Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Paul Ridgway  

NLE Websites -- All DOE Office Websites (Extended Search)

Honghe, Gao Liu, Xiangyun Song, Paul L. Ridgway, Shidi Xun, and Vincent S. Battaglia. "An Optimization of Electrode Energy and Power Density through of Variations in Inactive...

2

Paul Craig  

NLE Websites -- All DOE Office Websites (Extended Search)

Jonathan G., Paul Craig, Ashok J. Gadgil, and David M. Lorenzetti. "Improving Forecasting: A plea for historical retrospectives." The Energy Journal 24 (2003): 75-92. 2002...

3

Paul Ehrlich  

NLE Websites -- All DOE Office Websites (Extended Search)

Ehrlich President Building Intelligence Group LLC Lawrence Berkeley National Laboratory paul@buildingintelligencegroup.com This speaker was a visiting speaker who delivered a talk...

4

Paul Epstein  

NLE Websites -- All DOE Office Websites (Extended Search)

School and is a medical doctor trained in tropical public health. Paul has worked in medical, teaching and research capacities in Africa, Asia and Latin America and, in 1993,...

5

Paul Wright  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Wright Paul Wright Professor and Director, CITRIS Mechanical Engineering Dept UC Berkeley CITRIS pwright@me.berkeley.edu This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Paul K. Wright is the Director of CITRIS and the Banatao Institute @ CITRIS Berkeley -- the Center for Information Technology Research in the Interest of Society. It serves four UC campuses and hosts many multi-disciplinary projects on large societal problems such as energy and the environment; IT for healthcare; and intelligent infrastructures such as: public safety, water management and sustainability. He is a professor in the mechanical

6

Paul Berdahl  

NLE Websites -- All DOE Office Websites (Extended Search)

H. Berdahl H. Berdahl Paul Berdahl Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70-0108B Berkeley CA 94720 Office Location: 50-4038Q (510) 486-5278 PHBerdahl@lbl.gov Paul is a physicist who received his Ph. D. from Stanford University in theoretical physics. Most of his research is in the areas of applied solid-state physics, and in environmental physics. Current research interests include: Paul is a physicist who received his Ph. D. from Stanford University in theoretical physics. Most of his research is in the areas of applied solid-state physics, and in environmental physics. Current research interests include: Ion beam texturing and pulsed laser deposition of metal oxide films Optical absorption caused by oxygen deficiency in metal oxide films Particle nucleation in binary metal laser plasmas

7

Paul Epstein  

NLE Websites -- All DOE Office Websites (Extended Search)

Epstein Epstein Associate Director Center for Health and Global Environment Harvard University paul_epstein@hms.harvard.edu This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Paul R. Epstein, MD, MPH is Associate Director of the Center for Health and the Global Environment at Harvard Medical School and is a medical doctor trained in tropical public health. Paul has worked in medical, teaching and research capacities in Africa, Asia and Latin America and, in 1993, coordinated an eight-part series on Health and Climate Change for the British medical journal, Lancet. He has worked with the Intergovernmental

8

Paul Mathew  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Mathew Paul Mathew Commercial Building Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2000 Berkeley CA 94720 Office Location: 90-2024R (510) 486-5116 PAMathew@lbl.gov Paul Mathew is a Staff Scientist in the Commercial Building Systems group at Lawrence Berkeley National Laboratory (LBNL), where he conducts applied research and market transformation activities on energy use in buildings. His current work is focused on energy benchmarking tools and techniques for commercial buildings, energy-related risk analysis, as well as energy efficiency for laboratories and data centers. Prior to joining LBNL, he worked at Enron Energy Services and the Center for Building Performance at Carnegie Mellon University. He has a Bachelor's degree in Architecture, and

9

Paul Fenter  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Fenter Paul Fenter Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Ave. Argonne, IL 60439 Tel: (630)252-7053 E-mail: fenter@anl.gov Professional Experience: * 2007- present: Senior Physicist, Argonne National Laboratory * 2002-present: Adjunct Professor, Dept. of Earth and Environmental Sciences, UIllinois Chicago * 2000-present: Group Leader for Interfacial Processes * 1997-2007: Physicist, Argonne National Laboratory * 1993-1997: Research Staff, Princeton Materials Institute, Princeton University * 1990-1993: Post-Doctoral Fellow, Physics Department, Princeton University and Exxon Corporate Research (Annandale, New Jersey) Education: * Ph.D. (Physics) University of Pennsylvania, 1990.

10

Paul Bryan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Bryan About Us Paul Bryan - Biomass Program Manager, Office of Energy Efficiency & Renewable Energy Paul Bryan is Program Manager for the Office of Energy Efficiency and...

11

NREL: Energy Analysis - Paul Denholm  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Denholm Photo of Paul Denholm Paul Denholm is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Senior Analyst On staff since...

12

Paul Raptis | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Korean, Norwegian, Romanian, Serbian, Spanish, Tagalog (Filipino), Tamil, Telugu, Thai, Turkish View All Experts Paul Raptis Paul Raptis Manager, Detection and Diagnostic...

13

Paul M. Dabbar  

Energy.gov (U.S. Department of Energy (DOE))

Paul Dabbar is Managing Director in the Global Mergers & Acquisitions Group, and Head of Power and Gas Mergers & Acquisitions at J.P. Morgan, the investment banking division of JPMorgan...

14

BNL | Paul I. Freimuth  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul I. Freimuth Paul I. Freimuth Research Interests One aspect of our research program aims to understand the folding behavior of proteins during overexpression, when molecular chaperone activity may be limiting. Protein overexpression technology has greatly facilitated structural and functional analyses of individual proteins, and it will also be a key technology for large scale characterization of proteomes as planned in the DOE's GTL program, for example. Molecular chaperones promote folding by lowering the free energy barrier to the unfolding of intermediate states. Deficits in chaperone activity therefore can lead to the kinetic trapping of folding intermediates, which eventually may aggregate. Our recent studies suggest that intramolecular electrostatic attractive and repulsive forces may be important factors in determining the

15

Tom Pauling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tom Pauling Tom Pauling About Us Tom Pauling - Director, Office of Site Operations Tom Pauling Tom Pauling is the Director of the Office of Site Operations within the U.S. Department of Energy (DOE) Office of Legacy Management (LM), which oversees long-term surveillance and maintenance, as well as asset management activities at over 89 LM sites located in 28 states. He is responsible for environmental monitoring and compliance, site maintenance, programmatic safety across the entire organization, real and personal property, Uranium Leasing Program, UMTRCA Title X audits, National Environmental Policy Act (NEPA) evaluations, grants and cooperative agreements, and contractor oversight. Prior to his role as Director of Site Operations, Mr. Pauling was the Environment Team Leader and a Site

16

Paul Grabowski | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grabowski About Us Paul Grabowski - Demonstration and Deployment, Bioenergy Technologies Office Most Recent Reducing Waste and Harvesting Energy This Halloween October 30...

17

Paul Hovland | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hovland LANS Director & Computer Scientist Paul Hovland's research focuses on software engineering for high performance scientific applications. He holds a B.S. in computer...

18

NREL: Energy Analysis - Paul Schwabe  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2008 Phone number: 303-384-7468 E-mail: paul.schwabe@nrel.gov Areas of expertise Electricity market financial analysis Natural gas volume and revenue forecasting Energy...

19

Paul Bosco | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Bosco Paul Bosco About Us Paul Bosco - Director, Office of Acquisition and Project Management (APM) Paul Bosco served as the Director of the Office of Engineering and Construction Management (OECM) from November 2006 until the creation of the Office of Acquisition and Project Management in June 2012. The Office of Engineering and Construction Management was the Department of Energy's central management organization providing leadership in such mission critical areas as project and real property management. In addition, OECM validates the project performance baselines, to include cost and schedule, of all of the Department's largest construction and environmental clean-up projects prior to Budget Request to Congress; an active project portfolio totaling over $30 billion.

20

Dr Paul H Maupin | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Dr. Paul H Maupin Dr. Paul H Maupin Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Staff Listings/Contact Information What's New Research Areas Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Staff Listings/Contact Information Dr. Paul H Maupin Print Text Size: A A A RSS Feeds FeedbackShare Page Dr. Paul H. Maupin Program Manager Catalysis Science Office of Basic Energy Sciences SC-22.1/Germantown Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-1290 E-Mail:paul.maupin@science.doe.gov Phone: (301) 903-4355 Fax: (301) 903-0271 Dr. Maupin is currently the program manager for the Chemical Energy and Chemical Engineering program. He was a staff member in the Chemistry Division at Oak Ridge National Laboratory from 1976-1978 and spent the

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Paul Bohn, Three Persistent Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Paul Bohn, Paul Bohn, Three Persistent Challenges Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Third DOE BES Separations Research Workshop Paul Bohn, Three Persistent Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Third DOE/Basic Energy Sciences Separations Research Workshop Savannah DeSoto Hilton, Savannah, Georgia May 12-14, 1999 Three Persistent Challenges Paul Bohn University of Illinois Discussion The fundamental problem in separation sciences research in the current environment is money. All other problems for the researcher pale by comparison. In some cases we are working on problems where mankind is far out on the

22

St. Paul Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Paul Biomass Facility Paul Biomass Facility Jump to: navigation, search Name St. Paul Biomass Facility Facility St. Paul Sector Biomass Owner St. Paul District Heating Location St. Paul, Minnesota Coordinates 44.9541667°, -93.1138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9541667,"lon":-93.1138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Solar for St. Paul | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for St. Paul for St. Paul Solar for St. Paul October 24, 2011 - 4:00pm Addthis A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy Chief Scientist Henry Kelly Chief Scientist Henry Kelly Chief Scientist What does this project do? The completed project will have 348 American-made solar photovoltaic panels that will generate 100,000 kilowatt hours of energy annually - enough to power nine homes for a year. On Monday afternoon in St. Paul, Minnesota, I had the opportunity to see

24

Paul Fischer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer Fischer Senior Computational Scientist Research Interests Numerical Methods for PDEs Multi-million element, billion-gridpoint spectral element simulations . Fluid Dynamics and Heat Transfer Computational fluid dynamics Parallel algorithms High-performance computing Spectral and finite element methods Iterative and direct matrix solvers SHARP Thermal Striping An interesting conduction problem Spectral element simulations More spectral element simulations Schwarz error animator by Zuki Gottlieb Turbulence in a Carotid Artery Turbulence in a Random Array of Spheres Turbulent Flow in a Rod Bundle ME528 Course Material News Three MCS Researchers Receive the 2007 DOE INCITE Awards Argonne scientist Paul Fischer named AAAS fellow for contributions to computational fluid dynamics

25

NREL: Energy Sciences - Paul W. King  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul W. King Paul W. King Scientist IV Photo of Paul King Phone: (303) 384-6277 Email: Paul.King@nrel.gov At NREL Since: 2004 Dr. Paul King joined NREL in 2001 as a postdoctoral associate to study the [FeFe]-hydrogenases of the green alga Chlamydomonas reinhardtii. Recently his group identified in this organism the proteins that function in the biosynthesis of the unique catalytic FeS-cluster, known as the H-cluster, of [FeFe]-hydrogenases. This discovery has led to the development of a biosynthetic system for production of [FeFe]-hydrogenases from both algal and bacterial organisms. Current areas of investigation include: 1) enzyme structure and function, 2) 3D-structure determination (in collaboration with Juan Fontecilla-Camps at CEA-Grenoble), 3) biophysical characterization of the catalytic H-cluster (in collaboration with Steve

26

Solar for St. Paul | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar for St. Paul Solar for St. Paul Solar for St. Paul October 24, 2011 - 4:00pm Addthis A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy Chief Scientist Henry Kelly Chief Scientist Henry Kelly Chief Scientist What does this project do? The completed project will have 348 American-made solar photovoltaic panels that will generate 100,000 kilowatt hours of energy annually - enough to power nine homes for a year.

27

Paul L. Joskow | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul L. Joskow Paul L. Joskow About Us Paul L. Joskow - President, Alfred P. Sloan Foundation and MIT Professor of Economics, Emeritus Paul L. Joskow Dr. Paul L. Joskow is president of the Alfred P. Sloan Foundation. Prior to joining the Foundation he was the Elizabeth and James Killian Professor of Economics and Management at MIT (now Emeritus) and Director of the MIT Center for Energy and Environmental Policy Research. Dr. Joskow received a B.A. from Cornell University in 1968 and a Ph.D. in Economics from Yale University in 1972. He was an active member of the MIT faculty from 1972 until 2010 and served as Head of the MIT Department of Economics from 1994 to 1998. At MIT, his teaching and research has focused on industrial organization, energy and environmental economics,

28

Paul Dickman's Presentation to NERAC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spent Nuclear Fuel and High-Level Waste Spent Nuclear Fuel and High-Level Waste Program Update Presented to: Nuclear Energy Research Advisory Committee Presented by: Paul Dickman Office of Civilian Radioactive Waste Management May 18, 2004 Washington, DC 2 Congress Created a Legal Obligation Congress Created a Legal Obligation to Dispose of Nuclear Waste to Dispose of Nuclear Waste * Current Schedule 1957 NAS supported deep geologic disposal 1987 Congress limited characterization to Yucca Mountain 1992 Energy Policy Act set EPA standard process 2002 President recommended, Congress approved Yucca Mountain 1982 Congress passed Nuclear Waste Policy Act 2010* Begin receipt of spent nuclear fuel and high-level radioactive waste 2004* Submit License Application to NRC * 1982 - Nuclear Waste Policy Act (NWPA) established

29

Biology basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology basics Name: lamb Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What basic knowledge concerning biology do you think a colleg- bound HS...

30

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The EERE Energy Basics website contains basics about renewable energy and energy efficiency technologies. Learn how they work, what they're used for, and how they can improve our lives, homes,...

31

An Environmental Tribute to Karol Wojtyla: Pope John Paul II  

E-Print Network (OSTI)

Paul II. Warsaw: Edipress Poland. Address of Pope John Paul>, Fulbright Scholar in Poland 2004/2005. Professor,impossible for anyone to be in Poland from April second to

Jankowska, Maria Anna

2005-01-01T23:59:59.000Z

32

Paul S. Veers Wind Energy Technology Department  

E-Print Network (OSTI)

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

33

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, vehicles, and industries.

