Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 II Basic Research The Basic Energy Sciences (BES) office within the DOE Office of Science supports the DOE Hydrogen Program by providing basic, fundamental research in those technically challenging areas facing the Program, complementing the applied research and demonstration projects conducted by the Offices of Energy Efficiency and Renewable Energy; Fossil Energy; and Nuclear Engineering, Science and Technology. In May 2005 Secretary of Energy Samuel W. Bodman announced the selection of over $64 million in BES research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American consumers by 2020. A total of 70 hydrogen research projects were selected to focus on fundamental science and enable

2

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

for Basic Research Brookhaven National Lab excels at the design, construction, and operation of large-scale accelerator facilities, a tradition that started with the Cosmotron and...

3

Submittal Basics | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Submittal Basics Print page Print page Email page Email page Reporting Requirements DOE reporting requirements for financial assistance recipients and non-major site/facility management contractors should be clearly outlined in your award document. Contact your DOE Contracting Officer with questions or concerns. STI deliverables generated by major site/facility management contractors are identified at the project level. There are instances when only the Announcement Notice should be submitted to OSTI. STI Product Types STI is found in many forms and format. Review Types of STI for a comprehensive list. For copyrighted materials, only an announcement notice may be submitted, but detailed information regarding where the materials are published is required as part of the announcement notice.

4

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

5

Basic Research Needs for the Hydrogen Economy  

Fuel Cell Technologies Publication and Product Library (EERE)

The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

6

Advanced Scientific Computing Research Jobs  

Office of Science (SC) Website

about/jobs/ Below is a list of currently about/jobs/ Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position announcements on USAJOBS.gov for more information. en {D1C7BEC4-D6F9-4FB7-A95E-142A6B699F6B}https://www.usajobs.gov/GetJob/ViewDetails/358465200 Computer Scientist Computer Science Research & Partnerships Division Job Title: Computer Scientist Computer Science Research & Partnerships DivisionOffice: Advanced Scientific Computing ResearchURL: USAjobs listingVacancy Number: 14-DE-SC-HQ-005Location:

7

Supporting Advanced Scientific Computing Research * Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C oer steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S...

8

Basic Research for the Hydrogen Fuel Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative More Documents & Publications...

9

National Energy Research Scientific Computing Center 2007 Annual Report  

E-Print Network (OSTI)

s Office of Advanced Scientific Computing Research, whichOffice of Advanced Scientific Computing Research The primaryof the Advanced Scientific Computing Research (ASCR) program

Hules, John A.

2008-01-01T23:59:59.000Z

10

NERSC: National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

and share massive bio-imaging datasets. Read More National Energy Research Scientific Computing Center Computing at NERSC OURSYSTEMS GETTINGSTARTED DOCUMENTATIONFOR USERS...

11

National Energy Research Scientific Computing Center (NERSC)...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contract to Cray August 5, 2009 BERKELEY, CA - The Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National...

12

Basic Research Needs for Countering Terrorism  

SciTech Connect

To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism

Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; David Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

2002-03-01T23:59:59.000Z

13

Basic Solar Energy Research in Japan (2011 EFRC Forum)  

DOE Green Energy (OSTI)

Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Domen, Kazunari (University of Tokyo)

2011-05-26T23:59:59.000Z

14

National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Computing Center Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-57369, April 2005 ii iii The Year in Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Advances in Computational Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

Basic Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center...

16

Barbara Helland Advanced Scientific Computing Research NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

7-28, 2012 Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review 1 Science C ase S tudies d rive d iscussions Program R equirements R eviews ...

17

National Energ y Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-49186, December 2001 National Energ y Research Scientific Computing Center 2001 Annual Report NERSC aspires to be a world leader in accelerating scientific discovery through computation. Our vision is to provide high- performance computing tools to tackle science's biggest and most challenging problems, and to play a major role in advancing large- scale computational science and computing technology. The result will be a rate of scientific progress previously unknown. NERSC's mission is to accelerate the pace of scientific discovery in the Department of Energy Office

18

Basic Research Needs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Basic Research Needs Basic Research Needs Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Basic Research Needs Print Text Size: A A A RSS Feeds FeedbackShare Page In 2001, the Basic Energy Sciences Advisory Committee (BESAC) conducted a far reaching study to assess the scope of fundamental scientific research that must be considered to address the DOE missions in energy efficiency, renewable energy resources, improved use of fossil fuels, safe and publicly acceptable nuclear energy, future energy sources, and reduced environmental impacts of energy production and use. The scientific community responded to this BESAC study with enthusiasm through participation in a week-long

19

Basic Research for the Hydrogen Fuel Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Institution Project Title Category A: Novel Hydrogen Storage Materials Massachusetts Institute of Technology Theory and Modeling of Materials for Hydrogen Storage Washington University In Situ NMR Studies of Hydrogen Storage Systems University of Pennsylvania Chemical Hydrogen Storage in Ionic Liquid Media Colorado School of Mines Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures Georgia Institute of Technology First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides Louisiana Tech University Understanding the Local Atomic-Level Effect of Dopants In Complex Metal Hydrides Using Synchrotron X-ray Absorption

20

Secretary Bodman in Illinois Highlights Scientific Research Investment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Illinois Highlights Scientific Research Investments to Advance America's Innovation Secretary Bodman in Illinois Highlights Scientific Research Investments to Advance America's...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Navigating without vision: Basic and applied research  

E-Print Network (OSTI)

ABSTRACT: We describe some of the results of our program of basic and applied research on navigating without vision. One basic research topic that we have studied extensively is path integration, a form of navigation in which perceived self-motion is integrated over time to obtain an estimate of current posilion and orientation. In experiments on pathway completion, one test of path integration ability, we have found that subjects who are passively guided over the outbound path without vision exhibit significant errors when attempting to return to the origin but are nevertheless sensitive to turns and segment lengths in the stimulus path. We have also found no major differences in path inlegration ability among blirid and sighted populations. A model we havc developed that attributes errors in path integration to errors in encoding the stimulus path is a good beginning toward understanding path integration performance. In otber research on path integration, in which optic flow information was manipulated in addition to the proprioceptive and vestibular information of nonvisual locomotion, we havc found that optic flow is a weak input to the path integration process. In other basic research, our studies of auditory distance perception in outdoor environments show systematic underestimation oC sound source distance. Our applied research has been concerned with developing and evaluating a navigation system for the visually impaired that uses three recent technologies: the Global Positioning System, Geographic Information Systems, and virtual acouslics. Our work shows that there is considerable promise of these three technologies in allowing visually impaired individuals to navigate and learn about unfamiliar environments without the assistance of human guides. (Optoni Vis Sci 2001;78:282-289)

Jack M. Loomis; Roberta L. Klatzky; Reginald G. Golledge

2001-01-01T23:59:59.000Z

22

Crime and punishment in scientific research  

E-Print Network (OSTI)

Arguments against scientific misconduct one finds in the literature generally fail to support current policies on research fraud: they may not prove wrong what is typically considered research misconduct and they tend to make wrong things that are not usually seen as scientific fraud, in particular honest errors. I argue that society cannot set a rule enjoining scientists to be honest, so any such rule can only be internal to science. Therefore society cannot legitimately enforce it. Moreover, until an argument is provided to prove that lack of honesty is far worse than lack of technical competence, intentional deceit should not be punished much more harshly than technical errors. Keywords: cheating; ethics; fabrication; falsification; integrity; plagiarism; research fraud; scientific misconduct.

Bouville, Mathieu

2008-01-01T23:59:59.000Z

23

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

24

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status ...

25

Green In Silico Project - Evolving Scientific Research out of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Green In Silico Project - Evolving Scientific Research out of the Lab into the Data Center - Environmental Benefits and Challenges of Scientific Computing Speaker(s): Peter James...

26

Scientific research in the Soviet Union  

Science Conference Proceedings (OSTI)

I report on the scientific aspects of my US/USSR Interacademy Exchange Visit to the Soviet Union. My research was conducted at three different institutes: the Lebedev Physical Institute in Moscow, the Leningrad Nuclear Physics Institute in Gatchina, and the Yerevan Physics Institute in Soviet Armenia. I included relevant information about the Soviet educational system, salaries of Soviet physicists, work habits and research activities at the three institutes, and the relevance of that research to work going on in the United States. 18 refs.

Mtingwa, S.K.

1990-03-19T23:59:59.000Z

27

The role of basic research in society  

Science Conference Proceedings (OSTI)

This report contains general remarks on the rate of accelerators, especially the Superconducting Super Collider, in the advancement of modern scientific knowledge. (LSP)

Seaborg, G.T.

1987-08-01T23:59:59.000Z

28

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

29

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

BES) Office of Advanced Scientific Computing Research (ASCR)of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

30

NREL: Concentrating Solar Power Research - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

31

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

32

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

33

Energy Department to Invest up to $5.2 million to Advance Basic Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Invest up to $5.2 million to Advance Basic to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership Energy Department to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership April 7, 2008 - 10:50am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will invest up to $5.2 million in basic research projects with 12 universities from across the country. In an effort to ensure America remains the world leader in scientific research and innovation, universities selected will pair with a DOE national laboratory to maximize expertise. These research projects, ranging from advanced solar cells to hydrogen energy systems, are a part of DOE's Experimental Program to Stimulate Competitive Research (EPSCoR), a federal-state partnership

34

Research | OSTI, US Dept of Energy, Office of Scientific and...  

Office of Scientific and Technical Information (OSTI)

Research Diffusion Diffusion Accelerator Links OSTI is conducting applied research to explore ways to speed up the diffusion of knowledge and accelerate scientific progress. OSTI's...

35

Scientific Research Data | OSTI, US Dept of Energy, Office of Scientific  

Office of Scientific and Technical Information (OSTI)

Scientific Research Data Scientific Research Data Scientific Research Data DOE generates scientific research data in many forms, both text and non-text. Much of the Department's text-based R&D results are readily available via OSTI databases. OSTI has broadened efforts to make non-text scientific and technical information (STI) available as well, providing access to underlying non-text data such as numeric files, computer simulations and interactive maps, as well as multimedia and scientific images. During 2011, OSTI implemented changes to its technology infrastructure to facilitate the announcement and registration of DOE-funded publicly available R&D research datasets through its membership in DataCite exit federal site . This web service builds on OSTI scientific research data discovery tools,

36

Educating Scientifically: Advances in Physics Education Research  

Science Conference Proceedings (OSTI)

It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

Finkelstein, Noah (University of Colorado)

2007-05-16T23:59:59.000Z

37

DOE Hydrogen and Fuel Cells Program: Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Program is working to narrow this gap. Photo of NREL researcher in laboratory, evaluating carbon nanotubes for their hydrogen storage capacity. Led by the Office of Basic Energy...

38

Basic Research for Hydrogen Production, Storage and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 DOE DOE - - BES Sponsored Workshop on BES Sponsored Workshop on Basic Research for Hydrogen Basic Research for Hydrogen Production, Storage and Use Production, Storage and Use Walter J. Stevens Walter J. Stevens Director Director Chemical Sciences, Geosciences, and Biosciences Division Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Basic Energy Sciences Workshop dates: May 13-15, 2003 A follow-on workshop to BESAC-sponsored workshop on "Basic Research Needs to Assure a Secure Energy Future" Basic Energy Sciences Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Workshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells

39

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Energy Demand and Conservation. 1979 (in press). Brooks.Look at Energy Conservation," Papers and Proceedings,Research Opportunities," in Conservation and Public Policy,

Hollander, Jack M.

2011-01-01T23:59:59.000Z

40

AAOCS Award for Scientific Excellence in Lipid Research  

Science Conference Proceedings (OSTI)

Awards a scientist from the Australasian region that has made a significant research contribution towards fats and oils research. AAOCS Award for Scientific Excellence in Lipid Research Australasian Section aaocs aocs australasian Australasian Sections A

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low Dose Radiation Research Program: Optimizing the Scientific, Regulatory,  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Scientific, Regulatory, and Societal Impact of the DOE Low Optimizing the Scientific, Regulatory, and Societal Impact of the DOE Low Dose Radiation Research Program Antone L. Brooks Why This Project? For maximum benefit, state-of-the-art research and new data from the Low Dose Radiation Research Program must be available to other scientists, regulatory agencies, and the public. This project stays abreast of scientific advances in the field, gathers, integrates, and summarizes the research within the program, and disseminates this information to appropriate scientific, regulatory, and public venues. Project Goals Provides a focal point for distribution of information generated in the program, to scientific committees, other governmental and regulatory agencies, and to the public Provides scientific support for the Low Dose Program website

42

NERSC Role in Advanced Scientific Computing Research Katherine Yelick  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Scientific Computing Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. Sample Scientific Accomplishments at NERSC 3 Award-winning software uses massively-parallel supercomputing to map hydrocarbon reservoirs at unprecedented levels of detail. (Greg Newman, LBNL) . Combustion Adaptive Mesh Refinement allows simulation of a fuel- flexible low-swirl burner that is orders of magnitude larger & more detailed than traditional reacting flow simulations allow.

43

Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE  

DOE Green Energy (OSTI)

Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

Jayadev, J S; Roessner, D [eds.] eds.

1980-01-01T23:59:59.000Z

44

National Energy Research Scientific Computing Center NERSC Exceeds Reliability  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Scientific Computing Center NERSC Exceeds Reliability Standards With Tape-Based Active Archive Research Facility Accelerates Access to Data while Supporting Exponential Growth Founded in 1974, the National Energy Research Scientific Computing Center (NERSC) is the primary scientific com- puting facility for the Office of Science in the U.S. Department of Energy. NERSC is located at Lawrence Berkeley National Laboratory's Oakland Scientific Facility in Oakland, California and is mandated with providing computational resources and expertise for scientific research to about 5,000 scientists at national labora- tories and universities across the United States, as well as their international col- laborators. A division of Lawrence Berke- ley National Laboratory, NERSC supports

45

Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological  

NLE Websites -- All DOE Office Websites (Extended Search)

Network Monitoring and Network Monitoring and Visualiza4on at ESnet Jon Dugan, Network Engineer ESnet Network Engineering Group February 3, 2010 Winter Joint Techs, Salt Lake City, UT Overview Data Collec4on (ESxSNMP) Data Visualiza4on (Graphite) Event/Metadata Log (Net Almanac) ESxSNMP: Goals * Automate everything possible * Provide summaries but don't lose raw data - Disk is cheap - It can be useful to take a hard look at the past * Flexibility and scalability * Minimize up front assumptions * Protect data collection from DoS by users * Make data easy to access and manipulate ESxSNMP: Polling * Interface metadata - Automatically detects new interfaces - Automatically detects interface changes - Historical log of interface info * Automatic addition of new devices

46

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

Bechtel-NV IARC INL NSTEC Pantex SNLA DOE-ALB Allied Signal KCP SRS NREL DOE NETL NNSA ARM ORAU OSTI NOAA

47

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

· CombineofLOSASUNN&ELPALOSAintonewELPASUNNSDN(priortothe decommissionofLOSAHUB)Dec.3rd · OC12betweenDENVHUBandPantex

48

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

GEquinixASH(DC2)fabricupgradedonJan14th · 10GEquinixSJ(SV1)fabricupgradedonJan19th · OC12betweenDENVHUBandPantex

49

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

Allied Signal ARM KCP NOAA OSTI ORAU SRS JLAB PPPL Lab DC Offices MIT/ PSFC BNL NREL GA DOE GTN NNSA NNSA

50

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

Jacobs Company (BJC) 44 Mb/s none via ORNL connecDon DOE NNSA Headquarters - Germantown (DOE-NNSA-GTN) 155 Mb/s none Future: DC MAN parDcipant DOE NNSA Service Center - Albuquerque (DOE-NNSA-SC) 52 Mb/s none via SNL-NM connec

51

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

· NERSC / LBNL · ALCF / ANL ­ Will provide multiple 10's of teraflops and multiple petabytes of storageNetwork Sunnyvale NYC Nashville Chicago OLCF/ ORNL 100G ALCF/ANL NERSC Magellan Magellan 6 #12;ARRA/ANI Testbed (Oakland, CA) and ALCF (Argonne, IL) 9 #12;Network Testbed Components · Network Testbed will consist of

52

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

, Large-Scale Science: DOE's ESnet William E. Johnston ESnet Manager and Senior Scientist, DOE Lawrence approach and architecture for DOE's Energy Sciences Network (ESnet), which is the network that serves all community. 1 ESnet's Role in the DOE Office of Science "The Office of Science of the US Dept. of Energy

53

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

1 Networking for the Future of Science ESnet Status Update William E. Johnston ESnet Department Head and Senior Scientist wej@es.net, www.es.net This talk is available at www.es.net/ESnet4 Energy, 2008 (Aloha!) #12;2 DOE Office of Science and ESnet ­ the ESnet Mission · ESnet's primary mission

54

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

reoccurrence (of 1 cause of this particular class of soft faults) #12;Example: NERSC & OLCF · Users were having

55

Image Galleries of the National Energy Research Scientific Computing Center (NERSC)  

DOE Data Explorer (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the flagship scientific computing facility for the Office of Science in the U.S. Department of Energy. As one of the largest facilities in the world devoted to providing computational resources and expertise for basic scientific research, NERSC is a world leader in accelerating scientific discovery through computation. NERSC is located at Lawrence Berkeley National Laboratory in Berkeley, California. The more than 3,000 computational scientists who use NERSC perform basic scientific research across a wide range of disciplines. These disciplines include climate modeling, research into new materials, simulations of the early universe, analysis of data from high energy physics experiments, investigations of protein structure, and a host of other scientific endeavors. NERSC provides three image galleries: the vizualizations image gallery (visualizations produced at NERSC from datasets resulting from experiments, simulations, or data analysis), the NERSC systems gallery (images and videos of the systems that undergird all NERSC work), and a collection of NERSC logos.

