National Library of Energy BETA

Sample records for basic scientific research

  1. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  2. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  3. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

  4. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect (OSTI)

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  5. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect (OSTI)

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  6. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect (OSTI)

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  7. Audit of Acquisition of Scientific Research at Ames Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    ... sponsored scientific research at Ames Laboratory since 1947 under a series of contracts. ... Established in 1947 as a result of the Manhattan Project, Ames Laboratory performs basic ...

  8. Basic research for environmental restoration

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The Department of Energy (DOE) is in the midst of a major environmental restoration effort to reduce the health and environmental risks resulting from past waste management and disposal practices at DOE sites. This report describes research needs in environmental restoration and complements a previously published document, DOE/ER-0419, Evaluation of Mid-to-Long Term Basic Research for Environmental Restoration. Basic research needs have been grouped into five major categories patterned after those identified in DOE/ER-0419: (1) environmental transport and transformations; (2) advanced sampling, characterization, and monitoring methods; (3) new remediation technologies; (4) performance assessment; and (5) health and environmental effects. In addition to basic research, this document deals with education and training needs for environmental restoration. 2 figs., 6 tabs.

  9. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  10. Scientific Themes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Scientific Themes The Photosynthetic Antenna Research Center (PARC) is focused on a basic science approach to understanding the process of light collection in natural, artificial, and hybrid antenna complexes. In order to attain a deep understanding of these systems, a wide variety of approaches will be utilized, ranging from synthetic methods that produce novel pigments that are then associated with de novo designed proteins to genetic engineering and manipulation of organisms. In most

  11. Basic ReseaRch DiRections

    National Nuclear Security Administration (NNSA)

    Basic ReseaRch DiRections for User Science at the National Ignition Facility Report on the National Nuclear Security Administration - Office of Science Workshop on Basic Research Directions on User Science at the National Ignition Facility BASIC RESEARCH DIRECTIONS FOR USER SCIENCE AT THE NATIONAL IGNITION FACILITY Report on the National Nuclear Security Administration (NNSA) - Office of Science (SC) Workshop on Basic Research Directions on User Science at the National Ignition Facility Chairs:

  12. Basic Research Needs for the Hydrogen Economy

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

  13. Advanced Scientific Computing Research Network Requirements

    SciTech Connect (OSTI)

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  14. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peeringupgrades: * EQX-SJ:installedMX480onOct15 th * EQX-ASH:installedMX480onNov30 th * EQX-CHI:PendingMX480ins...

  15. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Human interface * Machine interfaces: RESTJSON Net Almanac: Example You got your ... - http:graphite.wikidot.com * REST - http:www.infoq.comarticles...

  16. Review - basic research needs in fluid mechanics

    SciTech Connect (OSTI)

    Jones, O.C. Jr.; Kreith, F.; White, F.M.

    1981-12-01

    A small segment of the engineering community was surveyed to obtain their judgement regarding the long-range needs for basic research in fluid mechanics. It is the purpose of this paper to provide a summary of a more detailed report, which identifies basic research needed in fluid mechanics. 12 refs.

  17. NERSC National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Research Scientific Computing Center 2007 Annual Report National Energy Research Scientific Computing Center 2007 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Ad- vanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-1143E, October 2008 iii National Energy Research Scientific Computing

  18. Basic Research Needs for Countering Terrorism

    SciTech Connect (OSTI)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  19. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics DOE ... More Documents & Publications Basic Energy Sciences Overview Progress from DOE EF RC: ...

  20. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    SciTech Connect (OSTI)

    Domen, Kazunari

    2011-05-26

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  1. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  2. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  3. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  4. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program The Scientific Exchange Program was established as part of Washington University's Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center (EFRC) funded by the Department of Energy in 2009. This program will permit individuals from PARC teams, with a strong emphasis on graduate students and postdocs, to make extended visits to other laboratories within PARC. In addition to exchanges of team members, funds are also

  5. OSTIblog Articles in the basic research Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    basic research Topic Basic Research and Innovation by Dr. Jeffrey Salmon 24 Mar, 2014 in 17010 IdeaSharing.jpg Basic Research and Innovation Read more about 17010 Recently, I ...

  6. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing

  7. Controlling Subsurface Fractures and Fluid Flow: A Basic Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...

  8. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have ...

  9. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  10. Summary of recommendations on basic research

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    There has been considerable progress during the past four decades in organic geochemistry research applied to understanding the origin of coal, oil, and gas, and in understanding contemporary and ancient carbon cycles on Earth. Significant contributions have been made by academic research, government laboratories, and industrial research communities either working independently or with informal cooperation. But, important questions still remain. Among the questions answered in this paper are those dealing with the mechanisms of migration of hydrocarbons and the structure of kerogen and coal. During the final plenary session of the workshop, one way of dealing with the problem of coordinating basic research effects between industry, academic institutions, and government laboratories, strongly favored by some of the participants, was discussed--creation of a National Fossil Fuel Research Institute.

  11. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program Applications due February

  12. Basic Research Needs for Solar Energy Utulization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs for Solar Energy Utulization Basic Research Needs for Solar Energy Utulization Report of the basic energy sciences workshop on solar utulization. April 18-21, 2005. ...

  13. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  14. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  15. NREL: News - Scientific American' Recognizes Solar Cell Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American' Recognizes Solar Cell Research Monday November 11, 2002 Magazine Names NREL to its First "Scientific American 50" List Golden, CO. - The U.S. Department of ...

  16. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Scientific Advisory Committee Gary Brudvig Scientific Advisory Committee Member Read more about Gary Brudvig J. Clark Lagarias Scientific Advisory Committee Member Read more about J. Clark Lagarias Jennifer Ogilvie Scientific Advisory Committee Member Read more about Jennifer Ogilvie Marion Thurnauer Marion Thurnauer Scientific Advisory Committee Member Read more about Marion Thurnauer Thomas Moore Thomas Moore Scientific Advisory Committee Chair Read more about

  17. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Scientific Advisory Committee Gary Brudvig Scientific Advisory Committee Member E-mail: gary.brudvig@yale.edu J. Clark Lagarias Scientific Advisory Committee Member E-mail: jclagarias@ucdavis.edu Thomas Moore Thomas Moore Scientific Advisory Committee Chair E-mail: tom.moore@asu.edu Phone: 480.965.3308 Jennifer Ogilvie Scientific Advisory Committee Member E-mail: jogilvie@umich.edu Marion Thurnauer Marion Thurnauer Scientific Advisory Committee Member E-mail:

  18. OSTIblog Articles in the basic research Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information basic research Topic Basic Research and Innovation by Dr. Jeffrey Salmon 24 Mar, 2014 in 17010 IdeaSharing.jpg Basic Research and Innovation Read more about 17010 Recently, I attended a roundtable discussion hosted by the Hudson Institute in Washington, D.C. on the topic of innovation - how it comes about, what factors can impede it, where the U.S. might be headed as a lead innovator in the 21st Century, and what cultural and ethical issues need

  19. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  20. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Manhattan Project: Basic Research at Los Alamos, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing ...

  2. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema (OSTI)

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  3. Our SSLS EFRC's Scientific Research Challenges and Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRCOur SSLS EFRC's Scientific ...

