Powered by Deep Web Technologies
Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Measurement - Inorganic chemical composition  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

2

Thermal/chemical degradation of inorganic membrane materials  

SciTech Connect

The overall objective of this program is to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Specific objectives of this program are to (1) quantify the extent of the degradation process for the three most detrimental mechanisms by performing laboratory-scale experiments, and (2) develop a predictive model for membrane degradation under operating conditions. At present, no inorganic membranes are commercially available for application in the high-temperature, high-pressure (HTHP) gas environments encountered in integrated gasification combined cycle (IGCC), pressurized fluidized bed combustion (PFBC), and direct coal fired turbine (DCFT) applications. Most of the inorganic membrane development efforts have focused on hydrogen separation membranes which may be used in an IGCC system for maximizing hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition of these contaminants. The candidate inorganic membranes may be grouped as follows: dense metallic membranes; silica based membranes; alumina based membranes; and carbon based membranes. Results are reported for membrane characterization done so far.

Krishnan, G.N.; Sanjurjo, A.; Damle, A.S.; Wood, B.J.; Lau, K.H.

1994-10-01T23:59:59.000Z

3

CRC Handbook of Basic Tables for Chemical Analysis  

Science Conference Proceedings (OSTI)

The third edition of the CRC Handbook of Basic Tables for Chemical Analysis, co-authored by Thomas Bruno of The Thermophysical Properties ...

2012-10-01T23:59:59.000Z

4

PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS  

DOE Green Energy (OSTI)

The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

Thomas E. Mallouk

2007-05-27T23:59:59.000Z

5

Diffusion of inorganic chemical wastes in compacted clay  

SciTech Connect

The factors that were investigated included the water content/dry unit weight, the method of compaction, the mineralogy of the soil, and the concentration of the ions. The effective diffusion coefficients (D{asterisk}) of three anions (Cl{sup {minus}}, Br{sup {minus}}, and I{sup {minus}}) and three cations (K{sup +}, Cd{sup 2+}, and Zn{sup 2+}) in a simulated waste leachate were measured. Two clay soils (kaolinite and Lufkin clay) and a sand were used in the study. The clay samples were compacted and pre-soaked to minimize hydraulic gradients due to negative pore pressures. Mass balance calculations were performed to indicate possible sinks/sources in the diffusion system. The results of the diffusion tests were analyzed using two analytical solutions to Fick's second law and a commercially available semi-analytical solution. The D{asterisk} values for tests using high-concentration (0.04 N) leachate generally fell in the narrow range of about 4.0 {times} 10{sup {minus}6} to 2.0 {times} 10{sup {minus}5} cm{sup 2}/s, and were relatively insensitive to compaction water content/dry unit weight and to compaction method. The variability in the results from the tests with low-concentration (0.013 N) leachate precluded any definite conclusions from these tests. The values of D{asterisk} measured in this study were compared to values from previous studies, and the D{asterisk} values from this study were found to be slightly conservative (i.e., high). However, the results of the tests may be affected by several chemical and physical factors, and care should be taken to ensure that the soils used in the tests are representative of those used in the application of the test results. Recommendations are made for estimating D{asterisk} values for use in the design of compacted clay barriers for the containment of inorganic chemical wastes.

Shackelford, C.D.

1988-01-01T23:59:59.000Z

6

STATEMENT OF CONSIDERATIONS REQUEST BY MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE MILLENNIUM INORGANIC CHEMICALS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04GO14153; W(A)-04-084; CH-1263 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Millennium Inorganic Chemicals, Inc. (Millennium) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Millennium is leading a teaming arrangement including Exxon Mobil Research and Engineering and Sandia National

7

Empirical MOdels for the Uptake of Inorganic Chemicals from Soil by Plants (BJC/OR-133)  

NLE Websites -- All DOE Office Websites (Extended Search)

33 33 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants This document has received the appropriate reviews for release to the public. Date: 9/23/98 BJC/OR-133 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants Date Issued-September 1998 Prepared for the U.S. Department of Energy Office of Environmental Management BECHTEL JACOBS COMPANY LLC managing the Environmental Management Activities at the East Tennessee Technology Park Oak Ridge Y-12 Plant Oak Ridge National Laboratory Paducah Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant under contract DE-AC05-98OR22700 for the U.S. DEPARTMENT OF ENERGY iii CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . .

8

AOAC-Basic Calculations for Chemical and Biological Analyses  

Science Conference Proceedings (OSTI)

Completely revised, this 2nd Edition contains many more examples and three new chapters. Each chapter includes concise descriptions and definitions for the basic principles; derivation of basic equations or concepts used for calculations; relevant techniqu

9

Alternative Enhanced Chemical Cleaning Basic Studies Results FY09  

Science Conference Proceedings (OSTI)

Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat limited success observed during recent attempts to remove sludge heels from SRS Tanks 5F and 6F using oxalic acid. Additionally, based on the results of the solubility tests conducted, the following conclusions can be drawn: (1) Hematite dissolution in oxalic acid is a stoichiometric process dependant upon the provision of sufficient oxalate molar equivalents to complex the iron and sufficient H{sup +} to promote the dissolution reaction. (2) The optimal utilization of oxalic acid for hematite dissolution requires an additional proton source, such as nitric acid, and a pH of {le} 1. In the absence of a supplemental proton source, greater than stoichiometric amounts of oxalate are required. (3) Magnetite is generally more soluble than hematite in all acids tested. (4) Gibbsite is generally more soluble than the boehmite form of aluminum in all acids tested. (5) The OLI Thermodynamic Model is a useful tool for the prediction of equilibrium iron concentrations, but predictions must be experimentally verified. The OLI model appears to over-predict the solubility of the iron and aluminum phases studied in mineral acids.

Hay, M.; King, W.

2010-05-05T23:59:59.000Z

10

ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010  

Science Conference Proceedings (OSTI)

In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex is possible with the addition of a supplemental hydrogen ion source (HNO{sub 3} or H{sub 2}SO{sub 4}) and pH control. (5) Sulfuric acid is nearly twice as effective as nitric acid (on a molar basis) at promoting hematite dissolution in oxalic acid solutions, most likely due to the fact that it is diprotic. (6) The greater the oxalic acid concentration, the greater the demand for supplemental H{sup +} to promote optimal dissolution. Minimum mineral acid concentrations required for optimal oxalic acid utilization based on hematite solubility tests are provided. (7) Corrosion studies conducted (reported elsewhere) with 1 wt.% oxalic acid revealed that carbon steel corrosion rates are manageable at lower mineral acid concentrations (0.1 M HNO{sub 3} and 0.05 M H{sub 2}SO{sub 4}) and lower temperatures (45 C). (8) Proposed conditions for waste tank heel dissolution based on the solubility and corrosion test results are 0.5 wt.% oxalic acid and 0.18 M HNO{sub 3} or 0.09 M H{sub 2}SO{sub 4} at 50 C. (9) The OLI Thermodynamic Model appears to over-predict the solubility of the iron phases studied in oxalic acid and oxalic/nitric acid mixtures. The predictions show better agreement with experimental results at higher pH and in sulfuric/oxalic acid mixtures. (10) Oxalic, nitric, and sulfuric acids are effective at quickly dissolving gibbsite ({ge}86% dissolution in 2 weeks), with oxalic/sulfuric acid mixtures being particularly effective. (11) Limited dissolution tests conducted with carbon steel coupons revealed that the presence of metallic iron can, in some cases, result in dramatically different results. Additional studies in this area are recommended. Based on the current results, the optimal approach for the removal of sludge heels for HLW tanks would include the following steps: (1) removal of the maximum possible amount of heel materials by mechanical means; (2) neutralization and acidification of the heel using dilute mineral acid (This step should promote significant dissolution of certain metal hydroxides and salts, including gibbsite.); and (3) dissolution of

King, W.; Hay, M.

2011-01-24T23:59:59.000Z

11

CHEMICAL OCEANOGRAPHY 472/540 The goal of this course is to teach students how to apply basic chemical concepts to understand  

E-Print Network (OSTI)

CHEMICAL OCEANOGRAPHY 472/540 Fall 2007 The goal of this course is to teach students how to apply basic chemical concepts to understand biogeochemical cycles, the distributions of natural and anthropogenic chemical constituents in the ocean, and ocean evolution. The interdisciplinary nature of modern

Rosenthal, Yair

12

Inorganic Chemical Metrology Homepage  

Science Conference Proceedings (OSTI)

... mass spectrometries as well as nuclear analytical techniques ... to public safety and security include a ... inertial fusion energy (IFE) reactor, the plasma ...

2012-11-19T23:59:59.000Z

13

High-temperature chemical and microstructural transformations of an organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide  

Science Conference Proceedings (OSTI)

The thermal evolution of a crystalline organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide (LDH) [Mg{sub 0.68}Al{sub 0.32}(OH){sub 2}] (C{sub 9}H{sub 13}NO{sub 3}S){sub 0.130}(CO{sub 3}){sub 0.030}.0.53H{sub 2}O obtained by coprecipitation method is studied based upon in situ high-temperature X-ray diffraction, in situ infrared and thermogravimetric analysis coupled with mass spectroscopy analysis. The results reveal that a metastable quasi-interstratified layered nanohybrid involving carbonate-LDH and reoriented less ordered captopril-LDH was firstly observed as captopril-LDH heat-treated between 140 and 230 deg. C. The major decomposition/combustion of interlayer organics occur between 270 and 550 deg. C. A schematic model on chemical and microstructural evolution of this particular drug-inorganic nanohybrid upon heating in air atmosphere is proposed.

Zhang Hui [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)], E-mail: huizhang67@gst21.com; Guo Shaohuan; Zou Kang; Duan Xue [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)

2009-05-06T23:59:59.000Z

14

A BASIC program for calculating subsurface water temperatures using chemical geothermometers—implication to geothermal reservoir estimation  

Science Conference Proceedings (OSTI)

Keywords: BASIC, Na-K-Ca geothermometer, Na/K ratio, geothermometer, silica geothermometer, subsurface temperature

Ali El-Naqa; Nasser Abu Zeid

1993-11-01T23:59:59.000Z

15

Inorganic Chemical Metrology - Staff Directory  

Science Conference Proceedings (OSTI)

... Group. Search for Staff Member. The Search box will accept a name, phone number, organization name, email address, etc.

2012-11-16T23:59:59.000Z

16

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

17

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

18

Inorganic polymer engineering materials  

Science Conference Proceedings (OSTI)

Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

Stone, M.L.

1993-06-01T23:59:59.000Z

19

Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion - Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals  

SciTech Connect

This book is focused on the pretreatment of biomass, a necessary step for efficient conversion of the plant cell wall materials to fuels and other products. Pretreatment is required because it is difficult to access, separate, and release the monomeric sugars comprising the biopolymers within the biomass that can be further upgraded to products through chemical processes such as aqueous phase reforming or biological routes such as fermentation of the sugars to ethanol This resistance to degradation or difficulty to release the monomers (mostly sugars) is commonly referred to as recalcitrance. There are many methods to overcome plant recalcitrance, but the underlying cause of the recalcitrance lies in the complex combination of chemical and structural features of the plant cell walls.

Davison, Brian H [ORNL; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Parks, Jerry M [ORNL; Donohoe, Bryan [National Renewable Energy Laboratory (NREL)

2013-01-01T23:59:59.000Z

20

Biology basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology basics Name: lamb Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What basic knowledge concerning biology do you think a colleg- bound HS...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

22

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The EERE Energy Basics website contains basics about renewable energy and energy efficiency technologies. Learn how they work, what they're used for, and how they can improve our lives, homes,...

23

Grease Basics  

Science Conference Proceedings (OSTI)

...Silicones Chlorofluorocarbon Alkylated benzene Phosphate esters Polyphenyl ethers Chemical structures are shown in Fig. 4, whereas Table 2

24

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, vehicles, and industries.

25

Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 II Basic Research The Basic Energy Sciences (BES) office within the DOE Office of Science supports the DOE Hydrogen Program by providing basic, fundamental research in those technically challenging areas facing the Program, complementing the applied research and demonstration projects conducted by the Offices of Energy Efficiency and Renewable Energy; Fossil Energy; and Nuclear Engineering, Science and Technology. In May 2005 Secretary of Energy Samuel W. Bodman announced the selection of over $64 million in BES research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American consumers by 2020. A total of 70 hydrogen research projects were selected to focus on fundamental science and enable

26

Available Technologies: Modular Inorganic Nanocomposites  

... “Modular Inorganic Nanocomposites by Conversion of Nanocrystal Superlattices,” Angewandte Chemie International Edition 49, 2878–2882 (2010) ...

27

XHTML Basic  

E-Print Network (OSTI)

The XHTML Basic document type includes the minimal set of modules required to be an XHTML host language document type, and in addition it includes images, forms, basic tables, and object support. It is designed for Web clients that do not support the full set of XHTML features; for example, Web clients such as mobile phones, PDAs, pagers, and settop boxes. The document type is rich enough for content authoring. XHTML Basic is designed as a common base that may be extended. For example, an event module that is more generic than the traditional HTML 4 event system could be added or it could be extended by additional modules from XHTML Modularization such as the Scripting Module. The goal of XHTML Basic is to serve as a common language supported by various kinds of user agents. The document type definition is implemented using XHTML modules as defined in "Modularization of XHTML" [XHTMLMOD [p.9] ]. 19 Dec 2000 08:40 1 XHTML Basic Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. This document has been produced by the W3C HTML Working Group (members only) as part of the W3C HTML Activity. It integrates feedback from the WAP Forum and members of the W3C Mobile Acce...

