National Library of Energy BETA

Sample records for basic energy sciences

  1. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  2. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  3. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  4. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  5. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  6. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences at LLNL Eric Schwegler is the Point-of-Contact for DOE Office of Science Programs - Basic Energy Sciences (BES) at LLNL. Highlights Mesoscale Simulations of ...

  7. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  8. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  9. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  10. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes the physics and chemistry of ceramics, the use of energetic particles for the synthesis and study of materials, high-temperature and organic superconductors, tailored surfaces for materials applications, chemical vapor deposition sciences, strained-layer semiconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors. A new start just getting underway deals with the atomic level science of interfacial adhesion. Our interdisciplinary program utilizes a broad array of sophisticated, state-of-the-art experimental capabilities provided by other programs. The major capabilities include several molecular-beam epitaxy and chemical-vapor-deposition facilities, electron- and ion-beam accelerators, laser-based diagnostics, advanced surface spectroscopies, unique combined high-pressure/low-temperature/high-magnetic-field facilities, and the soon to be added scanning tunneling and atomic force microscopies.

  11. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  12. Basic Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... meeting our critical energy challenges. ... the California Institute of Technology ... Life Science Physics Materials Science 0 500 1000 1500 2000 FY10: 2032 FY11: 1931 ...

  13. Basic Energy Sciences Advisory Committee (BESAC) Homepage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC 2016-2017 Membership Charges/Reports Charter .pdf file (128KB) BES Committees of Visitors Federal Advisory Committees BES Home Print Text Size: A A A FeedbackShare Page The Basic Energy Sciences Advisory Committee (BESAC) - established on September 4, 1986 - provides valuable, independent advice to the Department of Energy on the Basic Energy Sciences program regarding the complex scientific

  14. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  15. Vehicle Technologies Office Merit Review 2015: Basic Energy Sciences Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Basic Energy...

  16. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    SciTech Connect (OSTI)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  17. Energy Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will complete a scavenger hunt worksheet in order to learn about the basics of energy and its sources.

  18. 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life The energy cycle of all living organisms involves the molecule adenosine triphosphate (ATP), which captures the chemical energy released by the metabolism of nutrients and makes it available for cellular functions such as muscle contraction and transmission of nerve messages. A hard-working human adult can convert almost a ton of ATP daily. From the early 1960s through 1994, the Office of Science supported

  19. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

  20. GEOTHERMAL ENERGY; 59 BASIC BIOLOGICAL SCIENCES; BRINES; DETOXIFICATIO...

    Office of Scientific and Technical Information (OSTI)

    PROCESSING; BACTERIA; BIOCHEMISTRY; BIOREACTORS; BIOTECHNOLOGY; GEOCHEMISTRY; GEOTHERMAL ENERGY; METALS; SLUDGES; TOXIC MATERIALS; CHEMISTRY; ELEMENTS; ENERGY; ENERGY SOURCES;...

  1. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology. Working together, industry and BES-supported scientists can achieve the required understanding and control of the performance limitations of clean energy technology, accelerate innovation in its development, and help build the workforce needed to implement the growing clean energy economy.

  2. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  3. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  4. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics DOE ... More Documents & Publications Basic Energy Sciences Overview Progress from DOE EF RC: ...

  5. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect (OSTI)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  6. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  7. Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Chemical Sciences, Geosciences, and Biosciences Understanding and controlling complex chemical, geological, and biochemical processes across vast spatial and temporal scales ...

  8. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect (OSTI)

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  9. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

  10. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  11. Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics

  12. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  13. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  14. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect (OSTI)

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  15. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  16. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    SciTech Connect (OSTI)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.

  17. Energy Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and ...

  18. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    SciTech Connect (OSTI)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  19. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007

    DOE R&D Accomplishments [OSTI]

    Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.

    2007-04-04

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  20. Basic Energy Sciences Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  1. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system ... X-Ray Microscopy Reveals How Crystal Mechanics Drive ... Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage ...

  2. Wind Energy Resource Basics | Department of Energy

    Energy Savers [EERE]

    Wind Wind Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong ...

  3. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    SciTech Connect (OSTI)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  4. Energy Basics Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics Website Contact Energy Basics Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Energy Basics website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  5. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics Biomass Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae, sewage, and other organic substances that may be used to make energy through chemical processes. Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and

  6. Microhydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Microhydropower Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce

  7. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  8. Lesson 1 - Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 - Energy Basics Lesson 1 - Energy Basics This lesson covers the states and forms of energy, where energy comes from, as well as how the way we live is tied to our energy supply and what that means for the future. Specific topics include: States of energy Potential Kinetic Forms of energy Energy sources Primary and secondary sources Renewable and nonrenewable Conversion Conservation Environmental impacts Greenhouse effect Future sources File Lesson 1 - Energy.pptx More Documents &

  9. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  10. Biopower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biopower Basics Biopower Basics Biomass power (biopower) technologies convert renewable biomass fuels into heat and electricity using processes similar to that used with fossil fuels. Next to hydropower, more electricity is generated from biomass than any other renewable energy resource in the United States. A key attribute of biomass is its availability upon demand-the energy is stored within the biomass until it is needed; whereas, other forms of renewable energy are dependent on variable

  11. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote power needs. Larger solar energy systems provide more electricity for contribution to the electric power system. Learn more about: Photovoltaics Concentrating Solar Power Solar Energy Resources Or learn about the latest solar

  12. Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting & Daylighting » Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light

  13. Tool Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Energy Asset Score » Tool Basics Tool Basics Asset Score Scale The Asset Score uses a 10-point scale to evaluate the energy efficiency of a building's physical characteristics and major energy-related systems. The point value is assigned based on a building's predicted source energy use intensity (EUI) according to the energy simulation results. Scores are rounded to the nearest half-point increment (i.e., "6", "6.5", "7",

  14. Geothermal Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  15. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  16. Wind Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Wind energy is a result of the sun's uneven heating of the atmosphere, the earth's irregular surfaces (mountains and valleys), and the planet's

  17. Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003

    SciTech Connect (OSTI)

    Dresselhaus, M; Crabtree, G; Buchanan, M; Mallouk, T; Mets, L; Taylor, K; Jena, P; DiSalvo, F; Zawodzinski, T; Kung, H; Anderson, I S; Britt, P; Curtiss, L; Keller, J; Kumar, R; Kwok, W; Taylor, J; Allgood, J; Campbell, B; Talamini, K

    2004-02-01

    The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

  18. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  19. Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007

    SciTech Connect (OSTI)

    Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

    2008-02-01

    To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

  20. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  1. SSL Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics SSL Basics Solid-state lighting (SSL) differs from other kinds of lighting in that it's based on light-emitting diodes (LEDs) or organic LEDs (OLEDs) instead of filaments, plasma, or gases. In addition to having the potential to be more energy efficient than any other existing lighting technology, it also has a number of other advantages-including directionality, controllability, vibration resistance, long life, color tunability, and aesthetic appeal. But SSL is still at a relatively

  2. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  3. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  4. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal

  5. NREL: Learning - Solar Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the sun falls on the earth in one hour than is used by everyone in the world in one year. A variety of technologies convert sunlight to usable energy for buildings. The most commonly

  6. NREL: Learning - Wind Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines

  7. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  8. NREL: Learning - Geothermal Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada. Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot water or steam reservoirs deep in the earth that are accessed by drilling; geothermal reservoirs located near the earth's surface, mostly located in the western U.S., Alaska, and Hawaii; and the shallow ground near

  9. Primary Science of Energy Student Guide (42 Activities) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Guide (42 Activities) Primary Science of Energy Student Guide (42 Activities) Information about Primary Science of Energy, 42 student activities on energy basics for grades...

  10. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean » Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about

  11. Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007

    SciTech Connect (OSTI)

    Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

    2007-03-02

    To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

  12. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Chemical Sciences Division Chemistry is the study of matter and the changes it can undergo. Chemical Sciences Division researchers tackle critical scientific issues in chemistry at both the theoretical and experimental levels. Materials Sciences Division Materials Scientists are advancing the fundamental science of

  13. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  14. Hydrogen Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell-an energy conversion ...