  4. NERSC Role in Advanced Scientific Computing Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. Sample Scientific Accomplishments at NERSC 3 Award-winning software uses massively-parallel supercomputing to map hydrocarbon

  5. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program / Scientific Exchange Application Scientific Exchange Application Please read all instructions before submitting your application. Interested applicants should complete the following application and provide the materials requested below. The PARC Steering Committee will evaluate these proposals and select those that offer the best chance to lead to new directions and publishable results. An effort will be made to achieve some balance in the various types of exchanges

  6. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNSSEC Implementa/on at ESnet R. Kevin Oberman Sr. Network Engineer February 2, 2010 Why ESnet is Signing * While not covered by the OMB mandate, ESnet supports several organizations which are required to sign * ESnet needs experience with DNSSEC to support these organizations effectively * Future mandates may cover ESnet How ESnet is Signing * Secure64 Secure Signer appliance - Transfers zones from existing master - Public DNS Servers transfer data from the appliance * Compliant with all

  7. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESCC,
Salt
Lake
City
 Steve
Co6er,
Dept
Head

 steve@es.net

 Lawrence
Berkeley
NaDonal
Lab
 Outline
 * Staff
Updates
 * Network
Update
 * Advanced
Networking
IniDaDve
 * ESnet
Projects
 * Infrastructure
Projects
 * Staff
Projects
 Staff
Update
 New
hires:
 * Hing
Chow:

Project
Manager
(ANI)
 * Chris
Tracy:

Network
/
SoVware
Engineer
(ANI)
 * Andy
Lake:

SoVware
Engineer
(ANI)
 *

  8. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative (143.96 KB) More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  9. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  10. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report

  11. Basic research needs for management and disposal of DOE wastes

    SciTech Connect (OSTI)

    Grazis, B.M.; Horwitz, E.P. ); Schulz, W.W. )

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs.

  12. National Energy Research Scientific Computing Center | U.S. DOE...

    Office of Science (SC) Website

    National Labs, Profiles, and Contacts National Energy Research Scientific Computing ... Technology Transfer U.S. Department of Energy SC-29Germantown Building 1000 ...

  13. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    scientific research and development through the President's ... and provide American children with a strong foundation ... Tout America's Economic Growth in Ohio Department of ...

  14. The National Energy Research Scientific Computing Center: Forty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Energy Research Scientific Computing Center: Forty Years of Supercomputing ... discovery has been evident in both simulation and data analysis for many years. ...

  15. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  16. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, J S; Roessner, D eds.

    1980-01-01

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  17. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  18. Future steelmaking technologies and the role of basic research

    SciTech Connect (OSTI)

    Fruehan, R.J.

    1996-12-31

    The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

  19. Computers as Scientific Peers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is clearly not a trivial task. For decades, researchers in a number of fields related to Linguistics and Artificial Intelligence have been working on problems that can ...

  20. Basic research needed for the development of geothermal energy

    SciTech Connect (OSTI)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  1. Scientific Research Data | OSTI, US Dept of Energy, Office of...

    Office of Scientific and Technical Information (OSTI)

    This web service builds on OSTI scientific research data discovery tools, DOE Data Explorer and SciTech Connect, by providing an easy-to-use mechanism to submit, edit, and retrieve ...

  2. DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research...

    Office of Environmental Management (EM)

    for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces 52.5 Million Solicitation for Basic Hydrogen Research Supporting ...

  3. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics Basics ATLAS users belong to the "atlas" NERSC repository, and the Principal Investigator (PI) for ATLAS computing at NERSC is Ian Hinchliffe. ALICE users work in the sl53 chos environment. See the Chos page for more information. For more information about ATLAS computing at PDSF see the ATLAS twiki webpages which are maintained by ATLAS users. Last edited: 2016-04-29 11:34:26

  4. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  5. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues

  6. [Quality assurance in basic research and R D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) is one of the nation's largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory's program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL's quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  7. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

  8. DOE Standard: Implementation Guide for Quality Assurance Programs for basic and applied research

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The development of this standard has been a collaborative effort of a Working Group consisting of representatives from several national laboratories, the ER Program Associate Directorates, the Office of Nuclear Energy, and the ER Office of Assessment and Support. It is applicable to basic and applied research performed at DOE-ER sponsored facilities. The standard is written primarily for scientists and technical managers and purposely uses scientific and technical examples and terminology in an attempt to translate the concepts and requirements of DOE 5700.6C into the language and practices that are familiar to the scientists and technical personnel who manage and do research at DOE-ER facilities. The standard provides the guidance needed to reasonably implement the full intent of 5700.6C in the ER research community and yet preserve the independence of the research community and creatively pursue the advancement of science.

  9. Assessment of basic research needs for greenhouse gas control technologies

    SciTech Connect (OSTI)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  10. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Blankenship, Robert E.; PARC Staff

    2011-05-01

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  11. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2011-11-03

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  12. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Transformations Nanoscience and Electron Microscopy Centers X-Ray and Neutron Scattering Facilities Scientific User Facilities Division Materials Sciences and...

  13. Basic research needs and priorities in solar energy. Volume I. Executive summary. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, T S; Roessner, D eds.

    1980-01-01

    This report identifies, describes, and recommends priorities for basic research important to the future development of solar energy. In response to a request from the US Department of Energy, SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. SERI scientists relied heavily on the opinions of scientists polled, but weighted their own recommendations and opinions equally. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The Scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas and, wintin each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: Crucial, important, and needed. A narrative accompanying the descripton of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  14. [Quality assurance in basic research and R&D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) is one of the nation`s largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory`s program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL`s quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  15. Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor

  16. Continental Scientific Drilling Committee: comments on the Continental Scientific Drilling Program of the Office of Basic Energy Sciences, Department of Energy

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    This program, which provides support for geoscience research, including advanced technology and data/information services, concerning drilling in the continental crust of the United States for scientific purposes, is described. The curatorial needs and comparative site assessment projects are discussed. (MHR)

  17. Energy Dept. Awards $22.7 Million for Basic Solar Energy Research...

    Energy Savers [EERE]

    22.7 Million for Basic Solar Energy Research Energy Dept. Awards 22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of ...

  18. FY2011 Annual Report on DTRA Basic Research Project #BRCALL08...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: FY2011 Annual Report on DTRA Basic Research Project BRCALL08-Per3-C-2-0006 Citation Details In-Document Search Title: FY2011 Annual Report on DTRA Basic Research ...

  19. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  20. NNSA research makes scientific impact, literally | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) research makes scientific impact, literally Thursday, June 2, 2016 - 9:09am Inside the 40-mm Impact Test Facility, a heavily instrumented gun - 40 millimeters in diameter - employs compressed helium or explosives like gunpowder to lob projectiles into small plutonium targets at impact velocities of up to 1.7 kilometers per second, all inside a protective steel glove box. At the ends of their brief trips, projectiles made of plastic or metals like aluminum or

  1. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    SciTech Connect (OSTI)

    Galli, Giulia; Dunning, Thom

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  2. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect (OSTI)

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Audit of the Department of Energy's Scientific and Technical...

    Office of Environmental Management (EM)

    ... of scientific and technical information statistics during its reviews at field activities. ... scientific efforts to clean up the environment, pursue basic research, develop ...