Mark Baker; Masayasu Ishikawa; Shinichi Matsui; Peter Stark; Sun Microsystems; Masayasu Ishikawa Wc; Shinichi Matsui Panasonic; Peter Stark Ericsson; Ted Wugofski; Openwave Systems

2000-01-01T23:59:59.000Z

28

Supported inorganic membranes  

DOE Patents (OSTI)

Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

1998-01-01T23:59:59.000Z

29

Basic Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Bacteria Basic Bacteria Name: Valerie Location: N/A Country: N/A Date: N/A Question: I'm doing a science project on bacteria. WHat I'm doing is washing forks with different dishwashing liquids, then wiping any remaining bacteria on to Agar petri dishes. Then incubating it and seeing which soap removed the most. My question is what kind of bacteria would be growing? and also do I just count the colonies to compare? and how long and at what temperature should I incubate this bacteria? Thank you very much for your time. I'll be looking forward to your response. Replies: The temperature is easy: 37 degrees C is optimal for many bacteria. The medium will determine which bacteria grow best. So if you don't see growth on one medium, but you see growth on another, it tells you that there is a difference in nutrients present in those media that is required for that bacteria. Look at your plates after 24 hr, then put them back in the incubator (keep them sterile) and look at them after 48 hrs--do you see the difference? any slow-growing bacteria visible or did the fast-growing take over the complete plate?

30

Sunspace basics  

DOE Green Energy (OSTI)

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01T23:59:59.000Z

31

Argonne CNM Highlight: Using Biomolecules to Guide Assembly of Inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Biomolecules to Guide Assembly of Inorganic Nanostructures Using Biomolecules to Guide Assembly of Inorganic Nanostructures Lee Makowski A number of potential methods might be useful in guiding the assembly of inorganic nanostructures. A key objective in this effort is the ability to specify the exact locations of different nanoparticles within a nanostructure, a capability that will be critical in designing and producing future nanodevices. Nanoparticles One technique discussed involves the possibility of using proteins to create a framework on which nanoparticles could then be attached at specified points. Some type of chemical processing could then be used to remove the organics after assembly. Attaching the inorganic particles to a protein framework might be accomplished using binding sites identified via "phage display" techniques where phage-displaying proteins with randomized surfaces are selected for an affinity to a desired inorganic material. The advantages of this method include the ability to isolate a single binding phage and then grow large quantities of it for characterization. A particularly advantageous type of protein for these constructs are diabodies, constructed from fragments of antibodies. These can incorporate binding sites identified through phage display and then be used to attach inorganic materials at preselected places on the protein framework.

32

Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse  

Science Conference Proceedings (OSTI)

Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

1997-08-01T23:59:59.000Z

33

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

34

Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign  

E-Print Network (OSTI)

One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

Karydis, V. A.

35

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

36

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

37

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

38

Hybrid Organic: Inorganic Materials for Alternative Energy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Hybrid Organic: Inorganic Materials for Alternative Energy. Sponsorship.

39

Lesson 1 Energy Basics ENERGY BASICS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying for a test. And all these require energy. To a scientist, "work" means something more exact. Work is causing a change. It can be a change in position, like standing up or moving clothes from the floor to the laundry basket. It can be a change in temperature, like heating water for a cup

40

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

42

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

43

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

44

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

45

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

46

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

47

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

48

Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report  

DOE Green Energy (OSTI)

Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

Goldman, J. C.

1981-04-01T23:59:59.000Z

49

The Molecular Foundry - Inorganic Nanostructures - Staff - Delia...  

NLE Websites -- All DOE Office Websites (Extended Search)

and soluble inorganic clusters. Visit The Milliron Research Group Current projects Nanocrystal synthetic development Our research aims to manipulate the properties of...

50

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

51

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

52

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

53

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

54

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

55

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

56

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

57

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

58

Energy Basics: Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Energy Basics Search Search Help Energy...

59

Basic Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center...

60

Energy Basics: Biodiesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Biodiesel Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

62

Development of inorganic membranes for gas separation  

DOE Green Energy (OSTI)

Hydrogen for commercial coal liquefaction processes may be provided by a coal gasification plant operated to maximize hydrogen production. Hydrogen is a major chemical requirement for coal liquefaction, and the use of liquefaction by-products such as mineral ash residue as feed to the gasifier can improve the overall process efficiency and economics. Also, recovery of hydrogen from gaseous streams in the coal liquefaction plant can have a significant impact on coal liquefaction process economics. In these hydrogen production scenarios, there is a need to improve the quality of the hydrogen produced by separating the other impurity gases from it. The DOE-Fossil Energy AR TD Materials Program is presently developing inorganic membranes for gas separation, including the recovery of valuable resources such as hydrogen from hot-gas streams. A summary of efforts to produce alumina membranes with mean pore radii <5 {angstrom} is presented as well as a status report on declassification of this important technology. 2 refs., 7 figs.

Egan, B.Z.; Fain, D.E.

1990-01-01T23:59:59.000Z

63

Inorganic dual-layer microporous supported membranes  

SciTech Connect

The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

Brinker, C. Jeffrey (14 Eagle Nest Dr. NE., Albuquerque, NM 87122); Tsai, Chung-Yi (6 Mount Vernon Dr., Apt. C, Vernon, CT 06066); Lu, Yungfeng (1055 N. Capital Ave., #20, San Jose, CA 95133)

2003-03-25T23:59:59.000Z

64

Basic principle of superconductivity  

E-Print Network (OSTI)

The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

Tian De Cao

2007-08-23T23:59:59.000Z

65

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

66

Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis  

DOE Green Energy (OSTI)

Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

Thorn, David [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

67

Inorganic Materials Chemistry Desk Reference, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Oct 23, 2006 ... The book begins with an introduction to various inorganic materials processes, followed by a glossary of terms commonly found in inorganic ...

68

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

69

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

70

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

71

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

72

Evolution strategies: basic introduction  

Science Conference Proceedings (OSTI)

This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters ... Keywords: evolution strategies

Thomas Bäck

2013-07-01T23:59:59.000Z

73

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

74

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

75

STATEMENT OF CONSIDERATIONS REQUEST BY MILLENNIUM INORGANIC CHEMICALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and National Laboratories. Millennium is leading a teaming arrangement including Exxon Mobil Research and Engineering and Sandia National Laboratory to enhance productivity...

76

Chemical Sciences, Geosciences, & Biosciences Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BES Chemical Sciences, Geosciences, and Biosciences Program SHARE BES Chemical Sciences, Geosciences, and Biosciences Program The Department of Energy's Office of Basic Energy...

77

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

78

Application of Oak Ridge Inorganic Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Inorganic Membrane Oak Ridge Inorganic Membrane Technology to Cat Cracker Recycle Gas Hydrogen* FINAL REPORT DOE FEW FEAC324 June 2003 L.D. Trowbridge *AKA: Application of Inorganic Membrane Technology to Hydrogen-Hydrocarbon Separations ORNL/TM-2003/139 Application of Inorganic Membrane Technology To Hydrogen-hydrocarbon Separations June 2003 Prepared by L. D. Trowbridge DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847)

79

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

80

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Basic Research for Hydrogen Production, Storage and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 DOE DOE - - BES Sponsored Workshop on BES Sponsored Workshop on Basic Research for Hydrogen Basic Research for Hydrogen Production, Storage and Use Production, Storage and Use Walter J. Stevens Walter J. Stevens Director Director Chemical Sciences, Geosciences, and Biosciences Division Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Basic Energy Sciences Workshop dates: May 13-15, 2003 A follow-on workshop to BESAC-sponsored workshop on "Basic Research Needs to Assure a Secure Energy Future" Basic Energy Sciences Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Workshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells

82

Inorganic nanotubes and electro-fluidic devices fabricated therefrom  

DOE Patents (OSTI)

Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

Yang, Peidong (Kensington, CA); Majumdar, Arunava (Orinda, CA); Fan, Rong (Pasadena, CA); Karnik, Rohit (Cambridge, MA)

2011-03-01T23:59:59.000Z

83

Source Apportionment of Airborne Particulate Matter using Inorganic and  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

84

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

85

Energy Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology...

86

NREL: Learning - Biofuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Basics Biofuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow it to be made from cellulose

87

NETL: Novel Inorganic/Polymer Composite Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Inorganic/Polymer Composite Membranes Novel Inorganic/Polymer Composite Membranes Project No.: DE-FE0007632 Ohio State University is developing a cost-effective design and manufacturing process for new membrane modules that capture carbon dioxide (CO2) from flue gas. The membranes consist of a thin, selective inorganic layer, embedded in a polymer structure so that it can be made in a continuous manufacturing process. They will be incorporated in spiral-wound modules for bench-scale tests using coal-fired flue gas. Preliminary cost calculations show that a single-stage membrane process is economically unfavorable, primarily because of the low concentration of CO2 (~14 percent) in the flue gas stream. A two-stage process is more economical, but requires plant operation with a CO2-enriched recycle stream.

88

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

89

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

90

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

91

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

92

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

93

Studies on the Effects of Inorganic Salts on Biochemical Treatment ...  

Science Conference Proceedings (OSTI)

Effects of two inorganic salts (sodium chloride and sodium sulphate) on biochemical ... Numerical Investigation of Heat Transfer Characteristics in Microwave ...

94

Electric Cell-impedance Spectroscopy at the Biological-inorganic ...  

Science Conference Proceedings (OSTI)

Presentation Title, Electric Cell-impedance Spectroscopy at the Biological- inorganic Interface, Shewanella Oneidensis - Gold, for Microbial Fuel Cell ...

95

Basic Energy Sciences at NREL  

DOE Green Energy (OSTI)

NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

Moon, S.

2000-12-04T23:59:59.000Z

96

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

97

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

98

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

99

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

100

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

102

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

103

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

104

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

105

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

106

Inorganic rechargeable non-aqueous cell  

DOE Patents (OSTI)

A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

Bowden, William L. (Nashua, NH); Dey, Arabinda N. (Needham, MA)

1985-05-07T23:59:59.000Z

107

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

108

Photocurable Inorganic-Organic Hydrogels for Biomedical Applications  

E-Print Network (OSTI)

There are two primary objectives of this dissertation research. The first objective was to prepare a library of inorganic-organic hydrogels from methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene oxide) (PEO-DA) with tunable chemical and physical properties for use as tissue engineering scaffolds. These inorganic-organic hydrogels provide a useful platform to study the effect of scaffold properties on cell behavior in tissue culture. Twenty compositionally unique hydrogels were prepared by photo-crosslinking varing molecular weights (Mn) of PEO-DA (Mn = 3.4k and 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 5k and 7k g/mol) at varying weight ratios (up to 20 wt% PDMSstar-MA). Introduction of PDMSstar-MA caused formation of discrete PDMS-enriched "microparticles" dispersed within the PEO hydrogel matrix. The swelling ratio, mechanical properties in tension and compression, non-specific protein adhesion and cytotoxicity of hydrogels were studied. The second objective was to prepare thermoresponsive nanocomposite hydrogels, which are mechanically robust and can remove adhered cells via thermal modulation. Such hydrogels may be useful as "self-cleaning" membranes for implanted biosensors to extend their lifetime and efficiency. These hydrogels are comprised of a poly(Nisopropylacrylamide) (PNIPAAm) hydrogel matrix and polysiloxane colloidal nanoparticles (~220 nm and 50 nm ave. diameter). Due to the low preparation temperature, the nanocomposite hydrogels exhibited a homogeneous morphology by SEM analysis. The volume phase transition temperature (VPTT, ~33 degrees C) of the nanocomposite hydrogels was not altered versus the pure PNIPAAm hydrogel, which is near body temperature. Generally, nanoparticles led to improve mechanical properties versus pure PNIPAAm hydrogels. When these nanocomposite hydrogels are heated above the VPTT, they become more hydrophobic. When they are reversibly switched from a water-swollen to a deswollen state, the change in surface properties, as well as swelling-deswelling, was effective upon the removal of adhered cells.

Hou, Yaping

2009-12-01T23:59:59.000Z

109

Basic Research for the Hydrogen Fuel Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Institution Project Title Category A: Novel Hydrogen Storage Materials Massachusetts Institute of Technology Theory and Modeling of Materials for Hydrogen Storage Washington University In Situ NMR Studies of Hydrogen Storage Systems University of Pennsylvania Chemical Hydrogen Storage in Ionic Liquid Media Colorado School of Mines Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures Georgia Institute of Technology First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides Louisiana Tech University Understanding the Local Atomic-Level Effect of Dopants In Complex Metal Hydrides Using Synchrotron X-ray Absorption

110

chemical (CHE) CHE overview programs available  

E-Print Network (OSTI)

. Enrollment by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statis- tics, random variables and random functions. Application to chemical, Fa) Basic concepts of chemical kinetics and chemical reactor design. Prerequisite: MATH 245. 443UnitOperationsofChemical

Wang, Hai

111

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

112

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

113

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

114

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

115

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

116

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

117

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

118

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

119

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

120

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL TECHNOLOGIES Industrial Energy Efficiency Basics More Additional Links Glossary of Energy-Related Terms Here you'll find a glossary of energy-related terms. Related...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BASIC PRINCIPLES OF SCINTILLATION COUNTING  

SciTech Connect

The basic principles of scintillation counting are reviewed. The design, performance, and operation of a placed on instruments ior medical uses. (C.H.)