56

Low Dose Radiation Research Program: Optimizing the Scientific, Regulatory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Scientific, Regulatory and Social Impact of the DOE Optimizing the Scientific, Regulatory and Social Impact of the DOE Low Dose Radiation Research Program. Authors: Antone L.Brooks, Richard J. Bull, Lezlie A. Couch. Institutions: Washington State University Tri-Cities The purpose of this project is to provide scientific, technical, and organizational support to optimize the impact of the DOE Low Dose Radiation Research Program. This project will serve as a focal point for collection and dissemination of scientific information from the scientists funded in the Program to the U.S. Department of Energy (DOE), the regulatory agencies, and the public. The project will be responsible for analysis of the scientific information in the broader context of biomedical research and will provide this information to the Office of Biological Research

57

DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52.5 Million Solicitation for Basic Hydrogen 52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative April 6, 2006 - 10:13am Addthis DETROIT, MI -SecretaryBodman announced a three-year, $52.5 million solicitation to support new innovations in hydrogen technology. The solicitation, to be released later this month, supports President Bush's Advanced Energy Initiative - which seeks to reduce dependence on foreign oil - and will support research to assist in overcoming the scientific challenges associated with the production, use and storage of hydrogen. Secretary Bodman made the announcement while speaking to the 2006 SAE World

58

DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $52.5 Million Solicitation for Basic Hydrogen Announces $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative April 6, 2006 - 10:13am Addthis DETROIT, MI -SecretaryBodman announced a three-year, $52.5 million solicitation to support new innovations in hydrogen technology. The solicitation, to be released later this month, supports President Bush's Advanced Energy Initiative - which seeks to reduce dependence on foreign oil - and will support research to assist in overcoming the scientific challenges associated with the production, use and storage of hydrogen. Secretary Bodman made the announcement while speaking to the 2006 SAE World

59

NERSC: National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites

NERSC Powering Scientific Discovery Since 1974 NERSC Powering Scientific Discovery Since 1974 Login Site Map | My NERSC search... Go Home About Overview NERSC Mission Contact us Staff Org Chart NERSC History NERSC Stakeholders NERSC Usage Demographics Careers Visitor Info Web Policies Science at NERSC NERSC HPC Achievement Awards Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Systems Computational Systems Table Data Systems Table Edison Cray XC30 Hopper Cray XE6 Carver IBM iDataPlex PDSF Genepool NERSC Global Filesystem HPSS data archive Data Transfer Nodes History of Systems NERSC-8 Procurement

60

Science for Energy Technology: Strengthening the Link Between Basic Research and Industry  

SciTech Connect

The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Energy Research Scientific Computing Center (NERSC) Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy National Energy Research Scientific Computing Center (NERSC) Awards Supercomputer Contract to Cray National Energy Research Scientific Computing Center (NERSC) Awards Supercomputer Contract to Cray August 5, 2009 BERKELEY, CA - The Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory announced today that a contract for its next generation supercomputing system will be awarded to Cray Inc. The multi-year supercomputing contract includes delivery of a Cray XT5(tm) massively parallel processor supercomputer, which will be upgraded to a future-generation Cray supercomputer. When completed, the new system will deliver a peak performance of more than one petaflops, equivalent to more

62

Flow cytometry aids basic cell biology research and drug discovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per minute. In December 2009, Life Technologies Corporation announced the release of the Attune® Acoustic Focusing Cytometer, a first-of-its-kind cytometer system based on technology developed at Los Alamos National Laboratory (LANL). Examining cells has never been clearer with LANL's use of acoustic waves

63

Secretary Bodman in Illinois Highlights Scientific Research Investments to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Highlights Scientific Research Illinois Highlights Scientific Research Investments to Advance America's Innovation Secretary Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy Samuel Bodman today joined Rep. Judy Biggert (IL-13th) at a technology firm in Illinois to highlight scientific research investments that have led to partnerships between DOE's National laboratories and private industry. At Advanced Diamond Technologies, Inc., Secretary Bodman touted the key contributions of scientists and engineers across the country and the importance of sustaining innovation and entrepreneurship in advancing energy and economic security. "Moving technologies from the laboratory setting to commercial

64

Scientific Applications Research Associates Inc SARA | Open Energy  

Open Energy Info (EERE)

Scientific Applications Research Associates Inc SARA Scientific Applications Research Associates Inc SARA Jump to: navigation, search Name Scientific Applications Research Associates Inc SARA Address 6300 Gateway Dr Place Cypress Zip 90630 Sector Marine and Hydrokinetic Phone number 714-224-4410 x 274 Website http://www.sara.com/rae/ocean_ Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Magnetohydrodynamic MHD Wave Energy Converter MWEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Scientific_Applications_Research_Associates_Inc_SARA&oldid=678443"

65

National Energy Research Scientific Computing Center 2007 Annual Report  

SciTech Connect

This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

2008-10-23T23:59:59.000Z

66

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

67

Low Dose Radiation Research Program: Optimizing the Scientific, Regulatory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Scientific, Regulatory and Societal Impact of the DOE Optimizing the Scientific, Regulatory and Societal Impact of the DOE Low Dose Research Program Authors: Antone L. Brooks Institution: Washington State University Tri-Cities Richland, Washington The purpose of this project is to provide a focal point for communication of the research results from the DOE Low Dose Radiation Research Program. The major communication tool provided by this project is a Website at Washington State University. The website is being maintained to provide communication between the scientific advances generated by the research program and scientists both in and outside the program, policy makers, regulators and the public. The website also contains a number of presentations and illustrations that are written so that they will be easy

68

DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces 52.5 Million Solicitation for Basic Hydrogen Research...

69

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

70

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

71

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

72

PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

2011-05-01T23:59:59.000Z

73

Manhattan Project: Basic Research at Los Alamos, 1943-1944  

Office of Scientific and Technical Information (OSTI)

Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing It All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic Research at Los Alamos, 1943-1944 Implosion Becomes a Necessity, 1944 Oak Ridge and Hanford Come Through, 1944-1945 Final Bomb Design, 1944-1945 Atomic Rivals and the ALSOS Mission, 1938-1945 Espionage and the Manhattan Project, 1940-1945 Enrico Fermi The first few months at Los Alamos were occupied with briefings on nuclear physics for the technical staff and with planning research priorities and organizing the laboratory. Leslie Groves called once again on Warren Lewis to head a committee, this time to evaluate the Los Alamos program. The committee's recommendations resulted in the coordinated effort envisioned by those who advocated a unified laboratory for bomb research. Enrico Fermi (left) took control of critical mass experiments and standardization of measurement Hans Bethe techniques. Plutonium purification work, begun at the Met Lab, became high priority at Los Alamos, and increased attention was paid to metallurgy. The committee also recommended that an engineering division be organized to collaborate with physicists on bomb design and fabrication. The laboratory was thus organized into four divisions: theoretical (Hans A. Bethe, right); experimental physics (Robert F. Bacher); chemistry and metallurgy (Joseph W. Kennedy); and ordnance (Navy Captain William S. "Deke" Parsons). Like other Manhattan Project installations, Los Alamos soon began to expand beyond initial expectations.

74

Scientific production of electronic health record research, 1991-2005  

Science Conference Proceedings (OSTI)

Purpose: The increasing numbers of publications on electronic health record (EHR) indicate its increasing importance in the world. This study attempted to quantify the scientific production of EHR research articles, and how they have changed over time, ... Keywords: Bibliometrics, Electronic health records (EHRs), Science citation index (SCI)

Hsyien-Chia Wen; Yuh-Shan Ho; Wen-Shan Jian; Hsien-Chang Li; Yi-Hsin Elsa Hsu

2007-05-01T23:59:59.000Z

75

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

2003-02-01T23:59:59.000Z

76

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

None

2003-02-01T23:59:59.000Z

77

Assessment of basic research needs for greenhouse gas control technologies  

SciTech Connect

This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

1998-09-01T23:59:59.000Z

78

National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology  

Science Conference Proceedings (OSTI)

National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

Hules, J. [ed.

1996-11-01T23:59:59.000Z

79

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

80

National Energy Research Scientific Computing Center (NERSC) | U.S. DOE  

Office of Science (SC) Website

National National Energy Research Scientific Computing Center (NERSC) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Research and Education in Basic Space Science: The Approach Pursued in the UN/ESA Workshops  

E-Print Network (OSTI)

Since 1990, the United Nations in cooperation with the European Space Agency is holding annually a workshop on basic space science for the benefit of the worldwide development of astronomy. These workshops have been held in countries of Asia and the Pacific (India, Sri Lanka), Latin America and the Caribbean (Costa Rica, Colombia, Honduras), Africa (Nigeria), Western Asia (Egypt, Jordan), and Europe (Germany, France). Additional to the scientific benefits of the workshops and the strengthening of international cooperation, the workshops lead to the establishment of astronomical telescope facilities in Colombia, Egypt, Honduras, Jordan, Morocco, Paraguay, Peru, Philippines, Sri Lanka, and Uruguay. The annual UN/ESA Workshops continue to pursue an agenda to network these astronomical telescope facilities through similar research and education programmes. Teaching material and hands-on astrophysics material has been developed for the operation of such astronomical telescope facilities in an university environment.

H. M. K. Al-Naimiy; C. P. Celebre; K. Chamcham; H. S. P. de Alwis; M. C. P. de Carias; H. J. Haubold; A. E. Troche Boggino

2000-02-22T23:59:59.000Z

82

Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

& Development & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor optimization * Most codes on the T3E are dominated by computation * Processor interconnect specifically designed for high performance codes, unlike the T3E processor * More detailed information available on the web (see References) * Fortran oriented, but I will give C compiler flag equivalents.

83

Institute for Scientific Computing Research Fiscal Year 2002 Annual Report  

SciTech Connect

The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions to the computer and information sciences--contributions that its unique mission and unique resources give it a unique opportunity and responsibility to make. Of the three principal means of packaging scientific ideas for transfer--people, papers, and software--experience suggests that the most effective means is people. The programs of the ISCR are therefore people-intensive. Finally, the ISCR, together with CAR, confers an organizational identity on the burgeoning computer and information sciences research activity at LLNL and serves as a point of contact within the Laboratory for computer and information scientists from outside.

Keyes, D E; McGraw, J R; Bodtker, L K

2003-03-11T23:59:59.000Z

84

Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research  

Science Conference Proceedings (OSTI)

Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for proposals submitted through the user programs operated by each facility. Imaging human and animal

Miller, Stephen D [ORNL; Bilheux, Jean-Christophe [ORNL; Gleason, Shaun Scott [ORNL; Nichols, Trent L [ORNL; Bingham, Philip R [ORNL; Green, Mark L [ORNL

2011-01-01T23:59:59.000Z

85

DOE Scientific Research Data Now Easier to Find | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Scientific Research Data Now Easier to Find Scientific Research Data Now Easier to Find NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE September 20, 2011 DOE Scientific Research Data Now Easier to Find Oak Ridge, TN - Researchers funded by the U.S. Department of Energy (DOE) can now make their scientific research data easier to cite and easier to find from worldwide sources. The DOE Office of Scientific and Technical Information (OSTI) is now registering publicly available scientific research datasets created by DOE-funded researchers through DataCite. OSTI, within the Office of Science, became a member of DataCite in January 2011 to facilitate access to DOE datasets. Through this membership, OSTI assigns permanent identifiers, known as Digital Object Identifiers (DOIs), to the

86

Materials Research Support at the Office of Basic Energy Sciences  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Federal Funding Workshop. Presentation Title, Materials Research Support at ...

87

Merit Review Procedures for Advanced Scientific Computing Research...  

Office of Science (SC) Website

News In the News In Focus Presentations & Testimony Recovery Act About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical...

88

Diffusion of Research, Office of Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

Information: Population Modeling of the Emergence and Development of Scientific Fields: Carbon Nanotubes Chart Description carbon nanotubes. Link to larger image. This case shows...

89

Energy Dept. Awards $22.7 Million for Basic Solar Energy Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Dept. Awards $22.7 Million for Basic Solar Energy Research Energy Dept. Awards $22.7 Million for Basic Solar Energy Research Energy Dept. Awards $22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced $22.7 million in basic research projects aimed at improving the capture, conversion and use of solar energy. The research will help increase the amount of solar power in the nation's energy supply. "These projects are part of our aggressive basic research in the physical sciences--what I call 'transformational science'--aimed at achieving a new generation of breakthrough technologies that will push the cost-effectiveness of renewable energy sources to levels comparable to petroleum and natural gas sources," Under Secretary for Science Dr. Raymond

90

Energy Dept. Awards $22.7 Million for Basic Solar Energy Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22.7 Million for Basic Solar Energy Research 22.7 Million for Basic Solar Energy Research Energy Dept. Awards $22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced $22.7 million in basic research projects aimed at improving the capture, conversion and use of solar energy. The research will help increase the amount of solar power in the nation's energy supply. "These projects are part of our aggressive basic research in the physical sciences--what I call 'transformational science'--aimed at achieving a new generation of breakthrough technologies that will push the cost-effectiveness of renewable energy sources to levels comparable to petroleum and natural gas sources," Under Secretary for Science Dr. Raymond

91

Diffusion of Research, Office of Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

Office of Scientific and Technical Information U.S. Department of Energy Mobile | FAQs | A to Z Index | Site Map | Contact Us Search OSTI website Search HOME ABOUT OSTI SCIENCE...

92

Unearthing the Infrastructure: Humans and Sensors in Field-Based Scientific Research  

Science Conference Proceedings (OSTI)

Distributed sensing systems for studying scientific phenomena are critical applications of information technologies. By embedding computational intelligence in the environment of study, sensing systems allow researchers to study phenomena at spatial ... Keywords: boundary objects, collaboration, ecology, environmental science, infrastructure, scientific data, seismology, sensors, technology driven research, trading zones

Matthew S. Mayernik; Jillian C. Wallis; Christine L. Borgman

2013-02-01T23:59:59.000Z

93

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

94

University Turbine Systems Research Workshop, 2010: Scientific Poster Presentations  

DOE Data Explorer (OSTI)

The use of gases produced from coal as gas turbine fuel offers an attractive means for efficiently generating electric power from our Nation's most abundant fossil fuel resource. DOE’s Fossil Energy Program is developing key technologies that will enable advanced turbines to operate cleanly and efficiently when fueled with coal derived synthesis gas and hydrogen fuels. Developing this turbine technology is critical to the creation of near-zero emission power generation technologies. [Copied with editing from http://www.fossil.energy.gov/programs/powersystems/turbines/index.html]. The 2010 University Turbine Systems Research Workshop was held at Penn State October 19-22, 2010. All of these scientific and technical posters are available online at the NETL website. The title list includes: 1) Evaporative Metal Bonding of CM247LC to Kanthal APMT; 2) Development of Electrically Mediated Electrophoretic Deposition for Thermal Barrier Coatings; 3) Novel Coating Methods for Unique TBC/Bond Coat Architectures for Elevated Temperature Operation; 4) Tailored Microstructure of EB-PVD YSZ Thermal Barrier Coatings (TVC); 5) Characterization of Rust for Turbine Component Studies; 6) Flowfield Measurements in a Single Row of Low Aspect Ratio Pin-Fins; 7) Forced Flame Response of a Lean Premixed Multi Nozzle Can Combustor; 8) Comparison Between Self-Excited and Forced Flame Response of an Industrial Lean Premixed Gas Turbine Injector; 9) Fuel-Forced Flame Response of a Lean-Premixed Combustor; 10) Effect of Pressure on the Flame Transfer Function of a Lean Premixed Combustor; 11) High Temperature Unique Low Thermal Conductivity Thermal Barrier Coating (TBC) Architectures; 12) Thermally Sprayed Materials for High Temperature Thermal Barrier Coating Systems; 13) Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures; 14) Advanced Cooling Turbine Blades; 15) Water Guided Laser Drilling of High Temperature Alloys; 16) Vane Clocking Effects on Compressor Stage Efficiency; 17) A Novel Micro Circuit Based Film Cooling Design For a Ceramic Combustor Liner; 18) High Temperature Bond and Thermal Barrier Coatings; 19) Updated H2/O2 Model to Address High-Pressure Flame Burning Rate Discrepancies; 20) Progress on a Methodology for the Formulation of Jet Fuel Surrogates; 21) Monitoring Compliance of Thermal Barrier Coatings: Application to Coating Design and Assessment of Their Repeatability.

95

Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels  

DOE Green Energy (OSTI)

To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

2006-11-01T23:59:59.000Z

96

New directions for QA in basic research: The Fermilab/DOE-CH experience  

SciTech Connect

This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

Bodnarczuk, M.

1989-09-01T23:59:59.000Z

97

basic research needs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Reports » Reports » Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Abstracts Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Reports Print Text Size: A A A RSS Feeds FeedbackShare Page BES-sponsored workshop reports address the current status and possible future directions of some important research areas of relevance to energy missions. These reports include those resulting from the "Basic Research

98

Energy Department Awards Universities $7.5 Million for Basic Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Universities $7.5 Million for Basic Universities $7.5 Million for Basic Research Energy Department Awards Universities $7.5 Million for Basic Research March 28, 2007 - 12:17pm Addthis WASHINGTON, DC -- The Department of Energy has awarded grants totaling $7.5 million to universities in New Hampshire, Maine, Delaware and Kentucky for research ranging from nanomaterials to biofuels. The states will match at least 50 percent of this funding. The grants are part of an experimental program to improve the capability of universities to conduct nationally competitive energy-related research in states that have historically received less federal research and development funding. "As President Bush so forcefully stated in his 2006 State of the Union address, 'we must continue to lead the world in human talent and

99

Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research  

Science Conference Proceedings (OSTI)

Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

Brown, D L

2009-05-01T23:59:59.000Z

100

DOE rolls out powerful ESnet for scientific researchers  

E-Print Network (OSTI)

"The optical network will serve more than 50,000 DOE laboratory staffers and scientists as well as thousands of academic researchers." (2/3 page)

Gardner, David

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Institute for Scientific Computing Research Annual Report for Fiscal Year 2003  

SciTech Connect

The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.

Keyes, D; McGraw, J

2004-02-12T23:59:59.000Z

102

Research | OSTI, US Dept of Energy, Office of Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Research Research Diffusion Diffusion Accelerator Links OSTI is conducting applied research to explore ways to speed up the diffusion of knowledge and accelerate scientific progress. OSTI's current initiatives include conducting diffusion research, planning for the DOE Science Accelerator and coordinating competitive awards in the Small Business Innovation Research arena. Topics include but are not limited to applied research into retrieving, parsing and disseminating science information. For more on OSTI research, visit: Case studies Epidemiological models Diffusion research team Research links For more on OSTI innovation, visit OSTI's milestones page. Accelerating the advancement of science requires expertise and innovation in both knowledge management and knowledge diffusion, critical components of the nation's

103

Advanced Scientific Computing Research (ASCR) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

ASCR Home ASCR Home Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » ASCR Advisory Committee Exascale Report Synergistic Challenges in Data-Intensive Science and Exascale Computing ASCAC Subcommittee Summary Report. This new report discusses the natural synergies among the challenges facing data-intensive science and exascale computing, including the need for a new scientific workflow.