  4. DOE Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents overview of BES Physical Behavior of Materials Program including examples of research related to thermoelectric technologies

  5. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect (OSTI)

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  6. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    SciTech Connect (OSTI)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three

  7. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  8. Institute for Scientific Computing Research Fiscal Year 2002 Annual Report

    SciTech Connect (OSTI)

    Keyes, D E; McGraw, J R; Bodtker, L K

    2003-03-11

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions

  9. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    promises about future advances, and there often are long delays in the applications that arise from basic research. Related Topics: basic research, doe r&d, scientific knowledge

  10. Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center

    SciTech Connect (OSTI)

    Tornqvist, Torbjorn; Chambers, Jeffrey

    2014-01-07

    It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Center has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lion’s share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.

  11. Scientific Research Data | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    (STI) available as well, providing access to underlying non-text data such as numeric files, computer simulations and interactive maps, as well as multimedia and scientific images. ...

  12. National Energy Research Scientific Computing Center NERSC Exceeds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center NERSC Exceeds Reliability Standards With Tape-Based Active ... on the archive, NERSC's storage capacity and reliability requirements are significant. ...

  13. Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where can I find DOE research results? OSTI delivers free public access to DOE R&D results. Science, technology, and engineering research from DOE DOEOSTI--C187 0915 OSTI...

  14. The application of 10CFR830. 120 in a basic research environment

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1991-04-01

    In this paper, I describe the process of applying the 10 basic criteria of the proposed 10CFR830.120 to a basic research environment like Fermilab and discuss some of the issues associated with the implementation of such a program. I will also discuss some of the differences and similarities between the 18 basic elements of NQA-1 and the 10 criteria of 10CFR830.120 along with the more philosophical'' issues associated with performance versus process- based approach to quality in basic research.

  15. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect (OSTI)

    Czanderna, A. W.; Gottschall, R. J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  16. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  17. Advanced Scientific Computing Research (ASCR) Homepage | U.S...

    Office of Science (SC) Website

    Edison Dedication External link Users are invited to make heavy use of new computer as ... computing, including the need for a new scientific workflow.Read More .pdf file ...

  18. Utilization of oil shales and basic research in organic geochemistry

    SciTech Connect (OSTI)

    Burnham, A.K.

    1981-01-13

    This report summarizes current research needs relating to oil shale utilization which might also provide new insight into the organic geochemistry of the Green River formation. There are two general topics which cross boundaries and are particularly worthy of emphasis. The first is a study of changes in the kerogen structure and biological markers with depth and location, and how these changes affect the pyrolysis products. This information would be particularly useful to the retort diagnostic methods. It might also lead to a better chemical reaction model of diagenesis and metagenesis. The second is a study of the heteroatom chemistry of the kerogen and how it relates to mineral matter and trace metals. This would be useful not only to present utilization methods, but also might suggest new nonthermal methods of organic materials recovery.

  19. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  20. New directions for QA in basic research: The Fermilab/DOE-CH experience

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1989-09-01

    This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

  1. DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting President Bush's Advanced Energy Initiative | Department of Energy $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative April 6, 2006 - 10:13am Addthis DETROIT, MI -SecretaryBodman announced a three-year, $52.5 million solicitation to support new innovations in hydrogen technology. The solicitation, to

  2. Basic science and energy research sector profile: Background for the National Energy Strategy

    SciTech Connect (OSTI)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  3. Basic research in crystalline and noncrystalline ceramic systems. Annual report, August 1, 1979-October 31, 1980

    SciTech Connect (OSTI)

    Sempolinski, D. R.; Kingery, W. D.; Tuller, H. L.; Diear, J. M.; Dudney, N. J.; Coble, R. L.; French, R.; Cheng, K. W.; Giraldez, E.; Henriksen, A. F.; Kijima, K.; Gattuso, T. R.; Dolhert, L.; Gambino, J.; Yager, T. A.; Chiang, Y. M.; Tajima, Y.; Dynys, J. M.; Cannon, Jr., R. M.; Kuo-Wen, Tsui; Hong, W.; Handwerker, C. A.; Schneibel, J. H.; Zelinski, B.

    1980-01-01

    The Basic Research Programs in Ceramics supports a significant fraction of the research effort and graduate student training in ceramics at M.I.T. The importance of basic research programs in ceramics processing and properties is becoming widely recognized as the critical role of improved ceramic materials for energy systems is acknowledged. The needs identified in the 1977 series of workshops on DOE programs in energy-related materials research and by the ongoing efforts of the DOE Council on Materials Science are being translated into the basic and applied research necessary to fulfill the established objectives in the effort to solve the nation's energy problems. Present indications are that ceramics in numerous applications will be critical in meeting national energy requirements.

  4. Scientific Tools - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Tools JCESR seeks to transform the transportation sector and electric grid the way the lithium-ion battery transformed personal electronics. However, mixing and matching JCESR's three energy storage concepts yields at least 18 conceptual designs for beyond-lithium-ion batteries. Adding to this the 20-30 candidate battery materials that could implement these designs yields at least 50-100 possible combinations for beyond-lithium-ion batteries. With so many possible combinations, a

  5. Evaluation of mid-to-long term basic research for environmental restoration: Preliminary analysis to characterize DOE waste problems in a 5- to 20-year timeframe and to identify research needs

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This document describes a long-term basic research program for the US Department of Energy (DOE) that complements departmental initiatives in waste management and site cleanup. The most important problems faced by DOE are environmental restoration of waste sites and cleanup of inactive facilities. Environmental restoration is defined in this report as characterization, assessment, remediation, and post-closure verification within the waste/environmental system at DOE sites. Remediation of inactive, contaminated waste-disposal sites is the largest and most expensive task facing DOE. Immobilization, isolation, separation, and destruction of waste, either aboveground or in situ, are difficult and costly tasks. Technologies for these tasks are primitive or do not exist. Departmental problems in the long term are being analyzed scientifically and research needs are being identified. When completed, the Office of Energy Research's (OER's) basis research plan will describe potential scientific research needs for universities, national laboratories, and others as a basis for research proposals to DOE. Extensive interaction with the scientific community is planned to further refine and prioritize research needs. Basic research within DOE is directed toward fundamental knowledge leading to the discovery of new scientific or engineering concepts and principles that may or may not have immediate specific technological applications. However, because DOE is a mission-oriented agency, basic research in DOE is strongly influenced by national energy and environmental policy and may be multidisciplinary in nature. Basic research will provide innovative concepts and the fundamental knowledge base that facilitates the development and application of new and emerging technologies. 41 refs., 5 figs., 9 tabs.

  6. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  7. Secretary Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation

    Broader source: Energy.gov [DOE]

    ROMEOVILLE, IL - U.S. Secretary of Energy Samuel Bodman today joined Rep. Judy Biggert (IL-13th) at a technology firm in Illinois to highlight scientific research investments that have led to...

  8. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect (OSTI)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  9. NREL Names New Executives to Lead Scientific Research and Lab Operations -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL Names New Executives to Lead Scientific Research and Lab Operations June 6, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) recently made two key hires to lab leadership positions. NREL has named Peter Green as the new Deputy Laboratory Director for science and technology and Julie Baker as Associate Laboratory Director for facilities and operations. "Peter's scientific research positions him to be the ideal leader as we look to

  10. Public Access to the Results of DOE-Funded Scientific Research

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-22

    In a February 22, 2013, memorandum "Increasing Access to the Results of Federally Funded Scientific Research," John Holdren, Director of the White House Office of Science and Technology Policy (OSTP), directed Federal agencies to develop and implement plans for increasing public access to the full-text version of final, peer-reviewed publications and digital research data resulting from agency funded research.