  15. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  16. Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Basics Alternative Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a number of fuels available for alternative fuel vehicles. Learn about the following types of fuels: Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Addthis Related Articles Advanced Technology and Alternative Fuel Vehicle Basics Glossary of Energy-Related Terms Natural Gas Fuel Basics Energy Basics Home Renewable Energy Homes

  17. Lighting and Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting and Daylighting Basics Lighting and Daylighting Basics August 15, 2013 - 5:05pm Addthis Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting Addthis Related Articles Daylighting Basics Energy 101: Daylighting The Biggest, Brightest Star of Energy Efficiency Energy Basics Home Renewable Energy Homes &

  18. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Saving Do-It-Yourself Projects Just Got Easier Energy Saving Do-It-Yourself Projects Just Got Easier September 3, 2014 - 12:34pm Q&A What has been your experience with DIY energy saving projects? Tell Us Addthis Energy saving DIY projects improve home energy-efficiency and save you money. | Photos courtesy of iStockphoto.com Energy saving DIY projects improve home energy-efficiency and save you money. | Photos courtesy of iStockphoto.com Paige Terlip Paige Terlip Former

  19. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  20. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  1. OLED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » OLED Basics OLED Basics OLEDs are organic LEDs, which means that their key building blocks are organic (i.e., carbon-based) materials. Unlike LEDs, which are small-point light sources, OLEDs are made in sheets that are diffuse-area light sources. OLED technology is developing rapidly, and there are a handful of product offerings with efficacy, lifetime, and color quality specs that are comparable to their LED counterparts. However, OLEDs are still some years away from widespread

  2. Bioproducts Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts Basics Bioproducts Basics Today, petroleum is refined to make chemical feedstocks used in thousands of products. Many of these petroleum-based feedstocks could be replaced with value-added chemicals produced from biomass to manufacture clothing, plastics, lubricants, and other products. The emerging U.S. biobased products industry combines expertise and technology from the agriculture, forest products, and chemical industries to create plastics, chemicals, and composite materials

  3. Webtrends Archives by Fiscal Year - Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics Webtrends Archives by Fiscal Year - Energy Basics From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Energy Basics site by fiscal year. Microsoft Office document icon Energy Basics FY10 Microsoft Office document icon Energy Basics FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Office of EERE Webtrends Archives by Fiscal Year - Social Media Site Webtrends Archives by Fiscal Year - International Activities

  4. Basic Plasma Science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Russia, Japan, Korea and China. PPPL research has expanded knowledge of the science behind such systems and has led to new conceptual designs. The charged particles in plasma...

  5. Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less,"

  6. Office of Science, Basic Energy Sciences

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R. Adzic, et al., Nature Materials 8, 325 (2009) 16 V Komanicky, H Iddir, K-C Chang, A Menzel, G Karapetrov, D Hennessy, P Zapol, H You, J. Am. Chem. Soc. 131, 5732...

  7. Office of Science, Basic Energy Sciences

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Bio-Benefits Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Bio-Benefits Basics Bio-Benefits Basics Biomass is an important commodity for the future of the United States. Increased production and use of biofuels will result in a variety of benefits to the nation, including: Improved national energy security Increased economic growth Broad-based environmental benefits. Biomass and U.S. Energy Security The U.S. economy is heavily dependent on oil imports-containing 4% of the world's

  9. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  10. Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40 Department of Energy Carlsbad Field Office Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site Final January 2001 U.S. Department of Energy Final Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site i TABLE OF CONTENTS CHAPTER 1: INTRODUCTION AND STATEMENT OF PURPOSE AND NEED..........1-1 1.1 HISTORY AND BACKGROUND........................................................1-1 1.2 PURPOSE

  11. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, ... to record the following data: Water temperature before: ...

  12. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are

  13. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    SciTech Connect (OSTI)

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists.

  14. Energy Flow Diagram | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown

  15. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  16. Geothermal Electricity Production Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of

  17. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  18. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  19. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  20. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  1. Tribal Renewable Energy Webinar: Transmission and Grid Basics...

    Energy Savers [EERE]

    Transmission and Grid Basics for Tribal Economic and Energy Development Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal Economic and Energy Development ...

  2. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  3. Basic Energy Sciences Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Baseload Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost

  4. Hydropower Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2014, and about 48% of all renewable electricity generated in the United

  5. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  6. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  7. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  8. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses,

  9. Absorption Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes.

  10. Hydrogen Storage Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » Increase Your H2IQ » Hydrogen Storage Basics Hydrogen Storage Basics Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 miles between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to

  11. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  12. Ocean Energy Resource Basics | Department of Energy

    Energy Savers [EERE]

    Clean Energy Innovation and Job Creation | Department of Energy $12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces $12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation September 29, 2011 - 2:22pm Addthis WASHINGTON, D.C. - The Obama Administration today announced the six winners of the i6 Green Challenge, an initiative to drive technology commercialization and entrepreneurship in support of a green

  13. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... systems are usually represented in British thermal units per square foot (Btuft2). ... Related Articles Glossary of Energy-Related Terms Flat-Plate Photovoltaic Balance of ...

  14. Chapter 5. Basic Concepts for Clean Energy Unsecured Lending...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds ...

  15. Building the Basic PVC Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Basic PVC Wind Turbine Building the Basic PVC Wind Turbine Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary This plan shows how to make a rugged and inexpensive classroom wind turbine that can be used for lab bench-based blade design experiments. While a few specialized parts are needed (a hub and DC motor), the rest of the components are easily found at most hardware stores. Curriculum Technology, Science

  16. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  17. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Science Education Science Education May 4, 2016 Debra Rowe, Oakland Community College, California Meet the Women Leading the Clean Energy Revolution These ...

  18. Sandia National Labs: PCNSC: Departments: Small Science Cluster...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering ... Nanoscience Program, Basic Energy ScienceMaterials ...

  19. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. HOW FUEL CELLS WORK Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode

  20. Heat Pump System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless

  1. Heating System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or

  2. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    SciTech Connect (OSTI)

    Domen, Kazunari

    2011-05-26

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  3. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  4. Nuclear data for basic and applied science. Volume 1

    SciTech Connect (OSTI)

    Young, P.G.; Brown, R.E.; Auchampaugh, G.F.; Lisowski, P.W.; Stewart, L.

    1985-01-01

    This book presents the papers given at a conference on nuclear data for basic and applied science. Topics considered included: nuclear data needs for fusion reactors; fast-neutron interaction with niobium; neutronic analysis of fusion-fusion (hybrid) blankets; measurements of 14 MeV neutron activation cross sections; recent experimental data on sub-barrier fission of light actinides; and intermediate structure in the fission cross sections of the even curium isotopes.

  5. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  6. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science March 7, 2014 - 2:20pm Addthis Science fiction has envisioned many ways that mankind might be able to explore distant galaxies, like the spiral galaxy M106 pictured here, but what is science fiction and what could one day be science fact? | Photo Credit: NASA. Science fiction has envisioned many ways that mankind might be able to

  7. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect (OSTI)

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  8. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the

  9. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there....

  10. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into ...

  11. Photovoltaic Cell Material Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, ...

  12. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material ...

  13. Science & Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Programs and Internships Scholarships and Fellowships More about Science Education Energy Tomorrow Electrofuels: Tiny Organisms Making a Big Impact Science & Innovation ...

  14. Nano-Composite Designs for Energy Storage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-Composite Designs for Energy Storage Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.13 Nano-Composite Designs for Energy Storage

  15. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  16. Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An ...

  17. Photovoltaic Cell Structure Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the ...

  18. Photovoltaic Silicon Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular ...

  19. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  20. Solar Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  1. NREL: Energy Analysis - Energy Sciences Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  2. The Science and Energy Plan

    Broader source: Energy.gov [DOE]

    The FY 2016 Science and Energy Plan (SEP) describes the major programs, performers, and processes involved in the Department’s science and energy functions, and the essential role that each plays across the Department.

  3. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses. PDF icon biomass_basics.pdf More Documents & Publications Biomass Basics: The Facts About Bioenergy Bioenergy Impact Posters http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf

  4. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education Science Education Energy is a physical quantity that follows precise natural laws. Check out our NEW Energy Literacy Video Series, which highlights the 7 Essential Principles of Energy to help engage students in energy. | Energy Department Video. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through educational online content, resources for parents and teachers, internships and student

  5. A Basic Overview of the Energy Employees Occupational Illness Compensation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Policy, Guidance & Reports » Worker Health & Safety » A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program January 2015 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal,

  6. Guidance on Basic Best Practices in Management of Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings | Department of Energy on Basic Best Practices in Management of Energy Performance Buildings Guidance on Basic Best Practices in Management of Energy Performance Buildings Building energy management best practices PDF icon 11_001_eecbg_sep_building_best_practice.pdf More Documents & Publications Energy Efficiency and Conservation Block Grant Financing Program Guidance Grantee Letter SEP Guidance National Energy Policy Act Guide for State Energy Program and Energy Efficiency and

  7. Vehicle Battery Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Battery Basics Batteries are essential for electric drive technologies such as hybrid ... Batteries have three main parts, each of which plays a different role: the anode, cathode, ...

  8. Active Solar Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economics, selection and sizing, control systems, building codes and covenants, and installation and maintenance. Addthis Related Articles Linear Concentrator System Basics for ...

  9. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine...

  10. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  11. Geothermal Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technology Basics Geothermal Technology Basics August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal resources include the heat retained in shallow ground, hot water and rock found a few miles beneath the Earth's surface, and extremely high-temperature molten rock called magma located deep in the Earth. Learn more about: Direct-Use Geothermal Technologies Geothermal

  12. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  13. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  14. Vehicle Emission Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles that use internal combustion engines. These vehicles can run on gasoline, diesel, biofuels, natural gas, or propane. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs)

  15. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  16. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  17. Internal Combustion Engine Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engine Basics Internal Combustion Engine Basics November 22, 2013 - 2:02pm Addthis Internal combustion engines provide outstanding drivability and durability, with more than 250 million highway transportation vehicles in the United States relying on them. Along with gasoline or diesel, they can also utilize renewable or alternative fuels (e.g., natural gas, propane, biodiesel, or ethanol). They can also be combined with hybrid electric powertrains to increase fuel economy or

  18. Anaerobic Digestion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of

  19. Solar Photovoltaic Technology Basics | Department of Energy

    Office of Environmental Management (EM)

    Solar Photovoltaic System Design Basics Solar Photovoltaic System Design Basics August 20, 2013 - 4:00pm Addthis Solar photovoltaic modules are where the electricity gets generated, but are only one of the many parts in a complete photovoltaic (PV) system. In order for the generated electricity to be useful in a home or business, a number of other technologies must be in place. Mounting Structures PV arrays must be mounted on a stable, durable structure that can support the array and withstand

  20. Sandia National Labs: PCNSC: Departments: Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr....

  1. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of

  2. Ethanol Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials collectively known as "biomass." Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. More than 95% of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that

  3. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  4. Geothermal Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F

  5. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities

  6. Concentrating Solar Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy ...

  7. Tribal Renewable Energy Foundational Course: Electricity Grid Basics

    Broader source: Energy.gov [DOE]

    Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

  8. New Energy Basics Site: Check It Out!

    Broader source: Energy.gov [DOE]

    Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and...