104

Berkeley Lab Scientific Programs: Biological Sciences for Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Sciences for Energy Research Biological Sciences for Energy Research Biosci image Arabidopsis plants in the growth room at the Joint BioEnergy Institute (JBEI) Biomass encompasses all plant or vegetative materials and represents a vast repository of solar energy that was captured and stored in plant sugars via photosynthesis. Extracting and fermenting plant sugars into advanced biofuels that can replace gasoline on a gallon-for-gallon basis has the potential to far exceed today's entire global production of oil. Berkeley Lab researchers are working towards this goal via three major efforts - the Joint BioEnergy Institute, the Joint Genome Institute, and the Energy Biosciences Institute. The Joint BioEnergy Institute (JBEI) JBEI is one of the three U.S. Department of Energy (DOE) Bioenergy Research

105

Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005  

DOE Green Energy (OSTI)

World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

2005-04-21T23:59:59.000Z

106

1993 Annual report on scientific programs: A broad research program on the sciences of complexity  

SciTech Connect

This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

NONE

1993-12-31T23:59:59.000Z

107

Basic and applied research program. Semiannual report, July-December 1978  

DOE Green Energy (OSTI)

The status of research projects in the Basic and Applied Research Program at SERI is presented for the semiannual period ending December 31, 1978. The five tasks in this program are grouped into Materials Research and Development, Materials Processing and Development, Photoconversion Research, Exploratory Research, and Energy Resource and Assessment and have been carried out by personnel in the Materials, Bio/Chemical Conversion, and Energy Resource and Assessment Branches. Subtask elements in the task areas include coatings and films, polymers, metallurgy and corrosion, optical materials, surfaces and interfaces in materials research and development; photochemistry, photoelectrochemistry, and photobiology in photoconversion; thin glass mirror development, silver degradation of mirrors, hail resistance of thin glass, thin glass manufacturing, cellular glass development, and sorption by desiccants in materials processing and development; and thermoelectric energy conversion, desiccant cooling, photothermal degradation, and amorphous materials in exploratory research. For each task or subtask element, the overview, scope, goals, approach, apparatus and equipment, and supporting subcontracts are presented, as applicable, in addition to the status of the projects in each task or subtask. Listing of publications and reports authored by personnel associated with the Basic and Applied Research Program and prepared or published during 1978 are also included.

Butler, B.L. (ed.)

1979-12-01T23:59:59.000Z

108

Basic and Applied Research program. Progress report, 1 January 1979-30 September 1979  

DOE Green Energy (OSTI)

The Basic and Applied Research (B and AR) Program is designed to conduct advanced research not addressed by the existing US Department of Energy's (DOE) national solar technology programs. The B and AR Program comprises four independent tasks: photoconversion, materials research, energy resource assessment, and new concepts. The photoconversion task conducts research in photobiological, photochemical, and photoelectrochemical energy conversion to develop systems to produce fuels, chemicals, or electricity at high efficiencies. Results on photobiological hydrogen production using photosynthetic bacteria, water splitting by green algae, biological photoelectrochemical cells, basic studies of photosensitization using bacteriochlorophyll as a model, theoretical conversion efficiencies, redox catalysis, theory and models of photoelectrochemical cells, new electrode materials, and new electrolytes are presented. The materials research task includes research to understand and develop new materials to overcome the limitations of operating in a solar-stressed environment and to improve the efficiency, reliability, and cost of various solar energy conversion systems. Results on photodegradation studies of polymeric materials and glazing materials, corrosion monitoring in solar conversion systems, water vapor sorption by desiccants, black chrome degradation, Cu/sub 2/S charaterization, silver alloy coatings and mirror degradation, and black cobalt electrodeposition are presented. The energy resource assessment (ERA) work is reported elsewhere. The new concepts task explores new solar energy conversion schemes that are not part of existing research programs. Results are reported on thermoelectric energy conversion and desiccant cooling.

Nozik, A.J. (ed.)

1980-11-01T23:59:59.000Z

109

Scientific Awards  

Science Conference Proceedings (OSTI)

Nominations Scientific Awards Awards Program achievement aocs application award Awards baldwin distinguished division memorial nomination poster program recognizing research service ...

110

ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT  

SciTech Connect

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program at LLNL has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Several achievements in schema design, data visualization, synthesis, and analysis were completed this year. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. As data volumes have increased, scientific information management issues such as data quality assessment, ontology mapping, and metadata collection that are essential for production and validation of derived calibrations have negatively impacted researchers abilities to produce products. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Nearly a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes elements of stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable recording of processing flow and metadata. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode (instantiation of multi-threaded applications on clusters of processors). Development of efficient data exploitation methods has become increasingly important throughout academic and government seismic research communities to address multi-disciplinary large scale initiatives. Effective frameworks must also simultaneously provide the researcher with robust measurement and analysis tools that can handle and extract groups of events effectively and isolate the researcher from the now onerous task of database management and metadata collection necessary for validation and error analysis. Sufficient information management robustness is required to avoid loss of metadata that would lead to incorrect calibration results in addition to increasing the data management burden. Our specific automation methodology and tools improve the researchers ability to assemble quality-controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks also provide the robust foundation upon which synergistic and efficient development of, GNEM R&E Program, seismic calibration research may be built.

Ruppert, S D; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

2007-07-06T23:59:59.000Z

111

The research-teaching nexus in the sciences : scientific research dispositions and teaching practice.  

E-Print Network (OSTI)

??This dissertation describes several studies concerning the research-teaching nexus in the sciences. General, it is recognized that a strong nexus exist between research and teaching… (more)

Rijst, Roeland Matthijs van der

2009-01-01T23:59:59.000Z

112

An investigation of how researchers in data intensive scientific fields use, process and curate data  

E-Print Network (OSTI)

, usability, interoperability, reward structures, and preservation and sustainability. Comment [JN1]: Strictly speaking, Moore’s Law stipulates a doubling every 18 months/ Comment [y2]: I defer: should I leave it in for now, or find another example... , which I know I have come across? Comment [JN3]: Wow! Comment [JN4]: This point is also made in Hey, Tansley and Tolle (Eds), The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, 2009. Comment [y5]: Added this in as good...

Nobis, Yvonne

113

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

COMPUTING AND STORAGE REQUIREMENTS Basic Energy SciencesEnergy  Sciences   8.2.1.4   Computational  and  Storage  Computing  and  Storage  Requirements  for  Basic  Energy  

Gerber, Richard

2012-01-01T23:59:59.000Z

114

Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)  

Science Conference Proceedings (OSTI)

Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Carter, Jennifer [Agilent

2012-06-01T23:59:59.000Z

115

Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting  

SciTech Connect

The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

Samios,N.P.

2008-11-17T23:59:59.000Z

116

Advanced Scientific Computing Research User Facilities | U.S. DOE Office of  

Office of Science (SC) Website

ASCR User Facilities ASCR User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 ASCR User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Advanced Scientific Computing Research program supports the operation of the following national scientific user facilities: Energy Sciences Network (ESnet): External link The Energy Sciences Network, or ESnet External link , is the Department of Energy's high-speed network that provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and

117

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Sciences Report of the NERSC / BES / ASCR RequirementsScientific Computing Center (NERSC) Editors Richard A.Gerber, NERSC Harvey J. Wasserman, NERSC Lawrence Berkeley

Gerber, Richard

2012-01-01T23:59:59.000Z

118

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Overview   Andrew Felmy, PNNL The BES Geosciences researchtable (PI, Andrew Felmy, PNNL) and included in the summarySciences Division at PNNL, Chief Scientist for Scientific

Gerber, Richard

2012-01-01T23:59:59.000Z

119

Audit of Acquisition of Scientific Research at Ames Laboratory, ER-B-95-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S. DEPARTMENT OF ENERGY S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL REPORT ON AUDIT OF ACQUISITION OF SCIENTIFIC RESEARCH AT AMES LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov U.S. Department of Energy Human Resources and Administration

120

1992 annual report on scientific programs: A broad research program on the sciences of complexity  

Science Conference Proceedings (OSTI)

In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

Not Available

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT  

SciTech Connect

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. The foundation of a robust, efficient data development and processing environment is comprised of many components built upon engineered versatile libraries. We incorporate proven industry 'best practices' throughout our code and apply source code and bug tracking management as well as automatic generation and execution of unit tests for our experimental, development and production lines. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Over a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable management of processing methods and station parameters, responses and metadata. This allowed for the development of merged ground-truth (GT) data sets compiled by the NNSA labs and AFTAC that include hundreds of thousands of events and tens of millions of arrivals. The schema design groundwork facilitated extensive quality-control and revalidation steps. In support of the GT merge effort, a comprehensive site merge process was also accomplished this year that included station site information for tens of thousands of entries from NNSA labs, AFTAC, NEIC, ISC, and IRIS. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode (instantiation of multi-threaded applications on clusters of processors). RBAP Version 2 is one such example. Over the past year RBAP was significantly improved in capability and performance. A new role-based security model now allows fine-grain access control over all aspects of the tool's functions enabling researchers to share their work with others without fear of unintended parameter alterations. A new, faster and more reliable GIS mapping framework was added, as well as expanded powerful interactive plotting graphics. In addition, we implemented parent-child type projects to enhance calibration data management. Our specific automation methodology and tools improve the researchers ability to assemble quality-controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks provide the robust foundation upon which synergistic and efficient development of GNEMRD Program seismic calibration research may be built.

Ruppert, S; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

2008-07-03T23:59:59.000Z

122

ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT  

SciTech Connect

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. The foundation of a robust, efficient data development and processing environment is comprised of many components built upon engineered versatile libraries. We incorporate proven industry 'best practices' throughout our code and apply source code and bug tracking management as well as automatic generation and execution of unit tests for our experimental, development and production lines. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Over a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable management of processing methods and station parameters, responses and metadata. This allowed for the development of merged ground-truth (GT) data sets compiled by the NNSA labs and AFTAC that include hundreds of thousands of events and tens of millions of arrivals. The schema design groundwork facilitated extensive quality-control and revalidation steps. In support of the GT merge effort, a comprehensive site merge process was also accomplished this year that included station site information for tens of thousands of entries from NNSA labs, AFTAC, NEIC, ISC, and IRIS. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode (instantiation of multi-threaded applications on clusters of processors). RBAP Version 2 is one such example. Over the past year RBAP was significantly improved in capability and performance. A new role-based security model now allows fine-grain access control over all aspects of the tool's functions enabling researchers to share their work with others without fear of unintended parameter alterations. A new, faster and more reliable GIS mapping framework was added, as well as expanded powerful interactive plotting graphics. In addition, we implemented parent-child type projects to enhance calibration data management. Our specific automation methodology and tools improve the researchers ability to assemble quality-controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks provide the robust foundation upon which synergistic and efficient development of GNEMRD Program seismic calibration research may be built.

Ruppert, S; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

2008-07-03T23:59:59.000Z

123

The Fruition of 4f Discovery, The interplay of basic and applied research  

SciTech Connect

A broad base of knowledge is necessary for the successful solution to applied problems, but on the other hand, developing such practical solutions can open the door to new and exciting adventures in basic research. Several such synergistic events are briefly described. These include the design and development of magnetic refrigerant materials (1) for the liquefaction of H{sub 2} gas, and (2) for near-room temperature cooling and refrigeration; and (3) the design and development of cryocooler regenerator materials. The first led to the discovery of both supercooling and superheating in the same substance (Dy and Er); the second to the discovery of the giant magnetocaloric effect, the colossal magnetostriction, and the giant magnetoresistance in the same substance [Gd{sub 5}(Si{sub x}Ge{sub 1-x}{sub 4})]; and the third the disappearance of three of the four magnetically ordered phases in Er by Pr additions in both high purity Er and commercial grade Er.

K.A. Gschneidner, Jr

2004-09-30T23:59:59.000Z

124

1991 Annual report on scientific programs: A broad research program on the sciences of complexity  

Science Conference Proceedings (OSTI)

1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

Not Available

1991-12-31T23:59:59.000Z

125

1991 Annual report on scientific programs: A broad research program on the sciences of complexity  

Science Conference Proceedings (OSTI)

1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

Not Available

1991-01-01T23:59:59.000Z

126

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

127

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility  

E-Print Network (OSTI)

(K.O.H.). XAS data were measured at the Stanford Synchro- tron Radiation Laboratory (SSRL), which is supported by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular

Stewart, Sarah T.

128

Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan  

DOE Green Energy (OSTI)

Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

Goff, F.; Nielson, D.L. (eds.)

1986-05-01T23:59:59.000Z

129

Exploratory basic energy research conducted at Standord University in the period September, 1979-August, 1983. Final report  

DOE Green Energy (OSTI)

In September, 1978, the Department of Energy awarded a contract to Stanford for Exploratory Basic Research. Projects to be supported were to be chosen by Stanford, with emphasis being placed on exploratory research likely to lead to full-scale research programs under support of appropriate agencies. Funding was provided for three years, as follows: FY 1979, $150K; FY 1980, 200K; and FY 1981, 250K for a total of $600K. The DOE funds provided through this contract were used, in combination with the IES industrial funds, to support exploratory basic energy research in three ways: (1) Funding of faculty members for the initial phases of research. Most of the funding was used in this manner. (2) Support of the Energy Information Center, a small special document center that holds information pertinent to energy research, both as related to energy policy and energy technology and to the supporting basic sciences. Approximately 12% of the funding was used in this manner. (3) Through support for seminars, occasional visitors, and program administration. Approximately 6% of the funding was used for this general support of the energy ambiance at Stanford.

Reynolds, W.C.

1984-01-01T23:59:59.000Z

130

"Basic Research Directions Workshop on User Science at the National Ignition Facility"  

E-Print Network (OSTI)

#12;Strong NIF shot demand reflects scientific opportunities discussed in recent federal reports 2Keane--CIS Technical Review, April 13-15, 2011NIF-0311-21167.ppt The importance of access to NNSA facilities is emphasized in these reports- NIF is developing processes and infrastructure to support

131

Scientific Highlights | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scientific Scientific Highlights Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Scientific Highlights Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Basic Energy Sciences (BES) was formed in June 1977 and has been at the forefront of scientific discovery since the middle of the 20th century. The BES research programs are rooted in the Nation's research efforts to win World War II that predate the establishment of the Atomic Energy Commission in 1946. The goals of the early U.S. science programs that evolved into BES were to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. These overarching goals have not changed.

132

Basic understandings of whale bioacoustics: Potential impacts of man?made sounds from oceanographic research  

Science Conference Proceedings (OSTI)

The recent increased public awareness and concern over the potential impact of acoustic sources for oceanographic research

Christopher W. Clark

1994-01-01T23:59:59.000Z

133

Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference  

Science Conference Proceedings (OSTI)

Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

Not Available

1990-03-01T23:59:59.000Z

134

Scientific Insights from Four Generations of Lagrangian Smart Balloons in Atmospheric Research  

Science Conference Proceedings (OSTI)

This paper provides an overview of the trials and successes in the development of an autonomous balloon instrument platform (smart balloon) and reviews scientific insights gained through its employment as a marker in a Lagrangian strategy during ...

S. Businger; R. Johnson; R. Talbot

2006-11-01T23:59:59.000Z

135

Research prioritization using the Analytic Hierarchy Process: basic methods. Volume 1  

SciTech Connect

This report describes a systematic approach for prioritizing research needs and research programs. The approach is formally called the Analytic Hierarchy Process which was developed by T.L. Saaty and is described in several of his texts referenced in the report. The Analytic Hierarchy Process, or AHP for short, has been applied to a wide variety of prioritization problems and has a good record of success as documented in Saaty's texts. The report develops specific guidelines for constructing the hierarchy and for prioritizing the research programs. Specific examples are given to illustrate the steps in the AHP. As part of the work, a computer code has been developed and the use of the code is described. The code allows the prioritizations to be done in a codified and efficient manner; sensitivity and parametric studies can also be straightforwardly performed to gain a better understanding of the prioritization results. Finally, as an important part of the work, an approach is developed which utilizes probabilistic risk analyses (PRAs) to systematically identify and prioritize research needs and research programs. When utilized in an AHP framework, the PRA's which have been performed to date provide a powerful information source for focusing research on those areas most impacting risk and risk uncertainty.

Vesely, W.E.; Shafaghi, A.; Gary, I. Jr.; Rasmuson, D.M.

1983-08-01T23:59:59.000Z

136

Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems  

Science Conference Proceedings (OSTI)

To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

2007-06-01T23:59:59.000Z

137

Scientific Highlights | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scientific Scientific Highlights Scientific User Facilities (SUF) Division SUF Home About User Facilities Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home Scientific Highlights Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Basic Energy Sciences (BES) was formed in June 1977 and has been at the forefront of scientific discovery since the middle of the 20th century. The BES research programs are rooted in the Nation's research efforts to win World War II that predate the establishment of the Atomic Energy Commission in 1946. The goals of the early U.S. science programs that evolved into BES were to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for

138

Scientific Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Education: Science & Education: Science Highlights Conferences Seminars & Meetings Publications Annual Reports APS Upgrade Courses and Schools Graduate Programs Scientific Software Subscribe to APS Recent Publications rss feed Scientific Software Scientists and researchers at the APS develop custom scientific software to help with acquisition and analysis of beamline data. Several packages are available for a variety of platforms and uses. General Diffraction Powder Diffraction Crystallography Synchrotron Radiation / Optical Elements Time-Resolved EXAFS Visualization / Data Processing Detector Controls General Diffraction fprime FPRIME/Absorb This provides utilities for computing approximate x-ray scattering cross sections (f, f' and f") for individual elements using the Cromer & Liberman

139

Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning  

Science Conference Proceedings (OSTI)

There are many design challenges that must be addressed in the development of collaborative scientific discovery learning environments. This contribution presents an overview of how these challenges were addressed within Co-Lab, a collaborative learning ... Keywords: Collaborative learning, Dynamic modeling, Inquiry learning, Learning environments

Wouter R. van Joolingen; Ton de Jong; Ard W. Lazonder; Elwin R. Savelsbergh; Sarah Manlove

2005-07-01T23:59:59.000Z

140

Overview of fundamental geochemistry basic research at the Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

Researchers in ORNL`s Geochemistry and High Temperature Aqueous Chemistry groups are conducting detailed experimental studies of physicochemical properties of the granite-melt-brine system; sorption of water on rocks from steam-dominated reservoirs; partitioning of salts and acid volatiles between brines and steam; effects of salinity on H and O isotope partitioning between brines, minerals, and steam; and aqueous geochemistry of Al. These studies contribute in many ways to cost reductions and improved efficiency in the discovery, characterization, and production of energy from geothermal resources.

