, p. 135-155. QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH

    E-Print Network [OSTI]

    in the Blackheath region of the hinge area of the Triassic Richmond basin of Virginia. Outcrop studies and coal mine the hanging wall block of the basins, indicating that both the basins and their depositional surface areas

  2. The role of the Early Tertiary Uluk?sla Basin, southern Turkey, in suturing of the Mesozoic Tethys ocean 

    E-Print Network [OSTI]

    Clark, Matthew; Robertson, Alastair H F

    2002-01-01

    The Maastrichtian–Late Eocene Uluk?sla Basin is representative of the tectonic and sedimentary evolution of prominent Early Tertiary basins in central Anatolia, including the Tuzgolu and S ark?sla basins. The Uluk?sla ...

  3. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  4. United States-Mexico electricity transfers: Of alien electrons and the migration of undocumented environmental burdens

    SciTech Connect (OSTI)

    Gandara, A. [Univ. of California, Davis, CA (United States)

    1995-08-01

    This article intends to set forth the necessity for reform in the United States policy and procedures regarding approval of power transfers between the United States and Mexico. In order to do this, the article will review the history of electrical power transfers between the United States and Mexico (Part II), analyze recent regulatory changes in the United States and Mexico which may result in increased power exports to Mexico (Part III), evaluate the extent to which the present permit and authorization system in the United States considers the increased environmental burden of such power transfers (Part IV), and, where appropriate, propose some procedural and policy reforms that could take into account the environmental burdens generated by the production of power destined for transfer across the United States-Mexico border (Part V).

  5. Comprehensive analysis of sustainable flood retention basins 

    E-Print Network [OSTI]

    Yang, Qinli

    2011-11-22

    To adapt to climate change which results in increasing flood frequency and intensity, the European Community has proposed Flood Directive 2007/60/EC. It requires member states to conduct risk assessments of all river ...

  6. A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway

    E-Print Network [OSTI]

    Bradley, Raymond S.

    A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway Lofoten Islands Norway This study takes a comprehensive approach to characterizing the isolation sequence source. Methods of characterizing isolation basin stratigraphy traditionally rely on microfossil

  7. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    E-Print Network [OSTI]

    Johnson, Edward A.

    Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains T. Hoffmann,1 sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial for mountain headwaters (with basin area

  8. Acoustic impedance inversion of the Lower Permian carbonate buildups in the Permian Basin, Texas 

    E-Print Network [OSTI]

    Pablo, Buenafama Aleman

    2004-11-15

    Carbonate reservoirs are usually diffcult to map and identify in seismic sections due to their complex structure, lithology and diagenetic frabrics. The Midland Basin, located in the Permian Basin of West Texas, is an excellent example...

  9. Master1GologiedesRservoirsDynamiquedesBassins-MichelSranne 2-Geodynamics of Sedimentary Basins

    E-Print Network [OSTI]

    Cattin, Rodolphe

    ) N. Faults => initial subsidence d) LAB isotherm uplift =>increased geotherm a) Stop of extensional subsidence in rift basins (measured in borehole) True for any type of basin #12;13 Master1Géologiedes

  10. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    that electrically resistive features in the model are related to volcanic materials intruded within the rift basin basin, northwest Ethiopia is an uplifted dome possibly related to the Afar mantle plume (Pik et al

  11. Syn-tectonic sedimentary evolution of the Miocene atallar Basin, southwestern Turkey

    E-Print Network [OSTI]

    Boyer, Edmond

    and sedimentological data are now presented. The Çatallar Basin lies in paraconformity on the Bey Dalari carbonate: Sedimentology; Biostratigraphy; Source of detritals; Miocene; Basin analyses; Lycian Nappes 1. Introduction

  12. Depositional history of Lower Permian (Wolfcampian-Leonardian) carbonate buildups, Midland Basin, Upton County, Texas 

    E-Print Network [OSTI]

    Merriam, Catherine O'Hara

    1999-01-01

    A north-south oriented trend of Wolfcampian-Leonardian carbonate buildups is located in the southwestern Midland Basin, Upton County, Texas. The buildup trend is located west of the eastern faulted margin of the Central Basin Platform and north...

  13. Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale flow

    E-Print Network [OSTI]

    Gable, Carl W.

    Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin by scaling up an experimental stratigraphy created by physical sedimentation processes and by assuming. Person (2006), Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin

  14. The use of turbulent jets to destratify the Charles River Basin

    E-Print Network [OSTI]

    Church, Jeffrey H. (Jeffrey Harrison)

    2012-01-01

    This study examines the feasibility of using turbulent jets to destratify the Lower Charles River Basin between the Longfellow and Craigie Bridges between Boston and Cambridge. The basin is currently filled with salt water ...

  15. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  16. K Basins Groundwater Monitoring Task, Spent Nuclear Fuels Project: Report for April, May, and June 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-08-30

    This report provides a summary of groundwater monitoring at the K Basins during April, May, and June 2006

  17. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT ..........................................................................25 Division Barriers Upstream of the Powerhouse

  18. Regional tectonostratigraphy of the pre-salt in the Benguela-Namibe Basins, Angola

    E-Print Network [OSTI]

    Henderson, Gideon

    .manchester.ac.uk/people/staff/profile/?ea=Jonathan.Redfern) Overview The discovery of pre-salt carbonate reservoirs in the Santos Basin (Brazil) and the Kwanza Basin to potential reservoirs means domination of siliciclastics, with rapid facies transition to common carbonates, but heterogeneous reservoir potential in carbonates, controlled by complex diagenesis. #12;Fig 1. Namibe Basin

  19. The Loreto basin formed by rapid west-ward tilting and asymmetric subsidence with-

    E-Print Network [OSTI]

    Dorsey, Becky

    ABSTRACT The Loreto basin formed by rapid west- ward tilting and asymmetric subsidence with subsidence histories and stratigraphic evolution. Sedimentary rocks of the Loreto basin are divided into four stratigraphic se- quences that record discrete phases of fault- controlled subsidence and basin filling. Se

  20. Effect of mineral phase transitions on sedimentary basin subsidence and uplift

    E-Print Network [OSTI]

    Podladchikov, Yuri

    Effect of mineral phase transitions on sedimentary basin subsidence and uplift Boris J.P. Kausa influence rock density, which is a major parameter affecting lithosphere dynamics and basin subsidence are incorporated into one- and two-dimensional kinematic models of basin subsidence. The results demonstrate that

  1. Three-Dimensional Tidal Flow in an Elongated, Rotating Basin CLINTON D. WINANT

    E-Print Network [OSTI]

    Winant, Clinton D.