  11. Basic research in engineering: process and systems dynamics and control. High priority research needs relevent to energy

    SciTech Connect (OSTI)

    Rabins, M.J.; Edgar, T.F.; Richardson, H.H.; Zaborszky, J.

    1980-02-01

    At a workshop held in Denver, Colorado, on June 20 to 23, 1979, Process and Systems Dynamics and Control (PSDC) is concerned with the development and control of system behavior, performance criteria, and theories of control and optimization. This report presents a set of high-priority basic engineering research needs in the PSDC field which are important to the development of future energy technologies. The ten high priority generic research areas were aggregeted into four major research needs recommended for DOE support: on-line optimization and control, systems methodology, measurement methodology and instrumentation, and modeling.

  12. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  13. Fourth annual workshop on management in basic and applied research environments

    SciTech Connect (OSTI)

    Bodnarczuk, M.W.

    1993-11-01

    The struggle to develop quality management concepts that ``map`` onto the cultural and work practices found in basic and applied research environments has been (for better or for worse) an attempt to differentiate basic and applied research from the nuclear industry. In the first (1990) edition of this ``Music Book`` proceedings, almost every laboratory that participated had a quality program that was traceable to, based on, influenced by, or in reaction to the nuclear quality standard ASME-NQA-1. This 1993 edition of the ``Music Book`` is very different in that almost every laboratory has developed a quality program that is based on, traceable to, or heavily influenced by DOE 5700.6C (Quality Assurance) and the DOE Standard; Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92). In order to construct a context for what follows and properly introduce the contents of this book, we want to briefly recount some of the highlights of the events that brought about this change, from the perspective of one who participated in the process.

  14. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  15. Research | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Mission Statement The objective of PARC is to understand the basic scientific principles that underpin the efficient functioning of natural photosynthetic antenna systems as a basis for design of biohybrid and bioinspired architectures for next-generation systems for solar-energy conversion. Scientific Themes Through basic scientific research, PARC seeks to understand the principles of light harvesting and energy funneling as applied to The PARC Vision Graphic three

  16. FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH according to the Seven-Year Plan 2010 - 2016 1. Heavy and superheavy nuclei: Ø synthesis and study of properties of superheavy elements; Ø chemistry of new elements; Ø fusion-fission and multi-nucleon transfer reactions; Ø nuclear- , mass-, & laser-spectrometry of SH nuclei. 3. Radiation effects and physical groundwork of nanotechnology. 2. Light exotic nuclei: Ø properties and structure of

  17. National Energy Research Scientific Computing Center | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) National Labs, Profiles, and Contacts » National Energy Research Scientific Computing Center (NERSC) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Quick Links DOE SBIR Online Learning Center External link DOE Phase 0 Small Business Assistance External link Protecting your Trade Secrets, Commercial, and Financial Information Preparing and

  18. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  19. ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT

    SciTech Connect (OSTI)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

    2007-07-06

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program at LLNL has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Several achievements in schema design, data visualization, synthesis, and analysis were completed this year. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. As data volumes have increased, scientific information management issues such as data quality assessment, ontology mapping, and metadata collection that are essential for production and validation of derived calibrations have negatively impacted researchers abilities to produce products. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Nearly a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes elements of stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable recording of processing flow and metadata. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode

  20. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect (OSTI)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  1. Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect (OSTI)

    Carter, Jennifer

    2012-06-01

    Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  2. Energy Department to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will invest up to $5.2 million in basic research projects with 12 universities from across the country.  In an effort to...

  3. Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Carter, Jennifer [Agilent

    2013-03-22

    Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  4. Workshop report on basic research in organic geochemistry applied to national energy needs

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The schedule of the workshop shows its organization. After a series of overview presentations, the participants were divided - according to their interests - into three subgroups to consider the exploration, exploitation, and environmental impact problems associated with the production and utilization of natural and synthetic carbonaceous fuels. As a result of these concentrated deliberations, each subgroup evolved a general recommendation and a series of specific recommendations for their particular topic. These are recapitulated, followed by a policy statement resulting from consideration of a means to implement basic research in organic geochemistry, and the subgroup reports. Separate abstracts have been prepared for the papers which are in the appendix of this report for inclusion in the Energy Data Base.

  5. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    SciTech Connect (OSTI)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  6. Total human exposure: Basic concepts, EPA field studies, and future research needs

    SciTech Connect (OSTI)

    Ott, W.R. )

    1990-07-01

    Historically, environmental regulatory programs designed to protect public health have monitored pollutants only in geophysical carrier media (for example, outdoor air, streams, soil). Field studies have identified a gap between the levels observed in geophysical carrier media and the concentrations with which people actually come into contact: their daily exposures. A new approach--Total Human Exposure (THE)--has evolved to fill this gap and provide the critical data needed for accurately assessing public health risk. The THE approach considers a three-dimensional bubble around each person and measures the concentrations of all pollutants contacting that bubble, either through the air, food, water, or skin. Two basic THE approaches have emerged: (1) the direct approach using probability samples of populations and measuring pollutant concentrations in the food eaten, air breathed, water drunk, and skin contacted; and (2) the indirect approach using human activity pattern-exposure models to predict population exposure distributions. Using the direct approach, EPA has conducted over 20 field studies for pollutants representing four groups--volatile organic compounds, carbon monoxide, pesticides, and particles--in 15 cities in 12 states. The indirect modeling approach has been applied to several of these pollutants. Additional research is needed in a great variety of areas. Even from the few projects completed thus far, the THE approach has yielded a rich new data base for risk assessments and has provided many surprises about the relative contribution of various pollutant sources to public health risk. 74 references.

  7. The Fruition of 4f Discovery, The interplay of basic and applied research

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr

    2004-09-30

    A broad base of knowledge is necessary for the successful solution to applied problems, but on the other hand, developing such practical solutions can open the door to new and exciting adventures in basic research. Several such synergistic events are briefly described. These include the design and development of magnetic refrigerant materials (1) for the liquefaction of H{sub 2} gas, and (2) for near-room temperature cooling and refrigeration; and (3) the design and development of cryocooler regenerator materials. The first led to the discovery of both supercooling and superheating in the same substance (Dy and Er); the second to the discovery of the giant magnetocaloric effect, the colossal magnetostriction, and the giant magnetoresistance in the same substance [Gd{sub 5}(Si{sub x}Ge{sub 1-x}{sub 4})]; and the third the disappearance of three of the four magnetically ordered phases in Er by Pr additions in both high purity Er and commercial grade Er.

  8. Qualitative study of African-American job satisfaction in a scientific/technical research environment

    SciTech Connect (OSTI)

    Krossa, C.D.

    1996-09-01

    Many studies have been conducted in the area of job satisfaction. Its necessary attributes sor components have been studied, analyzed, validated, standardized, and normed, onpredominantly white male populations. Few of these studies have focused on people of color, specifically African-Americans, and fewer still on those African-Americans working in a high-tech, scientific and research environments. The researchers have defined what is necessary for the current dominent culture`s population, but are their findings applicable and valid for our nation`s other cultures and ethnic groups? Among the conclusions: the subjects felt that there was no real difference in job satisfiers from their white colleagues; however the subjects had the sense of community (African-American) and the need to give back to it. Frustrations included politics, funding, and lack of control.