Anovitz, L.M.; Benezeth, P.; Blencoe, J.G. [and others

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source  

SciTech Connect

FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

Leonid E. Zakharov

2011-06-03T23:59:59.000Z

142

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility-Wide Management and Storage for Scientific Data Facility-Wide Management and Storage for Scientific Data Project Start Date: Summer 2008 EMSL Lead Investigator Ken Auberry Instrumentation Development Laboratory, EMSL, PNNL As greater numbers of collaborators, journals, and funding agencies require data retention associated with a given project, preservation of experimentally generated results has become an increasingly important challenge in science. In many small- to medium-scale laboratory environments, this task has traditionally been carried out using offline optical media (recordable CDs and DVDs) or externally connected commercial hard drive units. Along with the raw storage issues that must be addressed, additional challenges await in the correlation of stored data to contextual information about the experiments and

143

Basic research opportunities to support LNG technology. Topical report, July 1989-December 1990  

Science Conference Proceedings (OSTI)

As additional gas reserves come on production during the next decade in areas with limited local markets, worldwide LNG trade is expected to expand. The availability of dedicated LNG tankers may well determine the rate at which this growth occurs. Plans are being made now to bring the four U.S. import terminals up to capacity during this period. As LNG becomes a more significant factor in the domestic natural gas market, consideration should be given to applications other than simply regassifying and comingling it with other supplies entering the pipeline grid. The higher energy density and the low temperature of LNG offer opportunities for expanding the use of natural gas into the industrial and transportation sectors. Greater use of LNG in peak shaving and intermediate storage may also provide benefits in increased reliability and performance of the gas transmission and distribution grid. In order to provide new and more cost-effective technologies to respond to these opportunities, it is recommended that GRI broaden the range of research it is currently performing on LNG.

Groten, B.

1991-03-01T23:59:59.000Z

144

What Makes a Scientific Research Question Worth Investigating? Students' Epistemic Criteria and Considerations of Contribution  

E-Print Network (OSTI)

straightforward   (e.g. ,  EA,  DIY).       The  “Interest  research  question.   NPOS   DIY   Do  It  Yourself   EFF  

Berson, Eric

2012-01-01T23:59:59.000Z

145

Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design  

Science Conference Proceedings (OSTI)

A major research plan entitled “Integrated research on the ecohydrological process of the Heihe River Basin” was launched by the National Natural Science Foundation of China in 2010. One of the key aims of this research plan is to establish a research ...

Xin Li; Guodong Cheng; Shaomin Liu; Qing Xiao; Mingguo Ma; Rui Jin; Tao Che; Qinhuo Liu; Weizhen Wang; Yuan Qi; Jianguang Wen; Hongyi Li; Gaofeng Zhu; Jianwen Guo; Youhua Ran; Shuoguo Wang; Zhongli Zhu; Jian Zhou; Xiaoli Hu; Ziwei Xu

2013-08-01T23:59:59.000Z

146

OVPREA Basic Letterhead  

Science Conference Proceedings (OSTI)

1 Arizona State University (ASU) is a leader in scientific research ... Manufacturing should also include diversifying markets to include unforeseen or ...

2012-10-26T23:59:59.000Z

147

PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005  

SciTech Connect

The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

SAMIOS, N.P.

2005-10-10T23:59:59.000Z

148

Scientific Highlights | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scientific Scientific Highlights Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Scientific Highlights Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Basic Energy Sciences (BES) was formed in June 1977 and has been at the forefront of scientific discovery since the middle of the 20th century. The BES research programs are rooted in the Nation's research efforts to win World War II that predate the establishment of the Atomic Energy Commission in 1946. The goals of the early U.S. science programs that evolved into BES were to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for

149

RESEARCH FINDINGS BASIC NEUROSCIENCES RESEARCH  

E-Print Network (OSTI)

deotssiumF RSH IHFPHv9mplitude des stellites des pis de frggD oserves dns l phse ynde de hensite de ghrge

Bandettini, Peter A.

150

RESEARCH FINDINGS BASIC NEUROSCIENCES RESEARCH  

E-Print Network (OSTI)

in tungstencarbideandhigh- speed steel alloys, and in greater con- centrations in stellite. In addition to measuring

Bandettini, Peter A.

151

Development of an XUV-IR free-electron laser user facility for scientific research and industrial applications  

Science Conference Proceedings (OSTI)

Los Alamos has designed and proposes to establish an XUV-IR free- electron laser (FEL) user facility for scientific research and industrial applications based on coherent radiation ranging from soft x-rays as short as 1 nm to far-infrared wavelengths as long as 100 {mu}m. As the next-generation light source beyond low-emittance storage rings with undulator insertion devices, this proposed national FEL user facility should make available to researchers broadly tunable, picosecond-pulse, coherent radiation with 10{sup 4} to 10{sup 7} greater spectral flux and brightness. The facility design is based on two series of FEL oscillators including one regenerative amplifier. The primary series of seven FEL oscillators, driven by a single, 1-GeV rf linac, spans the short-wavelength range from 1 to 600 nm. A second 60-MeV rf linac, synchronized with the first, drives a series of three Vis/IR FEL oscillators to cover the 0. 5 to 100-{mu}m range. This paper presents the motivation for such a facility arising from its inherently high power per unit bandwidth and its potential use for an array of scientific and industrial applications, describes the facility design, output parameters, and user laboratories, makes comparisons with synchrotron radiation sources, and summarizes recent technical progress that supports the technical feasibility. 80 refs., 9 figs., 6 tabs.

Newnam, B.E.; Warren, R.W.; Conradson, S.D.; Goldstein, J.C.; McVey, B.D.; Schmitt, M.J.; Elliott, C.J.; Burns, M.J.; Carlsten, B.E.; Chan, K.C.; Johnson, W.J.; Wang, T.S.; Sheffield, R.L.; Meier, K.L.; Olsher, R.H.; Scott, M.L.; Griggs, J.E.

1991-01-01T23:59:59.000Z

152

Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007  

DOE R&D Accomplishments (OSTI)

To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.

2007-04-04T23:59:59.000Z

153

Workshop on the Role of the Nuclear Physics Research Community in Combating Terrorism: Scientific Posters  

DOE Data Explorer (OSTI)

This 2002 workshop brought together members of the nation's nuclear physics research community with expertise in nuclear physics, detector development, and accelerator development from DOE and NSF laboratories and universities, with terrorism experts from government agencies familiar with technologies, strategies and policy for the combat of terrorism. The focus of the workshop included conventional explosive and weapon detection and radiological and nuclear threats. Each of these topics included research for field applications, detector and accelerator research in transportation (air, surface, maritime), detector and accelerator research in laboratory forensic detection and preventive measures against clandestine activities [Copied, with editing, from http://www.sc.doe.gov/np/homeland/descript.html]. Of the 45 posters presented at the workshop, 35 have been made available in PDF format on this webpage. The 62 page report from the workshop is also available at http://www.sc.doe.gov/np/homeland/index.html.

154

(865) 574-6185, mccoydd@ornl.gov Advanced Scientific Computing Research  

E-Print Network (OSTI)

on integrating new software for the science applications which researchers run on high performance computing platforms. One of the key challenges in high performance computing is to ensure that the software which

155

Fisher Scientific Fisher Scientific  

Science Conference Proceedings (OSTI)

... The furnace is heated by electric resistance elements ... nearest Fisher scientific Service District Office. ... Failure to heat Heating program not entered or ...

2011-05-17T23:59:59.000Z

156

DOE research makes big bang | OSTI, US Dept of Energy, Office of Scientific  

Office of Scientific and Technical Information (OSTI)

DOE research makes big bang DOE research makes big bang Feature Archive Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory Saul Perlmutter has been awarded the 2011 Nobel Prize in Physics for his breakthrough research at Lawrence Berkeley National Laboratory. He cofounded the Supernova Cosmology Project (SCP) in 1988, with the breakthrough coming ten years later. The SCP pioneered the methods used to discover the accelerating expansion of the universe through observations of distant supernovae. For many years Perlmutter has been a leader in studies to determine the nature of dark energy. Explore the universe using Science Accelerator; check out the search results for big bang and supernovae. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

157

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

The Benefits of Investments in Basic Research The Benefits of Investments in Basic Research by Peter Lincoln on Mon, 2 Nov, 2009 Long-term investments in basic research produce the major conceptual breakthroughs necessary for creating radically new technologies. To be sure, scientists cannot make specific promises about future advances, and there often are long delays in the applications that arise from basic research. Furthermore, sometimes applied research leads to important basic knowledge, and technologies developed for basic research can lead to broader applications. Throughout history, advances in scientific knowledge have resulted in revolutions in technology that have improved the standard of living and enhanced our way of life. The economic impact of innovations derived from basic research is

158

A reprint from American Scientistthe magazine of Sigma Xi, The Scientific Research Society  

E-Print Network (OSTI)

of natural gas use in electricity generation, prompted by repeal of the Fuel Use Act, low gas prices-profit research management organization formed in 1976 and funded through a FERC-sanctioned surcharge placed on interstate pipeline gas volumes. The surcharge was determined on an annual basis according to a 5-year

Waitz, Ian A.

159

Biology basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology basics Name: lamb Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What basic knowledge concerning biology do you think a colleg- bound HS...

160

Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006  

SciTech Connect

The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

2006-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A study of seismology as a dynamic, distributed area of scientific research  

E-Print Network (OSTI)

Seismology has several features that suggest it is a highly internationalized field: the subject matter is global, the tools used to analyse seismic waves are dependent upon information technologies, and governments are interested in funding cooperative research. We explore whether an emerging field like seismology has a more internationalised structure than the older, related field of geophysics. Using aggregated journal-journal citations, we first show that, within the citing environment, seismology emerged from within geophysics as its own field in the 1990s. The bibliographic analysis, however, does not show that seismology is more internationalised than geophysics: in 2000, seismology had a lower percentage of all articles co-authored on an international basis. Nevertheless, social network analysis shows that the core group of cooperating countries within seismology is proportionately larger and more distributed than that within geophysics. While the latter exhibits an established network with a hierarch...

Wagner, Caroline S

2009-01-01T23:59:59.000Z

162

Scientific opportunities for FEL amplifier based VUV and X-ray research  

SciTech Connect

It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL`s relate to the experimental opportunities.

Johnson, E.D.

1994-12-31T23:59:59.000Z

163

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The EERE Energy Basics website contains basics about renewable energy and energy efficiency technologies. Learn how they work, what they're used for, and how they can improve our lives, homes,...

164

Research on the basic understanding of high efficiency in silicon solar cells. Annual report, 1 December 1982-30 November 1983  

DOE Green Energy (OSTI)

This report presents results of research designed to develop a basic understanding of high-efficiency silicon solar cells and achieve cell efficiencies greater than 17% by employing innovative concepts of material preparation, cell design, and fabrication technology. The research program consisted of a theoretical effort to develop models for very high-efficiency cell designs, experimental verification of the designs, and improved understanding of efficiency-limiting mechanisms such as heavy doping effects and bulk and surface recombination. Research was performed on high-lifetime float-zone silicon, the baseline materials, low-resistivity gallium-doped czochralski silicon, and boron-doped float-zone silicon.

Rohatgi, A.; Rai-Choudhury, P.

1984-09-01T23:59:59.000Z

165

The Google guys teamed up with NASA researchers (and several other consortiums) to create one of the most detailed online scientific map and image archives ever made of  

E-Print Network (OSTI)

1 The Google guys teamed up with NASA researchers (and several other consortiums) to create one of the most detailed online scientific map and image archives ever made of Mars ­ Google Mars. For this lab, you will explore the data and images available on Google Mars, both in 2-D and in 3-D. The 2-D version

Smith-Konter, Bridget

166

Scientific Software Bakari Jacobs  

E-Print Network (OSTI)

Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy. The workScientific Software Bakari Jacobs Livingstone College Research Alliance in Math and Science Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational

167

Scientific Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Access The APS is a open user facility that makes beam time available to the international scientific community through a peer-reviewed proposal process. Two access...

168

Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar  

DOE Green Energy (OSTI)

This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

Not Available

1980-07-01T23:59:59.000Z

169

Research Areas | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Research Research Areas Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A RSS Feeds FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities (CRAs), which align with the Division's organizational and budget structures. The CRAs are structured as scientific disciplines, rather than as technology areas, to facilitate the cross-cutting nature of basic research and to align our programs with the

170

Basic Energy Sciences at NREL  

DOE Green Energy (OSTI)

NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

Moon, S.

2000-12-04T23:59:59.000Z

171

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, vehicles, and industries.

172

National facility for advanced computational science: A sustainable path to scientific discovery  

E-Print Network (OSTI)

Office of Advanced Scientific Computing Research of the U.S.Office of Advanced Scientific Computing Research (OASCR) andOASCR Office of Advanced Scientific Computing Research (DOE

2004-01-01T23:59:59.000Z

173

Information Bridge: DOE Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

Information Bridge: DOE Scientific and Technical Information FAQ * Widget * Site Map Information Bridge Home * Basic Search * Fielded Search * Alerts * Help Bookmark and Share...

174

The Research Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at the Oak Ridge Nati  

E-Print Network (OSTI)

, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy Contract No. De-AC05-00OR22725. This work has been authored by a contractor of the U.S. Government, accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce

175

The Research Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at the Oak Ridge Nati  

E-Print Network (OSTI)

, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Improving the Manageability of OSCAR Selima Rollins City Contract No. De-AC05-00OR22725. This work has been authored by a contractor of the U.S. Government

176

FY 2014 Scientific Infrastructure Support for Consolidated Innovative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientific Infrastructure Support for Consolidated Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. The development of nuclear energy-related infrastructure and basic capabilities in the research community is necessary to promote R&D that supports nuclear science and engineering (NS&E), DOE-NE's mission, and the Nation's nuclear energy challenges. Accordingly, DOE intends to

177

Berkeley Lab Scientific Programs: Computing Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

data-intensive, international scientific collaborations. National Energy Research Scientific Computing Center (NERSC) Located at Berkeley Lab, NERSC is the flagship...

178

New energy technologies, new requirements on electricity and an unresolved transition problem towards sustainability: Is there need for basic academic research  

E-Print Network (OSTI)

The recent changes in the electricity sector have generated a large range of new requirements not only on the electric but also on other energy infrastructures. The authors of this article identify the lack of theoretical knowledge for an integrated, technology-based assessment for possible future system arrangements, and show which type of method can be chosen to overcome it. The paper illustrates the usefulness of integrated inspection of all relevant energy systems within a certain area and highly simplified load flow calculation methods. A related research project is introduced, the basic assumptions and premises of which are explained.

B Klöckl; K Fröhlich; K Kaltenegger

2005-01-01T23:59:59.000Z

179

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

180

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

and Knowledge Diffusion on Innovation and Knowledge Diffusion on Innovation by Peter Lincoln on Mon, 9 May, 2011 DOE-funded research led to the development of the Fast Fourier transform (1965) In June 2009, OSTIBLOG published a piece submitted by a friend of OSTI on "Impact of Basic Research on Innovation". Subsequently, a number of readers remarked that the blog had not made a key point particularly relevant to OSTI: to have an impact on innovation, basic research results must be shared. To be sure, it is rarely possible to determine precisely when, where and how the dissemination of scientific and technical information impacts the continuum of basic research to applied research to invention and innovation, but there is no question that such dissemination is a prerequisite for the flow of scientific information necessary for

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

XHTML Basic  

E-Print Network (OSTI)

The XHTML Basic document type includes the minimal set of modules required to be an XHTML host language document type, and in addition it includes images, forms, basic tables, and object support. It is designed for Web clients that do not support the full set of XHTML features; for example, Web clients such as mobile phones, PDAs, pagers, and settop boxes. The document type is rich enough for content authoring. XHTML Basic is designed as a common base that may be extended. For example, an event module that is more generic than the traditional HTML 4 event system could be added or it could be extended by additional modules from XHTML Modularization such as the Scripting Module. The goal of XHTML Basic is to serve as a common language supported by various kinds of user agents. The document type definition is implemented using XHTML modules as defined in "Modularization of XHTML" [XHTMLMOD [p.9] ]. 19 Dec 2000 08:40 1 XHTML Basic Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. This document has been produced by the W3C HTML Working Group (members only) as part of the W3C HTML Activity. It integrates feedback from the WAP Forum and members of the W3C Mobile Acce...

Mark Baker; Masayasu Ishikawa; Shinichi Matsui; Peter Stark; Sun Microsystems; Masayasu Ishikawa Wc; Shinichi Matsui Panasonic; Peter Stark Ericsson; Ted Wugofski; Openwave Systems

2000-01-01T23:59:59.000Z

182

Biological and Environmental Research  

E-Print Network (OSTI)

BESC and throughout the scientific community. The Climate Change Science Institute (CCSI) has had its 2010 #12;Oak Ridge National Laboratory (ORNL) conducts basic and applied research and development in the Biological and Environmental Sciences Directorate (BESD) at the Oak Ridge National Laboratory (ORNL) perform

183

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

SciTech Connect

New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-11T23:59:59.000Z

184

Report of the Independent Scientific Advisory Board Regarding a Research Proposal for Inclusion in the 1997 Smolt Monitoring Program  

E-Print Network (OSTI)

vital we must consider. The aim of this research was to provide information for our increasingly losses from state-based hydroelectric installations, and 4) identify policy considerations based on the research. BACKGROUND/RESEARCH METHODS The project team analyzed data on water use and power generation

185

2006 Department of Energy Strategic Plan - Scientific Discovery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Strategic Plan - Scientific Discovery and Department of Energy Strategic Plan - Scientific Discovery and Innovation 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation The United States has always been a Nation of innovators and the Department of Energy has been a major contributor to that legacy. DOE-supported basic research has produced Nobel Laureates, numerous paradigm-shifting scientific discoveries, and revolutionary technologies that have spawned entirely new industries. Such breakthroughs have created fundamentally new energy options, underpinned U.S. national security during challenging times, and contributed to the health of our citizenry and the stewardship of our Nation's environmental resources. This great engine of U.S. innovation has played an important role in fueling a strong economy and one

186

Scientific substantiation of safe operation of the Earthen Dams at the Votkinsk HPP  

Science Conference Proceedings (OSTI)

Over a period of 15 years, coworkers of the B. E. Vedeneev Scientific-Research Institute of Hydraulic Engineering have conducted scientific accompaniment of the operation of the earthen dams at the Votkinsk HPP. During that time, basic performance characteristics associated with complex hydrogeologic and hydrochemical conditions, and the forms of their unfavorable manifestations influencing the reliability and safety of the structures were revealed, and, recommendations and measures were developed for their elimination.