    Three-Dimensional Tidal Flow in an Elongated, Rotating Basin CLINTON D. WINANT Integrative-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant parcels tend to corkscrew into and out of the basin in a tidal period. The axial flow is only weakly

  2. Patterns and processes of wood debris accumulation in the Queets river basin, Washington

    E-Print Network [OSTI]

    Montgomery, David R.

    Patterns and processes of wood debris accumulation in the Queets river basin, Washington Tim B Mountains in NW Washington reveal basin-wide patterns of distinctive wood debris (WD) accumulations development. The classification of wood debris accumulations in the Queets river basin is based on physical

  3. Investigations into Sequence and Conformational Dependence of Backbone Entropy, Inter-basin

    E-Print Network [OSTI]

    Berry, R. Stephen

    and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates-fields produces large variations in the populations and inter-conversion rates between the dominant helical pep- tide unit to be in one Ramachandran basin or another and the inter-basin hopping rates directly

  4. Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

  5. Rainfall Generator for the Rhine Basin Multi-site generation of weather variables

    E-Print Network [OSTI]

    Beersma, Jules

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables for the entire generator for the Rhine Basin 38 3 #12;Summary This is the final report of a project on the development of a rainfall generator for the Rhine basin. The request for this generator arose from the need to study

  6. Rainfall Generator for the Rhine Basin Description of 1000-year simulations

    E-Print Network [OSTI]

    Beersma, Jules

    Rainfall Generator for the Rhine Basin Description of 1000-year simulations Jules J. Beersma KNMI References 14 List of publications on the rainfall generator for the Rhine basin 15 Appendix 17 #12;4 1. Introduction In this report ten 1000-year simulations with the rainfall generator for the Rhine basin

  7. Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits eolian sandstone in the Pomperaug basin, Connecticut is noteworthy because it is the most significant from the Hartford (Connecticut, USA), Fundy (Nova Scotia, Canada), and Argana (Morocco) basins. Using

  8. Water masses and circulation pathways through the Iceland Basin during Vivaldi 1996

    E-Print Network [OSTI]

    Water masses and circulation pathways through the Iceland Basin during Vivaldi 1996 R. T. Pollard through the middle of the Iceland Basin as far as 60°N, 20°W. A second branch (the Northern Branch or Sub into the northern Iceland Basin between Rockall and Lousy Banks. This saline, weakly stratified tongue can be traced

  9. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1

    E-Print Network [OSTI]

    Sigman, Daniel M.

    Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1 Daniel M. Sigman,2 of Venezuela. Water column denitrification occurring in the basin has only a very small isotopic imprint-Karger, Y. Astor, and R. Varela (2004), Nitrogen isotope dynamics of the Cariaco Basin, Venezuela, Global

  10. Sediment mixing and basin-wide cosmogenic nuclide analysis in rapidly-eroding mountainous environments

    E-Print Network [OSTI]

    1 Sediment mixing and basin-wide cosmogenic nuclide analysis in rapidly-eroding mountainous, W.M., Summerfield, M.A., and Fifield, L.K., 2006, Sediment mixing and basin-wide cosmogenic nuclide nuclide concentrations in alluvial sediments have been widely used to estimate basin-wide denudation rates

  11. Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension

    E-Print Network [OSTI]

    Müller, Dietmar

    Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension Maria Jussieu Paris cedex 5, France (alain.mauffret@lgs.jussieu.fr) George Bernardel Geoscience Australia, Cnr] The Norfolk Basin is a small back-arc basin in the SW Pacific with an unknown age and origin for its formation

  12. Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more

    E-Print Network [OSTI]

    other cra- tonic settings, such as the Illinois, Paris, and North Sea basins (Heidlauf et al., 1986ABSTRACT Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more corrections and estimates of paleo- bathymetry, we recognize four different styles of subsidence in the basin

  13. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  14. Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico 

    E-Print Network [OSTI]

    Guo, Mengdong

    1997-01-01

    The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

  15. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    SciTech Connect (OSTI)

    Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer steelhead O. mykiss and life history characteristics of summer steelhead.

  16. Technology Transfer David Basin and Thai Son Hoang

    E-Print Network [OSTI]

    Basin, David

    Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

  17. 2011Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    2011Columbia River Basin Fish and Wildlife Program Costs Report AnnuAl RePoRt to the noRthWest Gove | Northwest Power & Conservation Council Document 2012-11 | September 2012 #12;FIsh & WIlDlIFe Costs ANNUAL REPORt tO thE NORthWESt GOvERNORS costs 08

  18. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America

    E-Print Network [OSTI]

    Kaminski, Edouard

    for vertical heat transport, each basin requires a different lithosphere thickness or a different boundary American craton, the lithosphere is too thick for the assumption of purely vertical heat transfer, the downward extrapolation of crustal geotherms deal with the upper part where heat transport occurs

  19. Cape Fear River Basin Action Plan for Migratory Fish

    E-Print Network [OSTI]

    Cape Fear River Basin Action Plan for Migratory Fish C ape Fear Rive r Pa rt n er ship developed with a vision of a healthy Cape Fear River for fish and people. The partnership's mission is to restore and demonstrate the value of robust, productive, and self-sustaining stocks of migratory fish in the Cape Fear

  20. Fates of Eroded Soil Organic Carbon: Mississippi Basin Case Study

    E-Print Network [OSTI]

    Smith, S. V.; Sleezer, R. O.; Renwick, W. H.; Buddemeier, Robert W.

