Sample records for baseload parabolic trough

  1. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

  2. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parabolic Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo...

  3. A Linear Parabolic Trough Solar Collector Performance Model

    E-Print Network [OSTI]

    Qu, M.; Archer, D.; Masson, S.

    2006-01-01T23:59:59.000Z

    A performance model has been programmed for solar thermal collector based on a linear, tracking parabolic trough reflector focused on a surface-treated metallic pipe receiver enclosed in an evacuated transparent tube: a Parabolic Trough Solar...

  4. Parabolic trough solar collectors : design for increasing efficiency

    E-Print Network [OSTI]

    Figueredo, Stacy L. (Stacy Lee), 1981-

    2011-01-01T23:59:59.000Z

    Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

  5. Field Survey of Parabolic Trough Receiver Thermal Performance: Preprint

    SciTech Connect (OSTI)

    Price, H.; Forristall, R.; Wendelin, T.; Lewandowski, A.; Moss, T.; Gummo, C.

    2006-04-01T23:59:59.000Z

    This paper describes a technique that uses an infrared camera to evaluate the in-situ thermal performance of parabolic trough receivers at operating solar power plants.

  6. Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2006-07-01T23:59:59.000Z

    This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

  7. Advanced Low-Cost Recievers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    PROJECT OBJECTIVES KEY RESULTS AND OUTCOMES NEXT MILESTONES 1. Burkholder F, Kutscher C. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver (NRELTP-550-45633):...

  8. Simplified Methodology for Designing Parabolic Trough Solar Power Plants.

    E-Print Network [OSTI]

    Vasquez Padilla, Ricardo

    2011-01-01T23:59:59.000Z

    ?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for… (more)

  9. Simplified Methodology for Designing Parabolic Trough Solar Power Plants.

    E-Print Network [OSTI]

    Vasquez Padilla, Ricardo

    2011-01-01T23:59:59.000Z

    ??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the… (more)

  10. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23T23:59:59.000Z

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  11. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    SciTech Connect (OSTI)

    Bennett, C

    2007-11-15T23:59:59.000Z

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  12. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  13. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  14. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01T23:59:59.000Z

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  15. Parabolic trough solar power for competitive U.S. markets

    SciTech Connect (OSTI)

    Price, H.W.; Kistner, R.

    1999-07-01T23:59:59.000Z

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 190. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a results of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive US power market.

  16. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  17. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01T23:59:59.000Z

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  18. Parabolic Trough Solar Power Plant Simulation Model: Preprint

    SciTech Connect (OSTI)

    Price, H.

    2003-01-01T23:59:59.000Z

    As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

  19. Two-tank indirect thermal storage designs for solar parabolic trough power plants.

    E-Print Network [OSTI]

    Kopp, Joseph E.

    2009-01-01T23:59:59.000Z

    ??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

  20. hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector Gang Xiao 30th October of closed-box parabolic trough concentrated solar collector. By accepting an optical loss of a few, and the potential of improvement. The basic design of the closed collector is given in Section 2. It is a hermetic

  1. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Office of Environmental Management (EM)

    for Baseload Operation This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona....

  2. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect (OSTI)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  3. PARABOLIC TROUGH POWER FOR THE CALIFORNIA COMPETITIVE MARKET

    E-Print Network [OSTI]

    California is about to complete its third year of a deregulated competitive wholesale power market. During the first two years of the competitive market, power prices averaged between 2 and 3¢/kWh. During 2000, electric supply to California was constrained a number of times causing maximum the price of power to peak over 100¢/kWh, and the average price of power to quadruple. The power output from solar plants tends to coincide with the high power demand periods in California. This fact had been demonstrated by the solar electric generating stations (SEGS) located in the California Mojave Desert, which operate under specific contracts signed in the 1980’s and early 1990’s with the local utility. This paper, on the other hand, examines how new parabolic trough solar plants would have faired on the wholesale competitive power market during 1999 and 2000.

  4. Mechanical development of the actuation system of a parabolic solar trough

    E-Print Network [OSTI]

    O'Rourke, Conor R. (Conor Rakis)

    2011-01-01T23:59:59.000Z

    This thesis documents my personal contribution to the engineering and design of an actuation system with the purpose of rotating a parabolic solar trough to track the sun throughout the day. The primary focus of the design ...

  5. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01T23:59:59.000Z

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  6. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    Trough Receiver (NRELTP-550-45633): NREL, 2009. 2. Kutscher C, et al. Line-Focus Solar Power Plant Cost Reduction Plan: NREL Milestone Report, 2010. 3. Mahoney R. Trough...

  7. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  8. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 3: Multiple Plants at a Common Location, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., regarding a system analysis of multiple solar parabolic trough plants at a common location.

  9. Near-term improvements in parabolic troughs: an economic and performance assessment

    SciTech Connect (OSTI)

    Gee, R.; Murphy, L.M.

    1981-08-01T23:59:59.000Z

    Improved parabolic-trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis qualifies the performance potential of various parabolic-trough component improvements from a systems viewpoint and uses these performance data to determine the worth of each improvement on an economic basis. The improvements considered are evacuated receivers, silvered-glass reflectors, improved receiver, selective coatings, higher optical accuracy concentrations, and higher transmittance receiver glazings. Upper-bound costs for each improvement are provided as well as estimates of the increased solar system rates of return that are made possible by these improvements. The performance and economic potential of some of these improvements are shown to be substantial, especially at higher collector operating temperatures.

  10. Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint

    SciTech Connect (OSTI)

    Price, H.; Kearney, D.

    2003-01-01T23:59:59.000Z

    Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

  11. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  12. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect (OSTI)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01T23:59:59.000Z

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  13. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

  14. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect (OSTI)

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01T23:59:59.000Z

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  15. Current and future costs for parabolic trough and power tower systems in the US market.

    SciTech Connect (OSTI)

    Turchi, Craig (National Renewable Energy Laboratory, Golden, CO); Kolb, Gregory J.; Mehos, Mark Steven (National Renewable Energy Laboratory, Golden, CO); Ho, Clifford Kuofei

    2010-08-01T23:59:59.000Z

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  16. An optimized model and test of the China's first high temperature parabolic trough solar receiver

    SciTech Connect (OSTI)

    Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong [Southeast University, Nanjing (China)

    2010-12-15T23:59:59.000Z

    The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

  17. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  18. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  19. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect (OSTI)

    Kearney, D.; Mehos, M.

    2010-12-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  20. NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes.

  1. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  2. Development of an Advanced, Low-Cost parabolic Trough Collector for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload Operation | Department of Energy

  3. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    SciTech Connect (OSTI)

    Zhu, G.; Lewandowski, A.

    2012-11-01T23:59:59.000Z

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  4. Error analysis of motion transmission mechanisms : design of a parabolic solar trough

    E-Print Network [OSTI]

    Koniski, Cyril (Cyril A.)