  9. Photovoltaic System Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Conversion efficiency This parameter is defined as: energy output from array energy input from sun x 100%. It is often given as a power efficiency, equal to: power output from ...

  10. VIDEO: TM-30 BASICS | Department of Energy

    Energy Savers [EERE]

    Department of Energy VIDEO: Secretary Moniz on Meeting U.S. Energy Security Policy Challenges VIDEO: Secretary Moniz on Meeting U.S. Energy Security Policy Challenges October 26, 2013 - 3:35pm Addthis Secretary Moniz speaks at the Center for Strategic and International Studies on October 24, 2013. | Video courtesy of the Center for Strategic and International Studies. Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications Learn More About U.S. Energy Security Explore

  11. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 15 GEOTHERMAL ENERGY; ... SOLUTIONS; THERMODYNAMIC PROPERTIES Geothermal Legacy 400201* -- Chemical & ...

  12. Environmental Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  13. Hydrogen Safety Basics | Department of Energy

    Office of Environmental Management (EM)

    ... It will not contaminate groundwater. It is a gas under normal atmospheric conditions, and ... manufacturers, and the energy, insurance, and aerospace sectors, to create and ...

  14. Electricity Fuel Basics | Department of Energy

    Energy Savers [EERE]

    is generally provided by the electricity grid and stored in the vehicle's batteries. ... Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Visit ...

  15. MIT- Energy Science and Engineering Laboratory | Open Energy...

    Open Energy Info (EERE)

    Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name: MIT- Energy Science and Engineering Laboratory Address: 77...

  16. Fusion Energy Sciences Jobs

    Office of Science (SC) Website

    fesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  17. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Transformations Nanoscience and Electron Microscopy Centers X-Ray and Neutron Scattering Facilities Scientific User Facilities Division Materials Sciences and...

  18. Energy Dept. Awards $22.7 Million for Basic Solar Energy Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22.7 Million for Basic Solar Energy Research Energy Dept. Awards 22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of ...

  19. Absorption Cooling Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as...

  20. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  1. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  2. Energy 101 Videos: Learn More About the Basics! | Department...

    Broader source: Energy.gov (indexed) [DOE]

    out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks ...

  3. Hydropower Resource Basics | Department of Energy

    Energy Savers [EERE]

    Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or micro

  4. Combined Heat and Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Combined Heat & Power Deployment » Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point

  5. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  6. Institutional Change Basics for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics for Sustainability Institutional Change Basics for Sustainability Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies and policies are used effectively in

  7. NREL: State and Local Governments - Clean Energy Policy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Policy Basics States and local communities can create policy strategies to help them achieve their clean energy goals. To create effective strategies, it's helpful to understand how to build a clean energy policy portfolio and the different types of policies. Clean Energy Policy Portfolios Single policies don't transform markets for a clean energy economy in states and localities. The most effective approach is to apply a suite of policies in succession-from policies that prepare

  8. Science and Energy Town Hall

    Broader source: Energy.gov [DOE]

    Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.

  9. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics Basics ATLAS users belong to the "atlas" NERSC repository, and the Principal Investigator (PI) for ATLAS computing at NERSC is Ian Hinchliffe. ALICE users work in the sl53 chos environment. See the Chos page for more information. For more information about ATLAS computing at PDSF see the ATLAS twiki webpages which are maintained by ATLAS users. Last edited: 2016-04-29 11:34:26

  10. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  11. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics You are ...

  12. Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Community Resources Archives Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences ...

  13. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Opportunities Basic Energy Sciences (BES) BES Home About Research Facilities Science ... link Early Career Research Program Basic Energy Sciences Advisory Committee (BESAC) ...

  14. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating Systems Heat Pump Systems Supporting Equipment for

  15. Crystalline Silicon Photovolatic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics August 19, 2013 - 4:58pm Addthis Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure Illustration of a silicon crystal with its 14 electrons orbiting a nucleus of

  16. NREL: Energy Sciences - Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Illustration shows photosynthetic cycle. At the top left are the labels solar energy, H2O, and CO2; an arrow points down to Lignocellulosic Biomass. An arrow from this...

  17. Sandia Energy Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  18. Building Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Building Science This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž PDF icon issue1_highr_enclosures.pdf More Documents & Publications Issue #1: How Do We First Do No Harm with High-R Enclosures? ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Basement Insulation Systems - Building America Top Innovation

  19. NREL: Distributed Grid Integration - Energy System Basics Video Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy System Basics Video Series Learn the essential facts on energy systems in this six-part video series sponsored by the DOE SunShot Initiative and hosted by Dr. Ravel Ammerman. Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation Overview Part 5: Electricity Grid: Distribution System Overview Part 6: Electricity Grid: Renewable Energy Resources

  20. Basic research needed for the development of geothermal energy

    SciTech Connect (OSTI)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  1. Bio-Based Product Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Biomass » Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial

  2. Weihai International Renewable Energy Science Park | Open Energy...

    Open Energy Info (EERE)

    Science Park Jump to: navigation, search Name: Weihai International Renewable Energy Science Park. Place: Weihai, Shandong Province, China Sector: Renewable Energy Product:...

  3. Wuxi Erquan Solar Energy Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Erquan Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Wuxi Erquan Solar Energy Science& Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214128...

  4. Wuxi Shangpin Solar Energy Science Technology Co | Open Energy...

    Open Energy Info (EERE)

    Shangpin Solar Energy Science Technology Co Jump to: navigation, search Name: Wuxi Shangpin Solar Energy Science & Technology Co Place: Wuxi, Jiangsu Province, China Product:...

  5. Energy BioSciences Institute | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Energy BioSciences Institute Name: Energy BioSciences Institute Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.energybiosciencesinstitute...

  6. DOE Office of Basic Sciences: An Overview of Basic Research Activities on

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy (DOE) held a Manufacturing Pre-Solicitation Workshop in Arlington, Va., on May 18, 2007. Workshop participants reviewed the application process and discussed proposed topics for a research and development funding opportunity to advance manufacturing technologies for hydrogen and fuel cell systems. The workshop was held in conjunction with the DOE Hydrogen Program's 2007 Annual Merit Review. DOE anticipates funding up to $48 million over 3 to 5 years for this

  7. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  8. Elevance Renewable Sciences Inc | Open Energy Information

    Open Energy Info (EERE)

    Elevance Renewable Sciences Inc Jump to: navigation, search Name: Elevance Renewable Sciences Inc Place: Bolingbrook, Illinois Zip: 60440 Sector: Biofuels, Renewable Energy...

  9. Passive Solar Building Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject

  10. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  11. DOE National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE National Science Bowl DOE National Science Bowl April 28, 2016 8:00AM EDT to May 2, 2016 5:00PM EDT Washington, D.C. Contact http://science.energy.gov/wdts/nsb/

  12. Fiscal year 1984 Department of Energy authorization (fossil energy and basic research). Hearings before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, House of Representatives, Ninety-Eighth Congress, First Session, February 24, March 2, 3, 16, 17, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Five of a series of nine budget hearings focused on DOE's $1 billion basic energy research programs are included in this volume. The issues receiving special attention were those of research priorities, interagency coordination, university research needs, and technology transfer. The 22 witnesses included Alvin Trivelpiece of the DOE Office of Energy Research and representatives of laboratories, universities, and research institutes and companies. Their statements and responses to committee questions are followed by two additional submissions for the record. (DCK)

  13. Smarter Smart Windows | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Smarter Smart Windows Basic Energy Sciences (BES) BES Home About Research Facilities Science ... Laboratory, and was supported by the Office of Science, Office of Basic Energy ...

  14. Transmission and Grid Basics for Tribal Economic and Energy Development

    Energy Savers [EERE]

    Transmission and Grid Basics for Tribal Economic and Energy Development March 30, 2016 11:00 am - 12:30 PM MDT Tribal Energy Development Operation and Management Best Practices 2 Todays Presenters * Sean Esterly sean.esterly@nrel.gov * Doug MacCourt Douglas.Maccourt@hq.doe.gov * Kurt Daniel Kdaniel@wapa.gov * Dave Narang david.narang@nrel.gov * Jon Steward Steward@wapa.gov * Tawnie Knight tawnieknight@utemountain.org * Scott Clow sclow@utemountain.org * Bob Easton aeaston@wapa.gov 3 Link to the

  15. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  16. FEMP Offers New Training on Energy Management Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Energy Management Basics FEMP Offers New Training on Energy Management Basics May 18, 2015 - 12:12pm Addthis The U.S. Department of Energy Federal Energy Management Program (FEMP) will present a live training course on June 24, 2015, from 1:30 p.m. to 3 p.m. Eastern time on Energy Management Basic Training: Tools and Resources for Results. This training is presented in partnership with the U.S. Department of the Army, Office of Assistant Chief of Staff for Installation Management. This course

  17. Los Alamos Lab: Science Program Office, Energy Security Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Program Office: Fossil Energy & Environment (SPO-FE) SPO FE Science AEI Nuclear Fossil Energy & Environment Home Office of Science Home Alternative Energy & Infrastructure ...