  9. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  10. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  11. Enhancing Seismic Calibration Research Through Software Automation and Scientific Information Management

    SciTech Connect (OSTI)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Harris, D B; Hauk, T F

    2009-07-07

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. In contrast to previous years, software development work this past year has emphasized development of automation at the data ingestion level. This change reflects a gradually-changing emphasis in our program from processing a few large data sets that result in a single integrated delivery, to processing many different data sets from a variety of sources. The increase in the number of sources had resulted in a large increase in the amount of metadata relative to the final volume of research products. Software developed this year addresses the problems of: (1) Efficient metadata ingestion and conflict resolution; (2) Automated ingestion of bulletin information; (3) Automated ingestion of waveform information from global data centers; and (4) Site Metadata and Response transformation required for certain products. This year, we also made a significant step forward in meeting a long-standing goal of developing and using a waveform correlation framework. Our objective for such a framework is to extract additional calibration data (e.g. mining blasts) and to study the extent to which correlated seismicity can be found in global and regional scale environments.

  12. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  13. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  14. Exploratory basic energy research conducted at Standord University in the period September, 1979-August, 1983. Final report

    SciTech Connect (OSTI)

    Reynolds, W.C.

    1984-01-01

    In September, 1978, the Department of Energy awarded a contract to Stanford for Exploratory Basic Research. Projects to be supported were to be chosen by Stanford, with emphasis being placed on exploratory research likely to lead to full-scale research programs under support of appropriate agencies. Funding was provided for three years, as follows: FY 1979, $150K; FY 1980, 200K; and FY 1981, 250K for a total of $600K. The DOE funds provided through this contract were used, in combination with the IES industrial funds, to support exploratory basic energy research in three ways: (1) Funding of faculty members for the initial phases of research. Most of the funding was used in this manner. (2) Support of the Energy Information Center, a small special document center that holds information pertinent to energy research, both as related to energy policy and energy technology and to the supporting basic sciences. Approximately 12% of the funding was used in this manner. (3) Through support for seminars, occasional visitors, and program administration. Approximately 6% of the funding was used for this general support of the energy ambiance at Stanford.

  15. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  16. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  17. DOE/OER-sponsored basic research in high-efficiency photovoltaics

    SciTech Connect (OSTI)

    Deb, S.K.; Benner, J.P.

    1996-05-01

    A high-efficiency photovoltaic project involving many of the national laboratories and several universities has been initiated under the umbrella of the U.S. Department of Energy (DOE) Center of Excellence for the Synthesis and Processing of Advanced Materials. The objectives of this project are to generate advances in fundamental scientific understanding that will impact the efficiency, cost and reliability of thin-film photovoltaic cells. The project is focused on two areas. (1) Silicon-Based Thin Films, in which key scientific and technological problems involving amorphous and polycrystalline silicon thin films will be addressed, and (2) Next-Generation Thin-Film Photovoltaics, which will be concerned with the possibilities of new advances and breakthroughs in the materials and physics of photovoltaics using non-silicon-based materials.

  18. Can Cloud Computing Address the Scientific Computing Requirements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ever-increasing computational needs of scientists, Department of Energy ... and as the largest funder of basic scientific research in the U.S., DOE was interested in ...

  19. Basic research in crystalline and noncrystalline ceramic systems. Annual report, November 1, 1981-November 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Research activities are described concerning the electrical and optical properties of ceramics; kinetic studies; defect structures; defect interactions, grain boundaries and surfaces; sintering studies; and technological research needs in ceramic science.

  20. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  1. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda, Report of a Roundtable Convened to Consider Foundational Research Relevant to Subsurface Technology and Engineering RD&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda DOE Roundtable Report May 22, 2015 Germantown, MD 1 Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Report of a Roundtable Convened to Consider Foundational Research Relevant to Subsurface Technology and Engineering RD&D May 22, 2015 Germantown, MD Organizing Committee Laura J. Pyrak-Nolte (Chair), Purdue University Donald

  2. Research prioritization using the Analytic Hierarchy Process: basic methods. Volume 1

    SciTech Connect (OSTI)

    Vesely, W.E.; Shafaghi, A.; Gary, I. Jr.; Rasmuson, D.M.

    1983-08-01

    This report describes a systematic approach for prioritizing research needs and research programs. The approach is formally called the Analytic Hierarchy Process which was developed by T.L. Saaty and is described in several of his texts referenced in the report. The Analytic Hierarchy Process, or AHP for short, has been applied to a wide variety of prioritization problems and has a good record of success as documented in Saaty's texts. The report develops specific guidelines for constructing the hierarchy and for prioritizing the research programs. Specific examples are given to illustrate the steps in the AHP. As part of the work, a computer code has been developed and the use of the code is described. The code allows the prioritizations to be done in a codified and efficient manner; sensitivity and parametric studies can also be straightforwardly performed to gain a better understanding of the prioritization results. Finally, as an important part of the work, an approach is developed which utilizes probabilistic risk analyses (PRAs) to systematically identify and prioritize research needs and research programs. When utilized in an AHP framework, the PRA's which have been performed to date provide a powerful information source for focusing research on those areas most impacting risk and risk uncertainty.

  3. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century materials and energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the

  4. VELA program. A twenty-five year review of basic research

    SciTech Connect (OSTI)

    Kerr, A.U.

    1985-01-01

    Partial Contents: A Review of Test Ban Research; Underground Nuclear Weapons Testing and Seismology - A Cooperative Effort; Forensic Seismology; Technical Issues Related to Nuclear Test Ban Treaties; VELA Overview: The Early Years of the Seismic Research Program; Explosion/Earthquake Source Theory; Linear Elastic Waveform Modeling in the Inelastic Region of Underground Nuclear Explosions; Seismic Wave Propagation Effects; Development of Theory and Numerical Modeling; In-Situ Paths Strain and Stress Bounds with Application to Desert Alluvium; Seismic Scattering and Lithospheric Heterogeneity; Body Wave Propagation in three-Dimensional Source and Receiver Structure; Instrumentation and Signal Analysis; Regional Seismic Array Program and High Frequency Instrumentation; Signal Analysis: Explosion Seismology; Earthquake or Explosion: Where are We Now; Teleseismic Methods; Regional Methods; and Tools for Seismic Data Analysis and Management for Research and International Data Exchange.

  5. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  6. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    SciTech Connect (OSTI)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

    2007-06-01

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  7. DOE Awards $22.7 Million for Basic Solar Energy Research | Department of

    Office of Environmental Management (EM)

    Department of Energy 20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  8. Basic Research of Intrinsic Tamper Indication Markings Defined by Pulsed Laser Irradiation (Quad Chart).

    SciTech Connect (OSTI)

    Moody, Neville R.

    2015-08-01

    Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to model light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.

  9. Overview of fundamental geochemistry basic research at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Anovitz, L.M.; Benezeth, P.; Blencoe, J.G.

    1996-01-01

    Researchers in ORNL`s Geochemistry and High Temperature Aqueous Chemistry groups are conducting detailed experimental studies of physicochemical properties of the granite-melt-brine system; sorption of water on rocks from steam-dominated reservoirs; partitioning of salts and acid volatiles between brines and steam; effects of salinity on H and O isotope partitioning between brines, minerals, and steam; and aqueous geochemistry of Al. These studies contribute in many ways to cost reductions and improved efficiency in the discovery, characterization, and production of energy from geothermal resources.