    2009-01-01T23:59:59.000Z

    This thesis presents the error analysis pertaining to the design of an innovative solar trough for use in solar thermal energy generation fields. The research was a collaborative effort between Stacy Figueredo from Prof. ...

  5. Mechanical development of an actuation system for a parabolic solar trough collector

    E-Print Network [OSTI]

    Carrillo, Juan Felipe (Carrillo Salazar)

    2013-01-01T23:59:59.000Z

    This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators ...

  6. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof the Trough and its

  7. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01T23:59:59.000Z

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  8. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25T23:59:59.000Z

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  9. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

  10. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  11. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect (OSTI)

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01T23:59:59.000Z

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  12. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

  13. Parabolic Trough | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74LaboratoriesCERCLAConcentrating Solar

  14. Project Profile: Baseload CSP Generation Integrated with Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links FAQs Contact Us Offices You are here Home Concentrating Solar Power Project Profile: Baseload CSP Generation Integrated with Sulfur-Based...

  15. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of Energy 40 Jobs Later:DepartmentA DeskIndustry in

  16. Sandia National Laboratories: parabolic trough test platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile

  17. Trough to trough The Colorado River

    E-Print Network [OSTI]

    de Lijser, Peter

    Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor Trough to trough....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts geological excursions and observations of the Colorado Desert region by William Phipps Blake, 1853 and 1906

  18. CSP Heat Integration for Baseload Renewable Energy Deployment

    Broader source: Energy.gov [DOE]

    In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled power generation system, managed by the SunShot Initiative.

  19. Elastic approximation for a solar parabolic February 29, 2012

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of these additional forces are computed for var- ious cases, that give a result in theoretical maximal concentration cost of the parabolic mirror is one of the fundamental factors in the production of a parabolic trough. Tra- ditionally, the support of the mirror is a rigid sheet precisely preformed to the shape

  20. Technical Manual for the SAM Physical Trough Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Gilman, P.

    2011-06-01T23:59:59.000Z

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  1. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms

    E-Print Network [OSTI]

    Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid farms are interconnected in an array, wind speed correlation among sites decreases and so does

  2. Rinse trough with improved flow

    DOE Patents [OSTI]

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  3. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure)

    SciTech Connect (OSTI)

    Cochran, J.; Lew, D.; Kumar, N.

    2013-12-01T23:59:59.000Z

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  4. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

    1996-01-01T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  5. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  6. Light-weight-trough type solar concentrator shell

    SciTech Connect (OSTI)

    Severson, A.M.

    1981-01-06T23:59:59.000Z

    A parabolic cylindrical trough solar concentrator shell is disclosed having a pair of oppositely disposed end support members jointed by spanning structural support members which may be in the form of individual elongated generally triangular polygon members to form the parabolic cylindrical trough. The inwardly directed surface of each polygon member is concave in shape and rendered highly reflective and so disposed such that the composite produces a highly reflective, concave, generally parabolic surface which reflects and focusses radiant energy striking upon it along a line parallel to and above the surface of the trough. A radiant energy receiving and absorbing conduit which carries a fluid heat transfer medium is provided along the focal line. The conduit is structurally supported from the end support members in a manner which allows free rotation of the structure relative to the support. In addition to the composite triangular polygon members, the structure may be fabricated using other shapes or a spanning sheet corrugated for strength covered by a separate reflecting surface.

  7. Project Profile: High-Concentration, Low-Cost Parabolic Trough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aperture, while incorporating additional advancements that substantially lower installed solar field costs. For example, the reflective film surfaces are being upgraded to improve...

  8. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Broader source: Energy.gov (indexed) [DOE]

    and endurance limits of the material, corrosion, aging, and the impact of chromium carbide precipitation at high temperatures Based on the data available and the analytical...

  9. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  10. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    tracing and numerical system optimization. * Zemax optical analysis was developed by optics expert and experienced Zemax software user Brynmor Davis, Ph.D., of Creare, Inc and NT...

  11. A new parabolic trough solar collector P. Kohlenbach1

    E-Print Network [OSTI]

    oil is circulated inside the absorber tube, and transfers the heat to a ORC FP6 unit sourced from of this facility, to develop efficient new methods of capturing and harnessing solar heat for combined heat) and remote power and energy. The array is designed to drive a small Organic Rankine Cycle unit with a power

  12. A New Generation of Parabolic Trough Technology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014Department ofDepartmentA Look Inside30 seconds)

  13. FirstOPTIC Software Package for Parabolic Trough Evaluation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirsthexagonal 2H-MoS2. |theInnovation

  14. Project Profile: Advanced Low-Cost Receivers for Parabolic Troughs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat High TemperatureDepartment

  15. Project Profile: Next-Generation Parabolic Trough Collectors and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCyclesEnergyCSPfor CSP

  16. Parabolic-Trough Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar JumpInformation Pilot

  17. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    receivers. Some of these drawbacks include expensive and technologically intensive absorption coatings, a 1%-5% annual failure rate for tubes due to vacuum degradation, and...

  18. NREL: TroughNet - Parabolic Trough Power Plant Market, Economic Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagement Image of twoWorking

  19. CX-003976: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a High-Concentration Low-Cost Parabolic Trough System for Baseload Concentrated Solar Power Generation CX(s) Applied: A9, B5.1 Date: 09202010 Location(s): Arvada,...

  20. CX-008586: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SkyFuel Baseload Parabolic Trough CX(s) Applied: B3.6, B5.15 Date: 07/11/2012 Location(s): Colorado Offices(s): Golden Field Office

  1. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01T23:59:59.000Z

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  2. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  3. Parabolic-Dish Solar Concentrators of Film on Foam

    E-Print Network [OSTI]

    Barton, Sean A

    2009-01-01T23:59:59.000Z

    Parabolic and spherical mirrors are constructed of aluminized PET polyester film on urethane foam. During construction, the chosen shape of the mirror is created by manipulating the elastic/plastic behavior of the film with air pressure. Foam is then applied to the film and, once hardened, air pressure is removed. At an f-number of 0.68, preliminary models have an optical angular spread of less than 0.25 degrees, a factor of 3.3 smaller than that for a perfectly spherical mirror. The possibility exists for creating large-lightweight mirrors with excellent shape and stiffness. These "film-on-foam" construction techniques may also be applicable to parabolic-trough solar concentrators but do not appear to be suitable for optical imaging applications because of irregularities in the film.

  4. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  5. Advanced photovoltaic-trough development

    SciTech Connect (OSTI)

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01T23:59:59.000Z

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  6. Sandia National Laboratories: Trough Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI ResearchersTrough Systems CSP Industry Links

  7. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-05-01T23:59:59.000Z

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  8. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-08-01T23:59:59.000Z

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  9. Engineering, Financial and Net Energy Performance, and Risk Analysis for Parabolic Trough Solar Power Plants

    E-Print Network [OSTI]

    Luo, Jun

    2014-08-08T23:59:59.000Z

    concentrating solar power plant. A set of engineering performance, financial and net energy models were developed as tools to predict a plant’s engineering performance, cost and energy payback. The models were validated by comparing the predicted results...