34

Abstract for Paul-Henri Heenen  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul-Henri Heenen Paul-Henri Heenen Service de Physique Nucleaire, Universite Libre de Bruxelles, Belgium Why and how to go beyond the mean-field method. Applications to neutron deficient Pb isotopes The Hartree-Fock Bogoliubov method with effective interactions has been extremely successful in the description of the properties of exotic nuclei. However, to work in an intrinsic system of reference has several drawbacks and is justified only for nuclei with well defined deformation. The main deficiencies of the wave functions are that they are not eigenstates of angular momentum and particle number and that they have a fixed deformation. A single framework permits to cure these deficiencies: the generator coordinate method, which is equivalent to a configuration mixing method. I will show how this can be done in the particular mean-field

35

Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 II Basic Research The Basic Energy Sciences (BES) office within the DOE Office of Science supports the DOE Hydrogen Program by providing basic, fundamental research in those technically challenging areas facing the Program, complementing the applied research and demonstration projects conducted by the Offices of Energy Efficiency and Renewable Energy; Fossil Energy; and Nuclear Engineering, Science and Technology. In May 2005 Secretary of Energy Samuel W. Bodman announced the selection of over $64 million in BES research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American consumers by 2020. A total of 70 hydrogen research projects were selected to focus on fundamental science and enable

36

XHTML Basic  

E-Print Network (OSTI)

The XHTML Basic document type includes the minimal set of modules required to be an XHTML host language document type, and in addition it includes images, forms, basic tables, and object support. It is designed for Web clients that do not support the full set of XHTML features; for example, Web clients such as mobile phones, PDAs, pagers, and settop boxes. The document type is rich enough for content authoring. XHTML Basic is designed as a common base that may be extended. For example, an event module that is more generic than the traditional HTML 4 event system could be added or it could be extended by additional modules from XHTML Modularization such as the Scripting Module. The goal of XHTML Basic is to serve as a common language supported by various kinds of user agents. The document type definition is implemented using XHTML modules as defined in "Modularization of XHTML" [XHTMLMOD [p.9] ]. 19 Dec 2000 08:40 1 XHTML Basic Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. This document has been produced by the W3C HTML Working Group (members only) as part of the W3C HTML Activity. It integrates feedback from the WAP Forum and members of the W3C Mobile Acce...

Mark Baker; Masayasu Ishikawa; Shinichi Matsui; Peter Stark; Sun Microsystems; Masayasu Ishikawa Wc; Shinichi Matsui Panasonic; Peter Stark Ericsson; Ted Wugofski; Openwave Systems

2000-01-01T23:59:59.000Z

37

Measuring the Orientability of Shapes Paul L. Rosin  

E-Print Network (OSTI)

Measuring the Orientability of Shapes Paul L. Rosin School of Computer Science, Cardiff University, Cardiff CF24 3AA, Wales, UK Paul.Rosin@cs.cf.ac.uk Abstract. An orientability measure determines how orientable a shape is; i.e. how reliable an estimate of its orientation is likely to be. This is valuable

Rosin, Paul

38

Basic Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Bacteria Basic Bacteria Name: Valerie Location: N/A Country: N/A Date: N/A Question: I'm doing a science project on bacteria. WHat I'm doing is washing forks with different dishwashing liquids, then wiping any remaining bacteria on to Agar petri dishes. Then incubating it and seeing which soap removed the most. My question is what kind of bacteria would be growing? and also do I just count the colonies to compare? and how long and at what temperature should I incubate this bacteria? Thank you very much for your time. I'll be looking forward to your response. Replies: The temperature is easy: 37 degrees C is optimal for many bacteria. The medium will determine which bacteria grow best. So if you don't see growth on one medium, but you see growth on another, it tells you that there is a difference in nutrients present in those media that is required for that bacteria. Look at your plates after 24 hr, then put them back in the incubator (keep them sterile) and look at them after 48 hrs--do you see the difference? any slow-growing bacteria visible or did the fast-growing take over the complete plate?

39

Sunspace basics  

DOE Green Energy (OSTI)

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01T23:59:59.000Z

40

MEMORANDUM FOR DISTRIBUTION FROM: / PAUL BOSCO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUG 1 3 2008 AUG 1 3 2008 MEMORANDUM FOR DISTRIBUTION FROM: / PAUL BOSCO / & /YL DIRECTOR, OPFICE OF ENGINEERING AND CONSTRUCTION MANAGEMENT SUBJECT: FY 2008 Real Property Deferred and Annual Maintenance Reporting Requirement REFERENCE: DOE Order 430.1 B: Real Property Asset Management Pursuant to section 5.d. 12 of the referenced Order, this memorandum provides implementing guidance for the FY 2008 deferred and annual maintenance reporting requirements. Please distribute it to the appropriate elements of your organization. The attached Implementation Procedures to Report Deferred and Annual Maintenance on Real Property applies only to real property (buildings, real property trailers and other structures and facilities (OSFs)) not personal property. The data reported under this reporting requirement is

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Paul Scherrer Institut | Open Energy Information  

Open Energy Info (EERE)

Scherrer Institut Scherrer Institut Jump to: navigation, search Name Paul Scherrer Institut Place Aargau, Villigen Zip 5232 Number of employees 1001-5000 Coordinates 47.5216613°, 8.2190265° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5216613,"lon":8.2190265,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Paul Fuoss - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

SRS > Paul Fuoss SRS > Paul Fuoss Paul Fuoss Group Leader, Senior Physicist Bldg. 223, A-213 Phone: 630-252-3289 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Paul H. Fuoss received his B.S. in Physics from the South Dakota School of Mines and Technology in 1975 and a Ph.D. in Materials Science from Stanford University in 1980. While a graduate student, he created x-ray anomalous scattering techniques to study the short and long-range structure in amorphous materials. Dr. Fuoss joined the staff of Bell Laboratories in 1980 and pioneered the use of x-ray scattering techniques to study surface structures, amorphous thin films and crystal growth. He was a co-leader of the AT&T Bell Labs beamline development effort at the NSLS, was actively

43

Climatology of Diffusion Potential Classes for MinneapolisSt. Paul  

Science Conference Proceedings (OSTI)

This climatological study reports on the potential for atmospheric diffusion at MinneapolisSt. Paul, Minnesota, cities located in the heart of the North American continent. As such, the results can be considered typical of an urban setting ...

Allen B. Johnson; Donald G. Baker

1997-12-01T23:59:59.000Z

44

Biology and Soft Matter Paul Langan Ava Ianni  

NLE Websites -- All DOE Office Websites (Extended Search)

and Soft Matter Paul Langan Ava Ianni 04012013 Biology and Biomedical Sciences Myles, Dean GL Ghimire-Rijal, Sudipa 5 Post Master Cuneo, Matthew MaNDI Katsaras, John Membranes...

45

Historical Albedo Values at St. Paul Minnesota, 196985  

Science Conference Proceedings (OSTI)

Incoming and reflected hemispheric radiation were measured at St. Paul over four different surfaces (sod, alfalfa, soybeans, and green peas) for a combined total of 5778 days between 21 November 196931 December 1985. Statistical summaries of the ...

Donald G. Baker; David L. Ruschy

1988-03-01T23:59:59.000Z

46

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

47

City of North St Paul, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Paul, Minnesota (Utility Company) Paul, Minnesota (Utility Company) Jump to: navigation, search Name City of North St Paul Place Minnesota Utility Id 13730 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Larger commercial service rate with demand Commercial Lighting service (for Public Places) Lighting Lighting service I (commercial) - 250 W-HPS Lighting Lighting service I (commercial) - 400 W-HPS Lighting Lighting service I(commercial) - 100 W-HPS Lighting Lighting service I(commercial) - 1000 W-HPS Lighting

48

Saint Paul Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Wind Farm Island Wind Farm Jump to: navigation, search Name Saint Paul Island Wind Farm Facility Saint Paul Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tanadgusix Corp. Developer Tanadgusix Corp. Energy Purchaser Tanadgusix Corp. Location St. Paul Island AK Coordinates 57.1761°, -170.269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1761,"lon":-170.269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Argonne scientist Paul Fischer named AAAS fellow for contributions to  

NLE Websites -- All DOE Office Websites (Extended Search)

scientist Paul Fischer named AAAS fellow for contributions to scientist Paul Fischer named AAAS fellow for contributions to computational fluid dynamics November 29, 2012 Tweet EmailPrint Paul Fischer of the U.S. Department of Energy's (DOE) Argonne National Laboratory has been named a fellow of the American Association for the Advancement of Science. Fellows are elected for this honor by AAAS in recognition of their scientifically or socially distinguished efforts to advance science or its applications. This year's AAAS fellows were formally announced in the AAAS News & Notes section of the journal Science on Nov. 30. The 2012 fellows will be presented with an official certificate and a gold and blue (representing science and engineering, respectively) rosette pin on Saturday, Feb. 16, from 8 to 10 a.m. at the AAAS Fellows Forum during the

50

Minneapolis/St. Paul: Taking Solar to the Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minneapolis/St. Paul: Taking Solar to the Cities Minneapolis/St. Paul: Taking Solar to the Cities Minneapolis/St. Paul: Taking Solar to the Cities April 13, 2011 - 4:16pm Addthis An aerial view of the solar installation | courtesy of District Energy St. Paul An aerial view of the solar installation | courtesy of District Energy St. Paul April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last month, St. Paul, Minnesota unveiled the largest solar thermal project in the Upper Midwest on the roof of the St. Paul RiverCentre, the city-owned convention center overlooking the Mississippi River. The project was funded by $1 million in Recovery Act funding from the Department of Energy's Solar America Communities program as well as by matching funds from District Energy St. Paul, a Twin Cities utility company that heats 80

51

Paul Giannotti | Renewable Energy Group | Sustainable Energy Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Giannotti Paul Giannotti Senior Electrical Engineer Education Rochester Institute of Technology, B.S. Electrical Engineering Experience Senior Project Engineer BNL Physics Dept., 1997 - present Electrical/emergency shutdown system design, construction and maintenance for the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Worked with the Facility & Operations Division and contractors for compliance with NFPA-70E Arc Flash Program during initial BNL building inspections to develop one-line drawings from scratch when original documents did not exist. Part time electrical engineer /subject matter expert for Environmental Restoration Projects (HFBR/BGRR de-commissioning & Stack Demolition) from 2006 to present. Project Engineer - BNL Reactor Division, 1990 - 1997

52

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

53

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

54

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

55

Lesson 1 Energy Basics ENERGY BASICS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying for a test. And all these require energy. To a scientist, "work" means something more exact. Work is causing a change. It can be a change in position, like standing up or moving clothes from the floor to the laundry basket. It can be a change in temperature, like heating water for a cup

56

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

57

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

58

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

59

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

60

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

62

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

63

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

64

Microsoft PowerPoint - PaulGottliebTechTransfer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement Directors Procurement Directors Conference Paul Gottlieb Assistant General Counsel for Tech. Transfer & IP 202-586-3439 (fax 2805) Paul.Gottlieb@HQ.DOE.GOV * Lab Tech Transfer EPact 2001 * Other Transaction: Range Fuels * EM awards * BioEnergy Research Centers Laboratory Tech Transfer: Recent Developments: EPACT Sec. 1001 - Secretary to appoint TT Coordinator - Establish Tech Transfer Working group of labs - Tech Commercialization Fund: 0.9 % of applied energy R&D budget to be used to provide matching funds with private partners to promote promising technologies for commercial purposes - Annual Tech Transfer Execution Plan Appointment of the Coordinator * Dr. Raymond L. Orbach, Under Secretary for Science, appointed June 28, 2007 - (c) DUTIES OF THE COORDINATOR.-The Coordinator shall oversee-

65

Notices Title of Collection: Paul Douglas Teacher Scholarship Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Federal Register 5 Federal Register / Vol. 77, No. 35 / Wednesday, February 22, 2012 / Notices Title of Collection: Paul Douglas Teacher Scholarship Program Performance Report. OMB Control Number: 1840-0787. Agency Form Number(s): ED Form 40-31P. Total Estimated Number of Annual Responses: 30. Total Estimated Annual Burden Hours: 360. Abstract: The purpose of this collection is to ensure that state education agencies are monitoring the fulfillment of the scholarship obligations by former Douglas scholars in accordance with legislation and regulations that governed the Paul Douglas Teacher Scholarship Program when the scholarships were granted. The respondents to this collection are former participating state education agencies (SEAs). This performance report is the only vehicle by which

66

City of St Paul, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nebraska (Utility Company) Nebraska (Utility Company) Jump to: navigation, search Name City of St Paul Place Nebraska Utility Id 17899 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Average Rates Residential: $0.0880/kWh Commercial: $0.1040/kWh Industrial: $0.0719/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_St_Paul,_Nebraska_(Utility_Company)&oldid=410283

67

St. Paul, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from St. Paul, MN) (Redirected from St. Paul, MN) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9444101°, -93.0932742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9444101,"lon":-93.0932742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

City of Saint Paul, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Saint Paul Saint Paul Place Alaska Utility Id 17898 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Internal Rate Commercial Coast Guard rate Commercial Commercial Commercial Community Facilities Rate Commercial Institutional Rate Commercial Residential Residential Average Rates Residential: $0.4710/kWh Commercial: $0.5330/kWh Industrial: $0.4900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

69

Paul D. Boyer, Adenosine Triphosphate (ATP), and the Binding Change  

Office of Scientific and Technical Information (OSTI)

Paul D. Boyer, Adenosine Triphosphate (ATP), and the Binding Change Mechanism Resources with Additional Information Paul D. Boyer Courtesy of UCLA 'For Paul Boyer, the Nobel Prize was "an unexpected pleasure." It had been 20 years since he formulated a hypothesis to describe what he calls "the most prominent chemical reaction in the whole world." It is the process by which molecules produce ATP (adenosine triphosphate), thereby transmuting light, air, water and food into the energy required for both plant and animal life. Boyer had been greeted with disbelief when he theorized that the previously mysterious process is the work of a "beautiful little machine" that operates within enzymes on the molecular level. ... Boyer experienced "one of the warmest moments of my life" when he learned that British biochemist John Walker had worked out the methodology required to demonstrate whether Boyer had been right or wrong. ... Using Walker's methodology, one of Boyer's former graduate students "did some elegant chemical work to demonstrate that the molecular rotation actually occurred." Boyer's hypothesis, finally, had been proven correct. For work that so enriched understanding of the life process itself, he and Walker were jointly awarded the Nobel prize [in Chemistry] in 1997.'