    2005-01-01

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 3 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ;480 t·km22...

  1. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  2. Sediment fluxes and bufferingin the post-glacial Indus Basin

    E-Print Network [OSTI]

    Clift, Peter

    Sediment fluxes and bufferingin the post-glacial Indus Basin P. D. Clift*, and L. Giosan and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first-order source-to-sink budget spanning the time since the LGM. We show that buffering of sediment

  3. NITROGEN LOADINGS FROM SEPTIC SYSTEMS IN THE LOWER FRASER BASIN

    E-Print Network [OSTI]

    Waste Management Zone" (AMZ) as defined in the "Agricultural Inventory of the Lower Fraser Valley Data the data base (acquired from the B.C. Assessment Authority in 1993) in the Ministry of Health report#12;NITROGEN LOADINGS FROM SEPTIC SYSTEMS IN THE LOWER FRASER BASIN DOE FRAP 1997-25 Prepared for

  4. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh

    E-Print Network [OSTI]

    Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh Heather A. Lowers a, CA, USA c U.S. Geological Survey, MS 980, Denver, CO, USA d Geological Survey of Bangladesh, Segenbagicha, Dhaka, Bangladesh Received 11 October 2006; accepted in revised form 22 March 2007; available

  5. Building Full Cost Accounting Resource Decisions for the Fraser Basin

    E-Print Network [OSTI]

    #12;Building Full Cost Accounting into Resource Decisions for the Fraser Basin Prepared by: Tim Mc for this study. I #12;Executive Summary ! T& report is concerned with the potential use of full cost accounting accounting (FCA) is an analytical process that involves systematic comparison of all broadly defined costs

  6. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  7. FRASER BASIN LANDFILL INVENTORY DOE FRAP 1997-19

    E-Print Network [OSTI]

    in the Fraser River Basin and characterize any associated leachate discharges. The objectives of this desktop; 2. Develop a quantitative estimate of landfill leachate discharges for each landfill; 3. Assess landfill compliance with regulatory requirements; 4. Assess leachate discharge impacts on the receiving

  8. Columbia River Basin Accords -Narrative Proposal Project Number 200845800 1

    E-Print Network [OSTI]

    steelhead productivity in the upper Columbia River region, where the run size tripled (5,000 fish to 15Columbia River Basin Accords - Narrative Proposal Project Number 200845800 1 Narrative Table 1@easystreet.net Information transfer: A. Abstract Upper Columbia River (UCR) steelhead are listed as "Endangered" under

  9. 5Stratigraphy, Tectonics, and Basin Evolution in the

    E-Print Network [OSTI]

    Dorsey, Becky

    5Stratigraphy, Tectonics, and Basin Evolution in the Anza-Borrego Desert Region Rebecca Dorsey and animals. Through integrative studies of stratigraphy, sedimentology, and paleontology, we can reconstruct overview of existing knowledge about the regional stratigraphy, tectonic evolu- tion, and major sedimentary

  10. COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING

    E-Print Network [OSTI]

    Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  11. SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO

    E-Print Network [OSTI]

    Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

  12. COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA

    E-Print Network [OSTI]

    Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  13. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  14. Mariner's Guide For Hurricane Awareness In The North Atlantic Basin

    E-Print Network [OSTI]

    Mariner's Guide For Hurricane Awareness In The North Atlantic Basin Eric J. Holweg eholweg.navy.mil/data/oceans/gulfstream.html Hurricane Preparedness & Tracks: http://www.fema.gov/fema/trop.htm Time Zone Conversions: http.....................................................................................................2 · Tropical Wave · Tropical Disturbance · Tropical Depression · Tropical Storm · Hurricane

  15. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  16. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  17. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  18. Geophys. J. Int. (1991) 107, 433-447 Paris Basin VSPs: case history establishing combinations of fine-layer

    E-Print Network [OSTI]

    Edinburgh, University of

    1991-01-01

    Geophys. J. Int. (1991) 107, 433-447 Paris Basin VSPs: case history establishing combinations This paper examines shear-wave splitting in multi-offset VSPs at a borehole site in the Paris Basin basins. Key words: crack (EDA) and fine-layer (PTL) anisotropy, sedimentary basins, shear

  19. GEOCHEMICAL INVESTIGATIONS OF CO?-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO?), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO? emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO?. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO? without the potential for the release of harmful contaminants liberated by the reaction between CO?-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO? as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO? injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO? and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.

  20. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  1. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  2. A First Record of a Strike-slip Basin in Western Anatolia and Its Tectonic Implication: The Cumaovasi Basin

    E-Print Network [OSTI]

    Utrecht, Universiteit

    of Cumaovasi basin and kinematic analysis on the striated fault planes support two senses of movements, each having opposite kinematic indicators. Quantitative indications are presented for the polyphase evolution, as indicated by active fault planes and focal mechanisms of shallow earthquakes. The transition from

  3. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin sections, leading to an interpretation of the sequence of diagenetic events and development of porosity in the reservoir. Nearly 1000 stable isotope geochemistry samples have been collected from cores in four of the five states in the study area. More than 400 of these samples will be analyzed for fluid inclusion and/or strontium isotope analyses, as well. Gas samples have been collected from 21 wells in four states and analyzed for chemical content and isotope analyses of carbon and hydrogen. Because natural gases vary in chemical and isotope composition as a function of their formation and migration history, crossplots of these values can be very revealing. Gas from the Homer field in Kentucky indicates compartmentalization and at least two different sources. Gas from the York field in Ohio also came from at least two discrete compartments. Gas from the Cottontree field in West Virginia is very dry, probably generated from post-mature source rocks. Isotope reversals may be indicative of cracking of residual oil. Gas from Glodes Corners Road field in New York also is post-mature, dry gas, and again isotope reversals may indicate cracking of residual oil in the reservoir. Noble gases are predominantly of crustal origin, but a minor helium component was derived from the mantle. The project web server continues to evolve as the project progresses. The user/password authenticated website has 18 industry partner users and 20 research team users. Software has been installed to track website use. Two meetings of the research team were held to review the status of the project and prepare reports to be given to the full consortium. A meeting of the full consortium--industry partners and researchers--was very successful. However, the ultimate product of the research could be improved if industry members were more forthcoming with proprietary data.