  10. High thermal energy storage density molten salts for parabolic trough solar power generation.

    E-Print Network [OSTI]

    Wang, Tao

    2011-01-01T23:59:59.000Z

    ??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

  11. Advanced Low-Cost Receivers for Parabolic Troughs- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Norwich Technologies project, funded by SunShot, for the second quarter of fiscal year 2013.

  12. Advanced Low-Cost Recievers for Parabolic Troughs- FY13 Q3

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Norwich project, funded by SunShot, for the third quarter of fiscal year 2013.

  13. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  14. Analysis of Parabolic Trough Solar Energy Integration into Different Geothermal Power Generation Concepts.

    E-Print Network [OSTI]

    Vahland, Sören

    2013-01-01T23:59:59.000Z

    ?? The change in climate as a consequence of anthropogenic activities is a subject ofmajor concerns. In order to reduce the amount of greenhouse gas… (more)

  15. Project Profile: High-Concentration, Low-Cost Parabolic Trough System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment of

  16. Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThree Biorefineries to ProduceNuclearDerrickDepartment

  17. PARABOLIC OBSTACLE PROBLEMS APPLIED TO FINANCE A ...

    E-Print Network [OSTI]

    2006-03-07T23:59:59.000Z

    1. Introduction. 1.1. Background. The parabolic obstacle problem refers to finding the smallest supper-solution (for a given parabolic ... H. Shahgholian is supported by Swedish Research Council. 1 ...... MR MR2052937 (2005d:35276). [BD97].

  18. Shenandoah parabolic dish solar collector

    SciTech Connect (OSTI)

    Kinoshita, G.S.

    1985-01-01T23:59:59.000Z

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  19. Plane and parabolic solar panels

    E-Print Network [OSTI]

    J. H. O. Sales; A. T. Suzuki

    2009-05-14T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  20. Plane and parabolic solar panels

    E-Print Network [OSTI]

    Sales, J H O

    2009-01-01T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  1. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  2. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL

    2008-01-01T23:59:59.000Z

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  3. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-01-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  4. Geographic Trough Filling for Internet Datacenters

    E-Print Network [OSTI]

    Xu, Dan

    2011-01-01T23:59:59.000Z

    To reduce datacenter energy consumption and cost, current practice has considered demand-proportional resource provisioning schemes, where servers are turned on/off according to the load of requests. Most existing work considers instantaneous (Internet) requests only, which are explicitly or implicitly assumed to be delay-sensitive. On the other hand, in datacenters, there exist a vast amount of delay-tolerant jobs, such as background/maintainance jobs. In this paper, we explicitly differentiate delay-sensitive jobs and delay tolerant jobs. We focus on the problem of using delay-tolerant jobs to fill the extra capacity of datacenters, referred to as trough/valley filling. Giving a higher priority to delay-sensitive jobs, our schemes complement to most existing demand-proportional resource provisioning schemes. Our goal is to design intelligent trough filling mechanisms that are energy efficient and also achieve good delay performance. Specifically, we propose two joint dynamic speed scaling and traffic shifti...

  5. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  6. Power converters for parabolic dishes

    SciTech Connect (OSTI)

    Truscello, V.C.; Williams, A.N.

    1981-01-01T23:59:59.000Z

    The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

  7. Sandia National Laboratories: Parabolic Dishes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracksFacilityParabolic Dishes

  8. Coupled Parabolic Equations for Wave Propagation

    E-Print Network [OSTI]

    Zhao, Hongkai

    Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength

  9. Parabolic cylinder functions implemented in Matlab

    E-Print Network [OSTI]

    E. Cojocaru

    2009-01-15T23:59:59.000Z

    Routines for computation of Weber's parabolic cylinder functions and their derivatives are implemented in Matlab for both moderate and great values of the argument. Standard, real solutions are considered. Tables of values are included.

  10. Influence of adhesive shear deformation on laminate structural behavior with application to parabolic trough solar collectors. [SHEAR

    SciTech Connect (OSTI)

    Clauss, D.B.; Reuter, R.C. Jr.

    1983-02-01T23:59:59.000Z

    A simplified theory for the bending behavior of a thin flat bi-lamina panel is developed which includes the effects of shear deformation in the central adhesive layer. Static equilibrium equations for elastic thermomechanical cylindrical bending of a thin plate are used. A solution form is proposed which greatly facilitates application of this theory to structural panels with numerous discrete property changes in the variable direction. The influence of adhesive shear stiffness parameters upon overall laminate behavior is characterized through numerical examples typifying various thermal and mechanical loading conditions.

  11. The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world

    E-Print Network [OSTI]

    Laughlin, Robert B.

    gas emissions, primarily carbon dioxide. Rising energy consumption worldwide is increas- ing the severity of this development; the Inter- national Energy Agency (IEA) estimates that by 2030, consumption Studies Greenpeace/ESTIA 2005 Sarasin 2007 Greenpeace EREC 2007 US Department of Energy IEA min. IEA max

  12. Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003

    E-Print Network [OSTI]

    Frey, H. Christopher

    Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management emission factors from coal-fired power plants vary over time due to variation in coal composition fed or to evaluate the variability of NOx emission rates for coal-fired power plants of the 100 largest electric

  13. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    demonstrated. A linear Fresnel collector system in Sevilleeconomical. Linear Fresnel and parabolic trough collectortemperature collectors (parabolic trough, linear Fresnel,

  14. A study of mobile trough genesis over the Yellow Sea - East China Sea region

    E-Print Network [OSTI]

    Komar, Keith Nickolas

    1997-01-01T23:59:59.000Z

    The purpose of this study was to understand the mechanisms responsible for the formation of mobile troughs over a prolific source region in the Yellow Sea and East China Sea. Two mobile troughs which intensified significantly after formation were...

  15. A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ

    E-Print Network [OSTI]

    Schultz, David

    A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ Cooperative with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model--time series at a single surface station may possess a pressure trough and wind shift in the warm

  16. Nontracking parabolic solar energy collector apparatus

    SciTech Connect (OSTI)

    Gill, M. T.; Rogers, M. C.

    1985-12-31T23:59:59.000Z

    A mirror collector having a generally parabolic surface terminating near the vertex in a circular or cylindrical curve, an evacuated cylindrical heat entrapment tube compossed of a clear glass for energy admission and two pair of elongated heat collector tubes centrally located in the heat entrapment tube for passing an inner fluid to be heated. The two pair of heat collector tubes are constructed of copper with a selective absorption coating for receiving heat and positioned so that the mirror collector concentrates substantially all incoming energy upon the central heat collector tubes.

  17. Parabolic refined invariants and Macdonald polynomials

    E-Print Network [OSTI]

    Chuang, Wu-yen; Donagi, Ron; Pantev, Tony

    2013-01-01T23:59:59.000Z

    A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haiman's geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.