70

Job Creation and Energy Savings in St. Paul, Minnesota | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Job Creation and Energy Savings in St. Paul, Minnesota Job Creation and Energy Savings in St. Paul, Minnesota Job Creation and Energy Savings in St. Paul, Minnesota April 11, 2011 - 3:47pm Addthis St. Paul Mayor Chris Coleman explains how grant money created jobs. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs The city of St. Paul, Minnesota, and local produce distribution company, J&J Distributing, are taking a no-nonsense approach to cutting waste, saving energy and creating jobs in the Twin Cities. As part of the city's $1.3 million Energy Efficiency Conservation Block Grant, J&J Distributing has upgraded its interior lighting system and replaced 44 rooftop refrigeration units with three energy efficient climate control systems. The distribution center is located in an area of St. Paul that has been a

71

Energy Basics: Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Energy Basics Search Search Help Energy...

72

Energy Basics: Biodiesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Biodiesel Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What...

73

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

74

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

75

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

76

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

77

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

78

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

79

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

80

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

82

Basic Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center...

83

Basic principle of superconductivity  

E-Print Network (OSTI)

The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

Tian De Cao

2007-08-23T23:59:59.000Z

84

IN MEMORIAM PAUL ERD OS (1913-1996)  

E-Print Network (OSTI)

'antibiotiques : pleur´eesie s´eev`eere. Il s'approche du lit, et parle (trop) fort : -- Au revoir, Monsieur, j'ai laiss'ombre. Paul Erdos est n´ee `aa Budapest le 26 mars 1913, dans une famille juive. Son p`eere, Lajos, et sa m`eere demandera, bien plus tard, s'il a jamais ´eet´ee tent´ee par le mariage il r´eepondra : Mon caract`eere est

Tenenbaum, Gérald - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

85

How Energy Efficiency is Adding Jobs in St. Paul, Minnesota | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency is Adding Jobs in St. Paul, Minnesota Energy Efficiency is Adding Jobs in St. Paul, Minnesota How Energy Efficiency is Adding Jobs in St. Paul, Minnesota Addthis Description Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers. Speakers Jim Hannigan, Chris Coleman, LeAnn Oliver, Louis Jambois Duration 2:15 Topic Commercial Heating & Cooling Recovery Act Energy Sector Jobs Credit Energy Department Video (Begin video segment.) (Music.) MR. : The stimulus package is definitely working. I mean, it is creating jobs. The biggest thing is that people have to take advantage of what's there. J&J Distributing is located in the heart of St. Paul,

86

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

87

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

88

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

89

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

90

Evolution strategies: basic introduction  

Science Conference Proceedings (OSTI)

This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters ... Keywords: evolution strategies

Thomas Bck

2013-07-01T23:59:59.000Z

91

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

92

MEMORANDUM FROM: PAUL BOSCO AND CONSTRUCTION MANAGEMENTISENIOR REAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 2009 15 2009 MEMORANDUM FROM: PAUL BOSCO AND CONSTRUCTION MANAGEMENTISENIOR REAL PROPERTY OFFICER SUBJECT: FY 2009 Federal Real Property Reporting Requirement The attached document provides implementing instructions for FY 2009 real property inventory reporting. Please distribute it to the appropriate elements of your organization. This effort is central to the Department's efforts toward removal from the GAO High Risk List. As in previous years, the Department will use the data in the Facility Information Management System (FIMS) to report to GSA. There is very little change in reporting requirements h m last year. The attached guidance contains detailed instructions for each of the requireddata elements. Please ensure that the requireddata is entered into FIMS by November 13,2009, so that the

93

Symposium on the Nature of Science—Paul Sereno  

NLE Websites -- All DOE Office Websites (Extended Search)

DINOSAURS AND DEEP TIME: THE SCIENCE AND ART OF RECONSTRUCTING THE PAST DINOSAURS AND DEEP TIME: THE SCIENCE AND ART OF RECONSTRUCTING THE PAST Paul C. Sereno Watch the talk (Running time 52:39) Video in Frame Detached Video Some users have reported problems with the "Video in Frame" option. If you have problems, please try the "Detached Video" option. Requires RealPlayer 7.0 or higher. Get RealPlayer How do we reconstruct past events or scenes from deep time? Where is the science, if the direct observation or experimentation is not possible? Paleontologists and geologists use a variety of inferential methods to limit the number of plausible explanations and distill patterns from historical events. Mapping the course of dinosaur evolution on drifting continents and understanding the sequence of events that led to the

94

Inventory of the Paul C. Aebersold papers, 1924-1970  

SciTech Connect

The Paul C. Aebersold Papers, 1924-1970, consist of twenty boxes occupying slightly more than eight feet of shelf space and containing biographical materials, correspondence, programs of conferences attended and/or participated in, notes, photographs, memos, reports, proposals, itineraries, lists of contacts, minutes of committee meetings, news releases, newspaper clippings, articles and other writings by Dr. Aebersold, articles and speeches by other scientists collected by Dr. Aebersold, and notes, outlines, slide lists, abstracts, and texts of speeches given by Dr. Aebersold. These papers document Dr. Aebersold's career fairly well from graduate student days to Atomic Energy Commission official. A considerable amount of additional information should be available in the files of the Manhattan Project and the US Atomic Energy Commission.

Schultz, C.R. (comp.)

1972-01-01T23:59:59.000Z

95

Paul Mathew Staff Scientist, Commercial Building Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Mathew Mathew Staff Scientist, Commercial Building Systems Group A Datapalooza for Measured Building Performance: The DOE Buildings Performance Database Lawrence Berkeley National Laboratory November 4, 2013 BPD Team Rich Brown Claudine Custudio Laurel Dunn Paul Mathew John Mejia Andrea Mercado Michael Sohn Travis Walter Software partner: Sponsor: ..... analytical revolution upending the way campaigns political are run in the 21st century... the smartest campaigns now believe they know who you will vote for even before you do... Energy Benchmarking Policies (selected) * California - AB1103 requires benchmarking of all commercial buildings at time of lease or sale. - Executive order S-20-04 requires benchmarking of all state buildings. - SB1 requires buildings applying for solar incentives to benchmark

96

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

97

Energy Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology...

98

Paul Cunningham-Acting Associate CIO for Cybersecurity & Acting Chief  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Cunningham-Acting Associate CIO for Cybersecurity & Acting Paul Cunningham-Acting Associate CIO for Cybersecurity & Acting Chief Information Security Officer Paul Cunningham-Acting Associate CIO for Cybersecurity & Acting Chief Information Security Officer Paul Cunningham-Acting Associate CIO for Cybersecurity & Acting Chief Information Security Officer As the acting Associate Chief Information Officer for Cybersecurity, Mr. Cunningham serves as the Department's Chief Information Security Officer charged with managing the agency's enterprise cybersecurity program. Mr. Cunningham advises the Department's CIO and senior agency officials in the implementation of cybersecurity and the Department's Risk Management Approach. Mr. Cunningham provides executive leadership and guidance for joint agency and Administration cybersecurity initiatives including for the

99

VEE-0061 - In the Matter of Paul Smith Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - In the Matter of Paul Smith Oil Company 61 - In the Matter of Paul Smith Oil Company VEE-0061 - In the Matter of Paul Smith Oil Company On May 24, 1999, Paul Smith Oil Company (Smith) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Smith asks that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0061.pdf More Documents & Publications VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0037 - In the Matter of W. Gordon Smith Company VEE-0060 - In the Matter of Blakeman Propane

100

Loading a planar RF Paul Trap from a cold Yb? source  

E-Print Network (OSTI)

In this thesis, we demonstrate a functioning planar radio frequency, three-rod Paul Trap, loaded with Yb+ ions that have been photoionized from a source of neutral atoms, which were cooled in a magneto-optical trap. Planar ...

Shields, Brendan John

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Depletion, quantum jumps, and temperature measurements of ??Sr? ions in a linear Paul Trap  

E-Print Network (OSTI)

This thesis describes the design and construction of two laser systems to probe the 674nm transition of ??Sr? ions in a linear Paul trap. The first laser system made use of a molecular transition in Iodine to stabilize the ...

Richerme, Philip J

2006-01-01T23:59:59.000Z

102

Form and daylight as a creative medium : Church of John Paul II in South End, Boston  

E-Print Network (OSTI)

This thesis is an architectural design project of a Catholic Church dedicated to Pope John Paul II. The main intention of this Thesis is to explore and clearly present daylighting methods and techniques and how important ...

Gruzewski, Jaroslaw

1992-01-01T23:59:59.000Z

103

Paul R. Vanstrum, 1966 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Paul R. Vanstrum, 1966 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life...

104

NREL: Learning - Biofuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Basics Biofuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow it to be made from cellulose

105

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

106

Basic Energy Sciences at NREL  

DOE Green Energy (OSTI)

NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

Moon, S.

2000-12-04T23:59:59.000Z

107

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

108

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

109

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

110

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

111

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

112

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

113

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

114

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

115

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

116

Paul Martin Demonstrated on 3/23/2012  

E-Print Network (OSTI)

magnets and a small electric motor but do not reveal it is a toy car motor. Ask the students to try. Describe energy as a property of objects associated with heat, light, electricity, magnetism, mechanical motion, and sound. o 3.2.4.B4. Apply knowledge of basic electrical circuits to the design

117

RECIPIENT:City of Saini Paul U.S. DEPARTMENr OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saini Paul Saini Paul U.S. DEPARTMENr OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION PROJECT TITLE: Minneapolis Saint Paul Solar Cities Special Projects Page I of2 STATE : MN Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-QOOOO78 DE·EEOOO2076 GFO-10-315 EE2076 Based on my review orlbe information concerning the proposed action, as NEPA Compliance Officer (authorized under OOE Order 451.1A), I have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 lnfonnation gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply and

118

Harold Paul Fourth, 1974 | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Harold Paul Fourth, 1974 Harold Paul Fourth, 1974 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Harold Paul Fourth, 1974 Print Text Size: A A A RSS Feeds FeedbackShare Page Physics: For major contributions to the theoretical understanding of physics of plasma confined in Tokamak geometries. His concept of adiabatic compression in a toridal system has overcome the limitations on density and ion temperature that has characterized conventional Tokamaks

119

Entropy Evaluation of the Superprotonic Phase of CsHSO4: Pauling's Ice Rules Adjusted for Systems Containing Disordered  

E-Print Network (OSTI)

Entropy Evaluation of the Superprotonic Phase of CsHSO4: Pauling's Ice Rules Adjusted for SystemsVised Manuscript ReceiVed October 26, 2006 The entropy of the superprotonic transition (phase II f phase I) of Cs of the superprotonic, disordered phase of CsHSO4 is evaluated using an approach similar to that employed by Pauling

120

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

122

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

123

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

124

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

125

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

126

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

127

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

128

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

129

BASIC PRINCIPLES OF SCINTILLATION COUNTING  

SciTech Connect

The basic principles of scintillation counting are reviewed. The design, performance, and operation of a placed on instruments ior medical uses. (C.H.)

Harris, C.C.; Hamblen, D.P.; Francis, J.E.

1959-12-10T23:59:59.000Z

130

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL TECHNOLOGIES Industrial Energy Efficiency Basics More Additional Links Glossary of Energy-Related Terms Here you'll find a glossary of energy-related terms. Related...

131

Contracting inside an organization: an experimental study Paul J. Healy, John O. Ledyard, Charles Noussair,  

E-Print Network (OSTI)

Contracting inside an organization: an experimental study Paul J. Healy, John O. Ledyard, Charles-reducing innovations. 1 Introduction Many projects that provide a benefit to an entire organization are assigned headquarters, Washington DC, hthronso@hq.nasa.gov, pjulrich@radix.net and gvarsi@hq.nasa.gov. 1 #12;If

132

Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges PAUL A. T. HIGGINS  

E-Print Network (OSTI)

Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges PAUL A. T about the carbon cycle: 1) that elevated atmospheric CO2 concentrations will enhance terrestrial carbon that carbon cycle uncertainty is considerably larger than currently recognized and that plausible carbon cycle

Kammen, Daniel M.

133

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

134

Statement of C. Paul Robinson, Director Sandia National Laboratories Statement for the Record  

E-Print Network (OSTI)

Mr. Chairman and distinguished members of the committee, thank you for the opportunity to submit this statement. I am Paul Robinson, director of Sandia National Laboratories. Sandia is managed and operated for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of

C. Paul Robinson; Strategic Subcommittee; C. Paul Robinson

2002-01-01T23:59:59.000Z

135

Paul Thomas, TOFE, Nashville, August 2012 Page 1 The Impact of Burning Plasma on  

E-Print Network (OSTI)

­ personnel dose rates · Remote Handling · Blanket and Divertor · Diagnostics · Dust and tritium control must be handled and maintained using remote handling methods. by Blanket RH System by Divertor RH Remote Handling ­ ITER RH philosophy #12;Page 15Paul Thomas, TOFE, Nashville, August 2012 Transfer Casks

136

Hard Probes and Soft Ones for Testing the Quark-Gluon Soup By Paul Preuss  

E-Print Network (OSTI)

Hard Probes and Soft Ones for Testing the Quark-Gluon Soup By Paul Preuss "We call short-wavelength probes 'hard'; the shorter the wavelength, the smaller the features it can resolve. For example, you can Science Division, explaining the title of the recent Second International Conference on Hard

Knowles, David William

137

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

138

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

139

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

140

Basic EETD Web Page Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic EETD Web Page Design Speaker(s): Eve Edelson Date: May 27, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Allan Chen This talk will provide information...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

142

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

143

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

144

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

145

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

146

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

147

Lithium isotopes in global mid-ocean ridge basalts Paul B. Tomascak a,*, Charles H. Langmuir b  

E-Print Network (OSTI)

Lithium isotopes in global mid-ocean ridge basalts Paul B. Tomascak a,*, Charles H. Langmuir b January 2008 Abstract The lithium isotope compositions of 30 well-characterized samples of glassy lavas

Langmuir, Charles H.