  4. Carbonate seismic stratigraphy of Cretaceous Paso Caballos basin, Guatemala: new structures in a structureless basin

    SciTech Connect (OSTI)

    Pigott, J.D.; Mazariegos, R.; Forgotson, J.M. Jr.

    1989-03-01

    Previous exploration in the carbonate and evaporite sequences of the Paso Caballos basin focused primarily upon structural plays. Early data acquisition and processing purposely excluded the resolution advantages of broad frequency ranges and ignored the problems of statics. Interpretations based on these data were predictably unsuccessful in this large, presently karsted, Cretaceous shallow marine platform. Seismic stratigraphic analysis of 735.5 km of statics-corrected, broad-band, zero-phase dynamic and Vibroseis data acquired in 1981 and 1982 delineates four seismic sequences within the Cretaceous (in increasing age): The Lacandon-Barton Creek limestone sequence, the upper Coban salt sequence, the middle Coban dolomitic salt sequence, and the Lower Cretaceous dolomitic sequence. The sequences overlying the faulted and folded Lower Cretaceous dolomitic sequence are relatively smooth and dip at a low angle toward a depocenter to the northwest. Within the carbonate section of the upper Coban salt sequence are several large (45 km/sup 2/), mounded structures with substantial lateral and vertical variations in both reflection group configurations and wavelet characteristics. Detailed modeling and attribute analysis offer additional insight into the interpretation of these structures. For example, analysis of one such feature, the Santa Amelia structure, shows notched frequency attenuation off structure, which suggests permeable hydrocarbon-filled porosities on the flank isolated and sealed from a wet structural center.

  5. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect (OSTI)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  6. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  7. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilities

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilitiesColorado

  9. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination

  10. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013

  11. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile

  12. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii ElectricityMinnesota

  14. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile

  16. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada

  18. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevadaTexas Electricity

  19. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevadaTexas

  20. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevadaTexasWest

  1. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  2. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect (OSTI)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  3. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  4. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  5. Sedimentary basin geochemistry and fluid/rock interactions workshop

    SciTech Connect (OSTI)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

  6. Petroleum geology of Benue trough and southeastern Chad basin, Nigeria

    SciTech Connect (OSTI)

    Petters, S.W.; Ekweozor, C.M.

    1982-08-01

    Cretaceous cyclic sedimentation in the southern Benue trough, together with unconformities, provide a tripartite subdivision of the sedimentary succession into (1) the Albian Asu River Group, (2) the late Cenomanian to early Santonian Cross River Group (new name) and interfingering marginal marine sandstones, and (3) the post-Santonian coal measures sequence. Most of the Albian to Eocene marine shales in the Benue trough and the Turonian shales in the southern Chad basin contain well over 0.5% total organic carbon, with values of up to 7.4% in Turonian anaerobic shales. Based on the high content of soluble organic matter, thermal maturity, and the predominantly terrigenous character of the Late Cretaceous shales, mostly natural gas was probably generated in both basins. The late Santonian folding and uplift would have disrupted petroleum reservoirs. Also, crude oil accumulations which were not dissipated by tectonism would be relocated at relatively shallow depths and hence become accessible to invading meteoric waters.

  7. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect (OSTI)

    Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  8. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  9. Regional Service Plan For Coordinated Transportation In the Permian Basin 

    E-Print Network [OSTI]

    Permian Basin Regional Planning Commission

    2010-10-27

    Regional Service Plan Permian Basin ? Region 9 Table of Contents I. Acknowledgements 4 II. Executive Summary 5 III. Background 6 A. Regional Description 6 i. Geography and Demographics 6 ii. Transportation... Planning Partners 12 iii. Current Transportation Services/Providers 13 B. History of Regional Coordination of Public Transportation 14 i. Past/Continuing Planning Activities 14 ii. Past/Current Implemented Projects/Services 15 IV...

  10. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  11. Maintenance and Operations study for K basins sludge treatment

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1998-11-30

    This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility.

  12. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    SciTech Connect (OSTI)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  13. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    SciTech Connect (OSTI)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  14. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect (OSTI)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  15. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  16. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  17. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  18. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect (OSTI)

    Wood, James R.; Harrison, William B.

    2002-12-02

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  19. A Case Study For Geothermal Exploration In The Ne German Basin...

    Open Energy Info (EERE)

    Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to: navigation, search OpenEI Reference...

  20. Techniques for Hydrograph Synthesis Based on Analysis of Data from Small Drainage Basins in Texas 

    E-Print Network [OSTI]

    Hudlow, M.D.

    1966-01-01

    for Hydrograph Synthesis Based on Analysis of Data from Small Drainage Basins in Texas M.D. Hudlow Texas Water Resources Institute Texas A&M University ...

  1. Microsoft Word - NETL-TRS-8-2015 Appalachian Basin Isotopes_7...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large extent of the Appalachian Basin, is subject to hydraulic fracturing (fracking) hydrocarbon extraction techniques, which involves the fracturing of rock by a...

  2. Feasibility for Reintroducing Sockeye and Coho Salmon in the Grande Ronde Basin, 1998 Final Report.

    SciTech Connect (OSTI)

    Cramer, Steven P.; Witty, Kenneth L.

    1998-07-01

    A report concerning the feasibility of reintroducing Sockeye Salmon into Wallowa Lake and Coho Salmon into the Grande Ronde River Basin.