  18. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePowerResearch TroughNet

  19. Multiscale numerical methods for some types of parabolic equations

    E-Print Network [OSTI]

    Nam, Dukjin

    2009-05-15T23:59:59.000Z

    parabolic equations in strongly channelized media. We concentrate on showing that the solution depends on the steady state solution smoothly. As for the first problem, we obtain quantitive estimates for the convergence of the correctors and some parts...

  20. An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader

    E-Print Network [OSTI]

    that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator designAn Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader 1 , Maurizio Barbato 2 , Andrea Pedretti 3 , Aldo Steinfeld 1,4,* 1 Department of Mechanical and Process Engineering, ETH Zurich

  1. The spiral troughs of Mars as cyclic steps Isaac B. Smith,1

    E-Print Network [OSTI]

    Spiga, Aymeric

    The spiral troughs of Mars as cyclic steps Isaac B. Smith,1 John W. Holt,1 Aymeric Spiga,2 Alan D to estimate the rate of upstream migration caused by katabatic winds for the spiral troughs. Citation: Smith are constructional features, having migrated northward during deposition since their onset [Smith and Holt, 2010

  2. 3X compound parabolic concentrating (CPC) solar energy collector. Final technical report

    SciTech Connect (OSTI)

    Ballheim, R.W.

    1980-04-25T23:59:59.000Z

    Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

  3. Property estimation using inverse methods for elliptic and parabolic partial differential equations

    E-Print Network [OSTI]

    Parmekar, Sandeep

    1994-01-01T23:59:59.000Z

    In this work we use inverse methods to estimate flow coefficients in both elliptic and parabolic partial differential equations. An algorithm is developed to solve a one layer problem for elliptic and parabolic partial differential equations...

  4. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

    1995-12-01T23:59:59.000Z

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  5. Large deviation theory and applications Application I: The parabolic Anderson

    E-Print Network [OSTI]

    of independent, identically distributed random variables. We denote by · the expectation with respect, it is believed that there is a small number of relevant island where the potential takes especially large values, the parabolic Anderson model is intermittent. Throughout, we will assume that the logarithmic moment generating

  6. Dynamical constants of structured photons with parabolic-cylindrical symmetry

    E-Print Network [OSTI]

    B. M. Rodriguez-Lara; R. Jauregui

    2009-05-20T23:59:59.000Z

    Electromagnetic modes with parabolic-cylindrical symmetry and their dynamical variables are studied both in the classical and quantum realm. As a result, a new dynamical constant for the electromagnetic field is identified and linked to the symmetry operator which supports it.

  7. Compound parabolic concentrator with cavity for tubular absorbers

    DOE Patents [OSTI]

    Winston, Roland (5217C S. University Ave., Chicago, IL 60615)

    1983-01-01T23:59:59.000Z

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  8. Seismic reflection data analysis of the Oriente and Swan Fracture Zones bounding the Cayman Trough

    E-Print Network [OSTI]

    Tinker, Mary Norris

    2012-06-07T23:59:59.000Z

    SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Submitted to the Graduate College of Texas A8 M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geophysics SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Approved as to style and content by: D. A. Fa quiet...

  9. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

    2014-09-11T23:59:59.000Z

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  10. Method of manufacturing a glass parabolic-cylindrical solar collector

    SciTech Connect (OSTI)

    Deminet, C.

    1980-12-09T23:59:59.000Z

    The method includes the following steps: (1) a microsheet of glass is drawn from a glass melt; (2) a reflective layer, such as silver, is deposited on one surface of the microsheet; (3) a first flexible backing layer, such as fiberglass, is bonded to the reflective layer; (4) the combination of the microsheet with the reflective layer and the first backing layer is formed over a mandrel which is preferably in the form of a parabolic cylinder; and (5) a honeycombed layer, with a second fiberglass backing layer, is then bonded to the first backing layer. The product produced by the steps 1-5 is then cured so that it retains the desired configuration; i.e. parabolic-cylindrical, after it is removed from the mandrel.

  11. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  12. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  13. Deformation of a thin, elastic plate to a deep parabolic cylinder

    SciTech Connect (OSTI)

    Reuter, R.C. Jr.; Wilson, R.K.

    1982-02-01T23:59:59.000Z

    Equations governing the elastic deformation of thin plates through large displacements to deep parabolic cylinders are presented and solved. The solution consists of expressions for a spatially distributed surface pressure and uniform rim loads which, when applied to the plate, produce the specified, deep parabolic cylindrical shape. These forming loads are written in dimensionless form for parabolic cylinders of arbitrary focal length and arbitrary rim to rim aperture. Numerical results are presented and limiting values are discussed. The solution and results find immediate application to mechanical forming and adhesive retention of parabolic solar collector components.

  14. alxga1-xas parabolic quantum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marko Znidaric 2001-03-01 37 Dynamical constants of structured photons with parabolic-cylindrical symmetry Quantum Physics (arXiv) Summary: Electromagnetic modes with...

  15. Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations

    E-Print Network [OSTI]

    Colin S. Rosenthal

    1998-04-03T23:59:59.000Z

    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

  16. Analytical model and performance data for a cylindrical parabolic collector

    SciTech Connect (OSTI)

    Ford, F.M.; Stewart, W.E. Jr.

    1980-01-01T23:59:59.000Z

    Concentrating solar collectors provide higher fluid temperatures than flat-plate, an important advantage in many applications. The parabolic cylinder is one of the most popular types of concentrating collectors because of its relatively simple construction and tracking configuration. A mathematical model was developed for one such collector in order to predict thermal efficiency as a function of solar insolation. An experiment was then devised in an attempt to verify this model. Discrepancies between predicted and observed values are discussed, and suggestions are made for improving the model and the experimental procedure.

  17. Two parabolic equations for propagation in layered poro-elastic media

    E-Print Network [OSTI]

    Two parabolic equations for propagation in layered poro-elastic media Adam M. Metzlera) Applied Space Center, Mississippi 39529 Jon M. Collis Colorado School of Mines, Golden, Colorado 80401 (Received.40.Fz, 43.30.Ma [TFD] Pages: 246­256 I. INTRODUCTION The parabolic equation method is accurate

  18. Vortices and Rossby waves in cylinder wakes on a parabolic -plane observed by altimetric imaging velocimetry

    E-Print Network [OSTI]

    Afanassiev, Iakov

    , geostrophic and gradient wind velocity, and potential vorticity fields with very high spatial resolutionVortices and Rossby waves in cylinder wakes on a parabolic -plane observed by altimetric imaging in the wake of a circular cylinder are investigated in a rotating parabolic polar -plane fluid. This system

  19. OPTICAL DESIGN OF A NOVEL 2-STAGE SOLAR TROUGH CONCENTRATOR BASED ON PNEUMATIC POLYMERIC

    E-Print Network [OSTI]

    of a solar thermal power plant [1,2]. An innovative concept for fabricating trough concentrators based concrete frame of rectangular shape. The advantages are five- folded: Fig. 1. Scheme of conceptual design;1) the concrete structure is more rigid and stronger than a conventional metallic frame; 2) wind induced

  20. Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of1 the Benue Trough, Nigeria2

    E-Print Network [OSTI]

    Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of1 the Benue Trough address: romain.vullo@univ-rennes1.fr9 10 Abstract11 Selachian and ray-finned fish remains from various Cenomanian­early Turonian and25 Maastrichtian) created opportunities for the dispersal of many marine fish

  1. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect (OSTI)

    None

    1984-03-01T23:59:59.000Z

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  2. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect (OSTI)

    Citrone, P.J.