148

Recipient: St. Paul, Minnesota ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

755 755 Recipient: St. Paul, Minnesota ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Saint Paul Energy Smart Homes A9, All, B5.1 Waste Stream Clause Historic Preservation Clause Engineering Clause Multi Family Energy Rehab Pilot Program B5.1 Waste Stream Clause LED Street Light Retrofit B5.1 Waste Stream Clause Energy Efficiency in Municipal Facilities A9, B5.1 Waste Stream Clause Historic Preservation Clause Engineering Clause Commercial & Industrial Building Energy Efficiency A9, All All administrative actions, audits, technical advice, and outreach should be CX'd; implementation of projects under this activity should be conditioned pending

149

Speakers: Paul D. Holtberg, EIA John Conti, EIA Tom R. Eizember, Exxon Mobil Corporation  

U.S. Energy Information Administration (EIA) Indexed Site

3: "EIA's 2010 Annual Energy Outlook Highlights" 3: "EIA's 2010 Annual Energy Outlook Highlights" Speakers: Paul D. Holtberg, EIA John Conti, EIA Tom R. Eizember, Exxon Mobil Corporation Mary Novak, HIS Global Insight [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Paul: All right, now we're running a little bit late here after all, lunch, so let's get started if we could. Either way, my speakers will be cut down to only 10 minutes each and we'll just do questions. First of all, make sure you're all at the right session. This is the session on the 2010 Annual Energy Outlook: The Highlights of EIA. Topic is a little bit broader. I think we're talking about outlooks in general. We have three very qualified

150

A compact electron cyclotron resonance proton source for the Paul Scherrer Institute's proton accelerator facility  

SciTech Connect

A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.

Baumgarten, C.; Barchetti, A.; Einenkel, H.; Goetz, D.; Schmelzbach, P. A. [Paul Scherrer Institute (Switzerland)

2011-05-15T23:59:59.000Z

151

Biodiesel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Basics Biodiesel Basics Biodiesel Basics July 30, 2013 - 2:43pm Addthis Looking for Biodiesel stations? Checkout the Alternative Fuels Data Center station locator. Biodiesel station locator Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What is Biodiesel? Biodiesel is a liquid fuel made up of fatty acid alkyl esters, fatty acid methyl esters, or long-chain mono alkyl esters. It is produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to fuel compression-ignition (diesel) engines. B20, which is 20% biodiesel and 80% petroleum diesel, is

152

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

153

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

154

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

155

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

156

DIY BASICS CHECKLIST DRIPS AND LEAKS  

E-Print Network (OSTI)

DIY BASICS CHECKLIST DRIPS AND LEAKS Watercancauseseriousdamage- oftenunseen. Drillbits. Tapemeasure. Spiritlevel. Start off small. Collect a basic tool kit. There's plenty of DIY info'tdrillintomortarbetweenbricks. #12;DIY BASICS CHECKLIST Location Twopeoplemakethisamuch easierjob. Cutasheetofpapertothesize

Peters, Richard

157

FCT Safety, Codes and Standards: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

by E-mail Share FCT Safety, Codes and Standards: Basics on Facebook Tweet about FCT Safety, Codes and Standards: Basics on Twitter Bookmark FCT Safety, Codes and Standards: Basics...

158

Solid-State Lighting: SSL Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: SSL Basics to someone by E-mail Share Solid-State Lighting: SSL Basics on Facebook Tweet about...

159

Solid-State Lighting: LED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: LED Basics to someone by E-mail Share Solid-State Lighting: LED Basics on Facebook Tweet...

160

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal Electricity Production Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in...

162

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

163

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

164

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics This training covers the basics of using the REScheck(tm) software, and is geared toward the beginning user. Estimated Length: 1 hour, 8 minutes Presenters: Rosemarie...

165

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

166

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Basics for Sustainability on Facebook Tweet about Federal Energy...

167

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

168

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

169

Clean Cities: Clean Cities Coordinator Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

170

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

171

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

172

Microhydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce energy, "run-of-the-river systems," which do not require large storage reservoirs, are most often used for microhydropower systems. Illustration of an example microhydropower system. A river flows down from some hills. The river first flows through an intake, which is indicated as two white walls on each side of the river. The intake diverts water to a canal. From the canal, the water travels to a forebay, which looks like a white, rectangular, aboveground pool. A pipeline, called a penstock, extends from the forebay to a building, called the powerhouse. You can see inside the powerhouse, which contains a turbine and other electric generation equipment. The water flows in and out of the powerhouse, returning to the river. Power lines also extend from the powerhouse, along and through two electrical towers, to a house that sits near the river's edge.

173

Vehicle Technologies Office: Just the Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Just the Basics to Just the Basics to someone by E-mail Share Vehicle Technologies Office: Just the Basics on Facebook Tweet about Vehicle Technologies Office: Just the Basics on Twitter Bookmark Vehicle Technologies Office: Just the Basics on Google Bookmark Vehicle Technologies Office: Just the Basics on Delicious Rank Vehicle Technologies Office: Just the Basics on Digg Find More places to share Vehicle Technologies Office: Just the Basics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Just the Basics Technology Overviews Biodiesel Combustion Diesel Engine Hybrid and Plug-in Electric Vehicles Ethanol Fuel Cells Hydrogen Liquefied Petroleum Gas (Propane)

174

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

175

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

176

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

177

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

178

Microsoft PowerPoint - PaulBoscoProjMgmtContAdmin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement Conference Procurement Conference November 28, 2007 Paul Bosco, PE, PMP Director, OECM Office of Management Office of Engineering and Construction Management 2 Operational Organization Chart Office of Engineering & Construction Management POLICY - GUIDANCE - OVERSIGHT Pete Check Deputy Director Steven Rossi - Budget Rosalyn Matthews - Admin Assist. Secretarial Support (CTAC) - Rekiya Barber Pete Check Deputy Director Steven Rossi - Budget Rosalyn Matthews - Admin Assist. Secretarial Support (CTAC) - Rekiya Barber Vacant* Director for Project Management Systems & Assessments Vacant* Director for Project Management Systems & Assessments Rosalie Jordan** Director for Facilities Management & Professional Development Rosalie Jordan** Director for Facilities Management &

179

Basic photovoltaic principles and methods  

DOE Green Energy (OSTI)

This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

Hersch, P.; Zweibel, K.

1982-02-01T23:59:59.000Z

180

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliers’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

182

Long-term drifts of stray electric fields in a Paul trap  

E-Print Network (OSTI)

We investigate the evolution of quasi-static stray electric fields in a linear Paul trap over a period of several months. Depending on how these electric fields are initially induced we observe very different time scales for the field drifts. Photo-induced electric fields decay on time scales of days. We interpret this as photo-electrically generated charges on insulating materials which decay via discharge currents. In contrast, stray fields due to the exposure of the ion trap to a beam of Ba atoms mainly exhibit slow dynamics on the order of months. We explain this observation as a consequence of a coating of the trap electrodes by the atomic beam. This may lead to contact potentials which can slowly drift over time due to atomic diffusion and chemical processes on the surface. In order not to perturb the field evolutions, we suppress the generation of additional charges and atomic coatings in the Paul trap during the measurements. For this, we shield the ion trap from ambient light and only allow the use of near-infrared lasers. Furthermore, we minimize the flux of atoms into the ion trap chamber. Long-term operation of our shielded trap led us to a regime of very low residual electric field drifts of less than 0.03 V/m per day.

Arne Hrter; Artjom Krkow; Andreas Brunner; Johannes Hecker Denschlag

2013-05-29T23:59:59.000Z

183

Paul Black  

Science Conference Proceedings (OSTI)

... MS Computer Science, 1983, University of Utah Software Emphasis. BS, 1973, Southern Utah State College (now Southern ...

2011-07-20T23:59:59.000Z

184

Rick Paul  

Science Conference Proceedings (OSTI)

... Education: Chemistry, BS, Western Illinois University, 1981; Inorganic Chemistry, Ph.D., Purdue University, 1988. Contact. ...

2012-11-15T23:59:59.000Z

185

Paul Bourdoukan  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, unless specifically identified as a Berkeley Lab staff member. Also works at: National Institute of Solar Energy (INES) This Speaker's Seminars Solar Desiccant Cooling...

186

Paul Waddell  

NLE Websites -- All DOE Office Websites (Extended Search)

for operational planning purposes in a variety of U.S. metropolitan areas such as Detroit, Houston, Phoenix, Salt Lake City, San Francisco, and Seattle, as well as...

187

Paul Bannister  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zealand and internationally. After getting his PhD in the field of solar thermal power, he became an energy consultant for Energy Group's predecessor, Univord Energy...

188

Paul Becker  

Science Conference Proceedings (OSTI)

... Service Office of Protected Resources, and NOAA's Outer Continental Shelf Environmental Assessment Program for oil and gas exploration and ...

2012-11-14T23:59:59.000Z

189

Paul Haney  

Science Conference Proceedings (OSTI)

... Position: Project Leader CNST Energy Research Group. Education: BS Physics - The Ohio State University. BS Mathematics ...

2011-01-27T23:59:59.000Z

190

Paul Adams  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Deputy for Biosciences, Chair of the ALS Biosciences Council, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory. Deputy Division Director and...

191

Paul Ehrlich  

NLE Websites -- All DOE Office Websites (Extended Search)

with EETD scientists on cooperative research? Get a job in EETD? Make my home more energy-efficient? Find a source within EETD for a news story I'm writing, shooting, or...

192

Paul Berdahl  

NLE Websites -- All DOE Office Websites (Extended Search)

Vondran. "Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials." Solar Energy Materials and Solar Cells 91 (2007): 304-314....

193

Paul Fenter  

NLE Websites -- All DOE Office Websites (Extended Search)

M. Schmidt, S. S. Lee, R. Wilson, L. Soderholm, P. Fenter, "Sorption of tetravalent thorium on muscovite", Geochimica et Cosmochimica Acta, 88, 66-76(2012). D. J. Wesolowski, J....

194

Paul Clarke  

NLE Websites -- All DOE Office Websites (Extended Search)

active duty Air Force officer from 1987 to 2007. His service included a tour as an intelligence officer for G.H.W. Bush's National Security Council. Later, he was White House...

195

Paul Avery  

NLE Websites -- All DOE Office Websites (Extended Search)

Condor-G 6.4.7 u GLUE schema u Fault Tolerant Shell 1.0 u EDG's CRL-Update & mkgridmap u DOE & EDG CA Certificates u Chimera Virtual Data System 1.0.1 UW-Madison team increased...

196

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

197

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

198

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

199

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

200

Solar Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Basic Research Needs for the Hydrogen Economy  

Fuel Cell Technologies Publication and Product Library (EERE)

The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

202

Energy Basics: Microhydropower Water Conveyance and Filters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

203

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

204

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

205

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

206

Energy Basics: Linear Concentrator Systems for Concentrating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

207

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

208

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

209

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

210

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

211

Microsoft VisualBasic.Net Professional Projects  

Science Conference Proceedings (OSTI)

From the Publisher:Incorporating five hands-on projects, Microsoft Visual Basic .NET Professional Projects is your key to unlocking the power of Visual Basic .NET. Each project focuses on a specific Visual Basic .NET concept and is based on a real-world ...

Kuljit Kaur; Pooja Bembey

2002-04-01T23:59:59.000Z

212

PHOTO BY PAUL EFIRD From left, Jay Maurer, director of photography, Kevin O'Connor, host of DIY's "This  

E-Print Network (OSTI)

PHOTO BY PAUL EFIRD From left, Jay Maurer, director of photography, Kevin O'Connor, host of DIY segments in Knoxville Latest DIY show is fresh spin on `This Old House' By Larisa Brass Tuesday, April 6 by the DIY Network this July. "This New House," produced by former executive producer of PBS's "This Old

213

Web-based Mathematics Education: MeML Design and Implementation Paul S. Wang Yi Zhou Xiao Zou  

E-Print Network (OSTI)

Web-based Mathematics Education: MeML Design and Implementation Paul S. Wang Yi Zhou Xiao Zou 44242, USA Kent, OH 44242, USA pwang@cs.kent.edu yizhou@cs.kent.edu xzou@cs.kent.edu Abstract The Web-based Mathematics Education framework (WME) aims to create a Web for mathematics education. WME empowers mathematics

Selinger, Robin L. Blumberg

214

Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error Paul E. Johnson and David G . Long  

E-Print Network (OSTI)

Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error -Wind I Paul E. Johnson (which relates the wind to the normalized radar cross section, NRCS, of the ocean surface) is uncertainty in the NRCS for given wind conditions. When the estimated variability is in- cluded in the maximum likelihood

Long, David G.