Harris, C.C.; Hamblen, D.P.; Francis, J.E.

1959-12-10T23:59:59.000Z

122

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

123

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

124

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

125

Sponsors Reception for the American Chemical Society ...  

Science Conference Proceedings (OSTI)

... on long-term basic research industry needs ... uses federal-industry-university partnerships to ... including chemicals; electronics; energy, power, and ...

2010-10-05T23:59:59.000Z

126

Nanoporous Metal-Inorganic Materials for Storage and Capture ...  

Nanoporous Metal-Inorganic Materials for Storage and Capture of Hydrogen, Carbon Dioxide (CO2) and Other Gases Lawrence Berkeley National Laboratory

127

Development of Inorganic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

This paper presents information and data relative to recent advances in the development at Oak Ridge National Laboratory of porous inorganic membranes for high-temperature hydrogen separation. The Inorganic Membrane Technology Laboratory, which was formerly an organizational element of Bechtel Jacobs Company, LLC, was formally transferred to Oak Ridge National Laboratory on August 1, 2002, as a result of agreements reached between Bechtel Jacobs Company, the management and integration contractor at the East Tennessee Technology Park (formerly the Oak Ridge Gaseous Diffusion Plant or Oak Ridge K-25 Site); UT-Battelle, the management and operating contractor of Oak Ridge National Laboratory; and the U.S. Department of Energy (DOE) Oak Ridge Operations Office. Research emphasis during the last year has been directed toward the development of high-permeance (high-flux) and high-separation-factor metal-supported membranes. Performance data for these membranes are presented and are compared with performance data for membranes previously produced under this program and for membranes produced by other researchers. New insights into diffusion mechanisms are included in the discussion. Fifteen products, many of which are the results of research sponsored by the DOE Fossil Energy Advanced Research Materials Program, have been declared unclassified and have been approved for commercial production.

Bischoff, B.L.; Judkins, R.R.

2003-04-23T23:59:59.000Z

128

Development of Inorganic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

The purpose of this work is to improve the method of fabricating tubular metal supported microporous inorganic membranes. Earlier work focused on the original development of inorganic membranes for the purification of hydrogen. These membranes are now being scaled up for demonstration in a coal gasification plant for the separation of hydrogen from coal-derived synthesis gas for a project funded by the Office of Fossil Energy's Gasification and Coal Fuels programs [1]. This project is part of FutureGen, an initiative to build the world's first integrated sequestration and hydrogen production research power plant. Although previous work in the Advanced Research Materials Program project led to development of a tubular metal supported microporous membrane which was approved by the Department of Energy for testing, the membranes generally have lower than desired selectivities for hydrogen over other gases common in synthesis gas including carbon dioxide. The work on this project over three years will lead to general improvements in fabrication techniques that will result in membranes having higher separation factors and higher fluxes. Scanning electron microscopy and profilometry data will be presented to show qualitatively and quantitatively the surface roughness of the support tubes. We will discuss how the roughness affects membrane quality and methods to improve the quality of the support tube surface.

Bischoff, Brian L [ORNL; Adcock, Kenneth Dale [ORNL; Powell, Lawrence E [ORNL; Sutton, Theodore G [ORNL; Miller, Curtis Jack [ORNL

2007-01-01T23:59:59.000Z

129

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

130

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

131

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

132

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

133

Basic EETD Web Page Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic EETD Web Page Design Speaker(s): Eve Edelson Date: May 27, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Allan Chen This talk will provide information...

134

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

135

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

136

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

137

Microporous Inorganic Membranes for Hydrogen Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Microporous Microporous Inorganic Membranes for Hydrogen Purification Brian L. Bischoff, Roddie R. Judkins, and Timothy R. Armstrong Oak Ridge National Laboratory Presented at: DOE Workshop on Hydrogen Separations and Purification Technologies Arlington, Virginia September 8, 2004 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Hydrogen Separation Membranes * Non-Porous - Palladium based films - Ion transport membranes * Porous - Ordered microporous membranes (IUPAC Recommendations 2001), e.g. zeolite membranes - Microporous membranes 3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Microporous Membranes * IUPAC defines micropores as pores smaller than 2nm in diameter * Generally a microporous membrane is made by applying 1 to 3 thin layers to a porous support * Porous support can be ceramic or metallic

138

Chemically modified electrodes: molecular design for electroanalysis  

Science Conference Proceedings (OSTI)

Electrochemical methods traditionally have found important applications in sample analysis and organic and inorganic synthesis. The electrode surface itself can be a powerful tool. This article is an update of chemically modified electrodes (CMEs) and rational molecular design of electrode surfaces.

Murray, R.W.; Ewing, A.G.; Durst, R.A.

1987-03-01T23:59:59.000Z

139

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

140

Discrete Thermodynamics of Chemical Equilibria  

E-Print Network (OSTI)

The paper sets forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTD), developed by the author during the last decade and spread over series of publications. Based on the linear equations of irreversible thermodynamics, De Donder's definition of the thermodynamic force, and the Le Chatelier principle, DTD brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces, acting against a chemical system. The basic expression of DTD is a logistic map that ties together energetic characteristics of the chemical transformation in the system, its deviation from true thermodynamic equilibrium, and the sum of thermodynamic forces, causing that deviation. System deviation from thermodynamic equilibrium is the major variable of the theory. Solutions to the basic map define the chemical system domain of states comprising bifurcation diagrams with four areas, from true thermodynamic equilibrium to chaos, having specific distinctive meaning for chemica...

Zilbergleyt, B

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chemical Biodynamics Division. Annual report 1979  

DOE Green Energy (OSTI)

The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

Not Available

1980-08-01T23:59:59.000Z

142

Biodiesel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Basics Biodiesel Basics Biodiesel Basics July 30, 2013 - 2:43pm Addthis Looking for Biodiesel stations? Checkout the Alternative Fuels Data Center station locator. Biodiesel station locator Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What is Biodiesel? Biodiesel is a liquid fuel made up of fatty acid alkyl esters, fatty acid methyl esters, or long-chain mono alkyl esters. It is produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to fuel compression-ignition (diesel) engines. B20, which is 20% biodiesel and 80% petroleum diesel, is

143

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

144

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

145

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

146

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

147

The Molecular Foundry - Inorganic Nanostructures - Staff Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

of the American Chemical Society 130 (11), 3294 (2008). pdf G. Han, T. Mokari, C. Ajo-Franklin and B. Cohen, "Caged Quantum Dots", J. Am. Chem. Soc., 130 (47), 15811-15813 (2008...

148

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

149

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

150

www.eia.gov  

U.S. Energy Information Administration (EIA)

Carbon Black Other Basic Inorganic Chemicals ... Fruit and Vegetable Preserving and Specialty Foods 3115 Dairy Products 3116 Animal Slaughtering and ...

151

DIY BASICS CHECKLIST DRIPS AND LEAKS  

E-Print Network (OSTI)

DIY BASICS CHECKLIST DRIPS AND LEAKS Watercancauseseriousdamage- oftenunseen. Drillbits. Tapemeasure. Spiritlevel. Start off small. Collect a basic tool kit. There's plenty of DIY info'tdrillintomortarbetweenbricks. #12;DIY BASICS CHECKLIST Location Twopeoplemakethisamuch easierjob. Cutasheetofpapertothesize

Peters, Richard

152

FCT Safety, Codes and Standards: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

by E-mail Share FCT Safety, Codes and Standards: Basics on Facebook Tweet about FCT Safety, Codes and Standards: Basics on Twitter Bookmark FCT Safety, Codes and Standards: Basics...

153

Solid-State Lighting: SSL Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: SSL Basics to someone by E-mail Share Solid-State Lighting: SSL Basics on Facebook Tweet about...

154

Solid-State Lighting: LED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: LED Basics to someone by E-mail Share Solid-State Lighting: LED Basics on Facebook Tweet...

155

Modelling the chemical evolution  

E-Print Network (OSTI)

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.

Hensler, Gerhard

2010-01-01T23:59:59.000Z

156

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater...

157

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

158

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

159

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

160

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics This training covers the basics of using the REScheck(tm) software, and is geared toward the beginning user. Estimated Length: 1 hour, 8 minutes Presenters: Rosemarie...

162

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

163

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Basics for Sustainability on Facebook Tweet about Federal Energy...

164

Geothermal Electricity Production Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in...

165

Polyelectrolyte multilayers as nanostructured templates for inorganic synthesis  

E-Print Network (OSTI)

Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an important class of materials with potential application in optoelectronics and photonics, ...

Wang, Tom Chih-Hung, 1973-

2002-01-01T23:59:59.000Z

166

Argonne CNM News: Graphene Decoupling of Organic/Inorganic Interfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene Decoupling of OrganicInorganic Interfaces C60 monolayer STM three-dimensional rendered image of a C60 self-assembled monolayer at a domain boundary of graphene and bare...

167

Clean Cities: Clean Cities Coordinator Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

168

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

169

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

170

Microhydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce energy, "run-of-the-river systems," which do not require large storage reservoirs, are most often used for microhydropower systems. Illustration of an example microhydropower system. A river flows down from some hills. The river first flows through an intake, which is indicated as two white walls on each side of the river. The intake diverts water to a canal. From the canal, the water travels to a forebay, which looks like a white, rectangular, aboveground pool. A pipeline, called a penstock, extends from the forebay to a building, called the powerhouse. You can see inside the powerhouse, which contains a turbine and other electric generation equipment. The water flows in and out of the powerhouse, returning to the river. Power lines also extend from the powerhouse, along and through two electrical towers, to a house that sits near the river's edge.

171

Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures  

DOE Green Energy (OSTI)

Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

2005-07-27T23:59:59.000Z

172

Vehicle Technologies Office: Just the Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Just the Basics to Just the Basics to someone by E-mail Share Vehicle Technologies Office: Just the Basics on Facebook Tweet about Vehicle Technologies Office: Just the Basics on Twitter Bookmark Vehicle Technologies Office: Just the Basics on Google Bookmark Vehicle Technologies Office: Just the Basics on Delicious Rank Vehicle Technologies Office: Just the Basics on Digg Find More places to share Vehicle Technologies Office: Just the Basics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Just the Basics Technology Overviews Biodiesel Combustion Diesel Engine Hybrid and Plug-in Electric Vehicles Ethanol Fuel Cells Hydrogen Liquefied Petroleum Gas (Propane)

173

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

174

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

175

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

176

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

177

Chemical Sciences Division annual report 1994  

SciTech Connect

The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

NONE

1995-06-01T23:59:59.000Z

178

Inorganic Polymer Derived Ceramic Membranes 2  

Science Conference Proceedings (OSTI)

Ceramic porous membranes capable of molecular sieving represent a promising alternative to energy-intensive distillation or cryogenic separation technologies used for processes such as purification of natural gas, air separation, and flue gas cleanup. Such membranes, fabricated at laboratory scale as part of this study, are capable of operating at temperatures as high as 200 degrees Celsius and can withstand harsh chemical environments and aggressive cleaning after fouling. Their selectivity factors and ...

2001-11-14T23:59:59.000Z

179

Basic photovoltaic principles and methods  

DOE Green Energy (OSTI)

This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

Hersch, P.; Zweibel, K.

1982-02-01T23:59:59.000Z

180

Chemical Innovation in Drug Dr Matthew Fuchter  

E-Print Network (OSTI)

Chemical Innovation in Drug Discovery Dr Matthew Fuchter Lecturer in Synthetic and Medicinal&D Spending and Output #12;Chemical Innovation Impact Discovery Development Basic research: years 0-3 Pre 3, File DRUG Chemical start point Hit to lead Preclinical Assessment Synthetic Chemistry Chemistry

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliersÂ’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

182

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

183

Continuum computational methods to study chemical problems in solution  

Science Conference Proceedings (OSTI)

Computational methods using the continuum approximation to describe chemical problems in solution are reviewed. The various computational strategies thus far proposed for the basic model

J. Tomasi

1995-01-01T23:59:59.000Z

184

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

185

New Thermodynamic Paradigm of Chemical Equilibria  

E-Print Network (OSTI)

The paper presents new thermodynamic paradigm of chemical equilibrium, setting forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTd). Along with previous results by the author during the last decade, this work contains also some new developments of DTd. Based on the Onsager's constitutive equations, reformulated by the author thermodynamic affinity and reaction extent, and Le Chatelier's principle, DTd brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces (TdF), acting against a chemical system. Basic expression of DTd is the chemical system logistic map of thermodynamic states that ties together energetic characteristics of chemical reaction, occurring in the system, the system shift from "true" thermodynamic equilibrium (TdE), and causing that shift external thermodynamic forces. Solutions to the basic map are pitchfork bifurcation diagrams in coordinates "shift from TdE - growth factor (or TdF)"; points, corresponding to the ...

Zilbergleyt, B

2011-01-01T23:59:59.000Z

186

Selective Recovery of Enriched Uranium from Inorganic Wastes  

SciTech Connect

Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

Kimura, R. T.