    1991-01-01T23:59:59.000Z

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  3. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Stability in terms of two measures for a class of semilinear impulsive parabolic equations

    SciTech Connect (OSTI)

    Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I

    2013-04-30T23:59:59.000Z

    The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.

  5. Wind load design methods for ground-based heliostats and parabolic dish collectors

    SciTech Connect (OSTI)

    Peterka, J.A.; Derickson, R.G. [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01T23:59:59.000Z

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  6. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

    2014-01-15T23:59:59.000Z

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  7. Experimental testing of the variable rotated elastic parabolic Harry J. Simpsona)

    E-Print Network [OSTI]

    Experimental testing of the variable rotated elastic parabolic equation Harry J. Simpsona) Physical Street, Golden, Colorado 80401 Raymond J. Soukup Acoustics Division Code 7144, Naval Research Laboratory and the ability of the model to produce benchmark-quality agreement with experimental data [J. M. Collis et al., J

  8. Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness

    E-Print Network [OSTI]

    and sediment thickness Jon M. Collisa and William L. Siegmann Rensselaer Polytechnic Institute110 8th Street within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers

  9. Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material O ideally plastic materials was carried out by using precise results of finite elements calculations behaviour is found. Two elastic-plastic regimes and two plastic regimes are observed for materials of very

  10. Nuclear spin dynamics in parabolic quantum wells Ionel Tifrea* and Michael E. Flatte

    E-Print Network [OSTI]

    Flatte, Michael E.

    Nuclear spin dynamics in parabolic quantum wells Ionel T¸ifrea* and Michael E. Flatte´ Department March 2004 We present a detailed analytical and numerical analysis of the nuclear spin dynamics of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction

  11. High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries

    E-Print Network [OSTI]

    Fedkiw, Ron

    High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries Frédéric Gibou Chohong Min Ron Fedkiw November 2, 2012 In honor of Stan Osher's 70th birthday of chemical species (see [48] and the references therein); they are also core building blocks in fields

  12. Degradation of parabolic-cylindrical solar collector performance: receiver misalignments and tracking inaccuracies

    SciTech Connect (OSTI)

    Ratzel, A.C.

    1986-01-01T23:59:59.000Z

    Studies were conducted to determine the performance of a 2-m, 90/sup 0/ E-W oriented solar reflector trough and a receiver assembly consisting of a receiver tube surrounded by a concentric outer glass envelope. Three receiver tube diameters (2.223, 2.54, and 3.175 cm o.d. tubes) were analyzed subject to a variety of collector errors including receiver misalignments and tracking bias, to assess the detrimental effects of these problems. Of the possible problems considered, it was shown that a misalignment of the receiver assembly above the focal plane is most critical, since the absorbed solar fluxes are concentrated near the base of the tube, leading to possible ''hot spots.'' In addition, as a result of this work, it was shown that the intermediate receiver tube size (2.54 cm o.d.) should be used with the 2-m reflector trough, so long as small errors and misalignments are expected.

  13. Some modifications to the design of a parabolic solar concentrator for construction in Lesotho and their effects on power production

    E-Print Network [OSTI]

    Ferreira, Toni (Toni Jolene)

    2005-01-01T23:59:59.000Z

    An experimental study was performed to test the effectiveness of design modifications terms of efficiency and power production in an existing parabolic solar concentrator. The proposed modifications included limiting the ...

  14. Shallow hydrothermal regime of the East Brawley and Glamis known geothermal resource areas, Salton Trough, California

    SciTech Connect (OSTI)

    Mase, C.W.; Sass, J.H.; Brook, C.A.; Munroe, R.J.

    1981-01-01T23:59:59.000Z

    Thermal gradients and thermal conductivities were obtained in real time using an in situ heat-flow technique in 15 shallow (90 to 150 m) wells drilled between Brawley and Glamis in the Imperial Valley, Southern California. The in situ measurements were supplemented by follow-up conventional temperature logs in seven of the wells and by laboratory measurements of thermal conductivity on drill cuttings. The deltaic sedimentary material comprising the upper approx. 100 m of the Salton Trough generally is poorly sorted and high in quartz resulting in quite high thermal conductivities (averaging 2.0 Wm/sup -1/ K/sup -1/ as opposed to 1.2 to 1.7 for typical alluvium). A broad heat-flow anomaly with maximum of about 200 mWm/sup -2/ (approx. 5 HFU) is centered between Glamis and East Brawley and is superimposed on a regional heat-flow high in excess of 100 mWm/sup -2/ (> 2.5 HFU). The heat-flow high corresponds with a gravity maximum and partially with a minimum in electrical resistivity, suggesting the presence of a hydrothermal system at depth in this area.

  15. Effects of gaps in adhesives that bond elastically deformed panels to parabolic, cylindrical substructures

    SciTech Connect (OSTI)

    Wilson, R.K.; Reuter, R.C. Jr.

    1982-03-01T23:59:59.000Z

    In previous studies of the mechanical behavior of line focusing solar collectors, the reflective surface panel was modeled as a thin, initially flat, elastic plate that underwent large displacements to attain the shape of a prescribed parabolic cylinder. Attention was focused upon the stresses that developed in an adhesive layer which bonded the deformed panel to a rigid, parabolic substructure. Among the myriad possible collector designs, some possess longitudinally oriented, hollow ribs or corrugations in the substructure which interrupt the transverse continuity of the bond line between the deformed panel and the substructure. Thus, finite gaps in the adhesive are present which create regions where the panel surface becomes intermittently supported. The presence of these gaps perturbs the otherwise smooth distribution of adhesive contact stresses and it is the analytical modeling of this behavior that is the subject of the present report. In particular, attention is devoted to gaps which overlap with the edge effect zone - a region near the rim or vertex of the deformed panel where, in the absence of uniform edge loads necessary to maintain a true parabolic shape, high stresses and associated deformations occur. Significant influences of the gap size and position in the edge effect zone are demonstrated and discussed.

  16. Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZoneEnergyDetecting AirTrough Solar

  17. An analytical model and performance data for a cylindrical parabolic collector

    SciTech Connect (OSTI)

    Ford, F.M.; Stewart, W.E.