  18. Building Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Roadmap, developed by DOE and leaders of the building science community,

  19. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  20. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds)

    Broader source: Energy.gov [DOE]

    Provides basic concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds. Author: U. S. Department of Energy

  1. Energy Efficiency and Renewable Energy Science and Technology Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fellowships | Department of Energy Education & Professional Development » Graduate & Postdoctoral Opportunities » Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Program Description The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and

  2. Division Director, Chemical Sciences, Geosciences and Biosciences

    Broader source: Energy.gov [DOE]

    The Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division is seeking a motivated and highly qualified individual to...

  3. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Science manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science. In addition, the Office of Science is...

  4. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you,...

  5. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, J S; Roessner, D eds.

    1980-01-01

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  6. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

  7. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Directions Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) ... Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy ...

  8. Science and Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F-16 (865) 574-6694 kelsey.mandel@hc.doe.gov Science Headquarters - HR Advisory Office GARDNER, WALT SR HR BUSINESS PARTNER 301-903-0994 waltrunette.gardner@science.doe.gov Science ...

  9. Zhuhai Oil Energy Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  10. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  11. Audit Report: IG-0441 | Department of Energy

    Office of Environmental Management (EM)

    Cost Sharing at Basic Energy Sciences' User Facilities The Department of Energy's Office of Basic Energy Sciences (BES) funds the construction and operation of 17 designated user ...

  12. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Clean Energy Science and Innovation Clean Energy Hydrogen Production and Storage Nuclear Fuel Cycle Research and Development Renewable Energy Research Among the most critical future challenges for our nation is the development of abundant, reliable and sustainable energy sources. Providing the energy security fix in America will require an energy mix - a variety of energy sources. The expertise of the Savannah River National Laboratory (SRNL), located at the Department of Energy's

  13. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal hydrides Science and Innovation Clean Energy - Hydrogen Production and Storage ... radioactive isotope of hydrogen that is a vital component of modern nuclear defense. ...

  14. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office (BTO) stated needs for the new program in Waste to Energy (WTE) initiative. SRNL is leveraging its nuclear core competencies in chemistry, material science and ...

  15. NREL: Energy Sciences - Jun-Wei Luo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factors." Energy Environmental & Science (4); p. 2546. Luo, J.-W.; Zunger, A. (2010). "Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator...

  16. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  17. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  18. Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds

    Broader source: Energy.gov [DOE]

    Clean Energy Finance Guide, Third Edition, December 9, 2010, Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds.

  19. Solar Energy Education. Renewable energy activities for earth science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  20. Basic Research Needs for the Hydrogen Economy

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

  1. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy...

  2. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

  3. ACCESS: Argonne Collaborative Center for Energy Storage Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCESS: Argonne Collaborative Center for Energy Storage Science Share Topic Energy Energy usage Energy storage Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative ...

  4. Science Energy Literacy and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... They can also built from basic materials, balsa wood dowels, an electric motor, and a light bulb. The amount of electricity will be small, and somewhat dependent on the quality of ...

  5. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative PDF icon Basic Research for the Hydrogen Fuel Initiative More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  6. Energy science and technology database (on the internet). Online data

    SciTech Connect (OSTI)

    1997-12-01

    The Energy Science and Technology Database (EDB) is a multidisciplinary file containing worldwide references to basic and applied scientific and technical research literature. The information is collected for use by government managers, researchers at the national laboratories, and other research efforts sponsored by the U.S. Department of Energy, and the results of this research are transferred to the public. Abstracts are included for records from 1976 to the present. The EDB also contains the Nuclear Science Abstracts which is a comprehensive abstract and index collection to the international nuclear science and technology literature for the period 1948 through 1976. Included are scientific and technical reports of the U.S. Atomic Energy Commission, U.S. Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Approximately 25% of the records in the file contain abstracts. Nuclear Science Abstracts contains over 900,000 bibliographic records. The entire Energy Science and Technology Database contains over 3 million bibliographic records. This database is now available for searching through the GOV. Research-Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

  7. Rising Solar Energy Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Place: Qinhuangdao, Hebei Province, China Zip: 66600 Sector: Solar Product: Chinese solar module laminator manufacturer...

  8. Energy Efficiency and Renewable Energy Science and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gain deep insight into the federal government's role in the ... field of science, engineering or other highly ... Buildings Vehicles Geothermal Water Government Energy ...

  9. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  10. Germantown Site History | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    History Germantown Site History Basic Energy Sciences (BES) BES Home About Organization ... Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy ...

  11. Scale of Things Chart | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Scale of Things Chart Basic Energy Sciences (BES) BES Home About Research Facilities Science ... The above "Scale of Things" chart was designed by the Office of Basic Energy ...

  12. NREL: Energy Sciences - Joongoo Kang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    his Ph.D. in physics from the KAIST, South Korea, under the supervision of Prof. K. J. Chang. His background is in solid-state physics and materials science based on...

  13. NREL: Energy Sciences - Tim Snow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Materials Science Center. Since graduating in 1987, he has worked within the semiconductor field for Intel, LSI Logic, Atmel, and ZettaCore, Inc. He holds a U.S. patent for...

  14. NREL: Energy Sciences - Yufeng Zhao

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Zhao graduated from the physics department of Harbin University of Science & Technology and earned his Ph.D. degree from Peking University in 1998. After two years at the...

  15. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  16. Large Scale Computing Requirements for Basic Energy Sciences...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    significant solution acceleration order of magnitude OFF SHORE BRAZIL CSEM DATA 3D Image Processing Requirements 3D Data and Imaging Volumes - nearly 1 million data points,...

  17. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNSSEC Implementa/on at ESnet R. Kevin Oberman Sr. Network Engineer February 2, 2010 Why ESnet is Signing * While not covered by the OMB mandate, ESnet supports several organizations which are required to sign * ESnet needs experience with DNSSEC to support these organizations effectively * Future mandates may cover ESnet How ESnet is Signing * Secure64 Secure Signer appliance - Transfers zones from existing master - Public DNS Servers transfer data from the appliance * Compliant with all

  18. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint
Techs,
Salt
Lake
City
 Steve
Co;er,
Dept
Head
 steve@es.net

 Lawrence
Berkeley
NaFonal
Lab
 Network
Update
 ESnet4,
OSCARS,
Other
Projects
 ESnet4
Network
 3
 Equipment
Upgrades
/
Installs
 Peering
upgrades:
 * EQX-SJ:

installed
MX480
on
Oct
15 th
 * EQX-ASH:

installed
MX480
on
Nov
30 th 

 * EQX-CHI:

Pending
MX480
install
on
Feb
18 th
 Site
/
hub
upgrades:
 *

  19. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Monitoring and Visualiza4on at ESnet Jon Dugan, Network Engineer ESnet Network Engineering Group February 3, 2010 Winter Joint Techs, Salt Lake City, UT Overview Data Collec4on (ESxSNMP) Data Visualiza4on (Graphite) Event/Metadata Log (Net Almanac) ESxSNMP: Goals * Automate everything possible * Provide summaries but don't lose raw data - Disk is cheap - It can be useful to take a hard look at the past * Flexibility and scalability * Minimize up front assumptions * Protect data

  20. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESCC,
Salt
Lake
City
 Steve
Co6er,
Dept
Head

 steve@es.net

 Lawrence
Berkeley
NaDonal
Lab
 Outline
 * Staff
Updates
 * Network
Update
 * Advanced
Networking
IniDaDve
 * ESnet
Projects
 * Infrastructure
Projects
 * Staff
Projects
 Staff
Update
 New
hires:
 * Hing
Chow:

Project
Manager
(ANI)
 * Chris
Tracy:

Network
/
SoVware
Engineer
(ANI)
 * Andy
Lake:

SoVware
Engineer
(ANI)
 *

  1. Basic research needs and priorities in solar energy. Volume I. Executive summary. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, T S; Roessner, D eds.

    1980-01-01

    This report identifies, describes, and recommends priorities for basic research important to the future development of solar energy. In response to a request from the US Department of Energy, SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. SERI scientists relied heavily on the opinions of scientists polled, but weighted their own recommendations and opinions equally. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The Scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas and, wintin each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: Crucial, important, and needed. A narrative accompanying the descripton of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  2. Energy Department Awards Universities $7.5 Million for Basic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This program uses federal research funding to develop the scientific expertise of our entire nation, fulfilling the President's vision," Under Secretary for Science Dr. Raymond L. ...

  3. Large Scale Computing and Storage Requirements for Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciencesAn BES ASCR NERSC WorkshopFebruary 9-10, 2010... Read More Workshop Logistics Workshop location, directions, and registration information are included here......