Deev, A. P.; Fisenko, V. F. [Votkinsk HPP Branch of the JSC 'RusGidro,' Chaikovskii (Russian Federation); Sol'skii, S. V.; Lopatina, M. G.; Gints, A. V.; Aref'eva, A. N. [JSC 'VNIIG im. B. E. Vedeneeva', Branch of JSC 'RusGidro' (Russian Federation)

2012-11-15T23:59:59.000Z

187

Basic Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Bacteria Basic Bacteria Name: Valerie Location: N/A Country: N/A Date: N/A Question: I'm doing a science project on bacteria. WHat I'm doing is washing forks with different dishwashing liquids, then wiping any remaining bacteria on to Agar petri dishes. Then incubating it and seeing which soap removed the most. My question is what kind of bacteria would be growing? and also do I just count the colonies to compare? and how long and at what temperature should I incubate this bacteria? Thank you very much for your time. I'll be looking forward to your response. Replies: The temperature is easy: 37 degrees C is optimal for many bacteria. The medium will determine which bacteria grow best. So if you don't see growth on one medium, but you see growth on another, it tells you that there is a difference in nutrients present in those media that is required for that bacteria. Look at your plates after 24 hr, then put them back in the incubator (keep them sterile) and look at them after 48 hrs--do you see the difference? any slow-growing bacteria visible or did the fast-growing take over the complete plate?

188

Scientific aspects of hydraulic engineering in the Extreme North  

SciTech Connect

Information relative to participation of the B. E. Vedeneev All-Russian Scientific-Research Institute of Hydraulic Engineering (VNIIG im. B. E. Vedeneeva) in the solution of problems of scientific verification of the design, construction, and operation of water-development works in regions of the Extreme North are presented. Basic characteristics of changes in the technical condition of high rock-and-earthfill dams, and the conditions under which their safety is ensured for long-term service in these regions are examined.

Panov, S. I.; Krivonogova, N. F.

2012-03-15T23:59:59.000Z

189

Basic Research of Metallurgical Process  

Science Conference Proceedings (OSTI)

Mar 13, 2012... process can be acquired and used for estimate of production status. ... Within the efforts of replacing the full water quench in gasification ...

190

Sunspace basics  

DOE Green Energy (OSTI)

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01T23:59:59.000Z

191

Basic Energy Sciences Advisory Committee (BESAC) Homepage | U.S. DOE Office  

Office of Science (SC) Website

BESAC Home BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings Members Charges/Reports Charter .pdf file (41KB) BES Committees of Visitors BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences Advisory Committee (BESAC) - established on September 4, 1986 - provides valuable, independent advice to the Department of Energy on the Basic Energy Sciences program regarding the complex scientific and technical issues that arise in the planning, management, and implementation of the program. BESAC's recommendations include advice on establishing research and facilities priorities; determining proper program balance among disciplines; and identifying opportunities for interlaboratory collaboration, program integration, and

192

A research on the method to select promising scientific technologies in the condensed matter physics by using journal's editing preference  

Science Conference Proceedings (OSTI)

In the condensed matter physics field, there coexists a pure research field and application field. Therefore it is possible that a source technology is discovered firstly and developed in one laboratory of condensed matter physics. Since the 20th ... Keywords: application, condensed matter physics, editing preference

Jae-Min Lee; Oh Jin Kwon; Ho-Shin Lee; B. Y. Coh; Y. W. Park

2011-11-01T23:59:59.000Z

193

Scientific/Technical Report Bioenergetics Research Initiative Award number-DE-FG02-05ER64092  

Science Conference Proceedings (OSTI)

General Project Overview and Final Technical Report This equipment grant was utilized to enhance the infrastructure of the Human Performance Laboratory at Ball State University. The laboratories primary focus is human based exercise physiology conducting research in the areas of sports performance, aging and exercise, unloading (space flight and bed rest), pediatric exercise and clinical exercise physiology. The main equipment supported by this grant was an ultrasound unit for cardiac and skeletal muscle imaging at the whole organ level, microscope system for micro imaging of skeletal muscle tissue, running treadmill for energy expenditure assessment, autoclave for sterilization, and upgrade to our dual x?ray absorptiometry (DEXA) system that was utilized for body composition measurements. The equipment was involved in several human metabolic and skeletal muscle research projects as highlighted above. In particular, this equipment served a support role for other large?scale clinical projects funded by the National Institutes of Health (NIH), National Aeronautics and Space Administration (NASA), and corporate sponsors.

Trappe, Scott A.

2009-12-04T23:59:59.000Z

194

Scientific Innovation Through Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

www.emsl.pnl.gov www.emsl.pnl.gov National asset for high- impact science As a national scientific user facility, EMSL provides scientific solutions to scientists from universities, industry, and government who seek out our unique capabilities and scientific expertise for their most challenging research objectives. At EMSL, we collaborate with these scientists-our users-to enable discovery and innovative solutions for the nation's energy, environmental, and national security problems. EMSL user projects by funding source in FY11. ACCELERATING INNOVATION ACROSS AMERICA PREPARING THE NEXT GENERATION User facilities provide training ground for educating next generation of scientists EMSL supports postdoctoral researchers, as well as graduate, undergraduate, and high school

195

Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

BES Home BES Home Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Science for Energy Discovery science solves mysteries, sparks innovation, and stimulates future technologies. This principle provides the inspiration for the fundamental energy research and the remarkable collection of major scientific user facilities supported by Basic Energy Sciences.Read More Discovery Science Materials Sciences and Engineering Understanding, predicting, and controlling materials and their

196

Scientific Working Groups  

Science Conference Proceedings (OSTI)

... TWGDAM 1988). SWGDOG, Scientific Working Group on Dogs and Orthogonal Detection Guidelines, 2004. SWGTOX, Scientific ...

2013-07-10T23:59:59.000Z

197

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

198

Geothermal: Sponsored by OSTI -- Final Scientific/Technical Report  

Office of Scientific and Technical Information (OSTI)

Final ScientificTechnical Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

199

OSTI Publications, Office of Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

These grand outcomes can be achieved by committing to openly sharing scientific research data and spreading the worlds great scientific discoveries faster. This Strategic Plan...

200

Can Cloud Computing Address the Scientific Computing Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Learning - Biofuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Basics Biofuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow it to be made from cellulose

202

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the development of the next crop of accelerator scientists and engineers, promises to train even more. With its history of building world-class accelerators and its proximity to...

203

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

NIF Project definition of Scientific Breakeven was given by the NIF Project Head Ed Moses when describing the NIF goal as : "..producing more energy than the energy in the laser pulse and achieving scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report

204

Scientific Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

contributions of the Tevatron contributions of the Tevatron experiments and accelerator complex Scientific Highlights Collider experiments The Tevatron's collider program began proton-antiproton collisions in 1985 and has led to about 1,000 Ph.D. degrees and about a paper a week through work on the CDF and DZero experiments. Discovered: * the top quark and determined its mass to a high precision * two distinct production mechanisms for the top quark: pair and single production * five B baryons (2 cascade, 1 omega and 2 sigma _b) * B c meson * Y(4140), a new quark structure * B s oscillations Observed: * strongest evidence yet for violation of matter-antimatter

205

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

206

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesNP) Office of Advanced Scientific Computing Research (ASCR)

Gerber, Richard A.

2012-01-01T23:59:59.000Z

207

For Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Export Control Export Control Berkeley Lab policy is to comply with all applicable state and federal laws, including those relating to Export Control. Berkeley Lab's Export Control Program is designed to support Berkeley Lab's and the University of California's international activities by ensuring compliance with U.S. export laws and regulations in the context of our fundamental research mission. Much of the Lab's compliance with U.S. export laws and regulations is based on our remaining within the "fundamental research" exception, i.e. performing basic or applied research for which the resulting information is ordinarily published and shared broadly within the scientific community. Do not sign non-disclosure or confidentiality agreements. Contact Parul Jain at 495-2306 or the Tech Transfer Department if you need or are

208

Processing and managing scientific data in SOA environment  

Science Conference Proceedings (OSTI)

Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. Scientific ... Keywords: data management, meta data, scientific data, service-oriented architecture (SOA)

Bogdan Shishedjiev; Mariana Goranova; Juliana Georgieva; Veska Gancheva

2009-08-01T23:59:59.000Z

209

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Results is the Engine of Scientific Progress Results is the Engine of Scientific Progress by David Wojick on Wed, 17 Jun, 2009 OSTI's mission is to help scientists share their results, but what role do results play in science? Here we present a simple model of one of the most basic uses of results, namely as the engine of scientific progress. Research results are more than just accumulated knowledge. Research results make possible new questions, which in turn lead to even more knowledge. The resulting pattern of exponential growth in knowledge is called an issue tree. It shows how individual results can have a value far beyond themselves, because they are shared and lead to research by others. The reader is referred to the Sharing Results Issue Tree. This is an abstract example of a fundamental pattern that occurs throughout science.

210

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

211

Site Map | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

type Recent Patents Recent Software Recent Technical Reports Scientific Research Data By Lab, Major Site, or Technology Center DOE National Laboratories Find STI from or about ANL...

212

Scientific and Technical Information Program | A Collaboration...  

Office of Scientific and Technical Information (OSTI)

arrow Recent Patents Recent Software Recent Technical Reports Scientific Research Data By Lab, Major Site, or Technology Center By DOE Collection dropdown arrow DOE Data Explorer...

213

USDOE, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

and Development Project Summaries, includes summaries of energy-related scientific projects performed since 1995 at DOE laboratories and research facilities. These are just a...

214

Energy Department Requests Proposals for Advanced Scientific...  

Office of Science (SC) Website

Energy Department Requests Proposals for Advanced Scientific Computing Research News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In Focus Presentations & Testimony...

215

USDOE, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

African Journals Online Article@INIST (France) Australian Antarctic Data Centre Canada Institute for Scientific and Technical Information CSIR Research Space (South Africa)...

216

USDOE, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

African Journals Online * Article@INIST (France) * Australian Antarctic Data Centre * Canada Institute for Scientific and Technical Information * CSIR Research Space (South...

217

Laboratory Directed Research and Development FY-10 Annual Report  

Science Conference Proceedings (OSTI)

The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

Dena Tomchak

2011-03-01T23:59:59.000Z

218

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

219

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

220

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NISTBiophysics group research opportunities  

Science Conference Proceedings (OSTI)

... techniques to NIST scientific programs, strengthens mutual communication with university researchers, shares NIST unique research facilities with ...

2013-04-01T23:59:59.000Z

222

Preserving research data  

E-Print Network (OSTI)

Consortium for Political and Social Research. Ann Arbor, MI;Access to Publicly Funded Research Data. The Public Domainof the products of scientific research. Meanwhile, research

Jacobs, James A; Humphrey, Charles

2004-01-01T23:59:59.000Z

223

Lesson 1 Energy Basics ENERGY BASICS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying for a test. And all these require energy. To a scientist, "work" means something more exact. Work is causing a change. It can be a change in position, like standing up or moving clothes from the floor to the laundry basket. It can be a change in temperature, like heating water for a cup

224

Laboratory Technology Research: Abstracts of FY 1996 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

NONE

1996-12-31T23:59:59.000Z

225

Laboratory technology research: Abstracts of FY 1998 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

NONE

1998-11-01T23:59:59.000Z

226

Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation  

Science Conference Proceedings (OSTI)

In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

2009-08-25T23:59:59.000Z

227

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

results Topic results Topic DOE R&D Accomplishments Brings You More! by Mary Schorn 20 Jan, 2010 in Products and Content To enhance the user's experience, multiple additions have been made to DOE R&D Accomplishments. These include Related Topics: DOE Research & Development (R&D) Accomplishments, research-results Read more... Sharing Results is the Engine of Scientific Progress by David Wojick 17 Jun, 2009 in Products and Content OSTI's mission is to help scientists share their results, but what role do results play in science? Here we present a simple model of one of the most basic uses of results, namely as the engine of scientific progress. Research results are more than just accumulated knowledge. Research results make possible new questions, which in turn lead to even more knowledge. The resulting pattern of exponential growth in knowledge is called an issue tree.

228

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

229

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

230

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

231

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

232

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

233

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

234

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

235

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

236

Scientific Labs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Labs Scientific Labs SHARE SNS Scientific Labs Meilleur-lab-students-300.jpg Students in the SNS chemistry lab practice pipetting water. A new complex of laboratories is now open at SNS, providing a flexible, mobile environment where users can work efficiently. The labs, on the second floor of the SNS Central Laboratory and Office Building, are built with "green" operations in mind, as well as to optimize the available space for researchers' ever-changing scientific needs. With overhead utilities and mobile furniture, the complex's 13 labs allow staff to easily reconfigure the layout of equipment and quickly change an experiment's setup as needed. "We surveyed more than 900 users on what they needed, and they gave us a wish list," says Chrissi Schnell, the Neutron Scattering Science Division

237

Research Library  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library The Basics Mission We deliver agile, responsive...

238

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

239

The Evolution of Research and Education Networks and their Essential Role in Modern Science  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)AC02- 05CH11231. • Advanced Scientific Computing Research ?Office of Advanced Scientific Computing Research (“ASCR”).

Chaniotakis, E.

2010-01-01T23:59:59.000Z

240

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesOffice of Advanced Scientific Computing Research (ASCR), and

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Act of 2009 Advanced Scientific Computing Research Courseof Science, Advanced Scientific Computing Research (ASCR)and for Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

242

NEHRP - Scientific Data  

Science Conference Proceedings (OSTI)

... Scientific Data. Chile Earthquake Reconnaissance Meeting Earthquake engineering implications of the February 27, 2010 Chilean earthquake. ...

243

Summer Undergraduate Research Program: Environmental studies  

Science Conference Proceedings (OSTI)

The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

McMillan, J. [ed.

1994-12-31T23:59:59.000Z

244

Scientific and Technical Information (STI) Managers | Scientific...  

Office of Scientific and Technical Information (OSTI)

Scientific and Technical Information (STI) Managers Print page Print page Email page Email page Roles and Responsibilities Last updated: February 17...

245

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

246

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

247

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

248

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

249

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

250

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

251

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

252

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

253

Energy Basics: Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Energy Basics Search Search Help Energy...

254

Energy Basics: Biodiesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Biodiesel Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What...

255

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

256

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

Science Conference Proceedings (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

257

Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979  

DOE Green Energy (OSTI)

This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

Hammel, E.F.

1997-03-01T23:59:59.000Z

258

Basic principle of superconductivity  

E-Print Network (OSTI)

The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

Tian De Cao

2007-08-23T23:59:59.000Z

259

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

basic research Topic The Benefits of Investments in Basic Research by Peter Lincoln 02 Nov, 2009 in Science Communications Long-term investments in basic research produce the major...

260

Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

U.S. Department of Energy Office of Scientific and Technical Information (OSTI) Mission * DOE invests > 10 billionyear in basic sciences, clean energy technology, and nuclear...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enabling scientific workflows in virtual reality  

Science Conference Proceedings (OSTI)

To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth ... Keywords: geosciences, scientific visualization, virtual reality, workflow

Oliver Kreylos; Gerald Bawden; Tony Bernardin; Magali I. Billen; Eric S. Cowgill; Ryan D. Gold; Bernd Hamann; Margarete Jadamec; Louise H. Kellogg; Oliver G. Staadt; Dawn Y. Sumner

2006-06-01T23:59:59.000Z

262

Good bones: anthropological scientific collaboration around computed tomography data  

Science Conference Proceedings (OSTI)

We report preliminary results from a socio-technical analysis of scientific collaboration, specifically a loosely connected group of physical anthropology researchers. Working from a combination of interview data and artifact analysis, we identify current ... Keywords: scientific collaboratories, virtual organizations

Andrea H. Tapia; Rosalie Ocker; Mary Beth Rosson; Bridget Blodgett

2011-02-01T23:59:59.000Z

263

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

knowledge Topic The Benefits of Investments in Basic Research by Peter Lincoln 02 Nov, 2009 in Science Communications Long-term investments in basic research produce the major...

264

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

265

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

266

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

267

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

268

Evolution strategies: basic introduction  

Science Conference Proceedings (OSTI)

This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters ... Keywords: evolution strategies

Thomas Bäck

2013-07-01T23:59:59.000Z

269

USDOE, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Science.gov App Find science information and research results from 13 U.S. federal agencies. Get quick answers from over 55 scientific databases and more than 2100 websites....

270

Unique Aspects and Scientific Challenges - Electron Accelerator...  

Office of Science (SC) Website

Aspects and Scientific Challenges Cosmic Frontier Theoretical Physics Advanced Technology R&D Accelerator R&D Stewardship Research Highlights .pdf file (13.1MB) Questions for the...

271

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

272

Basic ReseaRch DiRections  

National Nuclear Security Administration (NNSA)

Beams FRM Faraday Rotation Measure GA General Atomics GRB Gamma Ray Burst HED High Energy Density IAW Ion Acoustic Wave ICF Inertial Confinement Fusion ISAC Isotope...

273

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

thermal activation for use with solar systems, is very important to increasing the energy efficiency

Hollander, Jack M.

2011-01-01T23:59:59.000Z

274

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Nuclear and Alternative Energy Systems (CONAES). Chapterand allocation of alternative energy supply resources andJ. M. "United States Energy Alternatives to 2010 and Beyond:

Hollander, Jack M.

2011-01-01T23:59:59.000Z

275

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

achievable at given energy prices, It is extremely importantin societies where energy prices are higher or lower than inof changes in lifestyle, energy prices, or energy-related

Hollander, Jack M.

2011-01-01T23:59:59.000Z

276

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

2. development of combined cycles using several differentand second paths is combined-cycle power plants using gas-plant will also be a combined-cycle plant, An example of the

Hollander, Jack M.

2011-01-01T23:59:59.000Z

277

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

human dimensions of the energy problem: impacts of energyenergy and materials use energy problem. is an important andresource- A central problem in energy conservation is the

Hollander, Jack M.

2011-01-01T23:59:59.000Z

278

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

a "perfect" economic market, energy prices would reflect thehave produced an energy market with a price structure veryhow energy use responds to price signals from the market and

Hollander, Jack M.