2003-02-26T23:59:59.000Z

187

Chemical Transformations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Chemical Transformations Chemical Transformations Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Chemical Transformations Print Text Size: A A A RSS Feeds FeedbackShare Page Research themes include the characterization, control, and optimization of chemistry in many forms. Catalysis science underpins the design of new catalytic methods for the clean and efficient production of fuels and chemicals and emphasizes inorganic and organic complexes; interfacial chemistry, nanostructured and supramolecular catalysts, photocatalysis and electrochemistry, and bio-inspired catalytic processes. Heavy element

188

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

189

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

190

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

191

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

192

Solar Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar...

193

Basic Research Needs for the Hydrogen Economy  

Fuel Cell Technologies Publication and Product Library (EERE)

The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

194

Energy Basics: Microhydropower Water Conveyance and Filters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

195

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

196

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

197

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

198

Energy Basics: Linear Concentrator Systems for Concentrating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

199

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

200

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

202

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

203

Microsoft VisualBasic.Net Professional Projects  

Science Conference Proceedings (OSTI)

From the Publisher:Incorporating five hands-on projects, Microsoft Visual Basic .NET Professional Projects is your key to unlocking the power of Visual Basic .NET. Each project focuses on a specific Visual Basic .NET concept and is based on a real-world ...

Kuljit Kaur; Pooja Bembey

2002-04-01T23:59:59.000Z

204

Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition, Limnol  

E-Print Network (OSTI)

The concept that the formation ofCnC0, coccoliths functions as a photosynthetic adaptation for the use of bicarbonate is evaluated in the coccolithophorids Coccoliths hudeyi and Cricosphneru carterae by two new methods. In the first, carbon fixation is measured at 10-s intervals in the first 2 min after addition of “CO, and II’“CO,- to buffered cultures; this method exploits the relatively long half-time for the hydration or dehydration of dissolved COP. In the second, shifts in pH and alkalinity resulting from carbon fixation by cells growing in liqllid culture are assessed to indicate fluxes of COz and HC03- into cells and these values compared to measurements of l”C incorporation in photosynthesis and carbonate deposition. The data are interpreted in terms of one of several net inorganic reactions of deposition considered. In this reaction, CO, is the substrate of photosynthesis and HCO,- is the form of carbon supplied to the calcification site. CO, resulting from carbonate deposition supplements the COz from the medium that diffuses into cells as a source of carbon for photosynthesis. The relationship between photosynthesis and calcification has received considerable attention (see Darlcy 1974; Borowitzka and Larkum 1976; Pentecost 1978). Although calcification is clearly stimulated by light, a direct link to photosynthesis has been difficult to establish. An early hypothesis held that both processes depended on a common supply of IICO13- from the medium (Lewin 1962):

C. Stewn Sikes; Robert D. Row; Karl M. Wilbur

1980-01-01T23:59:59.000Z

205

Chemical Sciences Division: Annual report 1992  

Science Conference Proceedings (OSTI)

The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

Not Available

1993-10-01T23:59:59.000Z

206

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

207

Inorganic lead (Pb)- and mercury (Hg)-induced neuronal cell death involves cytoskeletal reorganization  

E-Print Network (OSTI)

Inorganic lead and mercury are widely spread xenobiotic neurotoxicants threatening public health. The exposure to inorganic lead and mercury results in adverse effects of poisoning including IQ deficit and peripheral neuropathy. Additionally, inorganic neurotoxicants have even more serious impact on earlier stages of embryonic development. This study was therefore initiated in order to determine the cytotoxic effects of lead and mercury in earlier developmental stages of chick embryo. Administration of inorganic lead and mercury into the chick embryo resulted in the prolonged accumulation of inorganics in the neonatal brain, with detrimental cytotoxicity on neuronal cells. Subsequent studies demonstrated that exposure of chick embryo to inorganic lead and mercury resulted in the reorganization of cytoskeletal proteins in the neonatal brain. These results therefore suggest that inorganics-mediated cytoskeletal reorganization of the structural proteins, resulting in neurocytotoxicity, is one of the underlying mechanisms by which inorganics transfer deleterious effects on central nervous system.

Woo-sung Choi; Su-jin Kim; Jin Suk Kim

2011-01-01T23:59:59.000Z

208

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network (OSTI)

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

209

Argonne Chemical Sciences & Engineering - People - Catalysis and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Projects Support Electrochemical Projects Support Walter F. Podolski, Chemical Engineer and Group Leader phone: 630/252-7558, fax: 630/972-4430, podolski@anl.gov Ph.D., Chemical Engineering, Northwestern University Technical contract management and support of research, development, and demonstration of fuel-cell-powered vehicles Thomas G. Benjamin, Chemical Engineer phone: 630/252-1632, fax: 630/252-4176, e-mail: benjamin@anl.gov BS, MS Chemical Engineering, University of Connecticut MBA University of Chicago Polymer electrolyte membrane fuel cells Hydrogen storage William L. Cleary, Mechanical Engineer, Project Manager phone: 202/506-1570 e-mail: bill.cleary@ee.DOE.gov John Kopasz, Inorganic Chemist phone : 630/252-7531, fax : 630/972-4405, e-mail: kopasz@anl.gov Ph.D., Inorganic Chemistry, State University of New York at Buffalo

210

Basic Energy SciencesBasic Energy Sciences DOE Hydrogen and Fuel Cells  

E-Print Network (OSTI)

" #12;Basic Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and UseWorkshop on Hydrogen Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

211

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network (OSTI)

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

212

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

213

Frequency Regulation Basics and Trends  

DOE Green Energy (OSTI)

The electric power system must address two unique requirements: the need to maintain a near real-time balance between generation and load, and the need to adjust generation (or load) to manage power flows through individual transmission facilities. These requirements are not new: vertically integrated utilities have been meeting them for a century as a normal part of conducting business. With restructuring, however, the services needed to meet these requirements, now called ''ancillary services'', are being more clearly defined. Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) has defined such services as those ''necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system''. This statement recognizes the importance of ancillary services for both bulk-power reliability and support of commercial transactions. Balancing generation and load instantaneously and continuously is difficult because loads and generators are constantly fluctuating. Minute-to-minute load variability results from the random turning on and off of millions of individual loads. Longer-term variability results from predictable factors such as the daily and seasonal load patterns as well as more random events like shifting weather patterns. Generators also introduce unexpected fluctuations because they do not follow their generation schedules exactly and they trip unexpectedly due to a range of equipment failures. The output from wind generators varies with the wind. Storage technologies should be ideal suppliers of several ancillary services, including regulation, contingency reserves (spinning reserve, supplemental reserve, replacement reserve), and voltage support. These services are not free; in regions with energy markets, generators are paid to supply these services. In vertically integrated utilities (without energy markets) the utility incurs significant costs to supply these services. Supplying these services may be a significant business opportunity for emerging storage technologies. This report briefly explores the various ancillary services that may be of interest to storage. It then focuses on regulation, the most expensive ancillary service. It also examines the impact that increasing amounts of wind generation may have on regulation requirements, decreasing conventional regulation supplies, and the implications for energy storage.

Kirby, BJ

2005-05-06T23:59:59.000Z

214

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

215

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

216

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

217

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

218

Basic Performance Measures for Technology Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measures for Technology Projects Basic Performance Measures for Technology Projects A white paper to provide guidance for project teams in the identification of performance...

219

Active Solar Heating Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Active Solar Heating Linear Concentrator System Basics for Concentrating Solar Power Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

220

International Vocabulary of Metrology – Basic and General ...  

Science Conference Proceedings (OSTI)

Page 1. JCGM/WG 2 Document N318 1/127 International Vocabulary of Metrology – Basic and General Concepts and Associated ...

2010-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

222

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen and Fuel Cell Technologies Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the...

223

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

224

NREL: Concentrating Solar Power Research - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

225

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

226

The Relationship Between Basic and Improvement Patents  

Science Conference Proceedings (OSTI)

... of an improvement, the entire disclosure of the basic patent is reviewed in order ... the patented invention); it does not give the patentee the right to practice the ...

227

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability Graphic of the eTraining logo Training Available Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to...

228

Radiolabelling of chemicals. [Chemical additives used in geothermal operations  

DOE Green Energy (OSTI)

Labeling of chemical additives with radioactive isotopes can solve numerous problems in geothermal operations. The physical and chemical behavior of many chemicals slated for geothermal operations can be studied with the required detail at the extremely low concentration of the commercially available (non-labeled) compounds. The problems of labeling and the basics of these radioactively labeled chemicals are described in this report. Conclusions of this study are: (1) chemicals labeled with radioactive isotopes can be used to investigate the chemical and physical behavior of chemical additives used in geothermal operations. The high detection limits make this technology superior to conventional analytical and monitoring methods; (2) severe difficulties exist for utilizing of radioactively labeled chemicals in geothermal operations. The labeling itself can cause technical problems. Another host of problems is caused by the reluctance of chemical manufacturers to release the necessary proprietary information on their chemicals required for proper labeling; and (3) previous attempts to manufacture radioactively labeled flocculants and to utilize them in a geothermal operation were prematurely abandoned for a number of reasons.

Vetter, O.J.; Kandarpa, V.

1982-06-22T23:59:59.000Z

229

7th International Symposium on Inorganic Phosphate Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

ISIPM7 Home ISIPM7 Home About ISIPM7 Conference Brochure Organizers Scientific Committee Proceedings Sponsors Speakers Exhibitors Program Call for Abstracts & Posters Registration Hotels Maps Bus Schedule Contact Us isipm7 header About the Conference It is a great pleasure for the organizing committee of the 7th International Symposium on Inorganic Phosphate Materials (ISIPM7) to invite all who are interested in the design and development of inorganic phosphate materials with applications in various domains of modern technology including energy storage, biomaterials, storage of waste, catalysis, and optics. Read more » Dates to Remember July 18 - Abstracts due (new) July 18 - Registration opens July 25 - Paper and poster acceptance (new) October 17 - Final registration and payment due

230

Vacuum pyrolysis of waste tires with basic additives  

Science Conference Proceedings (OSTI)

Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

Zhang Xinghua [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China); Wang Tiejun [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China)], E-mail: wangtj@ms.giec.ac.cn; Ma Longlong; Chang Jie [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 610540 (China)

2008-11-15T23:59:59.000Z

231

Study of nonproportionality in the light yield of inorganic scintillators  

SciTech Connect

Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a {gamma}-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHSE, Charles Darwin University, Darwin, Northern Territory 0909 (Australia)

2011-07-15T23:59:59.000Z

232

Identifying Optimal Inorganic Nanomateirals for Hybrid Solar Cells  

DOE Green Energy (OSTI)

As a newly developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest because of the combined advantages from both components. An ideal inorganic acceptor should have a band gap of about 1.5 eV and energy levels of frontier orbitals matching those of the organic polymer in hybrid solar cells. Hybrid density functional calculations are performed to search for optimal inorganic nanomaterials for hybrid solar sells based on poly(3-hexylthiophene) (P3HT). Our results demonstrate that InSb quantum dots or quantum wires can have a band gap of about 1.5 eV and highest occupied molecular orbital level about 0.4 eV lower than P3HT, indicating that they are good candidates for use in hybrid solar cells. In addition, we predict that chalcopyrite MgSnSb{sub 2} quantum wire could be a low-cost material for realizing high-efficiency hybrid solar cells.

Xiang, H.; Wei, S. H.; Gong, X. G.

2009-01-01T23:59:59.000Z

233

Beginning Visual Basic 2010, 1st edition  

Science Conference Proceedings (OSTI)

This book is designed to teach you how to write useful programs in Visual Basic 2010 as quickly and easily as possible. There are two kinds of beginners for whom this book is ideal: You're a beginner to programming and you've chosen Visual Basic 2010 ...

Thearon Willis; Bryan Newsome

2010-03-01T23:59:59.000Z

234

Fuel cell electrolyte membrane with basic polymer  

DOE Patents (OSTI)

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2010-11-23T23:59:59.000Z

235

Liquefied Natural Gas: Understanding the Basic Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts More Documents &...

236

Basic Research for the Hydrogen Fuel Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative More Documents & Publications...

237

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

238

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

239

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

240

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

242

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

243

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

244

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

245

Solar Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resource Basics Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource. Basic Principles Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth's surface varies according to: Geographic location Time of day Season Local landscape Local weather. Because the Earth is round, the sun strikes the surface at different

246

Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Basics System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the power output of PV cells, they are connected together to form larger units called modules. Modules, in turn, can be connected to form even larger units called arrays, which can be interconnected to produce more power, and so on. In this way, PV systems can be built to meet almost any electric power need, small or large. Illustration of solar cells combined to make a module and modules combined to make an array. The basic PV or solar cell produces only a small amount of power. To produce more power, cells can be interconnected to

247

Greenhouse Gas Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

248

Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Instructor Training Basic Instructor Training Basic Instructor Training December 5, 2013 - 12:03pm Addthis The Emergency Operations Training Academy, NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce site certification by the National Training Center for conduct of the Basic Instructor Training class. This one -week, 40 hour course is offered to ensure the quality and consistency of classroom instruction provided at Department of Energy facilities nationwide. The purpose is to equip DOE federal and contractor instructors with best methods and techniques and deliver instruction and practice in classroom activitives that promote student success. The Emergency Operations Training Academy will be offering this class three (3) times per year starting in 2014.