  4. Photovoltaic Cell Quantum Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Cell Quantum Efficiency Basics August 20, 2013 - 3:05pm Addthis Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) ...

  5. Guidance on Basic Best Practices in Management of Energy Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Block Grant Financing Program Guidance Grantee Letter SEP Guidance National Energy Policy Act Guide for State Energy Program and Energy Efficiency and Conservation Block ...

  6. Archives of BES CRAs April 2003 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    03 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  7. Archives of BES CRAs April 2010 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  8. Archives of BES CRAs June 2008 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2008 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  9. Archives of BES CRAs May 2006 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2006 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  10. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a scientist testing a photoelectrochemical water splitting system. Hydrogen is the simplest and most abundant element in the universe. It is a major component of water, oil, natural gas, and all living matter. Despite its simplicity and abundance, hydrogen rarely occurs naturally as a gas on Earth. It is almost always combined with other elements. It can be generated from

  11. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  12. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  13. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  14. Geothermal Direct-Use Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct-Use Basics Geothermal Direct-Use Basics August 14, 2013 - 1:46pm Addthis Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk. Learn more about direct-use of geothermal applications from the EERE Geothermal Technologies Office. Addthis Related Articles

  15. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  16. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  17. Applying physics, teamwork to fusion energy science | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  18. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology ...

  19. Shanghai Chaori Solar Energy Science Technology Development Co...

    Open Energy Info (EERE)

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  20. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Rising Solar Energy Science and Technology Co., Ltd Place: Qinhuadao, Hebei...

  1. Shanshan Ulica Solar Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Shanshan Ulica Solar Energy Science&Technology Co Ltd Place: Shanghai, Shanghai Municipality, China...

  2. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    Open Energy Info (EERE)

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  3. Beijing China Sciences General Energy Environment GEE | Open...

    Open Energy Info (EERE)

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  4. Mesa Energy formerly called Mesa Environmental Sciences | Open...

    Open Energy Info (EERE)

    Energy formerly called Mesa Environmental Sciences Jump to: navigation, search Name: Mesa Energy (formerly called Mesa Environmental Sciences) Place: Pennsylvania Zip: 19355...

  5. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Committee on Science, Space and Technology Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant ...

  6. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  7. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  8. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  9. Interdisciplinary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offices: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics and Nuclear Physics. ...

  10. Concentrating Solar Power Tower System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other

  11. Flat-Plate Photovoltaic Module Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame. Front Surface Materials The front surface of a flat-plate PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have high transmission of light with

  12. Flat-Plate Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Flat-Plate Photovoltaic System Basics August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the Illustration of a cutaway of a typical flat-plate module. The layers, in order from top to bottom, are: cover film, solar cell, encapsulant, substrate, cover film, seal, gasket, and frame. One typical flat-plate module design uses a substrate of metal,

  13. Conventional Storage Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another

  14. Heat Pump Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Heat Pump Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water

  15. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  16. The Business of Energy Development: Basics for Tribal Projects

    Energy Savers [EERE]

    Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate, a presentation of the U.S. Department of Energy's DOE Zero Energy Ready Home program. PDF icon ZERH Appraisal Process More Documents & Publications DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes Zero Energy Ready Home Training Presentation Collective Impact for Zero Net Energy Homes Energy

    Approach to Low-Cost

  17. Sandia Energy Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eronautics-and-astronauticsfeed 0 Detecting rare, abnormally large grains by x-ray diffraction http:energy.sandia.govdetecting-rare-abnormally-large-grains-by-x-ray-diffractio...

  18. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...

    Office of Science (SC) Website

    Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  19. Exploratory basic energy research conducted at Standord University in the period September, 1979-August, 1983. Final report

    SciTech Connect (OSTI)

    Reynolds, W.C.

    1984-01-01

    In September, 1978, the Department of Energy awarded a contract to Stanford for Exploratory Basic Research. Projects to be supported were to be chosen by Stanford, with emphasis being placed on exploratory research likely to lead to full-scale research programs under support of appropriate agencies. Funding was provided for three years, as follows: FY 1979, $150K; FY 1980, 200K; and FY 1981, 250K for a total of $600K. The DOE funds provided through this contract were used, in combination with the IES industrial funds, to support exploratory basic energy research in three ways: (1) Funding of faculty members for the initial phases of research. Most of the funding was used in this manner. (2) Support of the Energy Information Center, a small special document center that holds information pertinent to energy research, both as related to energy policy and energy technology and to the supporting basic sciences. Approximately 12% of the funding was used in this manner. (3) Through support for seminars, occasional visitors, and program administration. Approximately 6% of the funding was used for this general support of the energy ambiance at Stanford.

  20. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  1. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter within BES

  2. Solar energy education. Renewable energy activities for general science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  3. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to our Office of Science for all the work that went into organizing this year's National Science Bowl. In particular, I'd like to recognize Sue Ellen Walbridge, who has orchestrated this important event for the past 17 years. Sue Ellen, thank you for your devotion to America's scientific future. I'm glad to have my wife

  4. Basic Research Needs for Solar Energy Utulization | Department...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Utilizing Nature's Designs for Solar Energy Conversion Proceedings of the 1998 U.S. DOE Hydrogen Program Review: April 28-30, 1998...

  5. Energy Innovation Hubs: Achieving Our Energy Goals with Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge

  6. Archives of BES CRAs February 2002 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2002 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  7. Archives of BES CRAs October 2004 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  8. Basic science and its relationship to environmental restoration: Preparing for the 21. century. Summary report

    SciTech Connect (OSTI)

    1995-12-31

    The Department of Energy (DOE) funded the two day meeting in order to focus on ways to organize and mobilize the scientific community to effectively address the maze of global environmental problems. Using the Office of Energy Research (ER) as a Test Case, the participants were asked to address such questions as: What are the problems ER can effectively address? Is there a hierarchy of issues involved in attacking those problems? Are there new multi-disciplinary constructs that should be encouraged in the university environment, much like the applied science departments that developed at many institutions in the 1970`s and 1980`s; and/or in the national laboratories? What does it take to get the best minds in the university and national laboratory environments actively engaged in investigations of fundamental environmental problems? If such a beginning can be made, how should its significance be communicated to other agencies?

  9. Energy Sciences Network (ESnet) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Network (ESnet) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National Energy Research Scientific Computing Center (NERSC) Oak Ridge Leadership Computing Facility (OLCF) Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced

  10. Expanding Science and Energy Literacy with America’s Science and Technology Centers

    Broader source: Energy.gov [DOE]

    The Department's new partnership with the Association of Science and Technology Centers is advancing energy literacy through museums and science centers.

  11. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - House Committee on Science, Space and Technology Before the Subcommittee on Energy - House Committee on Science, Space and Technology Testimony of Adam Sieminiski, Administrator, ...

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of ...

  13. Wuhan Guoce Science Technology Co Ltd Guoce | Open Energy Information

    Open Energy Info (EERE)

    Guoce Science Technology Co Ltd Guoce Jump to: navigation, search Name: Wuhan Guoce Science & Technology Co., Ltd (Guoce) Place: Wuhan, Hubei Province, China Sector: Wind energy...

  14. Goldwind Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Goldwind Science & Technology Co Ltd Place: Urumqi, Xinjiang Autonomous Region, China Zip: 830000 Sector: Wind energy...

  15. Feng Fa Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    Feng Fa Science and Technology Jump to: navigation, search Name: Feng Fa Science and Technology Place: Shenzhen, Guangdong Province, China Sector: Wind energy Product: A VCPE...

  16. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  17. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  18. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science ...

  19. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  20. american museum of science and energy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    american museum of science and energy | National Nuclear Security Administration Facebook ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home american museum of science and ...

  1. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House ...

  2. Construction Review | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Review Basic Energy Sciences (BES) BES Home About Research Facilities Science ... Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE ...

  3. DOE Energy Innovation Hubs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research » DOE Energy Innovation Hubs Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact

  4. Energy Department to Invest up to $5.2 million to Advance Basic Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Federal-State Partnership | Department of Energy Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership Energy Department to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership April 7, 2008 - 10:50am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will invest up to $5.2 million in basic research projects with 12 universities from across the country. In an effort to ensure America remains

  5. National Science Bowl Regional Roundup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Regional Roundup National Science Bowl Regional Roundup March 18, 2015 - 2:33pm Addthis Photo courtesy of National Renewable Energy Laboratory. Photo courtesy of National Renewable Energy Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs National Science Bowl Regional Roundup It's like March Madness for science students. Storified by Energy Department * Tue, May 05 2015 15:08:26 2015ScienceBowl125 * National Renewable Energy Lab To quote President

  6. Modeling How Uranium Sticks to Soils | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Modeling How Uranium Sticks to Soils Basic Energy Sciences (BES) BES Home About Research ... Bruce Garrett bruce.garrett@pnnl.gov Funding Basic Research: Office of Science ...

  7. Finding Hidden Oil and Gas Reserves | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Finding Hidden Oil and Gas Reserves Basic Energy Sciences (BES) BES Home About Research ... Michael Commer LBNL MCommer@lbl.gov Funding Basic Research: DOE Office of Science ...