  3. Northwest Power and Conservation Council's1 Columbia River Basin

    E-Print Network [OSTI]

    .................................................................................9 A. Vision for the Columbia River Basin......................................................................... 9 1. The Overall Vision for the Fish and Wildlife Program............................................................................. 30 3. Artificial Production Strategies

  4. A Map Of Geothermal Potential For The Great Basin, Usa- Recognition...

    Open Energy Info (EERE)

    A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Minimum 186 Basin levels required for operation of ECS and CWS pumps

    SciTech Connect (OSTI)

    Reeves, K.K.; Barbour, K.L.

    1992-10-01

    Operation of K Reactor with a cooling tower requires that 186 Basin loss of inventory transients be considered during Design Basis Accident analyses requiring ECS injection, such as the LOCA and LOPA. Since the cooling tower systems are not considered safety systems, credit is not taken for their continued operation during a LOPA or LOCA even though they would likely continue to operate as designed. Without the continued circulation of cooling water to the 186 Basin by the cooling tower pumps, the 186 Basin will lose inventory until additional make-up can be obtained from the river water supply system. Increasing the make-up to the 186 Basin from the river water system may require the opening of manually operated valves, the starting of additional river water pumps, and adjustments of the flow to L Area. In the time required for these actions a loss of basin inventory could occur. The ECS and CWS pumps are supplied by the 186 Basin. A reduction in the basin level will result in decreased pump suction head. This reduction in suction head will result in decreased output from the pumps and, if severe enough, could lead to pump cavitation for some configurations. The subject of this report is the minimum 186 Basin level required to prevent ECS and CWS pump cavitation. The reduction in ECS flow due to a reduced 186 Basin level without cavitation is part of a separate study.

  6. Final Report: The Santa Barbara Channel - Santa Maria Basin Circulation Study

    E-Print Network [OSTI]

    Winant, Clinton D; Dever, Edward P; Dorman, Clive E; Hendershott, Myrl C

    2006-01-01

    I.B.1.d. Surveys I.B.1.e. Ancillary Observations I.B.2.Maria Basin. I.B.1.e. Ancillary Observations During the

  7. Information technology and decision support tools for stakeholder-driven river basin salinity management

    E-Print Network [OSTI]

    Quinn, N.W.T

    2010-01-01

    water and salinity load management within the Hunter Rivermandated for pollutant load management in the US. 5.load regulation in the Hunter River Basin Salinity management

  8. Climate Change Effects on the Sacramento Basin's Flood Control Projects ANN DENISE FISSEKIS

    E-Print Network [OSTI]

    Lund, Jay R.

    Climate Change Effects on the Sacramento Basin's Flood Control Projects By ANN DENISE FISSEKIS B.......................................................................6 Chapter III. Climate Change................................................................11 models...........................................................20 Climate change data

  9. Water scarcity and development in the Tigris-Euphrates river basin. Master`s thesis

    SciTech Connect (OSTI)

    1995-08-01

    This report will examine aspects of water scarcity and development, and discuss solutions available to avoid conflict over water in the Tigris-Euphrates River Basin. (MM).

  10. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    D.F. : Comision Nacional de Agua. Shamir, E. , Georgakakos,D.F. : Comision Nacional de Agua. SeismoControl, S. A. d. C.Comision Nacional de Agua. Servicio Geologico Mexicano. (

  11. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    primary water management activities being considered relate to treatment of wastewater andprimary water concerns of the region: treatment of wastewater,

  12. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

  13. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01

    transmissivity/hydraulic conductivity, and wells drilledwells, and thus do not provide information on the hydraulic

  14. Role of the basin boundary conditions in gravity wave turbulence

    E-Print Network [OSTI]

    Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Michael Berhanu; Eric Falcon; Félicien Bonnefoy

    2015-09-02

    Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

  15. Role of the basin boundary conditions in gravity wave turbulence

    E-Print Network [OSTI]

    Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Sébastien Aumaitre; Michael Berhanu; Eric Falcon; Félicien BONNEFOY

    2014-12-16

    Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

  16. Tanzania wildcats to evaluate Jurassic Mandawa salt basin

    SciTech Connect (OSTI)

    Nagati, M.

    1996-10-07

    After 5 years of stagnant exploration in East Africa, Canadian independent Tanganyika Oil Co. of Vancouver, B.C., will drill two wildcats in Tanzania to evaluate the hydrocarbon potential of the coastal Jurassic Mandawa salt basin. Mita-1, spudded around Oct. 1, will be drilled to about 7,000 ft, East Lika-1 will be drilled in early December 1996 to approximately 6,000 ft. The two wells will test different structures and play concepts. The paper describes the exploration history, source rock potential, hydrocarbon shows, potential reservoir, and the prospects.

  17. Niger Delta basin oil and gas prospects evaluated

    SciTech Connect (OSTI)

    Not Available

    1992-09-28

    This paper reports that an ambitious project to map African oil and gas prospects has produced its first findings in a report on the Niger Delta basin. In Nigeria, 73% of discoveries are smaller than 50 million bbl, with a 42% success rate for wildcats. There are 'out of round prospects off Nigeria, too, with a number of companies currently in discussions. Petroconsultants the there are further opportunities for exploration in the Northern Onshore Fringe Belt, which has an estimated potential of 500 million bbl of reserves. Three OPLs are open.

  18. Floodplain River Foodwebs in the Lower Mekong Basin 

    E-Print Network [OSTI]

    Ou, Chouly

    2013-11-15

    Asia: China (Tibet), Myanmar, Laos, Thailand, Cambodia and Vietnam (the Mekong delta). The Mekong River Basin is divided into two main sections: the Upper Mekong, which spans from Jifu Mountains of Tibet Autonomous prefecture of China to the border... of Burma and Laos, and the Lower Mekong, which covers the area from the Burma-Laos border to the Mekong Delta in Vietnam. The Mekong River plays a crucial role in the economy of many of these countries. China benefits from the river primarily through...