249

Photovoltaic Cell Structure Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Structure Basics Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are: Homojunction Devices Crystalline silicon is the primary example of this kind of cell. A single material-crystalline silicon-is altered so that one side is p-type, dominated by positive holes, and the other side is n-type, dominated by negative electrons. The p/n junction is located so that the maximum light is absorbed near it. The free electrons and holes generated by light deep in the silicon diffuse to the p/n junction and then separate to produce a current if the silicon is of sufficiently high quality. In this homojunction design, these aspects of the cell may be varied to

250

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Electricity Basics 2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity. Topcis addressed include: Basics of electricity Generating electricity Using steam, turbines, generator Similarities of power plants Distributing Electricity Generation Transmission Distribution Power grid

251

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

252

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps...

253

NREL: Learning - Energy Delivery and Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Delivery and Storage Basics Helping secure a clean energy future for the nation and the world isn't just about reducing energy usage or producing clean energy. It is about...

254

Basic Research Needs for Countering Terrorism  

SciTech Connect

To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism

Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; David Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

2002-03-01T23:59:59.000Z

255

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

256

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

257

NREL: Learning - Concentrating Solar Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a...

258

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

259

Active Solar Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

260

Thermodynamically predicted oscillations in closed chemical systems  

E-Print Network (OSTI)

All known up to now models of chemical oscillations are based exclusively on kinetic considerations. The chemical gross-process equation is split usually by elementary steps, each step is supplied by an arrow and a differential equation, joint solution to such a construction under certain, often ad hoc chosen conditions and with ad hoc numerical coefficients leads to chemical oscillations. Kinetic perception of chemical oscillations reigns without exclusions. However, as it was recently shown by the author for the laser and for the electrochemical systems, chemical oscillations follow also from solutions to the basic expressions of discrete thermodynamics of chemical equilibria. Graphically those solutions are various fork bifurcation diagrams, and, in certain types of chemical systems, oscillations are well pronounced in the bistable bifurcation areas. In this work we describe a general thermodynamic approach to chemical oscillations as opposite to kinetic models, and depict some of their new features like s...

Zilbergleyt, B

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Low-melting point inorganic nitrate salt heat transfer fluid  

DOE Patents (OSTI)

A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

2009-09-15T23:59:59.000Z

262

Coal liquefaction in an inorganic-organic medium  

SciTech Connect

Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl.sub.2 catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl.sub.2 and is a hydroaromatic hydrocarbon, selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

Vermeulen, Theodore (Berkeley, CA); Grens, II, Edward A. (Danville, CA); Holten, Ronald R. (El Cerrito, CA)

1982-01-01T23:59:59.000Z

263

Solid state radioluminescent sources: Mixed organic/inorganic hybrids  

Science Conference Proceedings (OSTI)

This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments. 12 refs., 2 figs., 1 tab.

Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Smith, H.M. (Allied-Signal, Inc., Kansas City, MO (USA))

1990-01-01T23:59:59.000Z

264

Automated process for solvent separation of organic/inorganic substance  

DOE Patents (OSTI)

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

Schweighardt, Frank K. (Upper Macungie, PA)

1986-01-01T23:59:59.000Z

265

Automated process for solvent separation of organic/inorganic substance  

DOE Patents (OSTI)

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

Schweighardt, F.K.

1986-07-29T23:59:59.000Z

266

Carbons for battery anodes prepared using inorganic templates  

DOE Green Energy (OSTI)

Unique carbons with demonstrated utility as anodes for lithium secondary batteries have been prepared by heating hydrocarbons within an inorganic template. Disordered carbons with novel and desirable molecular porosity were synthesized by the pyrolysis of pyrene at 700 C within a pillared clay. The clay was removed by treatment with acid, leaving behind carbons with 15 to 50 {angstrom} holes. These holey carbons, when converted into electrodes, allow rapid diffusion of the lithium into and out of a carbon. Favorable results have been obtained in several tests, for example, a reversible capacity of 825 mAh/g has been achieved, about four times greater than commercial batteries using convention pyrolytic carbon.

Winans, R.E.; Carrado, K.A.; Sandi, G. [Argonne National Lab., IL (United States). Chemistry Div.

1997-07-01T23:59:59.000Z

267

Argonne CNM News: New inorganic semiconductor layers hold promise for solar  

NLE Websites -- All DOE Office Websites (Extended Search)

New inorganic semiconductor layers hold promise for solar energy New inorganic semiconductor layers hold promise for solar energy Inorganic surface ligands Inorganic surface ligands enable facile electron transport between quantum dots and opened novel opportunities for using nanostructures in solar cells. Inorganic dot array Arrays of quantum dots allow fabrication of solar cells by printing and other inexpensive techniques. A team of users from the University of Chicago, working with the NanoBio Interfaces Group, has demonstrated a method that could produce cheaper semiconductor layers for solar cells. The inorganic nanocrystal arrays, created by spraying a new type of colloidal "ink," have excellent electron mobility and could be a step toward addressing fundamental problems with current solar technology.

268

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

269

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

270

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

271

Study on Heteropolyacids/Ti/Zr Mixed in the Inorganic Composites ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion/Fuel Cells. Presentation Title, Study on Heteropolyacids/Ti/Zr Mixed in the Inorganic Composites for Fuel Cell Electrolytes.

272

ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX  

SciTech Connect

The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

2011-03-31T23:59:59.000Z

273

An Introduction to Basic Laboratory Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

hood chemical safety codes cover slip dialysis tubing dissection scope* eye goggles eye wash station filter paper finger bowl fire extinguisher flask glass marker gloves graduated...

274

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

275

Geothermal Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Basics Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). So, like a cave's, the ground's temperature is warmer than the air above it during winter and cooler than the air above it in summer. Geothermal heat pumps take advantage of this by exchanging heat with the earth through a ground heat exchanger. Geothermal heat pumps are able to heat, cool, and, if so equipped, supply

276

Small Space Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

277

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

278

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

279

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

280

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

282

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

283

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Basics Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

284

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

285

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

286

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

287

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

288

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

289

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

290

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

291

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

292

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

293

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

294

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

295

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

296

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

297

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

298

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

299

Photovoltaic System Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance Basics System Performance Basics Photovoltaic System Performance Basics August 20, 2013 - 4:17pm Addthis Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of its components. Reliability The reliability of PV arrays is an important factor in the cost of PV systems and in consumer acceptance. However, the building blocks of arrays, PV cells, are considered "solid-state" devices with no moving parts and, therefore, are highly reliable and long-lived. Therefore, reliability measurements of PV systems are usually focused not on cells but on modules and whole systems. Reliability can be improved through fault-tolerant circuit design, which

300

Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode (or anode) and a positive electrode (or cathode)-sandwiched around an electrolyte. A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

302

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

303

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

304

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

305

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

306

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

307

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

308

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Technology Basics Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

309

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

310

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

311

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

312

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

313

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

314

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

315

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

316

Photovoltaic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Basics Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches across. They are often connected together to form PV modules that may be up to several feet long and a few feet wide. Modules, in turn, can be combined and connected to form PV arrays of different sizes and power output. The modules of the array make up the major part of a PV system, which can also include electrical connections,

317

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

318

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

319

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

320

Water Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Water Efficiency Basics October 7, 2013 - 2:38pm Addthis Training Available Graphic of the eTraining logo Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping,

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

322

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

323

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

324

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

325

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

326

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

327

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

328

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

329

Argonne Chemical Sciences & Engineering - Fundamental Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

* Chemical Dynamics * Chemical Dynamics * Solar Conversion Fundamental Interactions flame photosynthesis icon Chemical Dynamics Work focuses on theoretical and experimental investigation of the thermochemistry, dynamics, and kinetics of chemcial reactions in the gas phase, with a particular emphasis on reactions that are important to understanding combusion. Solar Conversion Work focuses on developing a fundamental understanding of structure-function relationships in biological photosynthesis and establishing principles for the design of biomimetic systems for solar energy conversion. Current funding for this work comes primarily from the Department of Energy Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divisions. April 2011

330

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

331

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

332

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

333

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

334

Physicochemical phenomena of electro-kinetic extraction of inorganic contaminants from kaolinite  

E-Print Network (OSTI)

Experiments investigating the use of electro-kinetics for removal of inorganic chemicals from kaolinite clay were performed. Kaolinite was homogeneously saturated with a NaCl solution and consolidated to the desired void ratio. Fluid reservoir chambers, a power supply and data acquisition instrument were connected to the consolidated sample. A voltage difference was applied to electrodes at each end of the sample to induce electro-osmotic fluid flow and ionic migration of NaCl. After electro-kinetic treatment the sample was disconnected from the reservoirs, power supply and data acquisition system, then sectioned to allow water content, sodium and chloride concentration, and pH analyses of each section. The data obtained was reduced and prepared in graph form for analysis of results. Energy for electrolysis, total energy expended, and removal efficiency were calculated and graphed for selected experiments. It was concluded that the voltage gradient became non-linear during experimentation, contaminant distribution was dependent on initial concentration, and zones of altered pH and ion removal did correspond in some experiments. Also, the removal efficiency decreased with time during experimentation and increased with intial contaminant concentration. Comparisons to a predictive model suggested that ionic mobility and dissusivity values varied between experiments and the model.

Scott, Travis Brooks

1994-01-01T23:59:59.000Z

335

Optical Basicity and Nepheline Crystallization in High Alumina Glasses  

SciTech Connect

The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

2011-02-25T23:59:59.000Z

336

NPTEL Syllabus Basic Electrical Circuits -Video course  

E-Print Network (OSTI)

with an introduction to basic linear elements used in electrical circuits. Mesh and node analysis for systematic and energy in circuits will be discussed. Rudiments of three-phase circuits and their analysis; Energy in a mutual inductor and constraint on mutual inductance 5 Nodal analysis of a network

Krishnapura, Nagendra

337

Basics about CIM technology and key  

E-Print Network (OSTI)

Basics about CIM® technology and key applications Ales Strancar March, 2011 #12;Leaders in Monolith monolithic technology (CIM®). 4 USA patents granted including their foreign equivalents, more pending. #12;Important Milestones · 2002: First Drug Master File (DMF) for CIM® DEAE supports. · 2002: Pass first FDA

Lebendiker, Mario

338

MCSD TestPrep: Visual Basic 6  

Science Conference Proceedings (OSTI)

From the Publisher:MCSD TestPrep: Visual Basic 6 provides study questions, in-depth and focused review, and test-taking strategies. Chapters are organized by the objective areas on the exam. Individual objective sections open with an explanation ...

David Panagrosso; Owen Williams; Mary Foote

1998-12-01T23:59:59.000Z

339

ams2000.com Stepper Motor System Basics  

E-Print Network (OSTI)

. STEPPING MOTORS TYPES OF STEPPING MOTORS VARIABLE RELUCTANCE PERMANENT MAGNET HYBRID MOTOR WINDINGS motor with the magnetic field electronically switched to rotate the armature magnet around. A Stepping MOTORS There are basically three types of stepping motors; variable reluctance, permanent magnet

Bechtold, Jill

340

Basic Use of the OWL Grade Book  

E-Print Network (OSTI)

Basic Use of the OWL Grade Book #12;Notes Overview The Grade Book tool provides an easy and convenient way for instructors to manage grades and distribute them to students. Using the Grade Book. This handout will show you how to: · Access the Grade Book · Create a column in the Grade Book · Add

Lennard, William N.

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Basic Solar Energy Research in Japan (2011 EFRC Forum)  

DOE Green Energy (OSTI)

Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Domen, Kazunari (University of Tokyo)

2011-05-26T23:59:59.000Z

342

Application of Inorganic Membrane Technology to Hydrogen-hydrocarbon Separations  

DOE Green Energy (OSTI)

Separation efficiency for hydrogen/light hydrocarbon mixtures was examined for three inorganic membranes. Five binary gas mixtures were used in this study: H{sub 2}/CH{sub 4} , H{sub 2}/C{sub 2}H{sub 6}, H{sub 2}/C{sub 3}H{sub 8}, He/CO{sub 2}, and He/Ar. The membranes examined were produced during a development program at the Inorganic Membrane Technology Laboratory in Oak Ridge and provided to us for this testing. One membrane was a (relatively) large-pore-diameter Knudsen membrane, and the other two had much smaller pore sizes. Observed separation efficiencies were generally lower than Knudsen separation but, for the small-pore membranes, were strongly dependent on temperature, pressure, and gas mixture, with the most condensable gases showing the strongest effect. This finding suggests that the separation is strongly influenced by surface effects (i.e., adsorption and diffusion), which enhance the transport of the heavier and more adsorption-prone component and may also physically impede flow of the other component. In one series of experiments, separation reversal was observed (the heavier component preferentially separating to the low-pressure side of the membrane). Trends showing increased separation factors at higher temperatures as well as observations of some separation efficiencies in excess of that expected for Knudsen flow suggest that at higher temperatures, molecular screening effects were observed. For most of the experiments, surface effects were stronger and thus apparently overshadow molecular sieving effects.

Trowbridge, L.D.

2003-06-30T23:59:59.000Z

343

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

Science Conference Proceedings (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

344

2011 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining held at the 102nd AOCS Annual Meeting and Expo. 2011 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday April 30,

345

2010 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining Short Course held at the 101st AOCS Annual Meeting and Expo. 2010 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday, M

346

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

347

5.111 Principles of Chemical Science, Fall 2005  

E-Print Network (OSTI)

Introduction to chemistry, with emphasis on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. Introduction to the chemistry of ...

Ceyer, Sylvia Teresse

348

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998  

DOE Green Energy (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

Jubin, R.T.