2011-01-01T23:59:59.000Z

279

Basic Research on the Use of  

E-Print Network (OSTI)

Sorter for Mechanically Harvested Red Chile Chile PROCE SSORS GROW ERS CR O P CONSU LTANTS R & DEXTENSION President Curry Seed and Chile Co. Robert Flynn Soil Scientist NMSU's Extension Plant Sciences Lupe Garcia and Development of a Prototype Mechanical Gap Sorter for Mechanically Harvested Red Chile 1,2 Introduction At its

Castillo, Steven P.

280

Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

SciTech Connect

'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Burns, Peter (Director, Materials Science of Actinides); MSA Staff

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The changing face of digital science: new practices in scientific collaborations  

Science Conference Proceedings (OSTI)

The confluence of two major trends in scientific research is leading to an upheaval in standard scientific practice. A new generation of scientists, working in large-scale collaborations, is repurposing social software for use in collaborative science. ... Keywords: scientific collaboratories, scientific data analysis, scientific groupware, visualization

Cecilia R. Aragon; Sarah Poon; Claudio T. Silva

2009-04-01T23:59:59.000Z

282

Science Thems Scientific Integration Through Innovation SCIENCE  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Scientific Integration Through Innovation SCIENCE THEMES Science Themes focus EMSL's research direction and capability decisions. They help define and direct both the collection of user research projects accepted via EMSL's user proposal process and the development of its key capabilities made available to users, with an eye toward enhancing scientific progress in the areas of environmental molecular science most critical to DOE and the nation. Each individual Science Theme emphasizes drivers important to a field of science, and as a strong family, the themes share significant overlap and linked areas of common scientific interest. Thus, the scope of a research project in EMSL may impact all three Science Themes: Biological Interactions and Dynamics - Developing a quantitative, systems-

283

Research | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Research Research Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Print Text Size: A A A RSS Feeds FeedbackShare Page The 46 EFRC awards span the full range of energy research challenges described in the BES Basic Research Needs (BRN) series of workshop reports while also addressing one or more of the science grand challenges described in the BESAC report, Directing Matter and Energy: Five Challenge for Science and the Imagination (see below). Many of the EFRCs address multiple energy challenges that are linked by common scientific themes, such as interfacial chemistry for solar energy conversion and electrical energy storage or rational design of materials for multiple potential energy

284

Scientific Methods in Computer Science Gordana Dodig-Crnkovic  

E-Print Network (OSTI)

Scientific Methods in Computer Science Gordana Dodig-Crnkovic Department of Computer Science analyzes scientific aspects of Computer Science. First it defines science and scientific method in general. It gives a dis- cussion of relations between science, research, development and technology. The existing

Cunningham, Conrad

285

The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes  

Science Conference Proceedings (OSTI)

Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the development of improved remediation strategies.

David Watson

2005-04-18T23:59:59.000Z

286

Research Areas | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Research Areas Research Areas Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A RSS Feeds FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities (CRAs), which align with the Division's organizational .pdf file (51KB) and budget structures. The CRAs are structured as scientific disciplines, rather than as technology

287

Unique Aspects and Scientific Challenges - Advanced R and D|...  

Office of Science (SC) Website

Advanced R and D Unique Aspects and Scientific Challenges High Energy Physics (HEP) HEP Home About Research Snowmass P5 Planning Process Energy Frontier Intensity Frontier Cosmic...

288

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer,...

289

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

290

OSTI Innovation, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

documents Increasing visibility of and access to scientific research data Developing grid-based and other distributed computer processing techniques to support search across...

291

Scientific Interest Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis High Pressure LiquidSoft-Matter Surface Scattering Powder Diffraction SAXS Surface & Interface Scattering XAS X-ray Micros.Imaging Scientific Interest Groups...

292

Energy Department Requests Proposals for Advanced Scientific Computing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requests Proposals for Advanced Scientific Requests Proposals for Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program. Scientific computing, including modeling and simulation, has become crucial for research problems that are insoluble by traditional theoretical and experimental approaches, hazardous to study in the laboratory, or time-consuming or expensive to solve by traditional means.

293

SERIES B: Operations Research  

E-Print Network (OSTI)

search was supported by Grant-in-Aid for Scientific Research (B) 19310096. ko- ... research was supported by the Doctoral Scholarship of the German Academic

294

900-MHz NMR: Accelerating Scientific Discovery  

NLE Websites -- All DOE Office Websites (Extended Search)

00-MHz NMR: Accelerating Scientific 00-MHz NMR: Accelerating Scientific Discovery Scientific Innovation Through Integration 900-MHz NMR: Accelerating Scientific Discovery 900-MHz NMR: Accelerating Scientific Discovery Introduction When the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research approved the development and purchase of the world's first 900-MHz NMR (nuclear magnetic resonance) spectrometer in 1992, the highest magnetic field available was 750 MHz. DOE's decision and the ultimate success of its 900-MHz NMR spectrometer, which recently saw its five-year anniversary of operation at EMSL, catalyzed the development of a new generation of ultrahigh-field NMR spectrometers worldwide. Building new technology Building the magnet for the 900-MHz NMR spectrometer brought engineering challenges. Can the

295

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

296

Energy Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology...

297

Electricity: The Energy of Tomorrow (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff

2011-05-01T23:59:59.000Z

298

Research and Institutional Integrity Office at Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Responsible Conduct of Research Resources Authorship Collaborations ORI Responsible Conduct of Research Educational Resources Mentoring Best Practices Complied by UCSD LBNL Policy on Research Misconduct - RPM 2.05I Research Integrity All persons engaged in research at the Laboratory are responsible for adhering to the highest standards of research integrity. Activities that fall short of the basic ethical principles inherent in the research process undermine the scientific enterprise. Our office is here to assist you in learning about responsible conduct of research and to address questions, concerns, and allegations of possible research misconduct. Under the Laboratory's research misconduct policy (RPM 2.05I) the Head of the Research and Institutional Integrity Office is the Research Integrity

299

FWP Scientific Publications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FWP FWP Scientific Publications FWP Scientific Publications Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date. Mikulski M., Gerke A., Lourens S., Czeczok T., Sprince N., Laney A., Fuortes L. Agreement between fixed-ratio and lower limit of normal spirometry interpretation protocols decreases with age - Is there a need for a new gold standard? Journal of Occupational and Environmental Medicine, 55(7): 802-808, 2013. To assess concordance between the fixed 70% ratio cutoff point with the fixed percent predicted values (Fixed-ratio) and the lower limit of normal

300

APS Scientific Advisory Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Advisory Committee (SAC) Scientific Advisory Committee (SAC) The SAC is responsible for advising the APS Associate Laboratory Director in the following areas: To evaluate the scientific output and facility utilization for all APS sectors. To examine performance and recommend appropriate beamtime allocation for existing Collaborative Access Teams (CATs). To evaluate Letters of Intent and scientific proposals for new and reconstituted CATs. To provide advice to and review decisions by APS management on special operations support for CATs. To review Special Program proposals, a new mode of access that will guarantee 10-30% the beam time per year on any sector for a finite period of time. To assist the APS with development of policies and other issues as appropriate. SAC members Participants in the Scientific Advisory Committee.

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP  

Science Conference Proceedings (OSTI)

The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

2003-02-27T23:59:59.000Z

302

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

303

ORISE: Scientific Peer Review Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Planning Woman participating in a peer review The Oak Ridge Institute for Science and Education (ORISE) begins the peer review planning process by analyzing the purpose of the funds to be distributed. Because each agency's needs are different, ORISE then designs and manages a flexible, scientific peer review process that can be modified based on a sponsor's regulatory, policy and operational requirements. ORISE's existing tools and systems, and knowledge of reviewing proposals from a government agency perspective, are helping to promote the quality and credibility of scientific information and funded research. ORISE's peer review planning process ensures each objective review is completed on schedule, within budget and with a high degree of process integrity.

304

Protein Puzzles and Scientific Solutions  

Office of Science (SC) Website

Articles » 2014 » Protein Articles » 2014 » Protein Puzzles and Scientific Solutions News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 01.06.14 Protein Puzzles and Scientific Solutions Researchers at SLAC National Accelerator Laboratory solve fiendishly complicated structures using X-ray savvy and serious computing power. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo The Coherent X-ray Imaging experimental station at SLAC's Linac Coherent Light Source. Photo courtesy of Brad Plummer/SLAC In crystallography experiments at the Coherent X-ray Imaging experimental

305

Weak information work in scientific discovery  

Science Conference Proceedings (OSTI)

Scientists continually work with information to move their research projects forward, but the activities involved in finding and using information and their impact on discovery are poorly understood. In the Information and Discovery in Neuroscience (IDN) ... Keywords: Information practices, Information seeking, Neuroscience, Research processes, Scientific discovery

Carole L. Palmer; Melissa H. Cragin; Timothy P. Hogan

2007-05-01T23:59:59.000Z

306

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

DOE's STI Program and Products DOE's STI Program and Products Slide01 DOE's STI Program and Products Sharon Jordan Assistant Director for Program Integration CENDI Meeting May 5, 2010 DOE's STI Program and Products Slide02 Focus of DOE's STI Program Priority #1: * Create a centrally managed, authoritative collection of DOE STI for long-term use and access Priority #2: * Ensure worldwide scientific knowledge and discoveries are accessible to DOE researchers, thus accelerating the advancement of science DOE's STI Program and Products Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND

307

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

DOE's STI Program and Products DOE's STI Program and Products Slide01 Slide01 DOE's STI Program and Products Sharon Jordan Assistant Director for Program Integration CENDI Meeting May 5, 2010 Slide02 Slide02 Focus of DOE's STI Program Priority #1: * Create a centrally managed, authoritative collection of DOE STI for long-term use and access Priority #2: * Ensure worldwide scientific knowledge and discoveries are accessible to DOE researchers, thus accelerating the advancement of science Slide03 Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND PEAT CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIRECT

308

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

ROI of 10,000,000% -- Would You Invest? ROI of 10,000,000% -- Would You Invest? by Brian Hitson on Wed, 22 Jul, 2009 Even the most outrageous Ponzi scheme couldn't promise a return of 10 million percent, but that's the return to be realized by opening the Department of Energy's historic R&D findings to the web. Yes, you have to accept certain assumptions, but it's not a major leap. Let's review the math. Since the early 1940s (even before the Atomic Energy Commission -- a DOE predecessor), the U.S. government has been investing billions of dollars in energy-related and basic scientific research. Up until the late 1990s, most of the results from this work were recorded in papers (literally). The vast majority of these papers are under the watchful eye of DOE's Office of Scientific and Technical Information (OSTI). Since 2000, DOE's

309

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

OSTI: The Storefront for the DOE OSTI: The Storefront for the DOE by Philip Ellis on Mon, 14 Nov, 2011 store sign - open The Department of Energy has made a formidable contribution to the advancement of the scientific and technological knowledge frontier. In particular, DOE sponsors more basic and applied scientific research in the physical sciences than any other U.S. federal agency and all of this is made possible by the taxpayer. Additionally, in the March 2011 Federal Laboratory Technology Transfer Summary Report to the President and the Congress, it was noted that in FY09 across the federal government there were over 4,400 new inventions of which 33% were from DOE; 1,500 new patents issued with 35% from DOE; and over 2,000 new patent applications of which 44% were from DOE. If the DOE is thought of as an organization that generates innovative

310

Greenhouse Gas Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

311

A Historic Commitment to Research and Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Historic Commitment to Research and Education A Historic Commitment to Research and Education A Historic Commitment to Research and Education April 27, 2009 - 12:00am Addthis WASHINGTON, DC -- In a speech to the National Academy of Sciences, President Obama outlined a bold commitment to basic and applied research, innovation and education. The White House fact sheet is below. Read more information about the 46 Energy Frontier Research Centers. View the Funding Opportunity Announcement for ARPA-E. THE WHITE HOUSE Office of the Press Secretary FACT SHEET: A HISTORIC COMMITMENT TO RESEARCH AND EDUCATION Today, President Obama will speak before the Annual Meeting of the National Academy of Sciences, and discuss his plans to reinvigorate the American scientific enterprise through a bold commitment to basic and applied

312

NERSC National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Science for Humanity NERSC users share Nobel Peace Prize, among other honors . . . . . . . . . . . . . . . . 32...

313

National Energy Research Scientific Computing Center  

E-Print Network (OSTI)

;Then a1 = - e1/2 2 + - e -s2 2 s cos sds = 0, a2 = - e1/2 2 + - e -s2 2 s sin sds = -1, Substituting

314

ORISE: Providing Support for DOE Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Decision-Makers The Oak Ridge Institute for Science and Education (ORISE) serves as the primary coordinator of U.S. Department of Energy (DOE) Office of Science peer reviews....

315

STI Defined | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

STI Defined STI Defined Print page Print page Email page Email page Information products deemed by the originator to be useful beyond the originating site (i.e., intended to be published or disseminated), in any format or medium, which contain findings and technological innovations resulting from research and development (R&D) efforts and scientific and technological work of scientists, researchers, and engineers, whether Federal employee, contractor, or financial assistance recipient. STI also conveys the results of demonstration and commercial application activities as well as experiments, observations, simulations, studies, and analyses. Scientific findings are communicated through various media - e.g., textual, multimedia, audiovisual, and digital - and are produced in a range

316

DOE Supercomputing Resources Available for Advancing Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Resources Available for Advancing Scientific Supercomputing Resources Available for Advancing Scientific Breakthroughs DOE Supercomputing Resources Available for Advancing Scientific Breakthroughs April 15, 2009 - 12:00am Addthis Washington, DC - The U.S. Department of Energy (DOE) announced today it is accepting proposals for a program to support high-impact scientific advances through the use of some of the world's most powerful supercomputers located at DOE national laboratories. Approximately 1.3 billion supercomputer processor-hours will be awarded in 2010 through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program for large-scale, computationally intensive projects addressing some of the toughest challenges in science and engineering. Researchers are currently using supercomputing time under this year's

317

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

The OSTI diffusion revolution, a problem solving perspective The OSTI diffusion revolution, a problem solving perspective by David Wojick on Thu, 3 Jul, 2008 OSTI has a deep interest in how researchers use the Web, because the Web is the key to speeding up the diffusion of scientific knowledge and accelerating science. We call it the diffusion revolution. In order to better understand our Web users, and the obstacles they face, we are looking at their needs from the perspective of problem solving. Problem solving is a research discipline that looks at how people solve problems, step by step. The goal is to help people do a better job of solving their problems, including getting computers to help them. The basic approach is to define the problem solving process as a starting point, a goal, and all the possible paths in between. Research then studies how we

318

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

319

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

320

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

322

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

323

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

324

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

325

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

326

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

327

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

328

Determining factors that affect long-term evolution in scientific application software  

Science Conference Proceedings (OSTI)

One of the characteristics of scientific application software is its long lifetime of active maintenance. There has been little software engineering research into the development characteristics of scientific software and into the factors that support ... Keywords: Characteristics of scientific software development, Empirical study, Long-term software evolution, Model of change, Scientific software

Diane Kelly

2009-05-01T23:59:59.000Z

329

Slide01 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

Breakthroughs: Bringing the Researcher Closer to Research Lisbon, Portugal 5 July 2007 Brian A. Hitson Chair, IEA Energy Technology Data Exchange (U.S. DOE Office of Scientific...

330

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

reusing publicly available scientific research datasets produced by U.S. Department of Energy (DOE) - funded researchers. Through the OSTI Data ID Service, Digital Object...

331

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

Not Available

1990-10-01T23:59:59.000Z

332

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

1990-10-01T23:59:59.000Z

333

The Center for Frontiers of Subsurface Energy Security (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

SciTech Connect

'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff

2011-05-01T23:59:59.000Z

334

INTRODUCTION AND BASIC CONCEPTS  

E-Print Network (OSTI)

in the past decades. Yu et al. [1995] studied the fluid flow and heat transfer characteristics of nitrogen gas, S and Yakano, K., 2004, "The experimental research on microtube heat transfer and fluid flow of distilled water experimental and theoretical investigation of fluid flow and heat transfer in microtubes," ASME/JSME Thermal

Kostic, Milivoje M.

335

Energy Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research and Development Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable provisions of law, and provide support for federal interagency research and development activities. Applicable Laws Atomic Energy Act of 1954 Further Information Office of Science Office of Nuclear Energy (NE) 2. Isotope Production and Sales GC-52 provides legal advice to DOE's Office of Isotope Production and

336

Scientific Labs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

New Nanomaterials-Handling Laboratory opens at SNS New Nanomaterials-Handling Laboratory opens at SNS Rhonda Moody (far right) shows visitors the new nanomaterials lab in the SNS Central Laboratory and Office Building. Rhonda Moody (far right) trains scientific associates in the new nanomaterials lab. The associates provide support for users and staff at the instrument beam lines. (Click for larger image.) The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. (Click for larger image.) A new nanomaterials-handling lab recently opened in the second floor lab suites (G-202A) of the SNS Central Laboratory and Office Building (CLO).

337

JGI - Scientific Posters  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Publications News and Publications News Releases Science Highlights JGI in the News Notable Scientific Publications Scientific Posters The Primer Templates and Logos Scientific Posters Note: neither these posters nor their contents may be reproduced except by permission of JGI. Illumina Production Sequencing at the DOE Joint Genome Institute - Workflow and Optimizations (Bay Area Illumina User Meeting 2011) Angela Tarver, Alison Fern, Matthew San Diego, Megan Kennedy, Matthew Zane, Christopher Daum, Christopher Hack, Eric Tang, Shweta Deshpande, Jan-Fang Cheng, Simon Roberts, Melanie Alexandre, Miranda Harmon-Smith, Susan Lucas Phylogeny and comparative genome analysis of a Basidiomycete fungi (DOE JGI User Meeting 2011) Robert W. Riley, Asaf Salamov, Igor Grigoriev, David

338

JGI - Scientific Posters  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Publications News and Publications News Releases Science Highlights JGI in the News Notable Scientific Publications Scientific Posters The Primer Templates and Logos Scientific Posters - Archive Note: neither these posters nor their contents may be reproduced except by permission of JGI. JGI Sequencing Projects: Statistics and Timelines (JGI User Meeting 2007) Tijana Glavina del Rio, Kerrie Barry, Lynne Goodwin, Miranda Harmon-Smith, Harris Shapiro, Susan Lucas and David Bruce. What's new in project management? A Look at the JGI Project Management Office (JGI User Meeting 2007) David Bruce, Lynne Goodwin, Kerrie Barry, Susannah Tringe, Tijana Glavina del Rio Comparison of Protocols for Isolating Large Insert Clone DNA that is Suitable for High Throughput Library Construction (JGI User Meeting 2007)

339

Realism for scientific ontologies  

Science Conference Proceedings (OSTI)

Science aims to develop an accurate understanding of reality through a variety of rigorously empirical and formal methods. Ontologies are used to formalize the meaning of terms within a domain of discourse. The Basic Formal Ontology (BFO) is an ontology ...