  19. Conditional Reliability Modeling of Short-term River Basin Management 

    E-Print Network [OSTI]

    Salazar, A.; Wurbs, R. A.

    2003-01-01

    MODELING OF SHORT-TERM RIVER BASIN MANAGEMENT ASCE Texas Section Spring Meeting 2003 By: A.Andr?s Salazar, Ph.D. Freese and Nichols, Inc. and Ralph A. Wurbs, P.E., Ph.D. Texas A&M University 2 TEXAS WATER AVAILABITY MODEL Senate bill 1 (1997) directed TCEQ... current conditions of reservoir storage. 8 WRAP MODEL: Limitations 0 100 200 300 400 Jan-34 Jan-37 Jan-40 Jan-43 Jan-46 Jan-49 Jan-52 Jan-55 Jan-58 Jan-61 Jan-64 Jan-67 Jan-70 Jan-73 Jan-76 Jan-79 Jan-82 Jan-85 Jan-88Year Storage (x 1000 ac-ft) Periods...

  20. File:Denver Basin.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:Colorado Water QualityDenver Basin.pdf Jump

  1. East Basin Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEast Basin Creek

  2. EA-64 Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to exportEndure Energy,VitolSaracen PowerBasin Electric

  3. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to exportEndure Energy,VitolSaracen PowerBasin

  4. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, Inc Jump to:NorthlandBasin

  5. PP-64 Basin Electric Power Cooperative | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES5-246 Bonneville64 Basin

  6. The use of a distributed hydrologic model to predict dynamic landslide susceptibility for a humid basin in Puerto Rico

    E-Print Network [OSTI]

    Kamal, Sameer A. (Sameer Ahmed)

    2009-01-01

    This thesis describes the use of a distributed hydrology model in conjunction with a Factor of Safety (FS) algorithm to predict dynamic landslide susceptibility for a humid basin in Puerto Rico. The Mameyes basin, located ...

  7. A classification of channel-reach morphology in mountain drainage basins synthesizes stream morphologies into seven distinct reach types

    E-Print Network [OSTI]

    Montgomery, David R.

    ABSTRACT A classification of channel-reach morphology in mountain drainage basins synthesizes channel condition and response potential in mountain drainage basins. Field investigations demonstrate mountain channels and their lowland counterparts (e.g., Surell, 1841; Dana, 1850; Shaler, 1891

  8. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    E-Print Network [OSTI]

    Meyers, Steven D.

    Basin (Venezuela) V. Bout-Roumazeilles,1 A. Riboulleau,1 E. Armynot du Châtelet,1 L. Lorenzoni,3 N for deciphering river contributions to the Cariaco Basin (Venezuela), J. Geophys. Res. Oceans, 118, doi:10

  9. Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey 

    E-Print Network [OSTI]

    Glover, Clare P; Robertson, Alastair H F

    1998-01-01

    The Aksu Basin, within the Isparta Angle area of SW Turkey, documents Plio-Pleistocene crustal processes at the interface between the Tauride Mountains and the Eastern Mediterranean Sea. Basin sedimentation began in the Late Miocene, following...

  10. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data

    E-Print Network [OSTI]

    Fassett, Caleb I.

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the ...

  11. Paleogene Larger Benthic Foraminiferal Stratigraphy and Facies distribution: implications for tectonostratigraphic evolution of the Kohat Basin, Potwar Basin and the Trans Indus Ranges (TIR) northwest Pakistan 

    E-Print Network [OSTI]

    Ahmad, Sajjad

    2011-11-24

    Thick Paleogene sequences occur in the southern deformed fold and thrust belt of the Himalayas. In this thesis I describe detailed litho- and biostratigraphy from ten key stratigraphic sections in the Kohat Basin, the ...

  12. Modelling complex flood flow evolution in the middle Yellow River basin, China

    E-Print Network [OSTI]

    Yu, Qian

    Modelling complex flood flow evolution in the middle Yellow River basin, China Hongming He a January 2008 KEYWORDS Flood routing; Backwater flow; The middle Yellow River; River morphology Summary Flood routing processes in the middle Yellow River basin are complex since they consist of three types

  13. Source to sink relations between theTian Shan and Junggar Basin (northwest China) from Late

    E-Print Network [OSTI]

    Utrecht, Universiteit

    and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing in continental Asia is dominated by north-south compression since the Cenozoic India-Asia collision. However margin of the North Tian Shan block and Junggar Basin became a true foreland basin. INTRODUCTION

  14. Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late Miocene

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Miocene M. GarceÂs,* W. Krijgsman² and J. Agusti³ *Institute of Earth Sciences Jaume Almera, CSIC, Sole i basins. Since the late Tortonian, N±S to NW±SE compression led to inversion of older extensional synsedimentary folding, vertical axis block rotations and uplift of both the basin and its margins. The overall

  15. GRC Transactions, Vol. 29, 2005 Geothermal, GIS, potential, favorability, Great Basin, map

    E-Print Network [OSTI]

    _gis2. htm) of the Great Basin Center for Geothermal Energy (GBC- GE). This map allows for separate to host high-temperature (> 150° C) geothermal systems capable of producing electrical energy. ThreeGRC Transactions, Vol. 29, 2005 223 Keywords Geothermal, GIS, potential, favorability, Great Basin

  16. Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1

    E-Print Network [OSTI]

    Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

  17. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics extension of a brittle overburden and underlying salt causes differential loading that is thought example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe

  18. The Congo Basin possesses some of the most valuable and threatened rainforest outside the

    E-Print Network [OSTI]

    Hardin, Rebecca D.

    between environmental governance and logging in forest concessions in the western Congo Basin on Governance and Logging, two syntheses volumes on "Logging in the Congo Basin," and "Environmental Governance a unique research opportunity for three reasons: 1) its importance to global forest cover and terrestrial