1999-04-01T23:59:59.000Z

349

EA-1340: Conducting Astrophysics and Other Basic Science Experiments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40: Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site, Carlsbad, New Mexico EA-1340: Conducting Astrophysics and Other Basic Science Experiments at the...

350

Conventional Storage Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On...

351

Electricity Grid Basics Webinar Presentation Slides and Text...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Grid Basics Webinar Presentation Slides and Text Version Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text...

352

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

353

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Basics to someone by E-mail Share Federal Energy Management Program: Combined Heat and Power Basics on Facebook Tweet about Federal Energy Management...

354

Audit Report on "Cost Sharing at Basic Energy Sciences' User...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 Audit Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 The Department...

355

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

356

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status ...

357

Chemical Sciences Division: Research: Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

358

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

359

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

DOE Green Energy (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

360

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

362

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

363

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

364

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

365

Federal Energy Management Program: Water Efficiency Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Graphic of the eTraining logo Training Available Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping, heating, and process uses. Water is integral to the cooling of power plants that provide energy to Federal facilities.

366

IndianEnergySummitBasicFactSHEET  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMIT BASIC FACTS SHEET SUMMIT BASIC FACTS SHEET WHAT: DOE TRIBAL LEADERS ROUNDTABLES AND ENERGY SUMMIT WHO: Tribal Leadership and Tribal Policy Makers Secretary Chu and DOE Senior Leadership DOE Office of Indian Energy Policy and Programs WHEN: MAY 4 th and 5 th , 2011 WHERE: WASHINGTON, D.C., AREA Summit Location CRYSTAL GATEWAY MARRIOTT www.marriott.com/hotels/.../wasgw-crystal-gateway-marriott/ 1700 Jefferson Davis Highway Arlington, Virginia (703) 920-3230 REGISTRATION: There are NO registration fees to participate. Tribal Leaders will have to make their own arrangements for travel and accomodations. Summit Working Session meals/refreshments (limited) are included by the hotel. Please confirm your attendance by completing the registration form (WEB link to

367

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

368

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

369

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

370

Microfabricated electrochemiluminescence cell for chemical reaction detection  

DOE Patents (OSTI)

A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA); Hsueh, Yun-Tai (Davis, CA); Smith, Rosemary L. (Davis, CA)

2003-01-01T23:59:59.000Z

371

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

372

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

550andengineeringstanding. CME 462 PROCESS CONTROL. (3) Basic theory of automatic control devices. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

373

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

: COM 199, CME 455, CME 550 and engineering standing. CME 462 PROCESS CONTROL. (3) Basic theory. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

374

Alternative Fuels Data Center: Codes and Standards Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to someone by E-mail Basics to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Basics on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Basics on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Google Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Delicious Rank Alternative Fuels Data Center: Codes and Standards Basics on Digg Find More places to share Alternative Fuels Data Center: Codes and Standards Basics on AddThis.com... More in this section... Codes and Standards Basics Codes and standards ensure processes and products meet uniform safety and performance requirements. Here you will find basic information about definitions, publishing codes and standards, legal enforcement, and

375

Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

Samuels, W.D.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Babad, H. [Westinghouse Hanford Co., Richland, WA (United States)

1994-03-01T23:59:59.000Z

376

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

377

Navigating without vision: Basic and applied research  

E-Print Network (OSTI)

ABSTRACT: We describe some of the results of our program of basic and applied research on navigating without vision. One basic research topic that we have studied extensively is path integration, a form of navigation in which perceived self-motion is integrated over time to obtain an estimate of current posilion and orientation. In experiments on pathway completion, one test of path integration ability, we have found that subjects who are passively guided over the outbound path without vision exhibit significant errors when attempting to return to the origin but are nevertheless sensitive to turns and segment lengths in the stimulus path. We have also found no major differences in path inlegration ability among blirid and sighted populations. A model we havc developed that attributes errors in path integration to errors in encoding the stimulus path is a good beginning toward understanding path integration performance. In otber research on path integration, in which optic flow information was manipulated in addition to the proprioceptive and vestibular information of nonvisual locomotion, we havc found that optic flow is a weak input to the path integration process. In other basic research, our studies of auditory distance perception in outdoor environments show systematic underestimation oC sound source distance. Our applied research has been concerned with developing and evaluating a navigation system for the visually impaired that uses three recent technologies: the Global Positioning System, Geographic Information Systems, and virtual acouslics. Our work shows that there is considerable promise of these three technologies in allowing visually impaired individuals to navigate and learn about unfamiliar environments without the assistance of human guides. (Optoni Vis Sci 2001;78:282-289)

Jack M. Loomis; Roberta L. Klatzky; Reginald G. Golledge

2001-01-01T23:59:59.000Z

378

Geothermal district heating: basics to success  

DOE Green Energy (OSTI)

A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

Lunis, B.C.

1985-01-01T23:59:59.000Z

379

Conceptual design report, CEBAF basic experimental equipment  

Science Conference Proceedings (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

380

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

382

The Periodic Table as a Part of the Periodic Table of Chemical Compounds  

E-Print Network (OSTI)

The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

Labushev, Mikhail M

2011-01-01T23:59:59.000Z

383

Excursions in Chemical Dynamics  

E-Print Network (OSTI)

2009). [118] F. A. Cotton, Chemical Applications of GroupExcursions in Chemical Dynamics by Shervin Fatehi AFall 2010 Excursions in Chemical Dynamics Copyright 2010 by

Fatehi, Shervin

2010-01-01T23:59:59.000Z

384

Assembly and detection of viruses and biological molecules on inorganic surfaces  

E-Print Network (OSTI)

This work is composed of three distinct, albeit related, projects. Each project is an exploration of the ways in which interactions between inorganic surfaces and biological molecules can be advantageously exploited. The ...

Sinensky, Asher Keeling

2007-01-01T23:59:59.000Z

385

First principles study of structure and lithium storage in inorganic nanotubes  

E-Print Network (OSTI)

The exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross ...

Tibbetts, Kevin (Kevin Joseph)

2009-01-01T23:59:59.000Z

386

Criticality Safety Basics for INL Emergency Responders  

Science Conference Proceedings (OSTI)

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency. This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel. For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …). INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

387

Alternative Fuels Data Center: Natural Gas Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Basics Photo of a natural gas fuel pump. Natural gas is an odorless, nontoxic, gaseous mixture of hydrocarbons-predominantly methane (CH4). It accounts for about a quarter

388

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Areas Heavy Element Separations Science Interfacial Processes Process Safeguards Environmental Science Radiochemistry Process Simulation and Equipment Design Pyroprocess Development Management and Support Mark A. Williamson, Chemist and Department Manager phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Ph.D., Physical Chemistry, University of Kansas Advanced nuclear fuel cycles Pyrochemical process research and development Actinide thermodynamics and inorganic chemistry High-temperature chemistry Monica C. Regalbuto, Senior Chemical Engineer phone:630/252-4616, e-mail: regalbuto@anl.gov George F. Vandegrift, Argonne Distinguished Fellow phone: 630/252-4513, fax: 630/972-4513, e-mail: vandegrift@anl.gov Ph.D., Inorganic Chemistry, Iowa State University

389

Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species  

SciTech Connect

Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables.

Rard, J.A.

1983-09-15T23:59:59.000Z

390

Inorganic compounds for passive solar energy storage. Solid-state dehydration materials and high specific heat materials. Progress report  

DOE Green Energy (OSTI)

Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al/sub 2/O/sub 3/-SO/sub 3/-H/sub 2/O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6/sup 0/C to 33/sup 0/C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g//sup 0/C and for the monosubstituted phases between 0.23 and 0.28 cal/g//sup 0/C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

Struble, L.J.; Brown, P.W.

1986-04-01T23:59:59.000Z

391

Questions and Answers - In the chemical equation for methane gas why is  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon found in all organicand inorganic matter? carbon found in all organic<br>and inorganic matter? Previous Question (Is carbon found in all organic and inorganic matter?) Questions and Answers Main Index Next Question (How do you separate tungsten from its ore?) How do you separatetungsten from its ore? In the chemical equation CH4 for methane gas why is there more hydrogen than carbon? This is a very good question, and the answer is at the heart of modern atomic physics. The nucleus is at the center of the atom, like the sun is at the center of the solar system. Electrons move around in orbits around the nucleus, like the planets around the sun. But there is an important difference: electrons can only have very special energies, which correspond to specific orbits. The orbits in the atoms are called shells, and each shell can only hold so

392

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

393

Submittal Basics | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Submittal Basics Print page Print page Email page Email page Reporting Requirements DOE reporting requirements for financial assistance recipients and non-major site/facility management contractors should be clearly outlined in your award document. Contact your DOE Contracting Officer with questions or concerns. STI deliverables generated by major site/facility management contractors are identified at the project level. There are instances when only the Announcement Notice should be submitted to OSTI. STI Product Types STI is found in many forms and format. Review Types of STI for a comprehensive list. For copyrighted materials, only an announcement notice may be submitted, but detailed information regarding where the materials are published is required as part of the announcement notice.

394

Basic mechanisms for the new millennium  

Science Conference Proceedings (OSTI)

This part of the Short Course will review the basic mechanisms for radiation effects in semiconductor devices. All three areas of radiation damage will be considered -- total dose, displacement effects, and single event effects. Each of these areas will be discussed in turn. First an overview and background will be provided on the historical understanding of the damage mechanism. Then there will be a discussion of recent enhancements to the understanding of those mechanisms and an up-to-date picture provided of the current state of knowledge. Next the potential impact of each of these damage mechanisms on devices in emerging technologies and how the mechanisms may be used to understand device performance will be described, with an emphasis on those likely to be of importance in the new millennium. Finally some additional thoughts will be presented on how device scaling expected into the next century may impact radiation hardness.

Dressendorfer, P.V.

1998-09-01T23:59:59.000Z

395

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

396

Alternative and Advanced Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Advanced Fuel Basics Alternative and Advanced Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a...

397

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

398

Unstable Radiative–Dynamical Interactions. Part I. Basic Theory  

Science Conference Proceedings (OSTI)

The interaction between trace shortwave radiative absorbers and the dynamical circulation is shown to be linearly unstable for horizontally uniform basic states with a vertical gradient in the basic-state absorber mixing ratio. Two types of ...

Steven J. Ghan

1989-08-01T23:59:59.000Z

399

Assessment of basic research needs for greenhouse gas control technologies  

SciTech Connect

This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

1998-09-01T23:59:59.000Z

400

Heat-recovery steam generators: Understand the basics  

Science Conference Proceedings (OSTI)

Gas turbines with heat-recovery steam generators (HRSGs) can be found in virtually every chemical process industries (CPI) plant. They can be operated in either the cogeneration mode or the combined-cycle mode. In the cogeneration mode, steam produced from the HRSG is mainly used for process applications, whereas in the combined-cycle mode, power is generated via a steam turbine generator. Recent trends in HRSG design include multiple-pressure units for maximum energy recovery, the use of high-temperature superheaters or reheaters in combined-cycle plants, and auxiliary firing for efficient steam generation. In addition, furnace firing is often employed in small capacity units when the exhaust gas is raised to temperatures of 2,400--3,000 F to maximize steam generation and thus improve fuel utilization. This article highlights some of the basic facts about gas turbine HRSGs. This information can help plant engineers, consultants, and those planning cogeneration projects make important decisions about the system and performance related aspects.

Ganapathy, V.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Basic studies of 3-5 high efficiency cell components  

DOE Green Energy (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

402

Basic physical and chemical information needed for development of Monte Carlo codes  

SciTech Connect

It is important to view track structure analysis as an application of a branch of theoretical physics (i.e., statistical physics and physical kinetics in the language of the Landau school). Monte Carlo methods and transport equation methods represent two major approaches. In either approach, it is of paramount importance to use as input the cross section data that best represent the elementary microscopic processes. Transport analysis based on unrealistic input data must be viewed with caution, because results can be misleading. Work toward establishing the cross section data, which demands a wide scope of knowledge and expertise, is being carried out through extensive international collaborations. In track structure analysis for radiation biology, the need for cross sections for the interactions of electrons with DNA and neighboring protein molecules seems to be especially urgent. Finally, it is important to interpret results of Monte Carlo calculations fully and adequately. To this end, workers should document input data as thoroughly as possible and report their results in detail in many ways. Workers in analytic transport theory are then likely to contribute to the interpretation of the results.

Inokuti, M.

1993-08-01T23:59:59.000Z

403

Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF{sub m}-RF{sub n} (m < n {<=} 4) systems  

Science Conference Proceedings (OSTI)

The manifestation of gross nonstoichiometry in MF{sub m}-RF{sub n} systems (m Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state ({approx}200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences (m {ne} n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF{sub 2}) and tysonite (LaF{sub 3}). Systems of fluorides of 27 elements (M{sup 1+} = Na, K; M{sup 2+} = Ca, Sr, Ba, Cd, Pb; R{sup 3+} = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R{sup 4+} = Zr, Hf, Th, U) are selected; nonstoichiometric M{sub 1-x}R{sub x}F{sub m(1-x)+nx} phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF{sub 2} - RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.

Sobolev, B. P., E-mail: sobolevb@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2012-05-15T23:59:59.000Z

404

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

405

Energy Basics: Polycrystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

406

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

407

Energy Basics: Thermal Storage Systems for Concentrating Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

408

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

409

Energy Basics: Photovoltaic Electrical Contacts and Cell Coatings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

410

Energy Basics: Single-Crystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

411

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

412

Energy Basics: Dish/Engine Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

413

Energy Basics: Semiconductors and the Built-In Electric Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

414

Computational Materials Science: from Basic Principles to Material ...  