Michel Dumontier; Robert Hoehndorf

2010-07-01T23:59:59.000Z

340

Sponsoring Organizations | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Sponsoring Organizations Sponsoring Organizations Print page Print page Email page Email page U.S. Department of Energy Sponsoring Organizations for DOE-funded Scientific and Technical Information (STI) (Reference DOE O 241.1B, Scientific and Technical Information Management, Section 4 REQUIREMENTS, item g) The following list includes the current USDOE Sponsoring Organizations identified as funding research and development and other technology activities which result in scientific and technical information. DOE Program Offices and the Program Offices' respective subprogram(s) which may fund research are included. This list will be revised as needed to include additional offices or to reflect current Departmental funding organizations. Questions or input may be provided to stip@osti.gov. Current

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Research Conduct Policies  

Office of Science (SC) Website

Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB)...

342

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

343

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

344

Summaries of FY 1979 research in the chemical sciences  

SciTech Connect

The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

Not Available

1980-05-01T23:59:59.000Z

345

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

346

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

347

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

348

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

349

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

350

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

351

Scientific workflow design for mere mortals  

Science Conference Proceedings (OSTI)

Recent years have seen a dramatic increase in research and development of scientific workflow systems. These systems promise to make scientists more productive by automating data-driven and compute-intensive analyses. Despite many early achievements, ... Keywords: Automatic optimization, COMAD, Collection, Desiderata, Provenance, Resilience, Workflow

Timothy McPhillips; Shawn Bowers; Daniel Zinn; Bertram Ludäscher

2009-05-01T23:59:59.000Z

352

Laboratory technology research - abstracts of FY 1997 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

NONE

1997-11-01T23:59:59.000Z

353

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

Studies Neutral Beam Plasma Research Basic Plasma Theoryand tempera- NEUTRAL BEAM PLASMA RESEARCH We are conducting

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

354

DOE-2 basics  

SciTech Connect

DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC`s. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

Not Available

1991-08-01T23:59:59.000Z

355

DOE-2 basics  

Science Conference Proceedings (OSTI)

DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC's. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

Not Available

1991-08-01T23:59:59.000Z

356

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

357

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

358

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

359

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

360

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

362

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

363

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

364

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

365

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL TECHNOLOGIES Industrial Energy Efficiency Basics More Additional Links Glossary of Energy-Related Terms Here you'll find a glossary of energy-related terms. Related...

366

BASIC PRINCIPLES OF SCINTILLATION COUNTING  

SciTech Connect

The basic principles of scintillation counting are reviewed. The design, performance, and operation of a placed on instruments ior medical uses. (C.H.)

Harris, C.C.; Hamblen, D.P.; Francis, J.E.

1959-12-10T23:59:59.000Z

367

Reply to comment | OSTI, US Dept of Energy, Office of Scientific and  

Office of Scientific and Technical Information (OSTI)

Reply to comment Reply to comment slide09 Submitted by gibsone on Thu, 2013-08-22 14:19 FY2009-nsta slide09 E-print Network * is a vast, integrated network of electronic scientific and technical information created by scientists and research engineers -- all fulltext searchable. * is intended for use by other scientists, engineers, and students at advanced levels. * is a gateway to over 30,000 websites and databases worldwide, containing over 5 million e-prints in basic and applied sciences, primarily in physics but also including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and engineering, energy research, computer and information technologies, and other disciplines of interest to DOE. Add new comment Thumbnail Mobile_320x340

368

Frequently Asked Questions | OSTI, US Dept of Energy, Office of Scientific  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Mission and Focus Q: What exactly is OSTI? A: The Office of Scientific and Technical Information (OSTI) is a U.S. Department of Energy (DOE) program within the Office of Science, the single largest supporter of basic research in the physical sciences in the United States. Since 1947, OSTI and its early predecessors have been nationally recognized for contributions to the sharing and exchange of science information. Please see OSTI History for additional information. Q: What is OSTI's mission? A: OSTI's mission is to advance science and sustain technological creativity by making R&D findings available and useful to DOE researchers and the American people. Please see OSTI Mission. Q: Isn't OSTI the same thing as Science.gov? A: No, OSTI is not the same thing as Science.gov. Science.gov is a

369

Major Scientific Discoveries 319 Major Scientific  

E-Print Network (OSTI)

to be 13.7 billion years old n Identify the host objects for powerful gamma-ray bursts n Observe some for this research. Gamma-ray Bursts Knowledge of the existence of energetic bursts of emission in gamma rays from all across the sky was traced to the 1960s with the serendipitous detection of gamma-ray bursts

370

JGI - Notable Scientific Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Notable Scientific Publications Notable Scientific Publications May 5, 2013 Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. (Nature Methods.) We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph–based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. March 24, 2013 The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. (Nature

371

Scientific Societies, E-print Network -- Energy, science, and technology  

Office of Scientific and Technical Information (OSTI)

Scientific Societies Scientific Societies The Scientific Societies Page provides access to websites of scientific societies and professional associations whose focus is in the natural sciences as well as other related disciplines of interest to the Department of Energy research and development programs, projects, and initiatives. Chinese Dutch English French German Italian Japanese Nordic Russian Spanish/Portuguese Other View list of all societies. Choose desired language(s) and/or discipline(s) and select "Display Societies" button. Display Societies Languages All Languages English Japanese Chinese Nordic Dutch Russian French Spanish-Portuguese German Italian Other Disciplines All Subjects Biology and Medicine Biotechnology Chemistry Computer Technologies and Information Sciences

372

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

373

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

374

Key Challenges and New Trends in Battery Research (2011 EFRC Forum)  

DOE Green Energy (OSTI)

Jean-Marie Tarascon, Professor at the University de Picardie Jules Verne, France, was the fourth speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Tarascon recounted European basic research activates in electrical energy storage. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Tarascon, Jean Marie (University de Picardie Jules Verne, France)

2011-05-26T23:59:59.000Z

375

Big Data Ecosystems Enable Scientific Discovery  

Science Conference Proceedings (OSTI)

Over the past 5 years, advances in experimental, sensor and computational technologies have driven the exponential growth in the volumes, acquisition rates, variety and complexity of scientific data. As noted by Hey et al in their 2009 e-book The Fourth Paradigm, this availability of large-quantities of scientifically meaningful data has given rise to a new scientific methodology - data intensive science. Data intensive science is the ability to formulate and evaluate hypotheses using data and analysis to extend, complement and, at times, replace experimentation, theory, or simulation. This new approach to science no longer requires scientists to interact directly with the objects of their research; instead they can utilize digitally captured, reduced, calibrated, analyzed, synthesized and visualized results - allowing them carry out 'experiments' in data.

Critchlow, Terence J.; Kleese van Dam, Kerstin

2011-11-01T23:59:59.000Z

376

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

r&d Topic The Benefits of Investments in Basic Research by Peter Lincoln 02 Nov, 2009 in Science Communications Long-term investments in basic research produce the major conceptual...

377

ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979  

E-Print Network (OSTI)

Physics Neutral Beam Plasma Research Plasma Theory Tormac3. Neutral Bean Plasma Research 4. Basic Plasma Theory 5.1153. Neutral Beam Plasma Research Basic physics research is

Authors, Various

2010-01-01T23:59:59.000Z

378

Advanced energy projects FY 1994 research summaries  

Science Conference Proceedings (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

379

NASA Langley Scientific and Technical Information Output---1999  

Science Conference Proceedings (OSTI)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1999. Included are citations for Special Publications, Technical Publications, Conference Publications, ...

Stewart S. H.; Machie H. B.

2000-02-01T23:59:59.000Z

380

Scientific visualization as an interpretive and expressive medium  

Science Conference Proceedings (OSTI)

As a powerful technique for the visual representation of complex data, scientific visualization offers the potential to help secondary school science students learn through active inquiry. Over a period of several years, we have been conducting research ...

Douglas N. Gordin; Daniel C. Edelson; Louis M. Gomez

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Department Requests Proposals for Advanced Scientific Computing  

Office of Science (SC) Website

Energy Energy Department Requests Proposals for Advanced Scientific Computing Research News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.27.05 Energy Department Requests Proposals for Advanced Scientific Computing Research Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program.'

382

Library Tools, Office of Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

Library Tools Department of Energy library tools are provided as a free service to librarians and the library community to expand access to and use of DOE scientific research...

383

NASA Langley Scientific and Technical Information Output---2000  

Science Conference Proceedings (OSTI)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2000. Included are citations for Special Publications, Technical Publications, Conference Publications, ...

Machie Harriet B.; Stewart Susan H.

2001-02-01T23:59:59.000Z

384

Library Tools | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

as a free service to librarians and the library community to expand access to and use of DOE scientific research results: DOE MARC Records System provides Machine-Readable...

385

NASA Langley Scientific and Technical Information Output---1996  

Science Conference Proceedings (OSTI)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical ...

Stewart S. H.; Phillips M. S.

1997-01-01T23:59:59.000Z

386

ROARS: a scalable repository for data intensive scientific computing  

Science Conference Proceedings (OSTI)

As scientific research becomes more data intensive, there is an increasing need for scalable, reliable, and high performance storage systems. Such data repositories must provide both data archival services and rich metadata, and cleanly integrate with ...

Hoang Bui; Peter Bui; Patrick Flynn; Douglas Thain

2010-06-01T23:59:59.000Z

387

Essays on the production and commercialization of new scientific knowledge  

E-Print Network (OSTI)

Scientific research frequently generates tremendous economic value. Yet, this value tends to be elusive and public and private organizations often struggle to obtain returns from their investment in science. This dissertation, ...

Bikard, Michaël

2013-01-01T23:59:59.000Z

388

Research Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Gallery Research Gallery Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element Research Gallery Science serving society The Laboratory conducts leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. Basic research conducted here enhances national defense and economic security. Exhibits you'll find in this gallery: Understanding Radiation LANSCE: Los Alamos Neutron Science Center Space Science Research Viewspace Environmental Monitoring and Research Nanotechnology: The Science of the Small Algae to Biofuels: Squeezing Power from Pond Scum Living with Wildfire: A Shared Community Experience

389

Accelerating scientific discovery : 2007 annual report.  

Science Conference Proceedings (OSTI)

As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis of Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.

Beckman, P.; Dave, P.; Drugan, C.

2008-11-14T23:59:59.000Z

390

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

scientific integrity Topic scientific integrity Topic OSTI and Its Mission Highlighted in Secretary Chu's Policy Statement on Scientific Integrity by Peter Lincoln 17 May, 2012 in Science Communications The Office of Scientific and Technical Information (OSTI) plays an integral role in ensuring transparency and access to the results of the Department of Energy's scientific efforts - and such transparency and access help assure DOE's scientific integrity, according to a policy statement recently issued by Secretary of Energy Steven Chu. "Science and technology are the foundation of all Department of Energy activities...," the Secretarial Policy Statement on Scientific Integrity (https://www.directives.doe.gov/references/secretarial_policy_statement_on_scientific_integrity/view) opens. "The Department's mission relies on objective, reliable, accurate, and accessible scientific and technical information." And OSTI addresses the agency's responsibilities to collect, preserve and disseminate scientific and technical information emanating from the Department's research and development activities.

391

Information Bridge: DOE Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

DOE Scientific and Technical Information DOE Scientific and Technical Information DOE * OSTI * Go Mobile Information Bridge: DOE Scientific and Technical Information FAQ * Widget...

392

Attachment Sitewide Categorical Exclusion for Research Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sitewide Categorical Exclusion for Research Activities Sitewide Categorical Exclusion for Research Activities in Aquatic Environments, Pacific Northwest National Laboratory, Richland, Washington Proposed Action Pacific Northwest National Laboratory (PNNL) proposes to conduct small-scale, temporary surveying, site characterization, and research activities in the aquatic environment. Location of Action The proposed action would occur in rivers in the states of Oregon, Washington, or Idaho; off the Washington and Oregon coasts; or in Sequim Bay, Washington. Description of the Proposed Action The proposed action is to (1) acquire rights-of-way, easements, and temporary use permits; (2) install, operate, and remove passive scientific measurement devices; (3) conduct natural resource inventories, data and sample collection, environmental monitoring, and basic and applied research; and, ( 4) conduct

393

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

394

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

395

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

396

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

397

Basic EETD Web Page Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic EETD Web Page Design Speaker(s): Eve Edelson Date: May 27, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Allan Chen This talk will provide information...

398

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

399

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

400

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chief Executive Officer Message 2 Scientific Director Message 4  

E-Print Network (OSTI)

: Biomedical and Life Sciences Intelligent Transport Systems Safety and Security Environmental Management#12;#12; Chief Executive Officer Message 2 Scientific Director Message 4 About NICTA 7 Success Stories 8 Strategic Focus Projects 16 Research Programs 20 Research Projects 36 Our Researchers 60 Young

Heiser, Gernot

402

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

403

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

404

Superlative Supercomputers: Argonne's Mira to Accelerate Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Superlative Supercomputers: Argonne's Mira to Accelerate Superlative Supercomputers: Argonne's Mira to Accelerate Scientific Discoveries, Societal Benefits Superlative Supercomputers: Argonne's Mira to Accelerate Scientific Discoveries, Societal Benefits December 2, 2011 - 2:01pm Addthis This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear

405

About | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

About About Print page Print page Email page Email page The U.S. Department of Energy (DOE) conducts research and development (R&D) and other science and technology endeavors in a variety of fields. The knowledge gained during the R&D process is frequently imparted through scientific and technical information (STI), a key outcome of DOE R&D and other activities. DOE Researchers Within the DOE Office of Science, the Office of Scientific and Technical Information (OSTI) has the responsibility for coordinating STI activities and for leading a collaborative effort to a distributed STI environment. To that end, OSTI and designated representatives from the Headquarters Programs, Field Offices, national laboratories, and facility contractors who are STI program stakeholders work together to facilitate access to STI

406

Superlative Supercomputers: Argonne's Mira to Accelerate Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Superlative Supercomputers: Argonne's Mira to Accelerate Superlative Supercomputers: Argonne's Mira to Accelerate Scientific Discoveries, Societal Benefits Superlative Supercomputers: Argonne's Mira to Accelerate Scientific Discoveries, Societal Benefits December 2, 2011 - 2:01pm Addthis This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear

407

Scientific Challenges for Understanding the Quantum Universe  

SciTech Connect

A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

Khaleel, Mohammad A.

2009-10-16T23:59:59.000Z

408

Scientific Discovery through Advanced Computing (SciDAC) | U.S. DOE Office  

Office of Science (SC) Website

Scientific Scientific Discovery through Advanced Computing (SciDAC) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Scientific Discovery through Advanced Computing (SciDAC)

409

Feature - Argonne researcher featured at Museum of Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific...

410

Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

Not Available

1994-05-01T23:59:59.000Z

411

Scientific Interest Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

synchrotron research in a particular area. View monthly meetings on calendar Groups Catalysis Randall Winans, APS The Catalysis group meets at noon on the second Tuesday of each...

412

doe seeks early career researchers  

Science Conference Proceedings (OSTI)

... Basic Energy Sciences: Fusion Energy Sciences; High Energy Physics; Nuclear Physics. Proposed research topics must fall within the programmatic priorities ...

413

DOE Allocates NERSC Supercomputing Resources to Research Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to help researchers advance scientific knowledge and understanding and thereby to provide insight into major scientific and industrial issues." In addition to the projects at...

414

Scientific Opportunities to Reduce Risk in Nuclear Process Science  

SciTech Connect

Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

2008-07-18T23:59:59.000Z

415

Research in the chemical sciences. Summaries of FY 1995  

SciTech Connect

This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

1995-09-01T23:59:59.000Z

416

Laboratory Directed Research and Development FY 2000  

E-Print Network (OSTI)

remote site to the mass storage at the National Energy Research Scientific Computing Center (NERSC), (b) handling

Hansen, Todd; Levy, Karin

2001-01-01T23:59:59.000Z

417

Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Biological and Environmental Research Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific organizations. These documented research efforts represent tangible evidence of ARM's contribution to advances in almost all areas of atmospheric radiation and cloud research. Below is a selection of summaries highlighting recently-published ARM research. The entire collection of ARM

418

NERSC Oakland Scientific Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Training 2012 Training 2012 February 1-2, 2012 NERSC Oakland Scientific Facility Debugging with DDT Woo-Sun Yang NERSC User Services Group Why a Debugger? * It makes it easy to find a bug in your program, by controlling pace of running your program - Examine execution flow of your code - Check values of variables * Typical usage scenario - Set breakpoints (places where you want your program to stop) and let your program run - Or advance one line in source code at a time - Check variables when a breakpoint is reached 2 DDT * Distributed Debugging Tool by Allinea * Graphical parallel debugger capable of debugging - Serial - OpenMP - MPI - CAF - UPC - CUDA - NERSC doesn't have a license on Dirac * Intuitive and simple user interfaces * Scalable * Available on Hopper, Franklin and Carver

419

Scientific Data Movement  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Movement enabled by the DYNES ∗ Instrument Jason Zurawski Internet2 zurawski@internet2.edu Eric Boyd Internet2 eboyd@internet2.edu Tom Lehman ISI East tlehman@east.isi.edu Shawn McKee University of Michigan smckee@umich.edu Azher Mughal California Institute of Technology azher@hep.caltech.edu Harvey Newman California Institute of Technology newman@hep.caltech.edu Paul Sheldon Vanderbilt University paul.sheldon @vanderbilt.edu Steve Wolff Internet2 swolff@internet2.edu Xi Yang ISI East xyang@east.isi.edu ABSTRACT Scientific innovation continues to increase requirements for the computing and networking infrastructures of the world. Collaborative partners, instrumentation, storage, and processing facilities are often geographically and topo- logically separated, thus complicating the problem of end- to-end data management. Networking

420

Exploratory research and development FY90  

Science Conference Proceedings (OSTI)

In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Slide11 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

Technology (cont'd.) * Open Access Standards: Chosen to import documents to the Library since a primary function of the system is a repository (library) for scientific research...

422

Slide24 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

findings and conclusions resulting from research and development activities, as well as other relevant associated information and data. DOE STI is the body of scientific,...

423

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

of war required scientists to move from laboratory research to development and production in record time. Though traditional scientific caution might be short-circuited in...