  8. Joint BioEnergy Institute Oxime-NIMS Work Featured on the Cover...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxime-NIMS Work Featured on the Cover of ACS Chemical Biology - Sandia Energy Energy ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  9. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  10. Basic Research Needs for High Energy Density Laboratory Physics

    National Nuclear Security Administration (NNSA)

    On the cover: Invisible infrared light from the 200-trillion watt Trident Laser enters from the bottom to interact with a one-micrometer thick foil target in the center of the photo. The laser pulse produces a plasma - an ionized gas - many times hotter than the center of the sun, which lasts for a trillionth of a second. During this time some electrons from the foil are accelerated to virtually the speed of light, and some ions are accelerated to energies of tens of millions of volts. In this

  11. Research Conduct Policies | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic

  12. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  13. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education Remove Science Education filter Science & Innovation Remove Science & Innovation filter Filter by Resource Type All Results (43) Lesson Plan (42) Energy Basics...

  15. EFRC Newsletter | Bringing Energy Science into the Classroom |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center EFRC Newsletter | Bringing Energy Science into the Classroom June 19, 2015 EFRC Newsletter | Bringing Energy Science into the Classroom Featuring PARC Outreach Coordinator Rachel Ruggirello View Article Here

  16. Before the House Science and Technology Subcommittee on Energy...

    Broader source: Energy.gov (indexed) [DOE]

    BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program PDF icon 10-29-09FinalTestimony(Synakowski)....

  17. Office of the Under Secretary for Science and Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Franklin (Lynn) Orr Under Secretary for Science and Energy More about Franklin (Lynn) Orr Adam Cohen Deputy Under Secretary for Science and Energy More about Adam Cohen Tarak Shah ...

  18. Argonne Energy Sciences Building achieves LEED Gold | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural light. (Click to view larger.) Argonne Energy Sciences Building achieves LEED Gold By Diana Anderson * May 21, 2015 Tweet EmailPrint The Energy Sciences Building (ESB) at...

  19. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon 9-10-09_Final_Testimony_(Palmisano).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Chapter 9 - Enabling Capabilities for Science and Energy Biosystems Design Before the House

  20. Before the House Science and Technology, Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Science and Technology, Subcommittee on Energy and Environment By: Steve Chalk, Principal Deputy Assistant Secretary, Office of Energy Efficiency and Renewable ...

  1. Sandia Energy - Materials Science and Engineering Support for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  2. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  3. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  4. National Lab Celebrates a Century of Science | Department of Energy

    Energy Savers [EERE]

    Lab Celebrates a Century of Science National Lab Celebrates a Century of Science October 13, 2010 - 1:00pm Addthis Washington, DC - On the occasion of its 100th anniversary, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) today launched its Regional University Alliance (NETL-RUA) and dedicated the Energy Challenge, an interactive energy exhibit for kids, with an event at the Carnegie Science Center. Energy Challenge is an interactive kiosk that quizzes players on

  5. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  6. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  7. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Office of Scientific and Technical Information (OSTI)

    SEPTEMBER 2012 FROM QUANTA TO THE CONTINUUM: opportunities for MESOSCALE SCIENCE A REPORT FOR THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE MESOSCALE SCIENCE SUBCOMMITTEE About the Department of Energy's Basic Energy Sciences Program Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. This research provides the foundations for new energy technologies and supports DOE missions in

  8. Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Archives Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Discoveries Nobel Prizes Vignettes Archives Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  9. Abstracts | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Abstracts Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Abstracts Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW

  10. Community Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  11. Changing Colors for Built-in Sunblock | U.S. DOE Office of Science...

    Office of Science (SC) Website

    The development of artificial photosynthetic systems for making chemical fuels from solar ... of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences ...

  12. Ultrafast Materials and Chemical Sciences FOA | U.S. DOE Office...

    Office of Science (SC) Website

    Ultrafast Materials and Chemical Sciences FOA Basic Energy Sciences (BES) BES Home About ... Funding Opportunities Ultrafast Materials and Chemical Sciences FOA Print Text Size: A A A ...

  13. Nanomaterials ES&H | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research ...

  14. USA RS Basic Contract - Contract No.: DE-RW0000005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA RS Basic Contract - Contract No.: DE-RW0000005 USA RS Basic Contract - Contract No.: DE-RW0000005 This document describes the Statement of Work (SOW) of the Management and Operating Contractor (M&O) Contract for the U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) Program's Yucca Mountain Project (YMP). An M&O contract is defined at Federal Acquisition Regulation (FAR) 17.6 and Department of Energy Acquisition Regulation (DEAR) 970. Inasmuch as

  15. Naming of the Office of Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Naming of the Office of Science Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  16. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Bio-Inspired Energy Science (CBES) Print Text Size: A A A FeedbackShare Page CBES Header Director Samuel Stupp Lead Institution Northwestern University Year Established 2009 Mission To discover and develop bio-inspired systems that reveal new connections between energy

  17. DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Home Webinar: Comprehensive Building Science (Text Version) DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version) Below is the text version of the webinar, DOE Zero Energy Ready Home - Comprehensive Building Science, presented in March 2014. Watch the presentation. Lindsay Parker: Hi, everyone. Thanks for joining us for the Department of Energy Challenge Home technical webinar. We'll be starting in a couple minutes. Waiting for people to come on

  18. Expanding Science and Energy Literacy with America's Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at museums. These visits created lasting impressions, inspiring us to discover more about the world around us. It's no wonder that science and technology museums around the ...

  19. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  20. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: DOE Fusion Energy Program BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science

  1. Renewable energy is focus of New Science on Wheels programs offered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Wheels Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum The classes are designed to generate interest in science and ...

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science /newsroom/_assets/images/science-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science Technology The Lab All Jonathan Ward Engle Physicist wins early-career award for isotope work Jonathan Ward Engle, is among 49 winners, of the US Department of Energy's Early Career Research Program awards for 2016. - 5/12/16 Adaptive design framework. Machine learning accelerates the discovery of new materials Researchers

  3. Lighting Science Group | Open Energy Information

    Open Energy Info (EERE)

    Science Group Jump to: navigation, search Name: Lighting Science Group Place: Dallas, Texas Zip: 75201 Product: LED design company, with multiple patents pending in power...

  4. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  5. PSE Science Park | Open Energy Information

    Open Energy Info (EERE)

    PSE Science Park Jump to: navigation, search Name: PSE Science Park Place: Switzerland Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  6. California Academy of Sciences | Open Energy Information

    Open Energy Info (EERE)

    Academy of Sciences Jump to: navigation, search Name: California Academy of Sciences Place: San Francisco, California Zip: 94103-3009 Product: Set up to explore, explain and...

  7. Global Science Gateway Agreement Signed in London | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Signed in London Global Science Gateway Agreement Signed in London January 22, 2006 - 10:15am Addthis DOE Partners With British Library on "Science.world" Initiative LONDON, ENGLAND -- Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), yesterday signed an agreement with Lynne Brindley, Chief Executive, the British Library, to partner on the development of a global science gateway. The gateway would eventually make science information

  8. Global Science Gateway Now Open | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Open Global Science Gateway Now Open June 22, 2007 - 2:07pm Addthis WorldWideScience.org opens public access to more than 200 million pages of international research information WASHINGTON, DC-The U.S. Department of Energy (DOE) and the British Library, along with eight other participating countries, today opened an online global gateway to science information from 15 national portals. The gateway, WorldWideScience.org, gives citizens, researchers and anyone interested in science the

  9. Before the House Science and Technology, Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment By: Steve Chalk, Principal Deputy Assistant Secretary, Office of Energy Efficiency and Renewable Energy Subject: Examining Federal Vehicle Technology Research and Development Programs PDF icon 3-24-09_Final_Testimony_Steve_Chalk.pdf More Documents

  10. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy, 42 student activities on energy basics for grades K-4. http:energy.goveereeducationdownloadsprimary-science-energy-teacher-and-student-guides-42-activities...

  12. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  13. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  14. Basic physics program for a low energy antiproton source in North America

    SciTech Connect (OSTI)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs.

  15. Light Speed Ahead! | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nano Lett. 15, 3472-3478 (2015). Copyright 2015 American Chemical Society Specially ... U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical ...

  16. Accelerator R&D Stewardship | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    High Energy Physics (HEP) HEP Home About Research Science ... Accelerator R&D to User Needs Workshop Reports Facilities ... SC programs, including Basic Energy Sciences (BES), ...

  17. Energy Department and National Institute of Building Sciences...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Workforce Guidelines Energy Department and National Institute of Building Sciences Release Better Buildings Workforce Guidelines March 9, 2015 - 1:37pm Addthis ...

  18. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement Before the Committee On Science And Technology, Subcommittee on Energy and Environment, U.S. House of Representatives By: Jacques Beaudry-Losique, Deputy Assistant ...

  19. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  20. Primary Science of Energy Teacher and Student Guides (42 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teacher and Student Guides (42 Activities) Primary Science of Energy Teacher and Student Guides (42 Activities) Below is information about the student activitylesson plan from...