Science Conference Proceedings (OSTI)

Feb 8, 2007... Thermodynamics Software/Codes, Visualization Software/Codes ... Topic Title: Computational Materials Science: from Basic Principles to ...

415

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

416

Inorganic resins for clinical use of .sup.213Bi generators  

DOE Patents (OSTI)

Applicant's invention is a radionuclide generator resin material for radiochemical separation of daughter radionuclides, particularly .sup.213Bi, from a solution of parental radionuclides, the resin material capable of providing clinical quantities of .sup.213Bi of at least 20-mCi, wherein the resin material comprises a silica-based structure having at least one bifunctional ligand covalently attached to the surface of the silica-based structure. The bifunctional ligand comprises a chemical group having desirable surface functionality to enable the covalent attachment of the bifunctional ligand thereon the surface of the structure and the bifunctional ligand further comprises a second chemical group capable of binding and holding the parental radionuclides on the resin material while allowing the daughter radionuclides to elute off the resin material. The bifunctional ligand has a carbon chain with a limited number of carbons to maintain radiation stability of the resin material.

DePaoli, David W. (Knoxville, TN); Hu, Michael Z. (Knoxville, TN); Mirzadeh, Saed (Knoxville, TN); Clavier, John W. (Elizabethton, TN)

2011-03-29T23:59:59.000Z

417

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network (OSTI)

Reduction of trichloroethylene (TCE), chromium (VI), and 2,4 dinitrotoluene (2,4-DNT) by zero valent iron and palladized iron under anaerobic conditions was investigated. Reduction experiments of the contaminants were carried out individually and in combination. All three target contaminants were effectively reduced by both iron (Feo) and palladized iron (Pd/Fe'). However, the rate of reduction by Pd/Fe' was found to be much faster than that by Feo. The reduction of all the contaminants in mixed waste was found to be slower than in the individual experiments, but the difference was most significant in the 2,4-DNT reduction. This observation indicates that there may be a possibility of competition for reactive sites among the contaminants and precipitation resulting from CR(VI) reduction may coat iron surfaces, which may ultimately slow the whole zero valent metals (ZVMS) treatment process in remediating mixed waste sites. The 20 mg/L of CR(VI) was reduced below detection limits in 10 hours by Fe' and in 1.5 hours by the same amount of Pd/Fe' in individual experiment. An initial concentration of 20 mg/L of TCE was reduced below detection limits in 72 hours by Pd/Fe' whereas only 62% of TCE was reduced by the same amount of Fe' in 144 hours in individual experiment. The reaction orders of 1.84 and 2.04 for total TCE loss alone and in mixed waste by Fe' indicates that the reaction mechanisms are complex. The reduction of 72 mg/L of 2,4-DNT proceeded to below detection limits within 3 hours by both Fe' and Pd/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2,4-DAT alone occurred, these results indicate the possibility of other intermediates or products formation under aerobic conditions. Overall, the results demonstrated the potential application of ZVMs in reducing mixed wastes containing both inorganic and organic contaminant interactions before implementing a ZVMs treatment system, which may help in designing a proper remedial system.

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

418

I.TclBasics Part I introduces the basics of Tcl. Everyone should read Chapter 1, which  

E-Print Network (OSTI)

1 P A R T I.TclBasics I Tcl Basics Part I introduces the basics of Tcl. Everyone should read Chapter 1, which describes the fundamental properties of the language. Tcl is really quite simple, so misconceptions that come from using other lan- guages. Chapter 2 is a short introduction to running Tcl and Tk

Chen, Yuanzhu Peter

419

MICROBIAL TRANSFORMATIONS OF URANIUM COMPLEXED WITH ORGANIC AND INORGANIC LIGANDS.  

SciTech Connect

Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the mechanisms of microbial transformations of uranium under a variety of environmental conditions will be useful in developing appropriate remediation and waste management strategies as well as predicting the microbial impacts on the long-term stewardship of contaminated sites.

FRANCIS,A.J.

2002-09-15T23:59:59.000Z

420

Argonne Chemical Sciences & Engineering - Fundamental Interactions -  

NLE Websites -- All DOE Office Websites (Extended Search)

tranter shock tube tranter shock tube A shock tube for high temperature studies of chemical reaction kinetics. Overview The goal of this program is to develop a fundamental understanding of the elementary chemical reactions, non-reactive energy transfer processes, and coupled kinetics processes involved in combustion. The basic scientific approach is to combine a theoretical effort in the energetics, dynamics, and kinetics of chemical reactions with an experimental effort in thermochemistry, dynamics, and kinetics. Both the theoretical and experimental components of the program are vertically integrated to span a wide range of phenomena relevant to the study of chemical reactivity. This integrated approach produces synergy that results from the strong interaction between the theoretical and experimental efforts. Taken as a

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network (OSTI)

by one of us for devices that produce beams of chemically interesting species at relative kinetic energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical. It is obvious that while some methods of theoretical chemical kinetics (for instance, "absolute" rate theory

Zare, Richard N.

422

NIST - Physical and Chemical Properties Division - Technical ...  

Science Conference Proceedings (OSTI)

... Clay is the key inorganic substance in applications ranging from pollution prevention and remediation, enhanced oil recovery, the treatment of ...

423

Microfluidic chemical reaction circuits  

DOE Patents (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

424

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network (OSTI)

Reactive chemicals are presented widely in the chemical and petrochemical process industry. Their chemical reactivity hazards have posed a significant challenge to the industries of manufacturing, storage and transportation. The accidents due to reactive chemicals have caused tremendous loss of properties and lives, and damages to the environment. In this research, three classes of reactive chemicals (unsaturated hydrocarbons, self-reacting chemicals, energetic materials) were evaluated through theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization, and oxidation, is investigated by computational chemistry methods and empirical thermodynamic–energy correlation. Density functional and ab initio methods are used to search the initial thermal decomposition steps of HA, including unimolecular and bimolecular pathways. In addition, solvent effects are also examined using water cluster methods and Polarizable Continuum Models (PCM) for aqueous solution of HA. The thermal stability of a basic energetic material, Nitroethane, is investigated through both theoretical and experimental methods. Density functional methods are employed to explore the initial decomposition pathways, followed by developing detailed reaction networks. Experiments with a batch reactor and in situ GC are designed to analyze the distribution of reaction products and verify reaction mechanisms. Overall kinetic model is also built from calorimetric experiments using an Automated Pressure Tracking Adiabatic Calorimeter (APTAC). Finally, a general evaluation approach is developed for a wide range of reactive chemicals. An index of thermal risk is proposed as a preliminary risk assessment to screen reactive chemicals. Correlations are also developed between reactivity parameters, such as onset temperature, activation energy, and adiabatic time to maximum rate based on a limited number, 37 sets, of Differential Scanning Calorimeter (DSC) data. The research shows broad applications in developing reaction mechanisms at the molecular level. The methodology of reaction modeling in combination with molecular modeling can also be used to study other reactive chemical systems.

Wang, Qingsheng

2010-08-01T23:59:59.000Z

425

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

426

Physical-chemical studies of transuranium elements  

SciTech Connect

Major advances in our continuing program to determine, interpret, and correlate the basic chemical and physical properties of the transuranium elements are summarized. Research topics include: Molar enthalpies of formation of BaCmO{sub 3} and BaCfO{sub 3}; luminescence of europium oxychloride at various pressures; and anti-stokes luminescence of selected actinide (III) compounds. 42 refs., 4 figs., 2 tabs.

Peterson, J.R.

1991-01-01T23:59:59.000Z

427

Inorganic and Radiochemical Analysis of AW-101 and AN-107 Tank Waste  

SciTech Connect

This report presents the inorganic and radiochemical analytical results for AW-101 and AN-107 as received materials. The analyses were conducted in support of the BNFL Proposal No. 30406/29274 Task 5.0. The inorganic and radiochemical analysis results obtained from the as received materials are used to provide initial characterization information for subsequent process testing and to provide data to support permit application activities. Quality Assurance (QA) Plan MCS-033 provides the operational and quality control protocols for the analytical activities, and whenever possible, analyses were performed to SW-846 equivalent methods and protocols.

MW Urie; JJ Wagner; LR Greenwood; OT Farmer; SK Fiskum; RT Ratner; CZ Soderquist

1999-11-11T23:59:59.000Z

428

An analysis of cost improvement in chemical process technologies  

DOE Green Energy (OSTI)

Cost improvement -- sometimes called the learning curve or progress curve -- plays a crucial role in the competitiveness of the US chemical industry. More rapid cost improvement for a product results in expanding market share and larger profits. Expectations of rapid cost improvement motivate companies to invest heavily in the development and introduction of new chemical products and processes, even if production from the first pioneer facility is economically marginal. The slope of the learning curve can also indicate whether government support of new chemical processes such as synthetic fuels can be expected to have large social benefits or to simply represent a net loss to the public treasury. Despite the importance of the slope of the learning curve in the chemical process industries (CPI), little analytical investigation has been made into the factors that accelerate or retard cost improvement. This study develops such a model for the CPI. Using information from ten in-depth case studies and a database consisting of year-by-year market histories of 44 chemical products, including organic chemicals, inorganic chemicals, synthetic fibers, and primary metals, the analysis explores the relationships among the rate of learning and characteristics of the technologies, the nature of markets, and management approaches. 78 refs., 8 figs., 15 tabs.

Merrow, E.W.

1989-05-01T23:59:59.000Z

429

Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process  

E-Print Network (OSTI)

Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

Chelawat, Hitesh

2010-01-01T23:59:59.000Z

430

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

431

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

432

Electricity Grid Basics Webinar Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics.

433

DOE Hydrogen and Fuel Cells Program: Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Program is working to narrow this gap. Photo of NREL researcher in laboratory, evaluating carbon nanotubes for their hydrogen storage capacity. Led by the Office of Basic Energy...

434

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

2003-02-01T23:59:59.000Z

435

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

None

2003-02-01T23:59:59.000Z

436

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998  

Science Conference Proceedings (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

Jubin, R.T.

1999-03-01T23:59:59.000Z

437

Chapter 13. Chemical Kinetics  

E-Print Network (OSTI)

of chemical reactions. · Only gases, for which the kinetic theory of Chapter 4 is applicable, are consideredChapter 13. Chemical Kinetics #12;· Why do some chemical reactions proceed with lighting speed when the way in which molecules combine to form products? · All of these questions involve chemical kinetics

Ihee, Hyotcherl

438

and Chemical Engineering  

E-Print Network (OSTI)

Biological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta is constructing a new building that will house the Department of Chemical Engineering and the Department and Chemical Engineering Building will provide critically needed space for innovators in multiple disciplines

Prinz, Friedrich B.

439

Chemical Sciences Division Homepage  

Science Conference Proceedings (OSTI)

... Development of Measurements and Standards for Biofuels; Chemical Metrology in Support of the US Hydrogen Infrastructure; ...

2013-06-07T23:59:59.000Z

440

Evaluation of GaN substrates grown in supercritical basic ammonia  

SciTech Connect

GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.

Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2009-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

442

Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis  

SciTech Connect

Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. While accurate measurements can be made in the analytical laboratory, we have developed a rapid, portable technique that can be used to obtain accurate and precise data in the field as well.

VESPER, DJ, Edenborn, Harry

2012-01-01T23:59:59.000Z

443

Nano Res (2010) 3: 170173170 Synthesis and Characterization of WS2 Inorganic Nanotubes with  

E-Print Network (OSTI)

Nano Res (2010) 3: 170­173170 Synthesis and Characterization of WS2 Inorganic Nanotubes]. Folding and bonding of edge atoms on the periphery of the quasi two-dimensional planar nano- structure this nanotubular structure is suitable for capillary filling using molten metal halides. Nano Res (2010) 3: 170

Davis, Ben G.

444

Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells  

E-Print Network (OSTI)

Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells Chiatzun in hybrid TiO2/regioregular poly 3-hexylthiophene P3HT photovoltaic cells. By employing a series of para in the field of organic photovoltaic PV cells1­7 and dye-sensitized solar cells DSSCs Refs. 7­10 as part

McGehee, Michael

445

Environmental toxicity of complex chemical mixtures  

E-Print Network (OSTI)

Complex chemical mixtures may be released into the environment from a variety of sources including hazardous waste sites. Components of chemical mixtures and their metabolites may be genotoxic leading to cancer and heritable gene mutations. Chemical analysis alone does not always provide the most accurate information from which to estimate the risk of adverse effects associated with exposure to mixtures. Current methods to estimate the human health risk for complex mixtures assume additive effects of the components. Although it is assumed that this approach is protective of human and ecological health, it is also recognized that chemical mixtures may induce a variety of interactions including potentiation, synergism, and antagonism. A combined testing protocol, using chemical analysis coupled with a battery of in vitro, in vivo, and in situ bioassays, provides the most accurate information from which to estimate risk. Such a combined testing protocol provides information to describe the major organic and inorganic constituents, as well as the pharmacokinetics and potential interactions of chemical mixtures. This research was conducted to investigate the potential genotoxic effects of complex chemical mixtures of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated aromatics (PCA) using microbial bioassays (Salmonella/microsome assay and the E. coli prophage induction assay), the 32P-postlabeling assay in mice, and in situ measurements of genotoxicity using flow cytometry. Samples of environmental media and wildlife tissues were collected from four National Priority List Superfund sites within the United States. In general, chemical analysis was not always predictive of mixture toxicity. Although biodegradation reduced the concentration of total and carcinogenic PAHs in soils and groundwater, the genotoxicity of extracts from environmental media did not display a corresponding reduction. Mixtures of polychlorinated biphenyls (PCBs) extracted from sediments were found to inhibit the genotoxicity of PAH mixtures when administered dermally to rodents. This inhibition exhibited a dose-response relationship, with the adduct frequency reduced at increasing doses of sediment extract. Finally, PAH concentrations in environmental media and tissues were found to correlate with DNA damage in wildlife receptors. An integrated approach, combining in vitro and in vivo methods to characterize genotoxicity provides more accurate information from which to estimate uptake and risk associated with exposure to complex mixtures and should be considered in both the human and ecological risk assessment process.