  10. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  11. Energy Frontier Research Centers (EFRCs): A Response to Five...

    Office of Scientific and Technical Information (OSTI)

    focusing on one or more of several "grand challenges" and use-inspired "basic research needs" recently identified in major strategic planning efforts by the scientific community. ...

  12. 2006 Department of Energy Strategic Plan - Scientific Discovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Plan - Scientific Discovery and Innovation 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation The United States has always been a Nation of innovators and the Department of Energy has been a major contributor to that legacy. DOE-supported basic research has produced Nobel Laureates, numerous paradigm-shifting scientific discoveries, and revolutionary technologies that have spawned entirely new industries. Such breakthroughs have

  13. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    ) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have

  14. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  15. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    SciTech Connect (OSTI)

    Lucas, Robert; Ang, James; Bergman, Keren; Borkar, Shekhar; Carlson, William; Carrington, Laura; Chiu, George; Colwell, Robert; Dally, William; Dongarra, Jack; Geist, Al; Haring, Rud; Hittinger, Jeffrey; Hoisie, Adolfy; Klein, Dean Micron; Kogge, Peter; Lethin, Richard; Sarkar, Vivek; Schreiber, Robert; Shalf, John; Sterling, Thomas; Stevens, Rick; Bashor, Jon; Brightwell, Ron; Coteus, Paul; Debenedictus, Erik; Hiller, Jon; Kim, K. H.; Langston, Harper; Murphy, Richard Micron; Webster, Clayton; Wild, Stefan; Grider, Gary; Ross, Rob; Leyffer, Sven; Laros III, James

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  16. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007

    DOE R&D Accomplishments [OSTI]

    Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.

    2007-04-04

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  17. Thorium Research image | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Thorium Research image Image: A SCALETRITON representation of thorium-based fuel compositions in a pressurized water reactor fuel assembly model. Image Gallery: EA Gallery 10 Last ...

  18. U.S. Department of Energy Increases Access to Results of DOE-funded Scientific Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has launched PAGES, an online resource to increase access to scholarly publications and digital data resulting from Department-funded research.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    SciTech Connect (OSTI)

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  20. Management options for implementing a basic and applied research program responsive to CS technology base needs. Task VIII. Review existing CS materials R and D programs

    SciTech Connect (OSTI)

    Not Available

    1980-02-28

    Possibilities for setting up a basic and applied research program that would be responsive to the Conservation and Solar energy base needs are considered with emphasis on the area of materials research. Several organizational arrangements for the implementation of this basic and applied research program are described and analyzed. The key functions of the system such as resources allocation, and program coordination and management follow from two fundamental characteristics: assignment of lead responsibility (CS and the Office of Energy Research, ER); and nature of the organizational chain-of-command. Three options are categorized in terms of these two characteristics and discussed in detail. The first option retains lead responsibility in ER, with CS personnel exercising sign-off authority and filling the coordination role. Option 2 places lead responsibility with CS program office management, and utilizes the existing chain-of-command, but adds a Basic and Applied Research Division to each program office. Option 3 also places lead responsibility with CS, but within a new Office of Basic and Applied Research, which would include a Research Coordinator to manage interactions with ER, and Research Managers for each CS program area. (MCW)

  1. OSTIblog Articles in the scientific knowledge Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information knowledge Topic The Benefits of Investments in Basic Research by Peter Lincoln 01 Nov, 2009 in Science Communications Long-term investments in basic research produce the major conceptual breakthroughs necessary for creating radically new technologies. To be sure, scientists cannot make specific promises about future advances, and there often are long delays in the applications that arise from basic research. Furthermore, sometimes applied

  2. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  3. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    SciTech Connect (OSTI)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  4. Energy Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will complete a scavenger hunt worksheet in order to learn about the basics of energy and its sources.

  5. Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Linn, Anne M.

    2008-12-03

    Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geological community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.

  6. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect (OSTI)

    Bayer, C.W.

    2001-02-22

    chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).

  7. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  8. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Electrifies Scientific Computing Edison Electrifies Scientific Computing NERSC Flips Switch on New Flagship Supercomputer January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 The National Energy Research Scientific Computing (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be dedicated in a ceremony held at the Department of

  9. Scientific Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact Scientific Impact Since its inception over twenty years ago, CAMS has achieved noteworthy scientific progress by developing new capabilities and by combining state-of-the-art tools and expertise to address important scientific challenges. Scientific Leadership CAMS scientists are recognized as scientific leaders in the field of AMS and the disciplines that it supports. Many CAMS staff participate on federal agency (NIH, NSF, NOAA and DOE) scientific review panels as well as giving a

  10. Scientific Leadership - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Leadership Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance

  11. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  12. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  13. Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research program offers the opportunity for appointees to perform research in a robust scientific R&D environment, present and publish research, advance knowledge in basic and applied science, and strengthen national scientific and technical capabilities. Program Mission The Postdoctoral Program provides the opportunity for appointees to perform scientifically rich research, showcase their work through publishing and

  14. Research needs for a basic science of the system of humanity and nature and appropriate technology for the future

    SciTech Connect (OSTI)

    Brown, M.T.; Odum, H.T.

    1981-01-01

    Separate abstracts were prepared for 8 of the 19 presentations of individual participants at an energy analysis workshops held in Florida in 1981. The other papers dealt with land use planning and present energy policy of the US. An introductory section and extensive research needs recommendations section are included in the workshop proceedings. (KRM)

  15. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Bio Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Navigate Section Director Deputy Director Leadership Team Advisory Board...

  16. Final Week of National Energy Action Month Features Technological Advances in Clean Energy and DOE Support of Scientific Research

    Broader source: Energy.gov [DOE]

    WASHINGTON—Department of Energy officials will attend events across the country next week to highlight the clean energy technological advances and scientific initiatives supported by DOE. During the final week of National Energy Action Month, senior DOE officials will participate in events from San Francisco to North Carolina to Washington. Throughout October, Secretary of Energy Ernest Moniz and other Department officials are participating in events to emphasize the important role that the Administration’s all-of-the-above energy strategy plays in strengthening America’s economic, environmental and national security future.

  17. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  18. Scientific substantiation of safe operation of the Earthen Dams at the Votkinsk HPP

    SciTech Connect (OSTI)

    Deev, A. P.; Fisenko, V. F.; Sol'skii, S. V.; Lopatina, M. G.; Gints, A. V.; Aref'eva, A. N.

    2012-11-15

    Over a period of 15 years, coworkers of the B. E. Vedeneev Scientific-Research Institute of Hydraulic Engineering have conducted scientific accompaniment of the operation of the earthen dams at the Votkinsk HPP. During that time, basic performance characteristics associated with complex hydrogeologic and hydrochemical conditions, and the forms of their unfavorable manifestations influencing the reliability and safety of the structures were revealed, and, recommendations and measures were developed for their elimination.

  19. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  20. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  1. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  2. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  3. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  4. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  5. Fuel Cell Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic ...