    1980-12-01T23:59:59.000Z

    Concentrating solar collectors provide higher fluid temperatures than flat-plate, an important advantage in many applications. The parabolic cylinder is one of the most popular types of concentrating collectors because of its relatively simple construction and tracking configuration. A mathematical model was developed for one such collector in order to predict thermal efficiency as a function of solar insolation. An experiment was then devised in an attempt to verify this model. Discrepancies between predicted and observed values are discussed, and suggestions are made for improving the model and the experimental procedure.

  18. Initial evolution of supports of solutions of quasilinear parabolic equations with degenerate absorption potential

    SciTech Connect (OSTI)

    Stepanova, Ekaterina V; Shishkov, Andrey E

    2013-03-31T23:59:59.000Z

    The propagation of supports of solutions of second-order quasilinear parabolic equations is studied; the equations are of the type of nonstationary diffusion, having semilinear absorption with an absorption potential which degenerates on the initial plane. We find sufficient conditions, which are sharp in a certain sense, on the relationship between the boundary regime and the type of degeneration of the potential to ensure the strong localization of solutions. We also establish a weak localization of solutions for an arbitrary potential which degenerates only on the initial plane. Bibliography: 12 titles.

  19. On the Piecewise Parabolic Method for Compressible Flow with Stellar Equations of State

    E-Print Network [OSTI]

    Zingale, M

    2015-01-01T23:59:59.000Z

    The piecewise parabolic method and related schemes are widely used to model stellar flows. Several different methods for extending the validity of these methods to a general equation of state have been proposed over time, but direct comparisons amongst one-another and exact solutions with stellar equations of state are not widely available. We introduce some simple test problems with exact solutions run with a popular stellar equation of state and test how two existing codes with different approaches to incorporating general gases perform. The source code for generating the exact solutions is made available.

  20. Measured performances of curved inverted-vee, absorber compound parabolic concentrating solar-energy collectors

    SciTech Connect (OSTI)

    Norton, B. (Univ. of Ulster at Jordanstown (Ireland)); Prapas, D.E. (Aristotle Univ. of Thessaloniki (Greece)); Eames, P.C.; Probert, S.D. (Cranfield Institute of Technology, Bedford (England))

    1989-01-01T23:59:59.000Z

    The design and thermal performance of modified compound parabolic concentrating (CPC) solar-energy collectors are described. The designs incorporate a curved inverted-Vee absorber fin, which allows a reflector of simple geometry to be used. This CPC collector, has exhibited a superior performance to that of a conventional cusp-reflector CPC design, owing to the enhancement of the optical efficiency obtained by eliminating gap optical losses and an enhanced heat removal factor. The consequence upon the performance of a further design refinement, which inhibited the convective heat losses, is also reported.

  1. Investigation of Q-tubes stability using the piecewise parabolic potential

    E-Print Network [OSTI]

    E. Nugaev; A. Shkerin

    2014-07-28T23:59:59.000Z

    We analyze the classical stability of Q-tubes --- charged extended objects in $(3+1)$-dimensional complex scalar field theory. Explicit solutions were found analytically in the piecewise parabolic potential. Our choice of potential allows us to construct a powerful method of stability investigation. We check that in the case of the zero winding number $n=0$, the previously known stability condition $\\partial^2E/\\partial Q^21$ becomes unstable towards the decay into the $n$ vortices with the single winding number.

  2. Wind loads on heliostats and parabolic dish collectors: Final subcontractor report

    SciTech Connect (OSTI)

    Peterka, J.A.; Tan, Z.; Bienkiewicz, B.; Cermak, J.E.

    1988-11-01T23:59:59.000Z

    A major intent of this study was to define wind load reduction factors for parabolic dish solar collectors within a field protected by upwind collectors, wind protective fences, or other blockages. This information will help researchers improve the economy of parabolic collector support structures and drive mechanisms. The method used in the study was to generalize wind load data obtained during tests on model collectors placed in a modeled atmospheric wind in a boundary-layer wind tunnel. A second objective of the study was to confirm and document a sensitivity in load to level of turbulence, or gustiness, in the approaching wind. A key finding was that wind-load reduction factors for forces (horizontal and vertical) were roughly similar to those for flat heliostats, with some forces significantly less than those for flat shapes. However, load reductions for moments showed a smaller load reduction, particularly for the azimuth moment. The lack of load reduction could be attributed to collector shape, but specific flow features responsible for and methods to induce a load reduction were not explored. 62 figs., 13 tabs.

  3. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish

    SciTech Connect (OSTI)

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

    1990-01-01T23:59:59.000Z

    The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

  4. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01T23:59:59.000Z

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  5. Self-averaging in time reversal for the parabolic wave equation Guillaume Bal George Papanicolaou y Leonid Ryzhik z

    E-Print Network [OSTI]

    Bal, Guillaume

    is the solution of a transport equation. 1 Introduction In time-reversal experiments a signal emitted, in the regimes of random geometrical optics and radiative transfer (transport), was studied in [2, 3]. We also in the radiative transfer regime using the parabolic wave equation, when the waves interact fully with the random

  6. Two-dimensional and three-dimensional Coulomb clusters in parabolic traps

    SciTech Connect (OSTI)

    D'yachkov, L. G., E-mail: dyachk@mail.ru; Myasnikov, M. I., E-mail: miasnikovmi@mail.ru [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Petrov, O. F. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Moscow Region (Russian Federation); Center for Astrophysics, Space Physics, and Engineering Research (CASPER), Baylor University, Waco, Texas 76798-7310 (United States); Hyde, T. W.; Kong, J.; Matthews, L. [Center for Astrophysics, Space Physics, and Engineering Research (CASPER), Baylor University, Waco, Texas 76798-7310 (United States)

    2014-09-15T23:59:59.000Z

    We consider the shell structure of Coulomb clusters in an axially symmetric parabolic trap exhibiting a confining potential U{sub c}(?,z)=(m?{sup 2}/2)(?{sup 2}+?z{sup 2}). Assuming an anisotropic parameter ??=?4 (corresponding to experiments employing a cusp magnetic trap under microgravity conditions), we have calculated cluster configurations for particle numbers N?=?3 to 30. We have shown that clusters with N???12 initially remain flat, transitioning to three-dimensional configurations as N increases. For N?=?8, we have calculated the configurations of minimal potential energy for all values of ? and found the points of configuration transitions. For N?=?13 and 23, we discuss the influence of both the shielding and anisotropic parameter on potential energy, cluster size, and shell structure.

  7. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    E-Print Network [OSTI]

    Caro, Florian; Saad, Mazen

    2012-01-01T23:59:59.000Z

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry's law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  8. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

  9. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect (OSTI)

    Anderson, Bruce

    2013-12-31T23:59:59.000Z

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  10. Climate Change Update: Baseload Geothermal is One of the Lowest...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy - energy derived from the heat of the earth - has the ability to produce electricity consistently around the clock, draws a small environmental footprint, and...