424

Slide03 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

practical limitations: 1. Not knowing "what's out there." (examples: Korean medical journals, Australian Antarctic data, South African scientific research database) 2....

425

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

on global science discovery: i. Not knowing "what's out there." (examples: Korean medical journals, South African scientific research database) ii. Inadequate time to search...

426

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

to global science discovery: A. Not knowing "what's out there." (examples: Korean medical journals, South African scientific research database) B. Inadequate time to search...

427

Slide12 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

practical limitations: 1. Not knowing "what's out there." (examples: Korean medical journals, Australian Antarctic data, South African scientific research database) 2....

428

Slide06 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

to global science discovery: A. Not knowing "what's out there." (examples: Korean medical journals, South African scientific research database) B. Inadequate time to search...

429

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

simultaneous, ranked, full text search. Modeling scientific exchange in the research process Grid-based and other distributed computer processing techniques to support federation...

430

Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

simultaneous, ranked, full text search. Modeling scientific exchange in the research process Grid-based and other distributed computer processing techniques to support federation...

431

Slide18 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

U.S. invests approximately 8.5 billion in energy-related research and development each year * OSTI collects, preserves, disseminates, and leverages DOE's scientific and technical...

432

About OSTI | OSTI, US Dept of Energy, Office of Scientific and...  

Office of Scientific and Technical Information (OSTI)

worth of government-sponsored scientific research. Location: Headquartered in Washington, DC, the OSTI facility is located at 1 Science.gov Way, Oak Ridge, Tennessee 37831....

433

Slide23 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

Slide23 Slide23 Through such efforts, WorldWideScience.org is well timed to other trends in global scientific communication. National research organizations recognize the...

434

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

FY2008-ifla Slide23 Through such efforts, WorldWideScience.org is well timed to other trends in global scientific communication. National research organizations recognize the...

435

Slide4 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

results; bringing the world's research to DOE * We maintain DOE STI for long-term use and make it freely & easily searchable online * We ensure worldwide scientific...

436

Slide02 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

program within the Office of Science Maintains appropriate public access to DOE research results All collections of scientific and technical information resulting from R&D...

437

Slide22 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

(publishing groups) and cross over areas in scientific research Social Tools - 75% of a user's time spent on top news sites is spent reading user comments about the...

438

Slide25 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

research capabilities * Provide a sound basis for decision-making * Drive innovation Brian Hitson U.S. DOE Office of Scientific and Technical Information Chair, Energy...

439

Proposed scientific activities for the Salton Sea Scientific Drilling Project  

DOE Green Energy (OSTI)

The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

Not Available

1984-05-01T23:59:59.000Z

440

Biodiesel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Basics Biodiesel Basics Biodiesel Basics July 30, 2013 - 2:43pm Addthis Looking for Biodiesel stations? Checkout the Alternative Fuels Data Center station locator. Biodiesel station locator Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What is Biodiesel? Biodiesel is a liquid fuel made up of fatty acid alkyl esters, fatty acid methyl esters, or long-chain mono alkyl esters. It is produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to fuel compression-ignition (diesel) engines. B20, which is 20% biodiesel and 80% petroleum diesel, is

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

442

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

443

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

444

Throwback Thursdays Celebrate Scientific Supercomputing  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursdays Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic...

445

ALS Scientific Advisory Committee Charter  

NLE Websites -- All DOE Office Websites (Extended Search)

This document was revised and approved December 18, 2008. I. FUNCTION AND REPORTING The ALS Scientific Advisory Committee (SAC) is advisory to the Berkeley Lab Director through...

446

Conceptual design report, CEBAF basic experimental equipment  

Science Conference Proceedings (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

447

New Energy Basics Site: Check It Out! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! August 23, 2010 - 7:30am Addthis Allison Casey Senior Communicator, NREL Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and just need a little background info. EERE's new Energy Basics site is the place for you. There you can learn things like how a wind turbine works and all about the different types of fuel cells. If you just need a quick definition of a term you've heard, check out the glossary. Energy Basics is not meant to replace Energy Savers or any of the program sites throughout the Office of Energy Efficiency and Renewable Energy.

448

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

449

Slide19 | OSTI, US Dept of Energy, Office of Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Slide19 Slide19 Slide19 Founding Alliance Members * African Journals Online (AJOL) * British Library - United Kingdom * Canada Institute for Scientific and Technical Information (CISTI) * Council for Scientific and Industrial Research (CSIR) - South Africa * German National Library of Science and Technology (TIB) * Institut de l'Information Scientifique et Technique (INIST) - France * International Council for Scientific and Technical Information (ICSTI) * International Network for the Availability of Scientific Publications (INASP) * Japan Science and Technology Agency (JST) * Korea Institute of Science and Technology Information (KISTI) * Science.gov Alliance - United States * Scientific Electronic Library Online (SciELO) * VTT Technical Research Centre of Finland (VTT)

450

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Preparing for the World of Open Access Preparing for the World of Open Access Slide01 Preparing for the World of Open Access Scientific and Technical Information Program Annual Meeting May 4, 2011 Walt Warnick, Ph.D. Director, Office of Scientific and Technical Information Preparing for the World of Open Access Slide02 Information Is Critical to Scientific Progress Scientific Progress Expertise Research and Scholarship Education Learning and Workforce Development Interoperability and operations Cyberscience Organizations Universities, schools Government labs, agencies Research and Medical Centers Libraries, Museums Virtual Organizations Communities Scientific Instruments Large Facilities, MREFCs, telescopes Colliders, shake Tables Sensor Arrays - Ocean, environment, weather, buildings, climate. etc Information

451

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Preparing for the World of Open Access Preparing for the World of Open Access Slide01 Slide01 Preparing for the World of Open Access Scientific and Technical Information Program Annual Meeting May 4, 2011 Walt Warnick, Ph.D. Director, Office of Scientific and Technical Information Slide02 Slide02 Information Is Critical to Scientific Progress Scientific Progress Expertise Research and Scholarship Education Learning and Workforce Development Interoperability and operations Cyberscience Organizations Universities, schools Government labs, agencies Research and Medical Centers Libraries, Museums Virtual Organizations Communities Scientific Instruments Large Facilities, MREFCs, telescopes Colliders, shake Tables Sensor Arrays - Ocean, environment, weather, buildings, climate. etc Information Databases, Data repositories

452

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

453

Summaries of FY 1994 geosciences research  

DOE Green Energy (OSTI)

The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

Not Available

1994-12-01T23:59:59.000Z

454

UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Fuels from Sunlight' was submitted by the University of North Carolina (UNC) EFRC: Solar Fuels and Next Generation Photovoltaics to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The UNC EFRC directed by Thomas J. Meyer is a partnership of scientists from six institutions: UNC (lead), Duke University, University of Florida, North Caroline Central University, North Carolina State University, and the Research Triangle Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Solar Fuels and Next Generation Photovoltaics is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO{sub 2}, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO{sub 2} (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.

Meyer, Thomas J. (Director, UNC EFRC: Solar Fuels and Next Generation Photovoltaics); UNC EFRC Staff

2011-05-01T23:59:59.000Z

455

DIY BASICS CHECKLIST DRIPS AND LEAKS  

E-Print Network (OSTI)

DIY BASICS CHECKLIST DRIPS AND LEAKS Watercancauseseriousdamage- oftenunseen. Drillbits. Tapemeasure. Spiritlevel. Start off small. Collect a basic tool kit. There's plenty of DIY info'tdrillintomortarbetweenbricks. #12;DIY BASICS CHECKLIST Location Twopeoplemakethisamuch easierjob. Cutasheetofpapertothesize

Peters, Richard

456

FCT Safety, Codes and Standards: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

by E-mail Share FCT Safety, Codes and Standards: Basics on Facebook Tweet about FCT Safety, Codes and Standards: Basics on Twitter Bookmark FCT Safety, Codes and Standards: Basics...

457

Solid-State Lighting: SSL Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: SSL Basics to someone by E-mail Share Solid-State Lighting: SSL Basics on Facebook Tweet about...

458

Solid-State Lighting: LED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: LED Basics to someone by E-mail Share Solid-State Lighting: LED Basics on Facebook Tweet...

459

Social networking and scientific gateways  

Science Conference Proceedings (OSTI)

Online social networking has significantly increased in popularity over the past several years, with sites such as Facebook now boasting over 300 million members. Scientific gateways have much to gain by incorporating social networking functionality. ... Keywords: Elgg, Facebook, Ning, scientific gateways, social networking

Roger Curry; Cameron Kiddle; Rob Simmonds

2009-11-01T23:59:59.000Z

460

Effect of Basicity and MgO on the Pelletzing of Specularite Concentrate  

Science Conference Proceedings (OSTI)

Basic Research of Direct Pyrolysis Performance of MgCl2 in Molten State for New Process of ... Strengthening Sintering of Refractory Iron Ore with Biomass Fuel.

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lester to lead ORISE's scientific and technical peer review program  

NLE Websites -- All DOE Office Websites (Extended Search)

Lester to lead ORISE's scientific and technical peer review program Lester to lead ORISE's scientific and technical peer review program FOR IMMEDIATE RELEASE June 14, 2010 FY10-42 OAK RIDGE, Tenn.-Oak Ridge Associated Universities has appointed Tony Lester as director of the Oak Ridge Institute for Science and Education's program focused on scientific peer review. Lester has been serving in this role in an acting capacity since September 2009. Tony Lester Tony Lester In his role, Lester manages a research peer review capability that coordinates the use of independent, expert reviewers to determine the scientific technical feasibility of proposals submitted in response to government agency research needs. His team works closely with the federal government to provide liaison, consultation and operations support during the planning and execution of customers' grant management cycles. The

462

STI Products Produced by Financial Assistance Recipients | Scientific and  

Office of Scientific and Technical Information (OSTI)

Financial Assistance Recipients Financial Assistance Recipients Print page Print page Email page Email page Research, development, demonstration, and other scientific/technical awards should generally require periodic progress reports, special status reports, and a final scientific/technical report. Progress and status reports are management reports which provide information on the project status. These reports should not be sent to OSTI. However, the final scientific/technical report is sent to OSTI. DOE adds appropriate patent and data provisions in all research, development, or demonstration, and other scientific/technical awards relative to protecting Government-funded data, resulting in either unlimited rights or broad government license in data delivered to DOE. In order to promote more uniformity in financial assistance patent and data

463

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

464

International Nuclear Energy Research Initiative: 2010 Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. U.S. researchers partner with international organizations,...

465

USDOE, Office of Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Directors Directors 1947 Thompson 1948 Boardman 1951 Abdian 1956 Day 1959 Shannon 1979 Coyne 1991 Buffum 1997 Warnick OSTI Directors Timeline, 1994 to 1997 Walter L. Warnick, 1997 to present Office of Scientific and Technical Information Walter L. Warnick Amid emerging computing power and expanding networks now revolutionizing scientific communication, OSTI has pushed pedal to the metal to lead government search technology under the guidance of Walt Warnick. The OSTI Corollary: accelerating the spread of knowledge will accelerate discovery, has generated expansion of OSTI's longtime commitment to development of superior access to quality content. OSTI has championed relevancy ranking and federated search technology to increase access to research results. Soon after Dr. Warnick arrived at OSTI, the

466

Scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

Lee, R.W. [comp.

1994-03-01T23:59:59.000Z

467

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater...

468

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

469

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

470

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

471

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics This training covers the basics of using the REScheck(tm) software, and is geared toward the beginning user. Estimated Length: 1 hour, 8 minutes Presenters: Rosemarie...

472

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Basics for Sustainability on Facebook Tweet about Federal Energy...

473

Geothermal Electricity Production Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in...

474

Taboo Sex Research: Thinking Outside the Box  

E-Print Network (OSTI)

bedroom: A history of sex research. New York: Basic Books.Routledge. Foreword: Taboo Sex Research xv Kinsey Institute.defund-political-science-research-save- tuition-assistance-

Tsang, Daniel C

2013-01-01T23:59:59.000Z

475

New Sensors for In-Pile Temperature Measurement at the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie

2011-09-01T23:59:59.000Z

476

Former Worker Program - FWP Scientific Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP Scientific Publications FWP Scientific Publications Former Worker Medical Screening Program (FWP) Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date. Mikulski M., Gerke A., Lourens S., Czeczok T., Sprince N., Laney A., Fuortes L. Agreement between fixed-ratio and lower limit of normal spirometry interpretation protocols decreases with age - Is there a need for a new gold standard? Journal of Occupational and Environmental Medicine, 55(7): 802-808, 2013. To assess concordance between the fixed 70% ratio cutoff point with the fixed percent predicted values (Fixed-ratio) and the lower limit of normal (LLN) algorithms in interpreting spirometry results in an older population, spirometries were interpreted using Third National Health and Nutrition Examination Survey reference equations for 2,319 workers. The Fixed-ratio algorithm characterized 34.5% (n=801) results as abnormal, compared with 29.7% (n=689) by the LLN. There were almost twice as many obstructive and mixed airways spirometries identified under the Fixed-ratio compared to LLN. Rates of restrictive pattern physiology were virtually the same under each algorithm. Overall agreement between the algorithms decreased with age from "almost perfect" for those younger than 60 years to "substantial" for those older than 80 years. This study found age-related discordance between two algorithms possibly related to the lack of reference equations and standards for individuals older than 80 years.

477

Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

DOE Green Energy (OSTI)

'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

2011-05-01T23:59:59.000Z

478

Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research  

Science Conference Proceedings (OSTI)

Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

Schrempf, R.E. [ed.

1993-04-01T23:59:59.000Z

479

U.S. DOE Energy Frontier Research Center Announcements  

Office of Science (SC) Website

doe-announcements/ The doe-announcements/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {2FC67298-672C-476B-B645-000DED9B5398}http://science.energy.gov/bes/efrc/news-and-events/doe-announcements/doe-to-award-$100-million-for-energy-frontier-research-centers/ DOE to Award $100 Million for Energy Frontier Research Centers U.S. Energy Secretary Ernest Moniz today announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers to accelerate the scientific

480

STATEMENT OF CONSIDERATIONS REQUEST BY IBM WATSON RESEARCH CENTER FOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBM WATSON RESEARCH CENTER FOR IBM WATSON RESEARCH CENTER FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER LBNL SUBCONTRACT NO. 6720363; DOE WAIVER NO. W(A)-05-056 The Petitioner, IBM Watson Research Center (IBM), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited research and development subcontract (Subcontract) with the Lawrence Berkeley National Laboratory (LBNL). The objective of the Subcontract, which is issued by the LBNL on behalf of DOE's Office of Mathematical, Information and Computational Sciences (SC-21), which is part of the Office of Advance Scientific Computing Research (OASCR), is to provide support and lead basic development (i.e. preparing derivative works) on core parts of the K42 code base system.

Note: This page contains sample records for the topic "basic scientific research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clean Cities: Clean Cities Coordinator Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

482

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

483

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

484

Microhydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce energy, "run-of-the-river systems," which do not require large storage reservoirs, are most often used for microhydropower systems. Illustration of an example microhydropower system. A river flows down from some hills. The river first flows through an intake, which is indicated as two white walls on each side of the river. The intake diverts water to a canal. From the canal, the water travels to a forebay, which looks like a white, rectangular, aboveground pool. A pipeline, called a penstock, extends from the forebay to a building, called the powerhouse. You can see inside the powerhouse, which contains a turbine and other electric generation equipment. The water flows in and out of the powerhouse, returning to the river. Power lines also extend from the powerhouse, along and through two electrical towers, to a house that sits near the river's edge.

485

Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

2011-05-01T23:59:59.000Z

486

Battle against Phonons (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

DOE Green Energy (OSTI)

'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.

Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff

2011-05-01T23:59:59.000Z

487

Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

DOE Green Energy (OSTI)

'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff

2011-05-01T23:59:59.000Z

488

Research Universities: Core of the US Science and Technology System  

E-Print Network (OSTI)

Tuzin, “Equilibrium in the Research University”, Change,for Postwar Scientific Research. July 1945. Reprinted ingraduate programs. CSHE Research & Occasional Paper Series

Atkinson, Richard

2007-01-01T23:59:59.000Z

489

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Steven Chu Topic Steven Chu Topic OSTI and Its Mission Highlighted in Secretary Chu's Policy Statement on Scientific Integrity by Peter Lincoln 17 May, 2012 in Science Communications The Office of Scientific and Technical Information (OSTI) plays an integral role in ensuring transparency and access to the results of the Department of Energy's scientific efforts - and such transparency and access help assure DOE's scientific integrity, according to a policy statement recently issued by Secretary of Energy Steven Chu. "Science and technology are the foundation of all Department of Energy activities...," the Secretarial Policy Statement on Scientific Integrity (https://www.directives.doe.gov/references/secretarial_policy_statement_on_scientific_integrity/view) opens. "The Department's mission relies on objective, reliable, accurate, and accessible scientific and technical information." And OSTI addresses the agency's responsibilities to collect, preserve and disseminate scientific and technical information emanating from the Department's research and development activities.

490

It's In The Hopper: 4,000 Scientific Users Now Working With Supercomputer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It's In The Hopper: 4,000 Scientific Users Now Working With It's In The Hopper: 4,000 Scientific Users Now Working With Supercomputer It's In The Hopper: 4,000 Scientific Users Now Working With Supercomputer June 3, 2011 - 4:36pm Addthis Linda Vu What are the key facts? The National Energy Research Scientific Computing Center (NERSC) recently put their supercomputer, "Hopper," into the hands of its 4,000 scientific users. If every person alive simultaneously multiplied one pair of numbers, it would take almost 170,000 planet Earths calculating at the same time to match what Hopper could do in one second. The National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, marked a major milestone when they recently put their supercomputer, "Hopper," into the hands of its 4,000 scientific users.

491

Vehicle Technologies Office: Just the Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Just the Basics to Just the Basics to someone by E-mail Share Vehicle Technologies Office: Just the Basics on Facebook Tweet about Vehicle Technologies Office: Just the Basics on Twitter Bookmark Vehicle Technologies Office: Just the Basics on Google Bookmark Vehicle Technologies Office: Just the Basics on Delicious Rank Vehicle Technologies Office: Just the Basics on Digg Find More places to share Vehicle Technologies Office: Just the Basics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Just the Basics Technology Overviews Biodiesel Combustion Diesel Engine Hybrid and Plug-in Electric Vehicles Ethanol Fuel Cells Hydrogen Liquefied Petroleum Gas (Propane)

492

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be