  1. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  2. A brief history of geospatial science in the Department of Energy

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  3. Energy Frontier | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Experiments Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC

  4. ACCESS: The Argonne Collaborative Center for Energy Storage Science |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory ACCESS: The Argonne Collaborative Center for Energy Storage Science The Argonne Collaborative Center for Energy Storage Science (ACCESS) is a high-impact collaboration of scientists and engineers from across the U.S. Department of Energy's Argonne National Laboratory. Together, these researchers are charged with solving pressing energy storage problems through multidisciplinary research. Argonne's energy storage portfolio captures every point on the spectrum from

  5. Science and the Energy Security Challenge: The Example of Solid-State Lighting

    ScienceCinema (OSTI)

    Philips, Julia [Sandia

    2010-01-08

    Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products ? a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.

  6. Facing Our Energy Challenges in a New Era of Science (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Dehmer, Patricia M. (Deputy Director for Science Programs at DOE)

    2012-03-20

    Patricia Dehmer, Deputy Director for Science Programs at DOE, opened the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research,' with the talk, 'Facing Our Energy Challenges in a New Era of Science.' In her presentation, Dr. Dehmer gave a tutorial on the energy challenges facing our Nation and showed how the DOE research portfolio addresses those issues. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. NREL: Energy Sciences - Kirstin M. Alberi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a B.S. in Materials Science and Engineering from the Massachusetts Institute of Technology in 2003 and a PhD in Materials Science and Engineering from the University of...

  8. EA-1340: Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to make maximum use of existing U.S. Department of Energy Waste Isolation Pilot Plant (WIPP) facilities to further the scientific...

  9. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology 12-11-14Peter Lyons FT HSST.pdf More...

  10. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director, Office of High Energy Physics, Office of Science Subject: Investigating the Nature of Matter Energy, Space and Time PDF icon 10-1-09FinalTestimony(Kovar).pdf More...

  11. Adam Cohen becomes Deputy Under Secretary for Science and Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  12. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science

    Broader source: Energy.gov [DOE]

    DOE Zero Energy Homes aren’t just really efficient – they’re also designed and built using solid building science principles. Version 3 of the ENERGY STAR Certified Homes program, a prerequisite...

  13. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2015 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  14. 2016 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2016 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  15. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    1 Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2011 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  16. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2012 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  17. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2013 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  18. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2014 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  19. 2015 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2015 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  20. 2016 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science Highlights 2016 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc

  1. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    SciTech Connect (OSTI)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.

  2. DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. Last updated on Monday 29 July

  3. U.S. Department of Energy 2009 Annual FOIA Report I. Basic Information Regarding Report.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Annual FOIA Report I. Basic Information Regarding Report. A. Kevin T. Hagerty, Director Office of Information Resources, MA-90 U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-5955 Sheila Jeter, FOIA/Privacy Act Specialist Alexander Morris, FOIA Officer FOIA/Privacy Act Office, MA-90 Office of Information Resources U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-5955 B. An electronic copy of the Freedom of Information Act

  4. Abstract Tracking System | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Archives » Abstract Tracking System Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  5. Nanotechnology Energizing Our Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Presentations » Nanotechnology Energizing Our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  6. BES and Congress | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BES and Congress Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington,

  7. Department of Energy Announces 20th Annual National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy th Annual National Science Bowl Department of Energy Announces 20th Annual National Science Bowl April 23, 2010 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu announced that students from sixty-eight high school teams and thirty-seven middle school teams will compete next weekend for championship titles in the U.S. Department of Energy's 20th annual National Science Bowl in Washington, D.C. The participating teams - ranging from forty-two states, the

  8. House Committee on Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of our nation's scientific infrastructure through a system of 10 world-class National Laboratories. ... and research supporting the President's climate change science program. ...

  9. Bayer MaterialScience | Open Energy Information

    Open Energy Info (EERE)

    Leverkusen, Germany Website: www.bayermaterialscience.comi References: Bayer Material Science1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  10. NREL: Energy Sciences - Solid-State Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  11. NREL: Energy Sciences - Chemistry and Nanoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and comprises the Chemical and Material Sciences Center and the National Center for Photovoltaics. Printable Version NREL is a national laboratory of the U.S. Department of...

  12. Ethanol Basics (Fact Sheet), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  13. #SpaceWeek: Science of the Cosmos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #SpaceWeek: Science of the Cosmos #SpaceWeek: Science of the Cosmos June 16, 2015 - 10:57am Addthis #SpaceWeek: Science of the Cosmos Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs How can I participate? Missed the "Energy of Star Wars" Google+ Hangout? You can watch the whole event here. And take a look at all of our other #SpaceWeek content. #SpaceWeek: Science of the Cosmos During #SpaceWeek we covered the Department of Energy's space expertise, from

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove High School (9-12) Teachers filter Science & Innovation Remove Science & Innovation filter Filter by Resource Type All Results (32) Lesson Plan (31) Energy Basics...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Innovation filter Science Education Remove Science Education filter Filter by Resource Type All Results (43) Lesson Plan (42) Energy Basics (1) Filter by Topic: All...

  16. Energy Department Announces Prizes for 2013 National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prizes for 2013 National Science Bowl Energy Department Announces Prizes for 2013 National Science Bowl April 8, 2013 - 4:35pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - The U.S. Department of Energy today announced the prizes for which middle and high school teams from across the nation will compete at this year's National Science Bowl, held from April 25 to April 29 in Washington, D.C. From a total of 1,894 high school teams that competed in regional

  17. Catalysis Center for Energy Innovation: University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. ... and hemicellulose, the production of green aromatics, the hydrodeoxygenation of ...

  18. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site March 16, 2012 - 12:46pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For years, many of you have found energy-saving tips about how to save money and energy at home, in your vehicle, and at work on our EnergySavers desktop site. This month, we launched a new Energy Savers mobile

  19. Coal Utilization Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration.

  20. COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 13, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective Dr. Bruce A. Remington Lawrence Livermore ...

  1. Middle School Energy and Nuclear Science Curriculum Now Available

    Broader source: Energy.gov [DOE]

    A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers...

  2. Department of Energy Advances Geothermal Science through Collegiate Competition

    Broader source: Energy.gov [DOE]

    Emphasizing the Obama Administration's pledge to accelerate science, technology, engineering, and math (STEM) education, the U.S. Department of Energy today kicked off the 2013 National Geothermal Student Competition.

  3. Before the Subcommittee on Energy -- House Science, Space, and...

    Broader source: Energy.gov (indexed) [DOE]

    Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee PDF icon 7-25-13ChristopherSmith FT HSST.pdf ...

  4. BPA offering grants in science and energy education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offering grants in science and energy education 462015 12:00 AM Tweet Page Content Students from East Valley Central School in Yakima, Washington took a field trip to the Cle...

  5. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12-13, 2014 ESnet is funded by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research. Vince Dattoria is the ESnet Program Manager. ...

  6. KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL...

    Office of Scientific and Technical Information (OSTI)

    KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL SCIENCES; 42 ENGINEERING; CONSUMPTION RATES; DEAD TIME; DETECTION; DIFFUSION; DNA; ENERGY TRANSFER; FABRICATION;...

  7. Before the House Science and Technology Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arun Majumdar, Director Advanced Research Projects Agency - Energy (ARPA-E) Subject: Oversight Hearing: Status of ARPA-E Program and Path Forward PDF icon 1-27-10_Final_Testimony_(Majumdar).pdf More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

  8. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. New Type of Nonlinear Plasma Instability Discovered Objective: Study large periodic instabilities called Edge Localized Modes (ELMs) in

  9. Renewable Energy: science, politics, and economics (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-03-03 OSTI Identifier: 1122038 Report Number(s): LA-UR-14-21366 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL)

  10. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  11. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email

  12. Robin Hayes | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Hayes Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594

  13. About | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E:

  14. AEC Headquarters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AEC Headquarters Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  15. Staff | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Staff Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301)

  16. BES Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E:

  17. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  18. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  19. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Contact Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science ... The scientific directions of the EFRCs are overseen by program staff in the Basic Energy ...

  20. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

    2012-03-20

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  1. Science & Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run

  2. SciDAC Partnerships FOA | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    in Computational Materials and Chemical Sciences The Office of Basic Energy ... Computation Application Partnerships in the area of Materials and Chemical Sciences. ...

  3. New Insight on a Familiar Glow | U.S. DOE Office of Science ...

    Office of Science (SC) Website

    GFP has been utilized in numerous studies as a marker protein that can track chemical ... Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ...

  4. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  5. Sandia Energy Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participate in 46th Annual American Geophysical Union (AGU) Conference http:energy.sandia.govsandians-participate-in-46th-annual-american-geophysical-union-agu-conference...

  6. Energy Department Science Education Initiative Launched - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Department Science Education Initiative Launched July 8, 2004 Palo Alto, Calif. - U.S. Secretary of Energy Spencer Abraham announced today that the U.S. Department of Energy (DOE) and its national laboratories are launching an initiative to promote science literacy and help develop the next generation of scientists and engineers. "It is critical that we leverage the resources of this Department-and of all our national labs-to help create a new generation of scientists who

  7. Workshop report on basic research in organic geochemistry applied to national energy needs

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The schedule of the workshop shows its organization. After a series of overview presentations, the participants were divided - according to their interests - into three subgroups to consider the exploration, exploitation, and environmental impact problems associated with the production and utilization of natural and synthetic carbonaceous fuels. As a result of these concentrated deliberations, each subgroup evolved a general recommendation and a series of specific recommendations for their particular topic. These are recapitulated, followed by a policy statement resulting from consideration of a means to implement basic research in organic geochemistry, and the subgroup reports. Separate abstracts have been prepared for the papers which are in the appendix of this report for inclusion in the Energy Data Base.