  19. De Bilt, 2014 | KNMI publication 196-VI Rainfall generator for the Meuse basin

    E-Print Network [OSTI]

    Beersma, Jules

    De Bilt, 2014 | KNMI publication 196-VI Rainfall generator for the Meuse basin: Description, and T. Adri Buishand #12;#12;1 Rainfall generator for the Meuse basin: Description of simulations ......................................................................................................................21 #12;3 1. INTRODUCTION The rainfall generator has been developed to generate long synthetic

  20. Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation

    E-Print Network [OSTI]

    Manga, Michael

    to an underestimate of heat flow in the Sierras based purely on borehole measurements. Using temperature and discharge­40 mW m)2 of geothermal heat from the basin. This is comparable with other heat flow measurements of geothermal heat within the basin. Additionally, we use esti- mates of the mean residence time of water

  1. An analytic system with a computable hyperbolic sink whose basin of attraction is non-computable

    E-Print Network [OSTI]

    Graça, Daniel S.

    An analytic system with a computable hyperbolic sink whose basin of attraction is non-computable that one cannot compute, in general, the basins of attraction of even very regular systems, namely analytic (even C -systems) with domains of attraction which encode non-computable problems and which are thus non-computable

  2. Dynamic topography and anomalously negative residual depth of the Argentine Basin G.E. Shephard a,

    E-Print Network [OSTI]

    Liu, Lijun

    GR letter Dynamic topography and anomalously negative residual depth of the Argentine Basin G Handling Editor: A. Aitken Keywords: Dynamic topography Residual basement depth Geodynamic modeling Argentine Basin Subduction Plate tectonics A substantial portion of Earth's topography is known to be caused

  3. Dynamic topography and anomalously negative residual depth of the Argentine Basin G.E. Shephard a,

    E-Print Network [OSTI]

    Müller, Dietmar

    GR letter Dynamic topography and anomalously negative residual depth of the Argentine Basin G: A. Aitken Keywords: Dynamic topography Residual basement depth Geodynamic modeling Argentine Basin Subduction Plate tectonics A substantial portion of Earth's topography is known to be caused by the viscous

  4. Final Independent External Peer Review Report Skagit River Basin Flood Risk Management

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report Skagit River Basin Flood Risk Management General of the Army U.S. Army Corps of Engineers Flood Risk Management Planning Center of Expertise Baltimore District Independent External Peer Review Report Skagit River Basin Flood Risk Management General Investigation, Skagit

  5. Effects of induced flow on the depths of active back-arc basins 

    E-Print Network [OSTI]

    Tomlins, Robynn Lee

    1993-01-01

    The depth of active back-arc basins, younger than 10 Ma is correlated to the angle of subduction, in that the deepest basins are associated with steep angles of subduction, and the shallowest to small angles of subduction. A two-dimensional comer...

  6. Appendix A -1 Appendix A: The Columbia River Basin Fish and Wildlife

    E-Print Network [OSTI]

    Appendix A - 1 Appendix A: The Columbia River Basin Fish and Wildlife Program The 2000 Fish and Wildlife Program is the fifth revision of the Columbia River Basin Fish and Wildlife Program since the NPCC principles. The 2000 NPCC Fish and Wildlife Program marks a significant departure from past versions, which

  7. Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday-weekend effect

    E-Print Network [OSTI]

    Goldstein, Allen

    in ozone, caused by lower NOx emissions due to reduced diesel truck traffic in the weekends, has been nonattainment area. [3] In the LA basin the main emission sources for the ozone precursors VOCs and NOx (NO + NO that in the LA basin in 2008 mobile sources were the dominant emission sources and accounted for 89% of total NOx

  8. NEES Multidirectional Wave Basin for Tsunami Research Solomon C. Yim1

    E-Print Network [OSTI]

    Yim, Solomon C.

    -wave runup behavior is critical if we are to develop appropriate warning systems and evacuation strategiesNEES Multidirectional Wave Basin for Tsunami Research Solomon C. Yim1 , Harry H. Yeh2 , Daniel T requirements posed by tsunami researchers, with basin dimensions and wave generation capabilities closely

  9. Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments 

    E-Print Network [OSTI]

    Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

    2011-01-01

    Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county...

  10. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities key ecosystem processes in the Great Basin, including hydrology and energy balance. To determine how) and energy fluxes using the Bowen ratio-energy balance method with measurements of normalized difference

  11. CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION

    E-Print Network [OSTI]

    including those areas where CBM production has previously been developed. The enhanced coalbed methane (ECBM0625 CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin

  12. Electrical resistivity structure of the Flathead Basin in southeastern British Columbia, Canadal

    E-Print Network [OSTI]

    Jones, Alan G.

    Electrical resistivity structure of the Flathead Basin in southeastern British Columbia, Canadal (Kishenehn) Basin in southeastern British Columbia, Canada. These data have been modelled by both one Rocheuses. Can. J. Earth Sci. 27,1061-1073 (1990) [Traduit par la revue] 1061 Introduction The petroleum

  13. Rainfall Generator for the Rhine Basin Nearest-neighbour resampling of daily

    E-Print Network [OSTI]

    Beersma, Jules

    Rainfall Generator for the Rhine Basin Nearest-neighbour resampling of daily circulation indices and conditional generation of weather variables Jules J. Beersma T. Adri Buishand KNMI publication 186­III Work) Telephone: +31.320.298411; Telefax: +31.320.249218 #12;2 Rainfall Generator for the Rhine Basin #12

  14. Respiratory and Reproductive Characteristics of Eastern Mosquitofish (Gambusia holbrooki) Inhabiting a Coal Ash Settling Basin

    E-Print Network [OSTI]

    Hopkins, William A.