  11. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  12. Baseload Concentrating Solar Power Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQs BEDES|

  13. Project Profile: Baseload CSP Generation Integrated with Sulfur-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID Project

  14. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat HighDepartment ofBrayton

  15. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCycles |PerovskitesSystem

  16. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCyclesEnergyCSP | Department

  17. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2BagdadSimulations

  18. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2BagdadSimulationsStorage

  19. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-

  20. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including all molten salt components (receiver, field piping, thermal storage, and steam generator) and their integration with eSolar's heliostat technology and a conventional...

  1. Flux-difference split parabolized Navier-Stokes algorithm for non-equilibrium chemically reacting flows

    SciTech Connect (OSTI)

    White, J.A.; Korte, J.J.; Gaffney, R.L. Jr. (Analytical Services and Materials, Inc., Hampton, VA (United States) NASA, Langley Research Center, Hampton, VA (United States))

    1993-01-01T23:59:59.000Z

    A flux-difference split explicit finite-difference algorithm is presented for solving the parabolized form of the equations governing three-dimensional nonequilibrium chemically reacting flows. The algorithm is based on an explicit noniterative, upwind space-marching scheme developed by Korte, but differs in that the unsteady Riemann problem, rather than the steady Riemann problem, is solved. The algorithm allows either a second or an approximately third-order accurate upwind treatment of the convection terms by employing the unsteady approximate Riemann solver of Roe. The source terms of the species transport equations are treated in either an explicit or implicit manner, and the species diffusion terms are modeled with either a Fickian or a multicomponent model. A validation of the algorithm is performed by comparing computational results with the 2-D Mach 14, 15 degree compression-corner data of Holden. The three-dimensional capability of the algorithm is demonstrated by computing Mach 2.7 flow over a swept wedge scramjet fuel injector, and three-dimensional reacting flow capability is demonstrated by a computing a shock-jet interaction concept for mixing and combustion enhancement. 34 refs.

  2. A three-dimensional upwind PNS code for chemically reacting scramjet flowfields. [Parabolized Navier Stokes

    SciTech Connect (OSTI)

    Wadawadigi, G.; Tannehill, J.C.; Buelow, P.E.; Lawrence, S.L. (Iowa State University of Science and Technology, Ames (United States) NASA, Ames Research Center, Moffett Field, CA (United States))

    1992-07-01T23:59:59.000Z

    A new upwind, parabolized Navier-Stokes (PNS) code has been developed to compute the three-dimensional (3D) chemically reacting flow in scramjet (supersonic combustion ramjet) engines. The code is a modification of the 3D upwind PNS (UPS) airflow code which has been extended in the present study to permit internal flow calculations with hydrogen-air chemistry. With these additions, the new code has the capability of computing aerodynamic and propulsive flowfields simultaneously. The algorithm solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that has been modified to account for 'real gas' effects. The fluid medium is assumed to be a chemically reacting mixture of thermally perfect (but calorically imperfect) gases in thermal equilibrium. The new code has been applied to two test cases. These include the Burrows-Kurkov supersonic combustion experiment and a generic 3D scramjet flowfield. The computed results compare favorably with the available experimental data. 38 refs.

  3. Concentrating collectors

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    Selected specifications from sixteen concentrating collector manufacturers are tabulated. Eleven are linear parabolic trough collectors, and the others include slats, cylindrical trough, linear Fresnel lens, parabolic cylindrical Fresnel lens, and two point focus parabolic dish collectors. Also included is a brief discussion of the operating temperatures and other design considerations for concentrating collectors. (LEW)

  4. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  5. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03T23:59:59.000Z

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  6. 488 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Spin Valve Effect and Hall Resistance in a Wide Parabolic Well

    E-Print Network [OSTI]

    Gusev, Guennady

    488 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Spin Valve Effect and Hall Resistance: Spin valve; Hall resistance; AlcGa1-cAs parabolic wells I. INTRODUCTION The Hall effect is very known by the formula Rxy = R0B+RSM, where B is ap- plied magnetic field, R0 is the ordinary Hall coefficient, and RS

  7. Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector

    SciTech Connect (OSTI)

    Gfroerer, T.H.; Cornell, E.A. [JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado, 80309-0440 (United States)] [JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado, 80309-0440 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, Colorado, 80401 (United States)] [National Renewable Energy Laboratory, Golden, Colorado, 80401 (United States)

    1998-11-01T23:59:59.000Z

    In order to increase the radiative efficiency and directivity of spontaneous emission from a lattice-matched InGaAs/InP heterostructure, we have polished the substrate into a parabolic reflector. We combine optical and thermal measurements to obtain the absolute external efficiency over a wide range of carrier densities. Using a simple model, the measurement is used to determine interface, radiative, and Auger recombination rates in the active material. At the optimal density, the quantum efficiency exceeds 60{percent} at room temperature. The divergence of the emitted light is less than 20{degree}. In fact, the beam profile is dominated by a 6{degree} wide lobe that can be swept across the field of emission by changing the excitation position. This suggests a way to create an all-electronic scanned light beam. {copyright} {ital 1998 American Institute of Physics.}

  8. Electromagnetic modeling of the energy distribution of a metallic cylindrical parabolic reflector covered with a magnetized plasma layer

    SciTech Connect (OSTI)

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Khajehmirzaei, M. R. [Laser and Plasma Research Institute, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of); Davoudi-Rahaghi, B.; Rahmani, Z.; Jazi, B.; Abdoli-Arani, A. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

    2014-07-15T23:59:59.000Z

    The energy distribution along the focal axis of a long metallic cylindrical parabolic reflector with a plasma layer on its surface in the presence of an external magnetic field is investigated. The effects of some physical parameters, such as the plasma frequency, the wave frequency and the thickness of plasma layer on the energy distribution and the reflected and transmitted electromagnetic fields, are simulated. These investigations for both S- and P-polarizations have been done separately. It is found that the maximum value of the reflected intensity increases by increasing the incident wave frequency and by decreasing the plasma layer thickness and the plasma frequency for both polarizations. Furthermore, the results show that the increase of the magnetic field strength can cause an increase in the reflected intensity for S-polarization and a slight decrease for P-polarization.

  9. President Obama Announces $1.45 Billion Conditional Commitment...

    Office of Environmental Management (EM)

    power generating facility. The Solana, Arizona plant will add 250 megawatts (MW) of capacity to the electrical grid using parabolic trough solar collectors and an innovative...

  10. CX-007385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

  11. NREL: News - NREL Report Finds Similar Value in Two CSP Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two CSP Technologies Findings demonstrate increasing importance for systems with thermal energy storage February 11, 2014 Parabolic troughs and dry-cooled towers deliver similar...