  8. The Science of Earthquakes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earthquakes The Science of Earthquakes August 26, 2011 - 11:12am Addthis A map of the August 23, 2011, Mineral, Virginia, earthquake that shook the east coast of the United States. | Image courtesy of the U.S. Geological Service A map of the August 23, 2011, Mineral, Virginia, earthquake that shook the east coast of the United States. | Image courtesy of the U.S. Geological Service Kate Bannan Communications and Outreach Specialist The rare, powerful 5.8-magnitude earthquake that shook the east

  9. New Aluminum Alloys for Energy-Efficient Transportation | U.S...

    Office of Science (SC) Website

    New Aluminum Alloys for Energy-Efficient Transportation Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities ...

  10. New Materials for High-Energy, Long-Life Rechargeable Batteries...

    Office of Science (SC) Website

    New Materials for High-Energy, Long-Life Rechargeable Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding ...

  11. Science projects in renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  12. NREL: Energy Sciences - Su-Huai Wei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wei, S.-H. (2013). "Origin of the variation of exciton binding energy in semiconductors." Phys. Rev. Lett. (110); p. 016402. http:prl.aps.orgabstractPRLv110i1e016402. Huang,...

  13. Sisters in Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visit energy.govwomen to see more stories celebrating Women's History Month and learn ... I found a way to merge art and creativity with the more grounded applied knowledge of ...

  14. Science & Innovation Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's Public Dissemination of Research Results September 30, 2011 Audit Report: OAS-RA-L-11-13 The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National ...

  15. Science Conference Proceedings | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Science Conference Proceedings The Science Conference Proceedings product has been discontinued. Please visit the OSTI homepage to search for Department of Energy R&D results. For more information on the streamlining of OSTI Products, please read the OSTIblog entitled "OSTI Is Re-Focusing and Re-Balancing Its Operations - And Refreshing Its Home Page - to Advance Public Access" by Dr. Jeffrey Salmon, Deputy Director for Resource Management

  16. The Science Behind Cheaper Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  17. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  18. NREL: Energy Systems Integration - Computational Science and Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. These efforts will save time and money, significantly improve the likelihood of breakthroughs and useful advances, and reduce risks and uncertainties that are often barriers to

  19. DOE Science Showcase - Energy Department Scientists and Engineers Honored

    Office of Scientific and Technical Information (OSTI)

    with Presidential Early Career Awards (PECASE) | OSTI, US Dept of Energy, Office of Scientific and Technical Information Energy Department Scientists and Engineers Honored with Presidential Early Career Awards (PECASE) Researchers funded by the U.S. Department of Energy (DOE) Office of Science were recently honored with the Presidential Early Career Award for Scientists and Engineers (PECASE)-the highest honor bestowed by the U.S. government on outstanding scientists and engineers who are

  20. DOE Science Showcase - Renewable Energy Information from OSTI Collections |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Renewable Energy Information from OSTI Collections Find government research information related to renewable energy through OSTI collections. Find full text technical reports, citations, project summaries and more. OSTI makes R&D information rapidly available to researchers and the public so that discovery can be accelerated. Featured Documents from Information Bridge Bioenergy Research Centers

  1. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy

  2. Science and society test X: Energy conservation

    SciTech Connect (OSTI)

    Hafemeister, D.

    1987-04-01

    United States energy consumption has remained essentially constant at about 80 exajoules/year (75 quads/year) since the oil embargo of 1973--1974, while the GNP in constant dollars has increased by about 30%. This article will discuss the physics behind some of these improvements in end-use efficiency in such areas as: (I) buildings (scaling laws, ''free-heat,'' superinsulated houses, thermal storage in large buildings, off-peak cooling), (II) solar energy (passive, photovoltaics), (III) utility load management (''smart meters,'' capital recovery fees, voltage control), (IV) appliances (life-cycle costs, refrigerators), and (V) lighting (isotopic enhancement).

  3. Studies in Low-Energy Nuclear Science

    SciTech Connect (OSTI)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  4. Science Programs Organization | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Organization Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (149KB) Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Staff

  5. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115 ...

  6. U.S. Department of Energy Office of Nuclear Energy, Science and Technology

    Energy Savers [EERE]

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  7. 2012 Science Alliance | Department of Energy

    Energy Savers [EERE]

    SPR Report to Congress 2012 SPR Report to Congress Highlights from the report include: Hurricane Isaac Exchange In August 2012, Hurricane Isaac hit the U.S. Gulf Coast and caused impacts to the commercial oil production, refining and distribution operations in the region. To address potential shortages of petroleum, the Secretary of Energy authorized the Strategic Petroleum Reserve to negotiate emergency exchanges of crude oil at the request of affected refiners. Ultimately, one company

  8. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  9. Calling Science Stars in Middle and High Schools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office

  10. Inflation Basics (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Inflation Basics Authors: Green, Dan 1 + Show ... Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  11. High Energy Physics (HEP) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science ... Resources Contact Information High Energy Physics U.S. Department of Energy SC-25...

  12. Before the House Subcommittee on Energy - Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House Subcommittee on Energy - Committee on Science, Space, and Technology PDF icon 7-11-14_Patricia_Dehmner FT HSST.pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Microsoft

  13. Electrical Energy Storage Using Carbon Slurries | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Electrical Energy Storage Using Carbon Slurries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 05.01.12 Electrical Energy Storage

  14. Center for Renewable Energy Science and Technology

    SciTech Connect (OSTI)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  15. Enhancing the Output of LED Lighting | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing the Output of LED Lighting Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.12 Enhancing the Output of LED Lighting Adding

  16. Evaporation-powered Motor and Light | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaporation-powered Motor and Light Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.15 Evaporation-powered Motor and Light Bacterial

  17. Fabricating Nanowire Lasers | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabricating Nanowire Lasers Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.12 Fabricating Nanowire Lasers Precise control of nanowire geometry

  18. Hydrogen Production Forwards and Backwards | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Hydrogen Production Forwards and Backwards Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.12 Hydrogen Production Forwards and

  19. The Best of Both Worlds | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Best of Both Worlds Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 05.01.13 The Best of Both Worlds Researchers create materials that can store

  20. The Importance of Hydration | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Importance of Hydration Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.01.15 The Importance of Hydration Spectroscopy combined with theory

  1. The World's Thinnest Proton Channel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The World's Thinnest Proton Channel Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 07.01.15 The World's Thinnest Proton Channel Atomic-scale defects

  2. Two-for-One Deal for Photovoltaics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-for-One Deal for Photovoltaics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.14 Two-for-One Deal for Photovoltaics Process doubles

  3. When Small Things Become a Big Deal | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Small Things Become a Big Deal Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15 When Small Things Become a Big Deal Computer-simulated

  4. Brains, Knees, . . . and now Batteries | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brains, Knees, . . . and now Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.12 Brains, Knees, . . . and now Batteries Magnetic

  5. Build a Network, Cellular Style | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Build a Network, Cellular Style Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.15 Build a Network, Cellular Style Bio-based molecular machines

  6. New Superhard Form of Carbon Dents Diamond | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) New Superhard Form of Carbon Dents Diamond Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.01.12 New Superhard Form of Carbon Dents

  7. Keeping the Ions Close: A New Activity | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping the Ions Close: A New Activity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.01.15 Keeping the Ions Close: A New Activity Study changes

  8. Defects Lead to Order | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defects Lead to Order Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15 Defects Lead to Order Surprising order found in bundles of protein

  9. Near Zero Friction from Nanoscale Lubricants | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Near Zero Friction from Nanoscale Lubricants Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.15 Near Zero Friction from Nanoscale

  10. Benefits of BES | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of BES Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Benefits of BES Print Text Size: A A A FeedbackShare Page SSN Impacts .pdf file

  11. Pumping up the Yield of Biofuels | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pumping up the Yield of Biofuels Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.12 Pumping up the Yield of Biofuels A scalable catalytic

  12. Mapping Subsurface CO2 Migration | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 » Mapping Subsurface CO2 Migration Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 01.01.13 Mapping Subsurface CO2 Migration New computational

  13. Match-Heads Boost Photovoltaic Efficiency | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Match-Heads Boost Photovoltaic Efficiency Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.15 Match-Heads Boost Photovoltaic Efficiency Tiny

  14. Janus-like Nanoparticle Membranes | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Janus-like Nanoparticle Membranes Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 03.31.16 Janus-like Nanoparticle Membranes Sub-nanometer molecular

  15. Skimming Uranium from the Sea | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skimming Uranium from the Sea Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.01.15 Skimming Uranium from the Sea Using computational methods,

  16. Precision Nanobatteries by the Billions | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Nanobatteries by the Billions Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.15 Precision Nanobatteries by the Billions Tiny

  17. Germantown Site History | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    History » Germantown Site History Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building

  18. A Natural History | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A Natural History Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  19. Glenn Seaborg Trail | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Glenn Seaborg Trail Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  20. Kennedy and the AEC Commissioners | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Kennedy and the AEC Commissioners Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building