    ) Inhabiting a Coal Ash Settling Basin B. P. Staub, W. A. Hopkins, J. Novak, J. D. Congdon Savannah River 2002/Accepted: 29 March 2002 Abstract. Coal fly ash and effluent from coal ash settling basins viable populations in areas contaminated by coal ash. While eastern mosquitofish are present

  15. Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 19932007

    E-Print Network [OSTI]

    surface water storage variations for 1993­2007 are presented, showing a strong seasonal and interannualSurface freshwater storage and variability in the Amazon basin from multi-satellite observations a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining

  16. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  17. CE-QUAL-W2 Version 3: Hydrodynamic and Water Quality River Basin Modeling

    E-Print Network [OSTI]

    Wells, Scott A.

    and Oregon; the Bull Run River basin composed of 3 water sup- ply reservoirs and 2 river sections with a 2CE-QUAL-W2 Version 3: Hydrodynamic and Water Quality River Basin Modeling S. A. Wells Department for deep, long, and narrow waterbodies. The current model, Version 2, has been used in over 200 river

  18. Hydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3

    E-Print Network [OSTI]

    Wells, Scott A.

    of the Lower Snake River in the Northwestern USA; the Bull Run River basin composed of 3 water supplyHydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3 Scott A. Wells for deep, long, and narrow waterbodies. The current model, Version 2, has been used in over 200 river

  19. Columbia River Basin Accords -Narrative Proposal Form 1 Table 1. Proposal

    E-Print Network [OSTI]

    Historically, the Deschutes River Basin supported one of two sockeye salmon runs in Oregon. Spawning to the Metolius River Although the sockeye run was significantly suppressed in the 1930's due to passage issuesColumbia River Basin Accords - Narrative Proposal Form 1 Narrative Table 1. Proposal Project Number

  20. Multiple Oscillatory Modes of the Argentine Basin. Part I: Statistical Analysis WILBERT WEIJER

    E-Print Network [OSTI]

    Weijer, Wilbert

    Multiple Oscillatory Modes of the Argentine Basin. Part I: Statistical Analysis WILBERT WEIJER Numériques, Paris, France SARAH T. GILLE Scripps Institution of Oceanography, La Jolla, California HENK A surface height in the Argentine Basin indicate that strong variability occurs on a time scale of 20 30

  1. Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains

    E-Print Network [OSTI]

    Satellite-based estimates of groundwater storage variations in large drainage basins with extensive, US ESPACE, Montpellier, France h LERMA, Observatoire de Paris, CNRS, Paris, France a b s t r a c ta r modeling This study presents monthly estimates of groundwater anomalies in a large river basin dominated

  2. BIBLIOGRAPHY Abernethy, C.L. 2001. Financing River Basin Organizations. In Abernethy, C.L. (Ed.)

    E-Print Network [OSTI]

    Wolf, Aaron

    317 BIBLIOGRAPHY Abernethy, C.L. 2001. Financing River Basin Organizations. In Abernethy, C.L. (Ed.) Intersectoral Management of River Basins. Colombo: International Water Management Institute (IWMI). Africa. 1984: A New Approach to Water Management in the 21st Century. Paris: Réalisation les éditions Textuel

  3. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

    2014-01-01

    The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

  4. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.

    2015-03-27

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more »with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less

  5. Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

    2007-01-01

    Structure and Seismic Stratigraphy of the southern part ofChough, S.K. , “Seismic Stratigraphy of the Ulleung Basin,

  6. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

  7. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks

    SciTech Connect (OSTI)

    Beverly Seyler; David Harris; Brian Keith; Bryan Huff; Yaghoob Lasemi

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons, and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.

  8. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  9. Geothermal energy development in Washington State. A guide to the federal, state and local regulatory process

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Simpson, S.J.

    1986-03-01

    Washington State's geothermal potential is wide spread. Hot springs and five strato volcanoes existing throughout the Cascade Range, limited hot spring activity on the Olympic Peninsula, and broad reaching, low temperature geothermal resources found in the Columbia Basin comprise the extent of Washington's known geothermal resources. Determination of resource ownership is the first step in proceeding with geothermal exploration and development activities. The federal and state processes are examined from pre-lease activity through leasing and post-lease development concerns. Plans, permits, licenses, and other requirements are addressed for the federal, state, and local level. Lease, permit, and other forms for a number of geothermal exploration and development activities are included. A map of public lands and another displaying the measured geothermal resources throughout the state are provided.

  10. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    SciTech Connect (OSTI)

    ERPENBECK EG; LESHIKAR GA

    2011-01-13

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  11. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    SciTech Connect (OSTI)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

    1980-06-30

    Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

  12. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  13. Underwater Coatings Testing for INEEL Fuel Basin Applications

    SciTech Connect (OSTI)

    Julia L. Tripp

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature.

  14. Groundwater Availability Within the Salton Sea Basin Final Report

    SciTech Connect (OSTI)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how much water can be safely produced from a basin from one year to the next. In this report, we specificall

  15. Basin-Range Tectonics in the Darwin Plateau Southwestern Great Basin

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind ProjectVillage,

  16. Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration as a CUAHSI Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    1 Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration.S., the Great Salt Lake Basin provides the opportunity to observe climate and human-induced land-surface changes relationship between people and water across the globe and make the Great Salt Lake Basin a microcosm

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilities MapNatural

  18. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilities MapNaturalArizona

  19. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilitiesColorado Electricity

  20. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilitiesColoradoDelaware

  1. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilitiesColoradoDelawareDistrict of

  2. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestination GlossaryFacilitiesColoradoDelawareDistrict

  3. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table 1. 2013

  4. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table 1.

  5. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table

  6. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 TableIndiana

  7. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013Kansas

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013KansasKentucky

  9. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaine Electricity

  10. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaine

  11. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaineMassachusetts

  12. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii ElectricityMinnesota Electricity

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii ElectricityMinnesotaMissouri

  14. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii ElectricityMinnesotaMissouriMontana

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013 Table 1.

  16. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013 Table

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013

  18. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013Mexico

  19. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity ProfileNorth Carolina

  20. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity ProfileNorth