  6. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  7. Scientific/Techical Report

    SciTech Connect (OSTI)

    Dr. Chris Leighton, Neutron Scattering Society of American; Mr. J. Ardie Dillen, MRS Director of Finance and Administration

    2012-11-07

    The ACNS provides a focal point for the North American neutron user community, strengthening ties within this diverse group, and promoting neutron research in related disciplines. The conference thus serves a dual role as both a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides a forum for scientific discussion of neutron-enabled research in fields as diverse as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, elementary excitations, fundamental physics, and development of neutron instrumentation. This is achieved through a combination of invited oral presentations, contributed oral presentations, and poster sessions. Adequate opportunity for spontaneous discussion and collaboration is also built into the ACNS program in order to foster free exchange of new scientific ideas and the potential for use of powerful neutron scattering methods beyond the current realms of application. The sixth American Conference on Neutron Scattering (ACNS 2012) provided essential information on the breadth and depth of current neutron-related research worldwide. A strong program of plenary, invited and contributed talks showcased recent scientific results in neutron science in a wide range of fields, including soft and hard condensed matter, biology, chemistry, energy and engineering applications, and neutron physics.

  8. Scientific Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols - Effects on Clouds and Climate Scientific Objective Aerosols in the sky are essential to Earth's climate because they can reflect light into space, cooling the atmosphere, or they can combine with other particles to create clouds that have both warming and cooling effects. Biogenic aerosols are emitted by the biosphere directly, or are formed from biogenic volatile gases in gas-to-particle conversion. Examples include dead cells and pollen spores. Boreal forests are among the

  9. OSTIblog Articles in the scientific knowledge Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    knowledge Topic The Benefits of Investments in Basic Research by Peter Lincoln 01 Nov, 2009 in Science Communications Long-term investments in basic research produce the major ...

  10. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  11. Advanced Scientific Computing Research Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  12. Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ASCR's programs have helped establish computation as a third pillar of science along with theory and physical experiments. Sandia has extensive ASCR programs in Computer Science ...

  13. FWP Scientific Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FWP Scientific Publications FWP Scientific Publications Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date. Stange B., McInerney J., Golden A., Benade W., Neill B., Mayer A., Witter R., Tenney L., Stinson K., Cragle D., Newman

  14. Scientific Visualization, Seeing the Unseeable

    ScienceCinema (OSTI)

    LBNL

    2009-09-01

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  15. Energy Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable

  16. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations for establishing magnetic confinement as an attractive, technically

  17. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have shown that even higher maximum solar cell efficiencies can be achieved by using "spectrum---spli;ng" geometries that combine strong light trapping and r adia=ve c oupling. Significance and Impact These results redefine the maximum efficiencies possible for solar cell conversion by simply modifying t he g eometry o f t he s ubcells. Research Details - Used detailed balance calcula.ons to describe tradi.onal geometries (strong light trapping or radia.ve coupling) and

  18. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealed the zeolite surface structures using molecular simulation and experiment to show that molecular rates in nanoparticle porous materials are controlled by the surface. 2D Surface Structures in Small Zeolite Catalyst Particles Work w as p erformed a t t he U niversity o f M innesota b y t he g roup o f Dauenhauer Research Details --- Molecules permea=ng the surface of porous materials are slowed as they must first locate open s urface p ores --- Molecules entering in small par=cles spend

  19. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrated that metal salts behave as homogeneous Lewis acid catalysts in alcohol donors and convert furans to alcohols via hydrogenation through the MPV mechanism and then to ethers. Combined with metal catalysts (Ru/C), synergetic hydrogenolysis occurs. Catalytic Upgrade of Intermediate Furanic Platforms Work w as p erformed a t t he U niversity o f D elaware b y t he g roup o f V lachos Research Details --- Metal chlorides can be effec?ve and selec?ve catalysts f or h ydrogena?on a nd e

  20. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovered the reactive Leidenfrost' effect in cellulose & transition temperature (750 °C). Structured materials with engineered macropores (e.g. catalysts) allow for its tunable control. Controlling Biomass Leidenfrost Liftoff and Heat Transfer Work w as p erformed a t t he U niversity o f M innesota b y t he g roup o f Dauenhauer Research Details --- Cellulose par=cles levitate above 750 o C from generated v apor fl ow --- Onset o f p ar=cle l evita=on d rama=cally l owers heat t ransfer

  1. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xperimentally o bserved r obust p iezoelectricity in s uspended s ingle m olecular l ayer o f M oS 2 i n atmosphere, the first discovery of such direct conversion b etween e lectricity a nd m echanical stress in free---standing 2D materials. Significance and Impact It p romises n ew a pplicaCons i n n ano---generators a nd low---power l ogic s witches f or c ompuCng s caled down t o a s ingle a tomic u nit c ell. Research Details - Fabricated e lectro---mechanical d evices w ith f ree---

  2. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lectronically c ontrol t he t hermal s pectrum o f a hot surface by coa4ng with a nanostructured graphene layer and varying the carrier density of the graphene sheet. Significance and Impact Modifying the power and spectrum of thermal radia4on without varying the temperature of the surface provides a novel means of thermal management and low cost pathway to create fast, n arrowband M id---IR s ources. Research Details * The polariza,on of the thermal radia,on could also be controlled by changing

  3. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have proposed and numerically demonstrated an ac4ve scheme to extract the excep4onally high energy density of surface phonon-polaritons to the far-field. Significance and Impact Our ac4ve radia4ve cooling scheme is a new approach to manipulate thermal radia4on that is more widely applicable than laser cooling of solids and supports a higher theore4cal heat flux. Research Details - Near-field thermal radia.on has a nearly monochroma.c spectrum and is able to effec.ve drive atomic transi.ons. -

  4. Office of Scientific and Technical Information DOE PAGES (Beta) Portal

    Office of Scientific and Technical Information (OSTI)

    Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding | OSTI, US Dept of Energy Office of Scientific and Technical Information Office of Scientific and Technical Information DOE PAGES (Beta) Portal Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding Get a printer-friendly version Recent Presentations Office of Scientific and Technical Information DOE PAGESBeta Portal Offers Public Access to Scholarly Scientific

  5. The Digital Road to Scientific Knowledge Diffusion

    Office of Scientific and Technical Information (OSTI)

    ... data and textual information; and 4. Modeling scientific exchange in the research process. ... for conceptual context and the importance of reviewing the body of knowledge that exists. ...

  6. The Mind Research Network - Mental Illness Neuroscience Discovery Grant

    SciTech Connect (OSTI)

    Roberts, J.; Calhoun, V.

    2013-12-17

    The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.

  7. 1993 application preparation URI Guide: University Research Instrumentation Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-05

    The primary objective of the URI Program is to assist university and college scientists in strengthening their capabilities to conduct long-range experimental scientific research (both basic and applied) in specific energy areas of direct interest to DOE through the acquisition of specialized research instrumentation costing $100,000 or more.

  8. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond OSTI: The Storefront for the DOE by Philip Ellis on Mon, November 14, 2011 4734 Open%20Sign.jpg OSTI: The Storefront for the DOE Read more about 4734 The Department of Energy has made a formidable contribution to the advancement of the scientific and technological knowledge frontier. In particular, DOE sponsors more basic and applied scientific research in the physical sciences than any other U.S. federal agency and all of this is

  9. Biofuels Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most ...

  10. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  11. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation,...