215

Constant power cycling for accelerated ageing of supercapacitors Kreczanik Paul, Martin Christian, Venet Pascal, Clerc Guy, Rojat Gerard, Zitouni Younes  

E-Print Network (OSTI)

Constant power cycling for accelerated ageing of supercapacitors Kreczanik Paul, Martin Christian the competitive pole (Lyon Urban Truck and Bus 2015). Keywords «Supercapacitor», «Power cycling», «Lifetime», «Accelerated ageing», «Ageing law» Abstract This paper deals with the lifetime of supercapacitors used

Paris-Sud XI, Université de

216

E. D. Salmon, Sidney L. Shaw, Jennifer Waters, Clare M. Waterman-Storer, Paul S. Maddox, Elaine Yeh,  

E-Print Network (OSTI)

10 E. D. Salmon, Sidney L. Shaw, Jennifer Waters, Clare M. Waterman-Storer, Paul S. Maddox, Elaine Yeh, and Kerry Bloom' Department of Biology, Univenity of North Carolina ChapelHill, North Carolina dynamicsduring the cell cycleusinghigh-resolution digitally enhancedDIC (DE- DIC) imaging (Yeh et al., 1995;Yang

217

SEARCHING FOR VIDEOS ON APPLE IPAD AND IPHONE Colum Foley, Jinlin Guo, David Scott, Paul Ferguson, Cathal Gurrin  

E-Print Network (OSTI)

the performance of novice versus expert users. Index Terms-- Video search, iPad, iPhone 1. INTRODUCTION Content system with the iPad app. On the iPad, using simple touch commands users can enter search queriesSEARCHING FOR VIDEOS ON APPLE IPAD AND IPHONE Colum Foley, Jinlin Guo, David Scott, Paul Ferguson

Lee, Hyowon

218

Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway,  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium/Phosphorus-Sulfur Cells Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway, Frank R. McLarnon, and Elton J. Cairns* Energy and Environment Division, Lawrence Berkeley National Laboratory, and Department of Chemical Engineering, University of California, Berkeley, California 94720, USA ABSTRACT Sodium/°-alumina/phosphorus-sulfur cells utilizing P/S ratios of 0, 0.143, 0.332, and 1.17 at temperatures from 350 to 500°C were studied by measurement of the equilibrium cell voltages at open circuit, and the steady-state cell voltages at current densities up to 70 mA/cm2. States of charge, represented by sodium atom fraction in the P-S electrode, ranged from 0 to 0.4. Open-circuit voltages up to 2.65 V were measured. Theoretical specific energies up to 825 Wh/kg were cal-

219

Dr. Paul Merges Director, Bureau of Radiation New York State Department of Environmental  

Office of Legacy Management (LM)

551 551 - g 7 s % @ { i::- g i- ' \?*r&.,' *~ -,_ .- ..- Dr. Paul Merges Director, Bureau of Radiation New York State Department of Environmental Conservation 50 Wolfe Road Albany, NY 12233-7255 Dear Dr. Merges: ..- .- I.- _- .- Department of Energy Osk Ridge Opermlonm P.O. 80x 2001 Oak Ridge. Tmnessee 37831- 8723 September 24. 1990 DESIGNATION OF THE FORNER RAKER AND YILLIANS WAREHOUSES INTO DOE'S FORRERLY UTILIZED SITES REMEDIAL ACTION PROGRAM The purpose of this letter is to inform you that on August 9, 1990, the site of the former Baker and Williams warehouses, currently owned by Ralph Ferrara. Inc., located on West 20th Street in New York City, was designated into the Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program

220

Commissioning of the new high-intensity ultracold neutron source at the Paul Scherrer Institut  

E-Print Network (OSTI)

Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.

Bernhard Lauss

2010-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency  

U.S. Energy Information Administration (EIA) Indexed Site

2: "Biofuels: Continuing Shifts in the Industry and Long-Term Outlook" 2: "Biofuels: Continuing Shifts in the Industry and Long-Term Outlook" Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency R. Brooke Coleman, New Fuels Alliance Peter Gross, EIA Steven Hamburg, Environmental Defense Fund [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Michael: To the EIA-SAIS 2010 Energy Conference. This is session 2, "Biofuels: Continuing Shifts in the Industry and Long-Term Outlook." And certainly, as we drill down into the individual energy sectors, it's clear that, for biofuels in particular, the future is changing. And it has been changing rather dramatically over the last 5 or even 10 years. And certainly, within the last couple of years this industry has grown ...

222

Basic Energy SciencesBasic Energy Sciences DOE Hydrogen and Fuel Cells  

E-Print Network (OSTI)

" #12;Basic Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and UseWorkshop on Hydrogen Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

223

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network (OSTI)

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

224

Frequency Regulation Basics and Trends  

DOE Green Energy (OSTI)

The electric power system must address two unique requirements: the need to maintain a near real-time balance between generation and load, and the need to adjust generation (or load) to manage power flows through individual transmission facilities. These requirements are not new: vertically integrated utilities have been meeting them for a century as a normal part of conducting business. With restructuring, however, the services needed to meet these requirements, now called ''ancillary services'', are being more clearly defined. Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) has defined such services as those ''necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system''. This statement recognizes the importance of ancillary services for both bulk-power reliability and support of commercial transactions. Balancing generation and load instantaneously and continuously is difficult because loads and generators are constantly fluctuating. Minute-to-minute load variability results from the random turning on and off of millions of individual loads. Longer-term variability results from predictable factors such as the daily and seasonal load patterns as well as more random events like shifting weather patterns. Generators also introduce unexpected fluctuations because they do not follow their generation schedules exactly and they trip unexpectedly due to a range of equipment failures. The output from wind generators varies with the wind. Storage technologies should be ideal suppliers of several ancillary services, including regulation, contingency reserves (spinning reserve, supplemental reserve, replacement reserve), and voltage support. These services are not free; in regions with energy markets, generators are paid to supply these services. In vertically integrated utilities (without energy markets) the utility incurs significant costs to supply these services. Supplying these services may be a significant business opportunity for emerging storage technologies. This report briefly explores the various ancillary services that may be of interest to storage. It then focuses on regulation, the most expensive ancillary service. It also examines the impact that increasing amounts of wind generation may have on regulation requirements, decreasing conventional regulation supplies, and the implications for energy storage.

Kirby, BJ

2005-05-06T23:59:59.000Z

225

Basic Performance Measures for Technology Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measures for Technology Projects Basic Performance Measures for Technology Projects A white paper to provide guidance for project teams in the identification of performance...

226

Active Solar Heating Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Active Solar Heating Linear Concentrator System Basics for Concentrating Solar Power Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

227

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

228

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

229

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen and Fuel Cell Technologies Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the...

230

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

231

NREL: Concentrating Solar Power Research - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

232

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

233

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

234

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

235

International Vocabulary of Metrology Basic and General ...  

Science Conference Proceedings (OSTI)

Page 1. JCGM/WG 2 Document N318 1/127 International Vocabulary of Metrology Basic and General Concepts and Associated ...

2010-07-21T23:59:59.000Z

236

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

237

The Relationship Between Basic and Improvement Patents  

Science Conference Proceedings (OSTI)

... of an improvement, the entire disclosure of the basic patent is reviewed in order ... the patented invention); it does not give the patentee the right to practice the...

238

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability Graphic of the eTraining logo Training Available Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to...

239

Basic Research for the Hydrogen Fuel Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative More Documents & Publications...

240

Liquefied Natural Gas: Understanding the Basic Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts More Documents &...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Beginning Visual Basic 2010, 1st edition  

Science Conference Proceedings (OSTI)

This book is designed to teach you how to write useful programs in Visual Basic 2010 as quickly and easily as possible. There are two kinds of beginners for whom this book is ideal: You're a beginner to programming and you've chosen Visual Basic 2010 ...

Thearon Willis; Bryan Newsome

2010-03-01T23:59:59.000Z

242

Fuel cell electrolyte membrane with basic polymer  

DOE Patents (OSTI)

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2010-11-23T23:59:59.000Z

243

SUR LES RADIOLMENTS FORMS DANS L'URANIUM IRRADI PAR LES NEUTRONS. II Par IRNE CURIE et PAUL SAVITCH.  

E-Print Network (OSTI)

SUR LES RADIO?L?MENTS FORM?S DANS L'URANIUM IRRADI? PAR LES NEUTRONS. II Par IR?NE CURIE et PAUL SAVITCH. Institut du Radium. Laboratoire Curie. Sommaire. 2014 Il se forme dans l'uranium irradié par les l'irra- diation de l'uranium par les neutrons, résultats dont nous avons vérifié une partie. Ces

Paris-Sud XI, Université de

244

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

245

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

246

Long-term drifts of stray electric fields in a Paul trap  

E-Print Network (OSTI)

We investigate the evolution of stray electric fields in a linear Paul trap over a period of several months. We demonstrate a way to clearly distinguish between the two main sources of these fields, namely insulated charged up patches and patch charges originating from contact potentials. To achieve high sensitivity in these measurements, we operate the trap in a way that strongly suppresses the generation of additional patch charges. For this, we shield the ion trap from ambient light and only allow the use of near-infrared lasers. Furthermore, we minimize additional contaminations of the trap electrodes by minimizing the flux of atoms into the ion trap chamber. We find that photo-induced electric fields decay on time scales of days. In contrast, stray fields due to contamination-induced contact potentials on trap electrodes mainly exhibit slow dynamics on the order of months, probably dominated by diffusion and slow chemical processes. Long-term operation of our shielded trap led us to a regime of very low ...

Hrter, Arne; Brunner, Andreas; Denschlag, Johannes Hecker

2013-01-01T23:59:59.000Z

247

Transport of ions in a segmented linear Paul trap in printed-circuit-board technology  

E-Print Network (OSTI)

We describe the construction and operation of a segmented linear Paul trap, fabricated in printed-circuit-board technology with an electrode segment width of 500 microns. We prove the applicability of this technology to reliable ion trapping and report the observation of Doppler cooled ion crystals of Ca-40 with this kind of traps. Measured trap frequencies agree with numerical simulations at the level of a few percent from which we infer a high fabrication accuracy of the segmented trap. To demonstrate its usefulness and versatility for trapped ion experiments we study the fast transport of a single ion. Our experimental results show a success rate of 99.0(1)% for a transport distance of 2x2mm in a round-trip time of T=20us, which corresponds to 4 axial oscillations only. We theoretically and experimentally investigate the excitation of oscillations caused by fast ion transports with error-function voltage ramps: For a slightly slower transport (a round-trip shuttle within T=30us) we observe non-adiabatic motional excitation of 0.89(15)meV.

G. Huber; T. Deuschle; W. Schnitzler; R. Reichle; K. Singer; F. Schmidt-Kaler

2007-11-19T23:59:59.000Z

248

Acoustic emission from crumpling paper Paul A. Houle and James P. Sethna  

E-Print Network (OSTI)

obviously be mechanized and may be easier to simulate and study theoretically. Weak crumpling, in addition. Torra, Thermochim. Acta 116, 195 1987 . 12 P. Fazzini, Basic Acoustic Emission Gordon and Breach Sci

Sethna, James P.

249

Paul H. Rutherford, 1983 | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

1983 Print Text Size: A A A RSS Feeds FeedbackShare Page Physics: For outstanding contributions to the basic theory of plasma confinement and to the toroidal fusion reactor concept...

250

Photovoltaic Cell Structure Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Structure Basics Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are: Homojunction Devices Crystalline silicon is the primary example of this kind of cell. A single material-crystalline silicon-is altered so that one side is p-type, dominated by positive holes, and the other side is n-type, dominated by negative electrons. The p/n junction is located so that the maximum light is absorbed near it. The free electrons and holes generated by light deep in the silicon diffuse to the p/n junction and then separate to produce a current if the silicon is of sufficiently high quality. In this homojunction design, these aspects of the cell may be varied to

251

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

252

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

253

Solar Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resource Basics Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource. Basic Principles Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth's surface varies according to: Geographic location Time of day Season Local landscape Local weather. Because the Earth is round, the sun strikes the surface at different

254

Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Basics System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the power output of PV cells, they are connected together to form larger units called modules. Modules, in turn, can be connected to form even larger units called arrays, which can be interconnected to produce more power, and so on. In this way, PV systems can be built to meet almost any electric power need, small or large. Illustration of solar cells combined to make a module and modules combined to make an array. The basic PV or solar cell produces only a small amount of power. To produce more power, cells can be interconnected to

255

Greenhouse Gas Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

256

Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Instructor Training Basic Instructor Training Basic Instructor Training December 5, 2013 - 12:03pm Addthis The Emergency Operations Training Academy, NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce site certification by the National Training Center for conduct of the Basic Instructor Training class. This one -week, 40 hour course is offered to ensure the quality and consistency of classroom instruction provided at Department of Energy facilities nationwide. The purpose is to equip DOE federal and contractor instructors with best methods and techniques and deliver instruction and practice in classroom activitives that promote student success. The Emergency Operations Training Academy will be offering this class three (3) times per year starting in 2014.

257

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

258

Basic Research Needs for Countering Terrorism  

SciTech Connect

To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism

Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; David Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

2002-03-01T23:59:59.000Z

259

NREL: Learning - Energy Delivery and Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Delivery and Storage Basics Helping secure a clean energy future for the nation and the world isn't just about reducing energy usage or producing clean energy. It is about...

260

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

262

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps...

263

NREL: Learning - Concentrating Solar Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a...

264

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Electricity Basics 2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity. Topcis addressed include: Basics of electricity Generating electricity Using steam, turbines, generator Similarities of power plants Distributing Electricity Generation Transmission Distribution Power grid

265

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

266

Active Solar Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

267

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

268

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

269

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

270

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

271

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

272

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

273

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

274

Photovoltaic System Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance Basics System Performance Basics Photovoltaic System Performance Basics August 20, 2013 - 4:17pm Addthis Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of its components. Reliability The reliability of PV arrays is an important factor in the cost of PV systems and in consumer acceptance. However, the building blocks of arrays, PV cells, are considered "solid-state" devices with no moving parts and, therefore, are highly reliable and long-lived. Therefore, reliability measurements of PV systems are usually focused not on cells but on modules and whole systems. Reliability can be improved through fault-tolerant circuit design, which

275

Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode (or anode) and a positive electrode (or cathode)-sandwiched around an electrolyte. A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons

276

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

277

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

278

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

279

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

280

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

282

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

283

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

284

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

285

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

286

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

287

Photovoltaic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Basics Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches across. They are often connected together to form PV modules that may be up to several feet long and a few feet wide. Modules, in turn, can be combined and connected to form PV arrays of different sizes and power output. The modules of the array make up the major part of a PV system, which can also include electrical connections,

288

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

289

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

290

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

291

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

292

Water Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Water Efficiency Basics October 7, 2013 - 2:38pm Addthis Training Available Graphic of the eTraining logo Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping,

293

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

294

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

295

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

296

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

297

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

298

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

299

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

300

Geothermal Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Basics Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). So, like a cave's, the ground's temperature is warmer than the air above it during winter and cooler than the air above it in summer. Geothermal heat pumps take advantage of this by exchanging heat with the earth through a ground heat exchanger. Geothermal heat pumps are able to heat, cool, and, if so equipped, supply

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Small Space Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

302

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

303

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

304

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

305

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

306

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

307

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

308

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Basics Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

309

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

310

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

311

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

312

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

313

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

314

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

315

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

316

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

317

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

318

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

319

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

320

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

322

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

323

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

324

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Technology Basics Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

325

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

326

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

327

UNIVERSIT PAUL CZANNE AIX-MARSEILLE III N attribu par la bibliothque  

E-Print Network (OSTI)

(LAC en français, Basic Oxygen Furnace slag (BOF slag) en anglais) qui surnage au dessus du bain d SESAR (SteEl Slag roAd and enviRonment) (25) dont le but était l'élaboration d'une approche rationnelle

Paris-Sud XI, Université de

328

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

329

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

330

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

331

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

332

NPTEL Syllabus Basic Electrical Circuits -Video course  

E-Print Network (OSTI)

with an introduction to basic linear elements used in electrical circuits. Mesh and node analysis for systematic and energy in circuits will be discussed. Rudiments of three-phase circuits and their analysis; Energy in a mutual inductor and constraint on mutual inductance 5 Nodal analysis of a network

Krishnapura, Nagendra

333

Basics about CIM technology and key  

E-Print Network (OSTI)

Basics about CIM® technology and key applications Ales Strancar March, 2011 #12;Leaders in Monolith monolithic technology (CIM®). 4 USA patents granted including their foreign equivalents, more pending. #12;Important Milestones · 2002: First Drug Master File (DMF) for CIM® DEAE supports. · 2002: Pass first FDA

Lebendiker, Mario

334

MCSD TestPrep: Visual Basic 6  

Science Conference Proceedings (OSTI)

From the Publisher:MCSD TestPrep: Visual Basic 6 provides study questions, in-depth and focused review, and test-taking strategies. Chapters are organized by the objective areas on the exam. Individual objective sections open with an explanation ...