Gillespie, Annika Margaret

2006-05-01T23:59:59.000Z

446

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network (OSTI)

vary. For example, according to Exxon Chemical Company BasicDuPont Eastman Equistar Exxon Baton Rouge Baytown Point700kt in 1997 by Lummus/Exxon Kellogg Millisecond; Expansion

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

447

Energy and Development: Is Energy a Basic Human Right?  

E-Print Network (OSTI)

Energy and Development: Is Energy a Basic Human Right? Skype/Video presentation for senior pupils national Laboratory/DTU Denmark #12;Is energy a basic human right? · What is energy? ­ the ability to make something happen · Different kinds of energy ­ or energy carriers - fuels · What do we use energy for

448

Free Basic Process Algebra Smile Markovski, Ana Sokolova  

E-Print Network (OSTI)

Free Basic Process Algebra Smile Markovski, Ana Sokolova Faculty of Sciences and Mathematics, satisfying the laws (BPA1) ­ (BPA5) as given in the text. We present a description of free basic process algebras by using suitable descriptions of free semigroups and free semilattices. The description of free

Sokolova, Ana

449

Removal of basic nitrogen compounds from hydrocarbon liquids  

DOE Patents (OSTI)

A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

1985-01-01T23:59:59.000Z

450

New Energy Basics Site: Check It Out! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! August 23, 2010 - 7:30am Addthis Allison Casey Senior Communicator, NREL Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and just need a little background info. EERE's new Energy Basics site is the place for you. There you can learn things like how a wind turbine works and all about the different types of fuel cells. If you just need a quick definition of a term you've heard, check out the glossary. Energy Basics is not meant to replace Energy Savers or any of the program sites throughout the Office of Energy Efficiency and Renewable Energy.

451

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

Not Available

1990-10-01T23:59:59.000Z

452

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

1990-10-01T23:59:59.000Z

453

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

454

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. Chemicals--Safety measures. 3. Hazardous wastes. I. National Research Council (U.S.). Committee on Prudent) produced two major reports on laboratory safety and laboratory waste disposal: Prudent Practices Nanomaterials, 77 4.G Biohazards, 79 4.H Hazards from Radioactivity, 79 5 Management of Chemicals 83 5.A

Tai, Yu-Chong

455

Chemical Reference Data Group Homepage  

Science Conference Proceedings (OSTI)

Chemical Reference Data Group. Welcome. The Chemical Reference Data Group compiles, evaluates, correlates and measures ...

2013-07-10T23:59:59.000Z

456

Basic Search A basic job search can be conducted to quickly identify the types of jobs you are most  

E-Print Network (OSTI)

Job Search Basic Search A basic job search can be conducted to quickly identify the types of jobs a specific job. Keywords can be used to view jobs that contain those specific words. This is a literal search so your results may not be accurate. For example, if you search for Accountant but the text

Holland, Jeffrey

457

Summaries of FY 1979 research in the chemical sciences  

SciTech Connect

The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

Not Available

1980-05-01T23:59:59.000Z

458

Microfabricated sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA)

2003-01-01T23:59:59.000Z

459

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

1996-01-01T23:59:59.000Z

460

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

462

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997  

DOE Green Energy (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-01-01T23:59:59.000Z

463

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

464

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

465

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network (OSTI)

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of ChemicalD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description of chemical engineering: "chemical engineers seek to understand, manipulate, and control the molecular basis

Collins, Gary S.

466

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

467

Chemical biology drug discovery  

E-Print Network (OSTI)

Keywords Chemical biology drug discovery high-throughput screening protein ligands proteases novel chemical and biochemical methods for the identification and optimization of protein ligands us of pro- tein ligands. Results of this research are translated into protein-specific, chemical probes

SchĂĽler, Axel

468

Chemical engineering Research !!  

E-Print Network (OSTI)

Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation University/Faculty of Engineering-LTH/Department of Chemical Engineering Membrane Group Ann-Sofi Jönsson More research projects. #12;Lund University/Faculty of Engineering-LTH/Department of Chemical Engineering

469

Chemical Zeolites Combinatorial . . .  

E-Print Network (OSTI)

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

Servatius, Brigitte

470

CHEMICAL AND PAPER ENGINEERING  

E-Print Network (OSTI)

SAFETY HANDBOOK For CHEMICAL AND PAPER ENGINEERING 2010-2011 #12;Page 1 Safety Guidelines Department of Chemical and Paper Engineering Miami University - Oxford, Ohio 45056 The following safety and Laboratory Coordinator Responsibilities III. Emergency Procedures IV. Chemical Storage V. Routine

Dollar, Anna

471

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 11 VIII. Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . 12 IX. Hazardous Waste: Hazardous Chemicals Data . . . . . . . . . . . . . . . . . . 51 Appendix B: Means of Lab Waste Disposal . . . . . . . . . . . . . . . . . 53 Appendix C: Where to put specific wastes . . . . . . . . . . . . . . . . . . 54 Appendix D

Elowitz, Michael

472

Acid Catalysis in Basic Solution: A Supramolecular Host PromotesOrthoformate Hydrolysis  

DOE Green Energy (OSTI)

Though many enzymes can promote chemical reactions by tuning substrate properties purely through the electrostatic environment of a docking cavity, this strategy has proven challenging to mimic in synthetic host-guest systems. Here we report a highly-charged, water soluble, metal-ligand assembly with a hydrophobic interior cavity that thermodynamically stabilizes protonated substrates and consequently catalyzes the normally acidic hydrolysis of orthoformates in basic solution, with rate accelerations of up to 890-fold. The catalysis reaction obeys Michaelis-Menten kinetics, exhibits competitive inhibition, and the substrate scope displays size selectivity consistent with the constrained binding environment of the molecular host. Synthetic chemists have long endeavored to design host molecules capable of selectively binding slow-reacting substrates and catalyzing their chemical reactions. While synthetic catalysts are often site-specific and require certain properties of the substrate to insure catalysis, enzymes are often able to modify basic properties of the bound substrate such as pK{sub a} in order to enhance reactivity. Two common motifs used by nature to activate otherwise unreactive compounds are the precise arrangement of hydrogen-bonding networks and electrostatic interactions between the substrate and adjacent residues of the protein. Precise arrangement of hydrogen bonding networks near the active sites of proteins can lead to well-tuned pK{sub a}-matching, and can result in pK{sub a} shifts of up to eight units, as shown in bacteriorhodopsin. Similarly, purely electrostatic interactions can greatly favor charged states and have been responsible for pK{sub a} shifts of up to five units for acetoacetate decarboxylase. Attempts have been made to isolate the contributions of electrostatic versus covalent interactions to such pK{sub a} shifts; however this remains a difficult challenge experimentally. This challenge emphasizes the importance of synthesizing host molecules that, like enzyme cavities, can enhance binding of small molecular guests and, in a few cases, catalyze chemical reactions. Supramolecular assemblies with available functional groups have been used to generate solution-state pK{sub a} shifts of up to two pK{sub a} units and to catalyze chemical reactions. Synthetic hosts often rely on hydrogen-bonding or ion-dipole interactions for guest inclusion, and numerous studies have investigated the effects of charge on guest binding affinities in supramolecular host-guest systems. We report here a synthetic supramolecular host assembly that relies exclusively on electrostatic and hydrophobic interactions for thermodynamic stabilization of protonated substrates. As nature has exploited pK{sub a} shifts to activate otherwise unreactive substrates toward catalysis, this stabilization is exploited to promote acid-catalyzed hydrolyses in strongly basic solution.

Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

2007-12-12T23:59:59.000Z

473

BIT101 - EOTA Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training April 4, 2014 7:30AM MDT to April 18, 2014 5:00PM MDT Registration link: EOTA Registration Course Type: Classroom Training (Instructor-Led) Course Location: Phillips Technlogoy Institute (PTi) Kirtland Air Force Base, Building 1900 (Maxwell) Course Description: This course is offered to instructors who provide training to site personnel. The mission is to assure the quality and consistency of training provided to the Department of Energy facilities nationwide. The purpose is to train DOE and DOE contractor instructors in the basic teaching tools needed to provide effecitve and current training techniques, as well as make classroom activities a valuable learning experience.

474

A Basic Overview of the Energy Employees Occupational Illness Compensation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Basic Overview of the Energy Employees Occupational Illness A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program July 2009 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal, contractor, and subcontractor employees to become familiar with and utilize the services and benefits authorized under the Energy Employees Occupational Illness Compensation Program Act (EEOIPCA). There are several Federal entities that support implementation of EEOICPA. Each of these entities serves a critical and unique role in this process. Briefly, the Department of Labor's (DOL) Office of Workers'

475

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Direct-Use of Geothermal Technologies Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use...

476

Revit Architecture 2010 Basics: From the Ground Up  

Science Conference Proceedings (OSTI)

Revit Architecture 2010 Basics is geared towards beginning architectural students or professional architects who want to get a jump-start into 3D parametric modeling for commercial structures. This book is filled with tutorials, tips and tricks, and ...

Elise Moss

2009-07-01T23:59:59.000Z

477

Web Editing Basics 1 1. Opening your site .........................................................................1  

E-Print Network (OSTI)

Web Editing Basics 1 TOPICS 1. Opening your site. Navigate to your Web page ............................................................2 4. Make text edits ..............................................................................2 5. Prepare documents and images for the Web ....................................3 6. Move

Zeng, Yong - Department of Mathematics and Statistics, University of Missouri

478

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

479

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

480

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

Note: This page contains sample records for the topic "basic inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bio-Based Products Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are...

482

Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers  

DOE Green Energy (OSTI)

Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in the fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in boiler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Jenkins, B.M. [California Univ., Davis, CA (United States). Dept. of Biological and Argicultural Engineering

1995-08-01T23:59:59.000Z

483

Carbons for lithium ion cells prepared using sepiolite as an inorganic template.  

DOE Green Energy (OSTI)

Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

Sandi, G.

1998-12-09T23:59:59.000Z

484

Biomethylation of inorganic arsenic by the rat and some laboratory animals  

SciTech Connect

This article concerns the distribution (in the liver, kidney and blood) and excretion (in the urine, feces and bile) of arsenic metabolites such as dimethylated, monomethylated and inorganic arsenic in rats following a single oral and intravenous (iv) administration of arsenic acid. This paper also describes studies on the species difference in the arsenic methylation between the rats and some other laboratory animals as mice, hamsters, rabbits and cats.

Odanaka, Y.; Matano, O.; Goto, S.

1980-03-01T23:59:59.000Z

485

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

486

Chemical exchange program analysis.  

SciTech Connect

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

487

Siphons in Chemical Reaction Networks  

E-Print Network (OSTI)

credited. Siphons in Chemical Reaction Networks Referencesfor a class of nonlinear chemical equations. SIAM J. Appl.to persistence analysis in chemical reaction networks. In:

Shiu, Anne; Sturmfels, Bernd

2010-01-01T23:59:59.000Z

488

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.Łd. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

489

Optimization of Parameters of the Chemic Kinetic Model by Improved Genetic Algorithms  

Science Conference Proceedings (OSTI)

Detailed kinetic model is one of the most important basic research items that the chemic synthesis techniques will have been commercialized from laboratory. A great breakthrough has been made in the detailed mechanistic kinetics of the chemic synthesis, ... Keywords: Genetic Algorithm, kinetic model, parameter

Rui-feng Han; Yu-li Yang; Yong-kui Zhang

2009-01-01T23:59:59.000Z

490

Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides  

SciTech Connect

A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria)] [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)] [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

2012-12-15T23:59:59.000Z

491

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network (OSTI)

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

492

Chemical Structure and Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

493

ENHANCED CHEMICAL CLEANING CORROSION TESTING  

Enhanced Chemical Cleaning Corrosion Testing 3 Background: Enhanced Chemical Cleaning Process Treatment Tank Deposition Tank 3000 gpm Mixers Oxalic ...

494

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

495

Chemical Testing of Textiles  

Science Conference Proceedings (OSTI)

Chemical Testing of Textiles is edited by Qinguo Fan and covers more subjects than the title implies. These subjects include fiber and yarn identification, ...

496

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

497

Apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

498

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

499

Chemical Name Search  

Science Conference Proceedings (OSTI)

... Enter a chemical species name or pattern: (eg, methane, *2-hexene); Select the desired units for thermodynamic data: SI calorie-based; ...

2013-07-15T23:59:59.000Z

500

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z