  12. The Digital Road to Scientific Knowledge Diffusion

    Office of Scientific and Technical Information (OSTI)

    Digital Road to Scientific Knowledge Diffusion A Faster, Better Way to Scientific Progress? By David E. Wojick, Walter L. Warnick, Bonnie C. Carroll, and June Crowe Introduction With the United States federal government spending over $130 billion annually for research and development, ways to increase the productivity of that research can have a significant return on investment. It is well known that all scientific advancement is based on work that has come before. Isaac Newton expressed this

  13. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  14. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect (OSTI)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  15. Applications of ICP magnetic sector multicollector mass spectrometry to basic energy research. Final report for period December 1st, 1993 - May 31st, 2000

    SciTech Connect (OSTI)

    Halliday, A.N.

    2002-05-01

    The primary aims of this research were threefold: to develop and utilize the new technique of multiple collector inductively coupled plasma mass spectrometry and apply it to problems in the earth, ocean, and environmental sciences; to develop new chronometers and improve existing chronometers to allow the accurate determination of the ages of geological features and processes; and to study natural fluid-mediated mass transfer processes and source of components in the crust and the oceans. This technique has now become the preferred method for the determination of the isotopic compositions of a variety of elements in the periodic table. The prototype instrument was used to explore a vast array of isotopic systems and demonstrate applicability to problems as different as the origin of the solar system and smelting methods in the Bronze Age. Highlights of the program are briefly summarized under the following topics: tungsten isotopes and the early solar system; trace siderophile and chalcophile element geochemistry; hafnium isotopes and the early development of the continents; evolution of lead isotopic compositions of the oceans; the isotopic composition and residence time of Hf in seawater; the isotopic compositions of Sr, Hf, Pb, and Nd in dust; U-Th disequilibrium dating of carbonates and soils; in situ U-Th disequilibrium dating of opal.

  16. Index of /documents/public/ScientificWriting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScientificWriting

  17. 2017 PARC All Hands & Scientific Advisory Committee Meetings |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center Scientific Advisory Committee Meeting June 22, 2017 - 8:30am

  18. Helping Advance the Scientific Foundation that Enables Major...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Quantum Optics Polariton Lasing Unconventional Lasing Enabling Energy Efficiency ... Fusion Energy Sciences Advanced Scientific Computing Research (ASCR) Biological and ...

  19. Energy Department Requests Proposals for Advanced Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research | Department of Energy Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery

  20. Statutory Authorities | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    collections of scientific and technical information resulting from research, development, demonstration, and commercial applications activities supported by the Department." ...

  1. Solar Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from ...

  2. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  3. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  4. Geothermal Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  5. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    SciTech Connect (OSTI)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  6. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  7. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  8. Energy Frontier Research Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above figure depicts an ALD-Modified "Rust" Surface for enhanced electrode activity. Energy Frontier Research Centers Argonne pulls together science and engineering leaders across institutional boundaries, allowing them to take a collaborative approach to specific scientific challenges. In 2009, the U.S. Department of Energy's Office of Science/Office of Basic Energy Sciences established the Energy Frontier Research Centers (EFRCs). These EFRCs are composed of small teams of

  9. Fiscal year 1984 Department of Energy authorization (fossil energy and basic research). Hearings before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, House of Representatives, Ninety-Eighth Congress, First Session, February 24, March 2, 3, 16, 17, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Five of a series of nine budget hearings focused on DOE's $1 billion basic energy research programs are included in this volume. The issues receiving special attention were those of research priorities, interagency coordination, university research needs, and technology transfer. The 22 witnesses included Alvin Trivelpiece of the DOE Office of Energy Research and representatives of laboratories, universities, and research institutes and companies. Their statements and responses to committee questions are followed by two additional submissions for the record. (DCK)

  10. ORISE: Scientific Peer Review for State and Federal Agencies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tools and services to support DOE research Standardization of scientific peer reviews Cost savings and customer service DOE funded research Supercomputing Implementing...

  11. Basic Energy Sciences 2011 Summary Report

    SciTech Connect (OSTI)

    2011-01-01

    This report describes how BES is organized and operates to accomplish our mission and presents selected accomplishments to illustrate some exciting new scientific advances that resulted from BES-supported research. Also included are references to supplementary resources that provide additional information about BES strategic planning, research, and user facilities.

  12. Basic Research Needs: Catalysis for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with heretofore unprecedented detail. Examples of new computational methods include optimization of structures determined experimentally by diffraction scattering based on...

  13. Basic Research Opportunities in Photovoltaics Workshop: Preprint

    SciTech Connect (OSTI)

    Benner, J.; Deb, S.; McConnell, R. D.

    1999-04-01

    Photovoltaic (PV) technology for conversion of sunlight to electricity is the most cost-effective method for meeting the electric power needs of many consumers around the world today. This document is the preface and executive summary from the workshop to be held in May 1999 in Seattle, Washington.

  14. Basic ReseaRch DiRections

    National Nuclear Security Administration (NNSA)

    ... of nuclear energy to the use of nuclear isotopes for medical diagnostics and treatment. ... probes such as heavy ion accelerators, neutron sources, and rare isotope facilities. ...

  15. Basic Research for the Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    PEM Fuel Cells Carnegie Mellon University Rapid Ab Initio Screening of Ternary Alloys for Hydrogen Production Rensselaer Polytechnic Institute Sol-Gel Based Polybenzimidazole...

  16. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-09

    To establish Department of Energy (DOE) requirements and responsibilities to ensure that scientific and technical information (STI) is identified, processed, disseminated, and preserved in a manner that (a) enables the scientific community and the public to locate and use the unclassified and unlimited STI resulting from DOE's research and related endeavors and (b) ensures access to classified and sensitive unclassified STI is protected according to legal or Departmental requirements. Cancels DOE O 241.1. Canceled by DOE O 241.1A Chg 1.

  17. Australian Commonwealth Scientific and Industrial Organisation | Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration | NREL Australia's Commonwealth Scientific and Industrial Organisation Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) and NREL researchers are validating a plug-and-play microgrid control solution. This technology helps hybrid microgrids to automatically recognize when solar power is available and prioritize its use over other power sources. Photo of three researchers examining computer screens in a laboratory Photo by Dennis Schroeder

  18. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  19. Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics

  20. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nations nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOEs Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EMs responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EMs mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The overall

  1. Summer Undergraduate Research Program: Environmental studies

    SciTech Connect (OSTI)

    McMillan, J.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  2. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  3. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  4. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn

    2014-05-16

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  5. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 27, 2015 Biomass Basics Alexis Martin Fellow, Bioenergy Technologies Office Department of Energy 2 | Bioenergy Technologies Office Agenda * Overview of Bioenergy * Biomass to Biofuels Life Cycle * Importance of Bioenergy * 2016 BioenergizeME Infographic Challenge 3 | Bioenergy Technologies Office Questions and Comments Please record any questions and comments you may have during the webinar and send them to BioenergizeME@ee.doe.gov As a follow-up to the webinar, the presenter(s) will

  6. 2016 PARC Scientific Advisory Committee Meeting | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Scientific Advisory Committee Meeting 2016 PARC Scientific Advisory Committee Meeting June 23, 2016 - 8:00am Meeting is for SAC members and PIs only.

  7. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic ...

  8. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect (OSTI)

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  9. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  10. Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    should have basic experience with a scientific computing language, such as C, C++, Fortran and with the LINUX operating system. Duration & Location The program will last ten...