David Panagrosso; Owen Williams; Mary Foote

1998-12-01T23:59:59.000Z

335

ams2000.com Stepper Motor System Basics  

E-Print Network (OSTI)

. STEPPING MOTORS TYPES OF STEPPING MOTORS VARIABLE RELUCTANCE PERMANENT MAGNET HYBRID MOTOR WINDINGS motor with the magnetic field electronically switched to rotate the armature magnet around. A Stepping MOTORS There are basically three types of stepping motors; variable reluctance, permanent magnet

Bechtold, Jill

336

Basic Use of the OWL Grade Book  

E-Print Network (OSTI)

Basic Use of the OWL Grade Book #12;Notes Overview The Grade Book tool provides an easy and convenient way for instructors to manage grades and distribute them to students. Using the Grade Book. This handout will show you how to: · Access the Grade Book · Create a column in the Grade Book · Add

Lennard, William N.

337

2011 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining held at the 102nd AOCS Annual Meeting and Expo. 2011 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday April 30,

338

2010 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining Short Course held at the 101st AOCS Annual Meeting and Expo. 2010 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday, M

339

Detection of linkage to affective disorders in the catalogued Amish pedigrees: A reply to Pauls et al.  

Science Conference Proceedings (OSTI)

We have reported evidence for linkage of a region of chromosome 18 markers to affective illness in 22 bipolar (BP) pedigrees. The pedigree series included 21 US pedigrees collected by us and part of Amish pedigree 884 referred to as panel 3 in the catalog and also known as {open_quotes}the right extension.{close_quotes} The rest of 884 was never genotyped by us, because it did not fit the criteria for inclusion, as described elsewhere. Pauls et al. have recently studied whether this linkage can be detected in the entire catalogued Amish pedigrees (884 and 1075) in four of the marker loci reported. The authors conclude that the Amish data contain no significant susceptibility locus for BP illness in this region of chromosome 18. We find that the data published by Pauls et al. are not conclusive with regard to the presence or absence of any susceptibility locus under the nonparametric analyses presented, and, although the sample size is extremely small, it could also be interpreted as consistent with our findings. 17 refs., 1 tab.

Gershon, E.S.; Goldin, L.R.; Badner, J.A. [National Inst. of Mental Health, Bethesda, MD (United States); Berrettini, W.H. [Thomas Jefferson Medical College, Philadelphia, PA (United States)

1996-06-01T23:59:59.000Z

340

EA-1340: Conducting Astrophysics and Other Basic Science Experiments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40: Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site, Carlsbad, New Mexico EA-1340: Conducting Astrophysics and Other Basic Science Experiments at the...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conventional Storage Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On...

342

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Basics to someone by E-mail Share Federal Energy Management Program: Combined Heat and Power Basics on Facebook Tweet about Federal Energy Management...

343

Electricity Grid Basics Webinar Presentation Slides and Text...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Grid Basics Webinar Presentation Slides and Text Version Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text...

344

Audit Report on "Cost Sharing at Basic Energy Sciences' User...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 Audit Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 The Department...

345

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

346

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

347

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

348

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

349

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

350

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

351

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

352

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

353

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

354

Basic Research for the Hydrogen Fuel Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Institution Project Title Category A: Novel Hydrogen Storage Materials Massachusetts Institute of Technology Theory and Modeling of Materials for Hydrogen Storage Washington University In Situ NMR Studies of Hydrogen Storage Systems University of Pennsylvania Chemical Hydrogen Storage in Ionic Liquid Media Colorado School of Mines Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures Georgia Institute of Technology First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides Louisiana Tech University Understanding the Local Atomic-Level Effect of Dopants In Complex Metal Hydrides Using Synchrotron X-ray Absorption

355

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

356

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

357

Federal Energy Management Program: Water Efficiency Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Graphic of the eTraining logo Training Available Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping, heating, and process uses. Water is integral to the cooling of power plants that provide energy to Federal facilities.

358

IndianEnergySummitBasicFactSHEET  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMIT BASIC FACTS SHEET SUMMIT BASIC FACTS SHEET WHAT: DOE TRIBAL LEADERS ROUNDTABLES AND ENERGY SUMMIT WHO: Tribal Leadership and Tribal Policy Makers Secretary Chu and DOE Senior Leadership DOE Office of Indian Energy Policy and Programs WHEN: MAY 4 th and 5 th , 2011 WHERE: WASHINGTON, D.C., AREA Summit Location CRYSTAL GATEWAY MARRIOTT www.marriott.com/hotels/.../wasgw-crystal-gateway-marriott/ 1700 Jefferson Davis Highway Arlington, Virginia (703) 920-3230 REGISTRATION: There are NO registration fees to participate. Tribal Leaders will have to make their own arrangements for travel and accomodations. Summit Working Session meals/refreshments (limited) are included by the hotel. Please confirm your attendance by completing the registration form (WEB link to

359

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

360

To appear in Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013) (AAMAS 13), Saint Paul, Minnesota, USA, May 2013.  

E-Print Network (OSTI)

for parts of the day. However, when applied to heat­pump systems with existing thermostat strategies Systems (AAMAS 2013) (AAMAS 13), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat­Pump energy consump­ tion, heat­pump based HVAC systems have gained popu­ larity due to their high e

Stone, Peter

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

To appear in Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013) (AAMAS 13), Saint Paul, Minnesota, USA, May 2013.  

E-Print Network (OSTI)

Systems (AAMAS 2013) (AAMAS 13), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat-Pump to sustainable energy consump- tion, heat-pump based HVAC systems have gained popu- larity due to their high of heat-pump systems is that their efficiency sharply decreases when the outdoor temperature is around

Stone, Peter

362

RECYCLING OF CdTe PHOTOVOLTAIC MODULES: RECOVERY OF CADMIUM AND TELLURIUM Vasilis Fthenakis1, Paul Duby2, Wenming Wang1, Christopher Graves2 & Anuta Belova2  

E-Print Network (OSTI)

RECYCLING OF CdTe PHOTOVOLTAIC MODULES: RECOVERY OF CADMIUM AND TELLURIUM Vasilis Fthenakis1, Paul the recovery of tellurium. Keywords: Photovoltaic, Recycling, CdTe 1. INTRODUCTION Photovoltaic modules on a larger scale cell (i.e., 5 L) which prod

363

Alternative Fuels Data Center: Codes and Standards Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to someone by E-mail Basics to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Basics on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Basics on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Google Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Delicious Rank Alternative Fuels Data Center: Codes and Standards Basics on Digg Find More places to share Alternative Fuels Data Center: Codes and Standards Basics on AddThis.com... More in this section... Codes and Standards Basics Codes and standards ensure processes and products meet uniform safety and performance requirements. Here you will find basic information about definitions, publishing codes and standards, legal enforcement, and

364

Paul J. Merges, PhD Director, Bureau of Radiation New York State Department of Environmental Conservation  

Office of Legacy Management (LM)

AU62 & 1993 AU62 & 1993 Paul J. Merges, PhD Director, Bureau of Radiation New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233 1; Dear Dr. Merges: Your letter of August 13, 1993, requested information concerning the I Mt. Kisco, New York, site that was used for radium production by the former Canadian Radium and Uranium Company. This site was considered for the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, and it was eliminated from consideration in 1987. As yourequested, copies of the pertinent documents are enclosed. I Dr. W. Alexander Williams (301-903-8149) is the appropriate contact for any necessary followup with your staff. t Sincerely, Enclosures Division of Off-Site Programs

365

ESS 2012 Peer Review - State & Federal Energy Storage Technology Advancement Partnership - Todd Olinsky-Paul, CESA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Todd Olinsky-Paul Clean Energy States Alliance The Renaissance Hotel Washington, D.C. September 2012 Thank You: Dr. Imre Gyuk U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Dan Borneo Sandia National Laboratories ESTAP is a project of CESA Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs: - Information Exchange - Partnership Development - Joint Projects (National RPS Collaborative, Interstate Turbine Advisory Council) - Clean Energy Program Design & Evaluations - Analysis and Reports CESA is supported by a coalition of states and public utilities representing the leading U.S. public clean energy programs.

366

Navigating without vision: Basic and applied research  

E-Print Network (OSTI)

ABSTRACT: We describe some of the results of our program of basic and applied research on navigating without vision. One basic research topic that we have studied extensively is path integration, a form of navigation in which perceived self-motion is integrated over time to obtain an estimate of current posilion and orientation. In experiments on pathway completion, one test of path integration ability, we have found that subjects who are passively guided over the outbound path without vision exhibit significant errors when attempting to return to the origin but are nevertheless sensitive to turns and segment lengths in the stimulus path. We have also found no major differences in path inlegration ability among blirid and sighted populations. A model we havc developed that attributes errors in path integration to errors in encoding the stimulus path is a good beginning toward understanding path integration performance. In otber research on path integration, in which optic flow information was manipulated in addition to the proprioceptive and vestibular information of nonvisual locomotion, we havc found that optic flow is a weak input to the path integration process. In other basic research, our studies of auditory distance perception in outdoor environments show systematic underestimation oC sound source distance. Our applied research has been concerned with developing and evaluating a navigation system for the visually impaired that uses three recent technologies: the Global Positioning System, Geographic Information Systems, and virtual acouslics. Our work shows that there is considerable promise of these three technologies in allowing visually impaired individuals to navigate and learn about unfamiliar environments without the assistance of human guides. (Optoni Vis Sci 2001;78:282-289)

Jack M. Loomis; Roberta L. Klatzky; Reginald G. Golledge

2001-01-01T23:59:59.000Z

367

Geothermal district heating: basics to success  

DOE Green Energy (OSTI)

A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

Lunis, B.C.

1985-01-01T23:59:59.000Z

368

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

369

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

370

Conceptual design report, CEBAF basic experimental equipment  

Science Conference Proceedings (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

371

Criticality Safety Basics for INL Emergency Responders  

Science Conference Proceedings (OSTI)

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency. This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel. For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know ). INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

372

Alternative Fuels Data Center: Natural Gas Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Basics Photo of a natural gas fuel pump. Natural gas is an odorless, nontoxic, gaseous mixture of hydrocarbons-predominantly methane (CH4). It accounts for about a quarter

373

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

374

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

375

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

376

Submittal Basics | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Submittal Basics Print page Print page Email page Email page Reporting Requirements DOE reporting requirements for financial assistance recipients and non-major site/facility management contractors should be clearly outlined in your award document. Contact your DOE Contracting Officer with questions or concerns. STI deliverables generated by major site/facility management contractors are identified at the project level. There are instances when only the Announcement Notice should be submitted to OSTI. STI Product Types STI is found in many forms and format. Review Types of STI for a comprehensive list. For copyrighted materials, only an announcement notice may be submitted, but detailed information regarding where the materials are published is required as part of the announcement notice.

377

Basic mechanisms for the new millennium  

Science Conference Proceedings (OSTI)

This part of the Short Course will review the basic mechanisms for radiation effects in semiconductor devices. All three areas of radiation damage will be considered -- total dose, displacement effects, and single event effects. Each of these areas will be discussed in turn. First an overview and background will be provided on the historical understanding of the damage mechanism. Then there will be a discussion of recent enhancements to the understanding of those mechanisms and an up-to-date picture provided of the current state of knowledge. Next the potential impact of each of these damage mechanisms on devices in emerging technologies and how the mechanisms may be used to understand device performance will be described, with an emphasis on those likely to be of importance in the new millennium. Finally some additional thoughts will be presented on how device scaling expected into the next century may impact radiation hardness.

Dressendorfer, P.V.

1998-09-01T23:59:59.000Z

378

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know ).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

379

AOAC-Basic Calculations for Chemical and Biological Analyses  

Science Conference Proceedings (OSTI)

Completely revised, this 2nd Edition contains many more examples and three new chapters. Each chapter includes concise descriptions and definitions for the basic principles; derivation of basic equations or concepts used for calculations; relevant techniqu

380

Unstable RadiativeDynamical Interactions. Part I. Basic Theory  

Science Conference Proceedings (OSTI)

The interaction between trace shortwave radiative absorbers and the dynamical circulation is shown to be linearly unstable for horizontally uniform basic states with a vertical gradient in the basic-state absorber mixing ratio. Two types of ...

Steven J. Ghan

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative and Advanced Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Advanced Fuel Basics Alternative and Advanced Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a...

382

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

383

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

384

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

385

Energy Basics: Polycrystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

386

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

387

Energy Basics: Thermal Storage Systems for Concentrating Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

388

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

389

Energy Basics: Photovoltaic Electrical Contacts and Cell Coatings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

390

Energy Basics: Single-Crystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

391

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

392

Energy Basics: Dish/Engine Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

393

Energy Basics: Semiconductors and the Built-In Electric Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

394

Computational Materials Science: from Basic Principles to Material ...  

Science Conference Proceedings (OSTI)

Feb 8, 2007... Thermodynamics Software/Codes, Visualization Software/Codes ... Topic Title: Computational Materials Science: from Basic Principles to...

395

PAUL SHORT --WOMENS BROWN file:///Users/bkatten/Desktop/R092812AG.html[9/28/12 4:01:05 PM  

E-Print Network (OSTI)

Coiro, Fr 23:41 204 Cecelia Capozzoli, Fr 25:02 226 Lindsey McLaughlin, Fr 25:25 #12;PAUL SHORT Chester Universi 248 Anna Schneider, Sr 6:41 25:24 Gettysburg College 249 226 Lindsey McLaughlin, Fr 6 Katie Hundertmark, Sr 6:25 216 Lindsey McLaughlin, Fr 6:28 Total Time = 30:04 Total Places = 240 5

Devoto, Stephen H.

396

I.TclBasics Part I introduces the basics of Tcl. Everyone should read Chapter 1, which  

E-Print Network (OSTI)

1 P A R T I.TclBasics I Tcl Basics Part I introduces the basics of Tcl. Everyone should read Chapter 1, which describes the fundamental properties of the language. Tcl is really quite simple, so misconceptions that come from using other lan- guages. Chapter 2 is a short introduction to running Tcl and Tk

Chen, Yuanzhu Peter

397

Basic Research for Hydrogen Production, Storage and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 DOE DOE - - BES Sponsored Workshop on BES Sponsored Workshop on Basic Research for Hydrogen Basic Research for Hydrogen Production, Storage and Use Production, Storage and Use Walter J. Stevens Walter J. Stevens Director Director Chemical Sciences, Geosciences, and Biosciences Division Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Basic Energy Sciences Workshop dates: May 13-15, 2003 A follow-on workshop to BESAC-sponsored workshop on "Basic Research Needs to Assure a Secure Energy Future" Basic Energy Sciences Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Workshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells

398

CRC Handbook of Basic Tables for Chemical Analysis  

Science Conference Proceedings (OSTI)

The third edition of the CRC Handbook of Basic Tables for Chemical Analysis, co-authored by Thomas Bruno of The Thermophysical Properties ...

2012-10-01T23:59:59.000Z

399

DOE Hydrogen and Fuel Cells Program: Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Program is working to narrow this gap. Photo of NREL researcher in laboratory, evaluating carbon nanotubes for their hydrogen storage capacity. Led by the Office of Basic Energy...

400

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electricity Grid Basics Webinar Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides and a text version of the audiofrom the DOE Office of Indian Energy webinar on electricity grid basics.

402

Free Basic Process Algebra Smile Markovski, Ana Sokolova  

E-Print Network (OSTI)

Free Basic Process Algebra Smile Markovski, Ana Sokolova Faculty of Sciences and Mathematics, satisfying the laws (BPA1) ­ (BPA5) as given in the text. We present a description of free basic process algebras by using suitable descriptions of free semigroups and free semilattices. The description of free

Sokolova, Ana

403

Energy and Development: Is Energy a Basic Human Right?  

E-Print Network (OSTI)

Energy and Development: Is Energy a Basic Human Right? Skype/Video presentation for senior pupils national Laboratory/DTU Denmark #12;Is energy a basic human right? · What is energy? ­ the ability to make something happen · Different kinds of energy ­ or energy carriers - fuels · What do we use energy for

404

New Energy Basics Site: Check It Out! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! August 23, 2010 - 7:30am Addthis Allison Casey Senior Communicator, NREL Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and just need a little background info. EERE's new Energy Basics site is the place for you. There you can learn things like how a wind turbine works and all about the different types of fuel cells. If you just need a quick definition of a term you've heard, check out the glossary. Energy Basics is not meant to replace Energy Savers or any of the program sites throughout the Office of Energy Efficiency and Renewable Energy.

405

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

406

Removal of basic nitrogen compounds from hydrocarbon liquids  

DOE Patents (OSTI)

A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

1985-01-01T23:59:59.000Z

407

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

Not Available

1990-10-01T23:59:59.000Z

408

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

1990-10-01T23:59:59.000Z

409

Human radiation studies: Remembering the early years: Oral history of medical physicist Katherine L. Lathrop and physician Paul V. Harper, conducted January 26, 1995  

SciTech Connect

This report provides a transcript of an interview with Ms. Katherine L. Lathrop and Dr. Paul V. Hopper by representatives of the DOE Office of Human Radiation Research. Ms. Lathrop and Dr. Hopper were chosen for this interview because of their long-standing interest and research experience in the development of nuclear medicine. After brief biographical sketches the researchers provide a broad and interesting description of their roles in the initial uses of many radiopharmaceuticals, their experiences in human experimentation, and interactions with many other pioneers in nuclear medicine.

1995-09-01T23:59:59.000Z

410

Basic Search A basic job search can be conducted to quickly identify the types of jobs you are most  

E-Print Network (OSTI)

Job Search Basic Search A basic job search can be conducted to quickly identify the types of jobs a specific job. Keywords can be used to view jobs that contain those specific words. This is a literal search so your results may not be accurate. For example, if you search for Accountant but the text

Holland, Jeffrey

411

A Basic Overview of the Energy Employees Occupational Illness Compensation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Basic Overview of the Energy Employees Occupational Illness A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program July 2009 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal, contractor, and subcontractor employees to become familiar with and utilize the services and benefits authorized under the Energy Employees Occupational Illness Compensation Program Act (EEOIPCA). There are several Federal entities that support implementation of EEOICPA. Each of these entities serves a critical and unique role in this process. Briefly, the Department of Labor's (DOL) Office of Workers'

412

BIT101 - EOTA Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training April 4, 2014 7:30AM MDT to April 18, 2014 5:00PM MDT Registration link: EOTA Registration Course Type: Classroom Training (Instructor-Led) Course Location: Phillips Technlogoy Institute (PTi) Kirtland Air Force Base, Building 1900 (Maxwell) Course Description: This course is offered to instructors who provide training to site personnel. The mission is to assure the quality and consistency of training provided to the Department of Energy facilities nationwide. The purpose is to train DOE and DOE contractor instructors in the basic teaching tools needed to provide effecitve and current training techniques, as well as make classroom activities a valuable learning experience.

413

Web Editing Basics 1 1. Opening your site .........................................................................1  

E-Print Network (OSTI)

Web Editing Basics 1 TOPICS 1. Opening your site. Navigate to your Web page ............................................................2 4. Make text edits ..............................................................................2 5. Prepare documents and images for the Web ....................................3 6. Move

Zeng, Yong - Department of Mathematics and Statistics, University of Missouri

414

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

415

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

416

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

417

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Direct-Use of Geothermal Technologies Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use...

418

Revit Architecture 2010 Basics: From the Ground Up  

Science Conference Proceedings (OSTI)

Revit Architecture 2010 Basics is geared towards beginning architectural students or professional architects who want to get a jump-start into 3D parametric modeling for commercial structures. This book is filled with tutorials, tips and tricks, and ...

Elise Moss

2009-07-01T23:59:59.000Z

419

Bio-Based Products Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are...

420

BNL | Paul Wilson  

NLE Websites -- All DOE Office Websites (Extended Search)

Because you are not running JavaScript or allowing active scripting, some features on this page my not work. >> Enable Javascript << Site Navigation General Information search...

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dr. Paul W. Witherell  

Science Conference Proceedings (OSTI)

... including knowledge about information models for sustainable manufacturing, green products, and system level analysis. His specific job focus is ...

2013-08-01T23:59:59.000Z

422

Paul E. Stutzman  

Science Conference Proceedings (OSTI)

... of an environmental scanning electron microscope with energy dispersible x-ray analysis, computer image analysis, light microscopy, and an ...

2012-07-06T23:59:59.000Z

423

Interview of Paul Hockings  

E-Print Network (OSTI)

, journalist and wool-classer in Auckland, but more importantly took part in the excavation of the landing site of the first moah hunters; next went to Vancouver and worked briefly in the University of British Columbia Museum; also worked as a script writer...

Hockings, Paul

2006-01-13T23:59:59.000Z

424

SANS Scientist - Paul Butler  

Science Conference Proceedings (OSTI)

... Post-Doc, ORNL, Oak Ridge Tennessee, 1995-1997; Research Chemist, NIST/NCNR, 1997-2000; Staff Scientist, ORNL ...

425

Paul D. Kalb | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

to characterize dispersion and evaluate building vulnerability Evaluation and forecasting solar energy resource capabilities Experience Division Head, Environmental Research and...

426

Interview of Paul Rabinow  

E-Print Network (OSTI)

; cosmopolitan enlightenment sense that we have to live with difference which can be a good thing, and that intolerance is not so admirable 29:40:14 As a child I was passionately involved in sports, roller hockey in particular; a strange obsession...

Rabinow, Paul

2009-03-30T23:59:59.000Z

427

BNL | Paul Vaska  

NLE Websites -- All DOE Office Websites (Extended Search)

spatial resolution in PET, including a solid-state imager using cadmium zinc telluride (CZT) which achieves sub-mm resolution, and a monolithic scintillator detector with...

428

Mr. Paul Daley Heppenstall  

Office of Legacy Management (LM)

condition. The typical course of action in a site investigation is to first search DOE predecessor records to determine if there is any potential for; site contamination...

429

Microhydropower Conveyance and Filter Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conveyance and Filter Basics Conveyance and Filter Basics Microhydropower Conveyance and Filter Basics August 16, 2013 - 3:53pm Addthis Before water enters the turbine or waterwheel of a microhydropower system, it is funneled through a series of components that control its flow and filter out debris. These components include the headrace, forebay, and water conveyance (or channel, pipeline, or penstock). The headrace is a waterway that runs parallel to the water source. A headrace is sometimes necessary for hydropower systems when insufficient head, or vertical drop, is provided and is usually constructed of cement or masonry. The headrace leads to the forebay, which also is made of concrete or masonry. It functions as a settling pond for large debris that would otherwise flow into the system and damage the turbine.

430

Photovoltaic Crystalline Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crystalline Silicon Cell Basics Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a built-in electric field. Light shining on crystalline silicon may free electrons within the crystal lattice, but for these electrons to do useful work-such as provide electricity to a light bulb-they must be separated and directed into an electrical circuit. PV Semiconductors To create an electric field within a crystalline silicon photovoltaic (PV) cell, two silicon semiconductor layers are sandwiched together. P-type (or positive) semiconductors have an abundance of positively charged holes, and n-type (or negative) semiconductors have an abundance of negatively charged electrons. When n- and p-type silicon layers contact, excess electrons move

431

Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polycrystalline Thin-Film Cell Basics Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick, whereas thick films typically are 100 to 300 micrometers thick. Also, thin-film cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate materials. The term thin film comes from the method used to deposit the film, not from

432

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

433

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

434

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

435

Passive Solar Building Design Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Building Design Basics Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how passive solar design techniques work. Direct Gain Direct gain is the process by which sunlight directly enters a building through the windows and is absorbed and temporarily stored in massive floors or walls. Indirect Gain Indirect gain is the process by which the sun warms a heat storage

436

Flexible-Fuel Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

437

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

438

Flat-Plate Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the Illustration of a cutaway of a typical flat-plate module. The layers, in order from top to bottom, are: cover film, solar cell, encapsulant, substrate, cover film, seal, gasket, and frame. One typical flat-plate module design uses a substrate of metal, glass, or plastic to provide structural support in the back; an encapsulant material to protect the cells; and a transparent cover of plastic or glass. sun. They respond to sunlight that is direct or diffuse. Even in clear skies, the diffuse component of sunlight accounts for between 10% and 20%

439

Concentrating Solar Power Thermal Storage System Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

440

REPORT OF THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL  

NLE Websites -- All DOE Office Websites (Extended Search)

BASIC ENERGY SCIENCES BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL ON D.O.E. SYNCHROTRON RADIATION SOURCES AND SCIENCE NOVEMBER 1997 EPRI Electric Power Research Institute Powering Progress through Innovative Solutions January 14th, 1998 Dr. Martha A. Krebs, Director Office of Energy Research United States Department of Energy Washington, DC 20585 Dear Martha, The purpose of this letter is to summarize the discussions of the Basic Energy Sciences Advisory Committee at its meeting on October 8 - 9, 1997 at the Holiday Inn in Gaithersburg as they related to the report from our Panel on Synchrotron Radiation Sources and Science. This Panel was assembled in response to the Charge presented to BESAC in your letter of October 9th, 1996 to reassess the need for and the opportunities presented by each of the four synchrotron

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pump Basics Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

442

Wood and Pellet Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Basics Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices. Traditional fireplaces draw in as much as 300 cubic feet per minute of heated room air for combustion, then send it straight up the chimney. Fireplaces also produce significant air pollution. Although some fireplace designs seek to address these issues with dedicated air supplies, glass doors, and heat recovery systems, fireplaces are still

443

Low-Pressure Sodium Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

444

Photovoltaic Electrical Contact and Cell Coating Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, or solar cell, are the electrical contacts and anti-reflective coating. These layers provide essential functions to the cell's operation. Electrical Contacts Electrical contacts are essential to PV cells because they bridge the connection between the semiconductor material and the external electrical load, such as a light bulb. The back contact of a cell-the side away from the incoming sunlight-is relatively simple. It usually consists of a layer of aluminum or molybdenum metal. Illustration of a cutaway of a typical solar cell. The layers, from top to bottom, include a cover glass, transparent adhesive, antireflection coating, front contact, n-type semiconductor, p-type seminconductor, and back contact.

445

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

446

Hydrogen and Fuel Cell Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the simplest element on Earth. A hydrogen atom consists of only one proton and one electron. It is also the most plentiful element in the universe. Despite its simplicity and abundance, hydrogen doesn't occur naturally as a gas on Earth. It is always combined with other elements. Water, for example, is a combination of hydrogen and oxygen. Hydrogen is also found in many organic compounds, notably the "hydrocarbons" that make up fuels such as gasoline, natural gas, methanol, and propane. To generate electricity using hydrogen, pure hydrogen must first be

447

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

448

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

449

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

450

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coil and Indirect Water Heater Basics Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called the boiler heat source. Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system. How Tankless Coil and Indirect Water Heaters Work A tankless coil water heater uses a heating coil or heat exchanger

451

Ductless, Mini-Split Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics August 19, 2013 - 11:04am Addthis Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions, where extending or installing distribution ductwork is not feasible. How Ductless, Mini-Split Heat Pumps Work Like standard air-source heat pumps, mini splits have two main components: an outdoor compressor/condenser, and an indoor air-handling unit. A conduit, which houses the power cable, refrigerant tubing, suction tubing,

452

Flow cytometry aids basic cell biology research and drug discovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per minute. In December 2009, Life Technologies Corporation announced the release of the Attune® Acoustic Focusing Cytometer, a first-of-its-kind cytometer system based on technology developed at Los Alamos National Laboratory (LANL). Examining cells has never been clearer with LANL's use of acoustic waves

453

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

454

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

455

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

456

Flat-Plate Photovoltaic Module Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Module Basics Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame. Front Surface Materials The front surface of a flat-plate PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have high transmission of light with wavelengths from 350 to 1200 nm. Also, reflection from the front surface should be minimal. An antireflection coating added to the top surface can greatly reduce the reflection of sunlight, and texturing of the surface can cause light that strikes the surface to stay within the cells. Unfortunately, these textured

457

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

458

Photovoltaic Cell Quantum Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Quantum Efficiency Basics Cell Quantum Efficiency Basics Photovoltaic Cell Quantum Efficiency Basics August 20, 2013 - 3:05pm Addthis Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to the response of a solar cell to the various wavelengths in the spectrum of light shining on the cell. The QE is given as a function of either wavelength or energy. If all the photons of a certain wavelength are absorbed and the resulting minority carriers (for example, electrons in a p-type material) are collected, then the QE at that particular wavelength has a value of one. The QE for photons with energy below the bandgap is zero.

459

Photovoltaic Electrical Contact and Cell Coating Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, or solar cell, are the electrical contacts and anti-reflective coating. These layers provide essential functions to the cell's operation. Electrical Contacts Electrical contacts are essential to PV cells because they bridge the connection between the semiconductor material and the external electrical load, such as a light bulb. The back contact of a cell-the side away from the incoming sunlight-is relatively simple. It usually consists of a layer of aluminum or molybdenum metal. Illustration of a cutaway of a typical solar cell. The layers, from top to bottom, include a cover glass, transparent adhesive, antireflection coating, front contact, n-type semiconductor, p-type seminconductor, and back contact.

460

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Linear Concentrator System Basics for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic trough collectors that track the sun. The cooling towers can be seen with the water plume rising into the air, and white water tanks are in the background. Credit: Sandia National Laboratory / PIX 14955 Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear

462

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains

463

Crystalline Silicon Photovolatic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics August 19, 2013 - 4:58pm Addthis Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure Illustration of a silicon crystal with its 14 electrons orbiting a nucleus of protons and neutrons. As depicted in this simplified diagram, silicon has 14 electrons. The four electrons that orbit the nucleus in the outermost "valence" energy level are given to, accepted from, or shared with other atoms. All matter is composed of atoms, which are made up of positively charged

464

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

465

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

466

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pump Basics Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

467

From: Adams, Charlie To: Regulatory.Review Cc: Stern, Jim; Parker, Mike; Dana, Paul; Josh Greene; Frank Stanonik; Neil Rolph; Schuh, Darrell; Roy Smith; Dan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adams, Charlie To: Regulatory.Review Cc: Stern, Jim; Parker, Mike; Dana, Paul; Josh Greene; Frank Stanonik; Neil Rolph; Schuh, Darrell; Roy Smith; Dan Snyder; Berning, Dave Subject: EO 13563 Preliminary Plan comments from A.O. Smith Corporation Date: Monday, August 01, 2011 2:59:51 PM A.O. Smith Corporation Response to Preliminary Plan for Retrospective Analysis of Existing Rules A.O. Smith Corporation is the largest manufacturer of residential and commercial water heating equipment in the United States. We have the following comments in response to the July 11, 2011, Notice of Availability in the Federal Register, in which DOE sought comments regarding its EO 13563 Preliminary Plan: · In general, we commend DOE's approach to review significant rules on an on-going basis in order

468

Performance modelling of the Orwell basic access mechanism  

Science Conference Proceedings (OSTI)

Orwell is a high speed slotted ring. Its protocol uses destination release of the slots. Because of this the carried load can be much larger than the transmission rate. A new analytical model of the Orwell basic access mechanism is presented in this ...

M. Zafirovic; I. G. Niemegeers

1987-08-01T23:59:59.000Z

469

TruLifesaver American Heart Association Basic Life Support Course  

E-Print Network (OSTI)

TruLifesaver American Heart Association Basic Life Support Course The Truman Institute P: 660 concepts of high-quality CPR · The American Heart Association Chain of Survival · Differences between Cost includes all instruction, materials and two year certification with the American Heart Association

Gering, Jon C.

470

FWP executive summaries: Basic energy sciences materials sciences programs  

Science Conference Proceedings (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

471

Vacuum pyrolysis of waste tires with basic additives  

Science Conference Proceedings (OSTI)

Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

Zhang Xinghua [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China); Wang Tiejun [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China)], E-mail: wangtj@ms.giec.ac.cn; Ma Longlong; Chang Jie [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China)

2008-11-15T23:59:59.000Z

472

Practical Guide to Vegetable Oil ProcessingChapter 1 Basic Oil Chemistry  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 1 Basic Oil Chemistry Processing eChapters Processing Press Downloadable pdf of Chapter 1 Basic Oil Chemistry from the book ...

473

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

COMPUTING AND STORAGE REQUIREMENTS Basic Energy SciencesEnergy Sciences 8.2.1.4 Computational and Storage Computing and Storage Requirements for Basic Energy

Gerber, Richard

2012-01-01T23:59:59.000Z

474

Engineering Fundamentals - Basic Atomic and Nuclear Physics, Version 2.0  

Science Conference Proceedings (OSTI)

The Basic Nuclear Physics and Reactor Theory module covers basic atomic structure, fission, radioactivity, reactor operation, and nuclear safety. This course will help new engineers understand how ...

2012-11-19T23:59:59.000Z

475

DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces 52.5 Million Solicitation for Basic Hydrogen Research...

476

Stakeholder Engagement and Outreach: Wind Basics and Education  

Wind Powering America (EERE)

Wind Basics and Education Wind Basics and Education Learn about wind power, the Wind for Schools project and curricula, and locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and how and where wind energy has increased over the past decade. Wind for Schools Project Wind Powering America's Wind for Schools project, which began in 2005 and ended in September 2013, worked to promote wind industry workforce development by focusing on K-12 and university educators and students to counter the trend of reduced numbers of U.S. students entering science and engineering fields. The project also raised awareness in rural America about the benefits of wind energy through wind energy curricula and on-site

477

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

478

Institutional Change Basics for Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Institutional Change » Institutional Change Program Areas » Institutional Change » Institutional Change Basics for Sustainability Institutional Change Basics for Sustainability October 8, 2013 - 10:55am Addthis Training Available Graphic of the eTraining logo Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to meet sustainability goals by completing this FEMP eTraining course. Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies, and policies are used effectively in meeting energy and

479

Facility Representative Program: Basic Courses For Facility Representative  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

480

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

Note: This page contains sample records for the topic "basics paul gipe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

482

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory  

E-Print Network (OSTI)

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory updated 8 January 2008 Pre-Laboratory Assignment 1. Design an ammeter with full scale current IFS equal to 5 mA using a meter movement rated at 0.5 mA and 100 mV. 2. Design a voltmeter with a full scale voltage VFS equal to 10 V using the meter

Miller, Damon A.

483

Heat Pump Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

484

Conventional Storage Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another valve near the bottom of the outside of the tank is the thermostat and gas valve. A cutout shows the parts inside the tank, which include a large tube called a flue tube/heat exchanger. Inside this tube is a jagged insert called a flue baffle. Beside the flue tube/heat exchanger is a thin tube called the anode rod. At the bottom of the tank is a gas burner, and beneath the burner are combustion air openings.

485

Concentrating Solar Power Tower System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200 megawatts of electricity. Illustration of a power tower power plant. Sunlight is shown reflecting off a series of heliostats surrounding the tower and onto the receiver at the top of the tower. The hot heat-transfer fluid exiting from the receiver flows down the tower, into a feedwater reheater, and then into a turbine, which generates electricity that is fed into the power grid. The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver.

486

Manhattan Project: Basic Research at Los Alamos, 1943-1944  

Office of Scientific and Technical Information (OSTI)

Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing It All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic Research at Los Alamos, 1943-1944 Implosion Becomes a Necessity, 1944 Oak Ridge and Hanford Come Through, 1944-1945 Final Bomb Design, 1944-1945 Atomic Rivals and the ALSOS Mission, 1938-1945 Espionage and the Manhattan Project, 1940-1945 Enrico Fermi The first few months at Los Alamos were occupied with briefings on nuclear physics for the technical staff and with planning research priorities and organizing the laboratory. Leslie Groves called once again on Warren Lewis to head a committee, this time to evaluate the Los Alamos program. The committee's recommendations resulted in the coordinated effort envisioned by those who advocated a unified laboratory for bomb research. Enrico Fermi (left) took control of critical mass experiments and standardization of measurement Hans Bethe techniques. Plutonium purification work, begun at the Met Lab, became high priority at Los Alamos, and increased attention was paid to metallurgy. The committee also recommended that an engineering division be organized to collaborate with physicists on bomb design and fabrication. The laboratory was thus organized into four divisions: theoretical (Hans A. Bethe, right); experimental physics (Robert F. Bacher); chemistry and metallurgy (Joseph W. Kennedy); and ordnance (Navy Captain William S. "Deke" Parsons). Like other Manhattan Project installations, Los Alamos soon began to expand beyond initial expectations.

487

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

SciTech Connect

New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-11T23:59:59.000Z

488

Basic Solar Energy Research in Japan (2011 EFRC Forum)  

DOE Green Energy (OSTI)

Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several grand challenges and use-inspired basic research needs recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Domen, Kazunari (University of Tokyo)

2011-05-26T23:59:59.000Z

489

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

490

Criticality Safety Basics for INL FMHs and CSOs  

SciTech Connect

Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

V. L. Putman

2012-04-01T23:59:59.000Z

491

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains hydrocarbons such as ethane and propane and other gases such as nitrogen,

492

Memristor-based Circuits for Performing Basic Arithmetic Operations  

E-Print Network (OSTI)

In almost all of the currently working circuits, especially in analog circuits implementing signal processing applications, basic arithmetic operations such as multiplication, addition, subtraction and division are performed on values which are represented by voltages or currents. However, in this paper, we propose a new and simple method for performing analog arithmetic operations which in this scheme, signals are represented and stored through a memristance of the newly found circuit element, i.e. memristor, instead of voltage or current. Some of these operators such as divider and multiplier are much simpler and faster than their equivalent voltage-based circuits and they require less chip area. In addition, a new circuit is designed for programming the memristance of the memristor with predetermined analog value. Presented simulation results demonstrate the effectiveness and the accuracy of the proposed circuits.

Merrikh-Bayat, Farnood

2010-01-01T23:59:59.000Z

493

Underground oil shale retorting. [Basic principles are outlined  

DOE Green Energy (OSTI)

The basic principles involved in combustion processing of oil shale are outlined. The manual is designed to serve as an introduction to the subject for the support personnel of the LLL Oil Shale Project. The material is presented in a simple two page format with one page devoted to a figure or table and the facing page contains a brief description of that material. Thus, it can serve as a self-study guide. Following a brief description of oil shale, how it was formed, and the extent of the resource, an overview of the concepts and major technical problems of Modified In-Situ (MIS) Oil Shale Retorting is presented. Finally, the liquid product, shale oil, is compared with typical petroleum crudes.

Campbell, J.H.; Raley, J.H.

1980-02-01T23:59:59.000Z

494

NAVAL REACTORS PHYSICS HANDBOOK. VOLUME I. SELECTED BASIC TECHNIQUES  

SciTech Connect

The purpose of this work is to present the most pertinent parts of the body of physics knowledge which has been built up in the course of the Naval and Shippingport (PWR) Reactor Programs, with the aim of providing a background of understanding for those interested in nuclear core design. Volume 1 of this handbook was planned to bring together topics in the basic theoretical and experimental material which are of especially wide interest, including those common to both thermal and intermediate neutron energy reactor types. The physics design of light water-moderated and -cooled reactors is covered in Volume 2 (classified), and that of intermediate neutron-energy power reactors in Volume 3. The emphasis in Volume 1 is thus on light water reactor systems, and as many recent advances in reactor physics of the Naval and Shippingport Reactor Programs as possible have been included.

Radkowsky, A. ed.

1964-01-01T23:59:59.000Z

495

The Eady Problem for a Basic State with Zero PV Gradient but ? ? 0  

Science Conference Proceedings (OSTI)

The classic Eady problem is modified to include ? ? 0, but with the basic distributions of temperature and zonal flow adjusted to preserve zero meridional gradients of basic-state potential vorticity in the fluid interior. Much of the ...

Richard S. Lindzen

1994-11-01T23:59:59.000Z

496

Bleaching and Purifying Fats and Oils: Theory and PracticeChapter 1 Basic Components and Procedures  

Science Conference Proceedings (OSTI)

Bleaching and Purifying Fats and Oils: Theory and Practice Chapter 1 Basic Components and Procedures Processing eChapters Processing Press Downloadable pdf of Chapter 1 Basic Components and Procedu

497

Description of a Basic Vehicle Control Strategy for a Plug-In Hybrid Vehicle  

Science Conference Proceedings (OSTI)

This report describes development of a basic powertrain control strategy for a plug-in hybrid electric vehicle (PHEV).

2007-03-28T23:59:59.000Z

498

Assessment of basic research needs for greenhouse gas control technologies  

SciTech Connect

This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

1998-09-01T23:59:59.000Z

499

Basic studies of 3-5 high efficiency cell components  

DOE Green Energy (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

500

Software development guidelines for Visual Basic and SQL Server  

Science Conference Proceedings (OSTI)

Development Guidelines are programming directions that focus not on the logic of the program but on its physical structure and appearance. These directions make the code easier to read, understand, and maintain. These guidelines are put in place to create a consistent set of conventions to follow that will standardize the development process. With these guidelines in place the readability and understanding others have when reviewing the code is greatly enhanced. Use these guidelines as a general rule when writing any set of logical statements. Development Guidelines are put into place in an effort to standardize the structure and style of the development process. They are not intended to limit or channel the developer's own creativity and flexibility. These guidelines will cover general development syntax, organization and documentation. The general information covers the high level areas of development, no matter what the environment. This guide will detail specific Visual Basic guidelines, following the same standard naming conventions set by Microsoft, with some minor additions. The guideline will finish with conventions specific to a Database or Microsoft's SQL Server specific environment.

IBSEN, T.G.

2000-07-26T23:59:59.000Z