  12. CX-005198: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

  13. CX-005199: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005199: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

  14. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  16. The Whitehorse Trough is an early Mesozoic marine sedimentary basin, which extends from southern Yukon to Dease Lake in British Columbia. This paper outlines the stratigraphy and structure, and characterises the overall petroleum

    E-Print Network [OSTI]

    Johnston, Stephen T.

    and structure, and characterises the overall petroleum resource potential of the central Whitehorse Trough component of the stratigraphy. Potential petroleum traps are provided by antiforms, thrust faults stratigraphique de Inklin. Le thème du gaz BULLETIN OF CANADIAN PETROLEUM GEOLOGY VOL. 53, NO. 2 (JUNE, 2005), P

  17. Test of the adequacy of using smoothly joined parabolic segments to parametrize the multihumped fission barriers in actinides

    SciTech Connect (OSTI)

    Bhandari, B.S. (Department of Physics, Faculty of Science, University of Garyounis, Benghazi (Libya))

    1990-10-01T23:59:59.000Z

    The adequacy of using smoothly joined parabolic segments to parametrize the multihumped fission barriers has been tested by examining its simultaneous consistency with the three relevant fission observables, namely, the near-barrier fission cross sections, isomeric half-lives, and the ground-state spontaneous fission half-lives of a wide variety of a total of 25 actinide nuclides. The penetrabilities through such multihumped fission barriers have been calculated in the Wentzel-Kramers-Brillouin approximation, and the various fission half-lives have been determined using the formalism given earlier by Nix and Walker. The results of our systematic analysis of these actinide nuclides suggest that such a parametrization is quite adequate at least for the even-even nuclei, as it reproduces satisfactorily their various observed fission characteristics. Major difficulties remain, however, for the odd mass and for the doubly odd nuclei where the calculated ground-state spontaneous fission half-lives are found to be several orders of magnitude larger than those measured. Possible reasons for such discrepancies are discussed. Fission branching ratios of the decay of the shape isomers in various actinide nuclides have also been calculated and are compared with their measured values.

  18. Thermal Properties of a Particle Confined to a Parabolic Quantum Well in 2D Space with Conical Disclination

    E-Print Network [OSTI]

    Tridev Mishra; Tapomoy Guha Sarkar; Jayendra N. Bandyopadhyay

    2014-03-20T23:59:59.000Z

    The thermal properties of a system, comprising of a spinless non-interacting charged particle in the presence of a constant external magnetic field and confined in a parabolic quantum well are studied. The focus has been on the effects of a topological defect, of the form of conical disclination, with regard to the thermodynamic properties of the system. We have obtained the modifications to the traditional Landau-Fock-Darwin spectrum in the presence of conical disclination. The effect of the conical kink on the degeneracy structure of the energy levels is investigated. The canonical formalism is used to compute various thermodynamic variables. The study shows an interplay between magnetic field, temperature and the degree of conicity by setting two scales for temperature corresponding to the frequency of the confining potential and the cyclotron frequency of external magnetic field. The kink parameter is found to affect the quantitative behaviour of the thermodynamic quantities. It plays a crucial role in the competition between the external magnetic field and temperature in fixing the values of the thermal response functions. This study provides an important motivation for studying similar systems, however with non trivial interactions in the presence of topological defects.

  19. NREL Develops New Optical Evaluation Approach for

    E-Print Network [OSTI]

    NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes. Parabolic is the collector optical efficiency, which is the ratio of the absorbed solar power by the receiver

  20. NEW METHOD AND SOFTWARE FOR MULTI-VARIABLE TECHNO-ECONOMIC DESIGN OPTIMIZATION OF CSP PLANTS

    E-Print Network [OSTI]

    Ábrahám, Erika

    for design optimization of solar thermal power plants. Thereby, optimization potential can be discovered to a 50 MWel parabolic trough power plant using thermal oil as heat transfer fluid (HTF), a molten salt, parabolic trough 1. Motivation (Introduction) Today, designs of solar thermal power plants are developed

  1. Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations. Progress report, 1 December 1985-31 May 1986

    SciTech Connect (OSTI)

    Chitsomboon, T.; Tiwari, S.N.

    1986-08-01T23:59:59.000Z

    The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.

  2. Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    H.W. Herrmann, R.M. Malone, W. Stoeffl, J.M. Mack, C.S. Young

    2008-06-01T23:59:59.000Z

    Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a ten-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90º Off-Axis Parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range as well as different gamma energy threshold sensitivities. 52.70.La, 29.40.Ka, 42.15.Eq, 07.60.-j, 07.85.-m

  3. Parabolic Signorini Problem

    E-Print Network [OSTI]

    Arshak Petrosyan

    2011-11-16T23:59:59.000Z

    Page 59 ... Teorem (Monotonicity of truncated frequency). Let v ? Sf . en for any ? > there exists C = C(fL? , ?) > such that r. ?(r,v) = re. Cr? d dr log max?Br v , r.

  4. Survey mirrors and lenses and their required surface accuracy. Volume 2. Concentrator optical performance software (COPS) user's manual. Final report for September 15, 1978-December 1, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)

  5. A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam

    SciTech Connect (OSTI)

    Jaffe, L.D.

    1988-11-01T23:59:59.000Z

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  6. Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    E-Print Network [OSTI]

    Masao Iwamatsu; Yutaka Okabe

    2010-06-11T23:59:59.000Z

    The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.

  7. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    SciTech Connect (OSTI)

    Qiu, Songgang

    2013-05-15T23:59:59.000Z

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  8. Using Encapsulated Phase Change Material for Thermal Energy Storage for Baseload CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. A DOE-Funded Design Study for Pioneer Baseload Application Of...

    Open Energy Info (EERE)

    testing effort to determine the feasibility of applying anadvanced high-efficiency binary heat recovery cycle - the KalinaCycleTM - to recover energy from 171' C silica-rich...

  10. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  11. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure), 21st Century Power Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 ,

  12. Climate Change Update: Baseload Geothermal is One of the Lowest Emitting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office of Fossil Energy (FE)ClientW H

  13. A DOE-Funded Design Study for Pioneer Baseload Application Of an Advanced

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) | Open EnergyResults

  14. Critical cavity in the stretched fluid studied using square-gradient density-functional model with triple-parabolic free energy

    E-Print Network [OSTI]

    Masao Iwamatsu

    2009-04-04T23:59:59.000Z

    The generic square-gradient density-functional model with triple-parabolic free energy is used to study the stability of a cavity introduced into the stretched liquid. The various properties of the critical cavity, which is the largest stable cavity within the liquid, are compared with those of the critical bubble of the homogeneous bubble nucleation. It is found that the size of the critical cavity is always smaller than that of the critical bubble, while the work of formation of the former is always higher than the latter in accordance with the conjectures made by Punnathanam and Corti [J. Chem. Phys. {\\bf 119}, 10224 (2003)] deduced from the Lennard-Jones fluids. Therefore their conjectures about the critical cavity size and the work of formation would be more general and valid even for other types of liquid such as metallic liquid or amorphous. However, the scaling relations they found for the critical cavity in the Lennard-Jones fluid are marginally satisfied only near the spinodal.

  15. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

  16. Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004

    SciTech Connect (OSTI)

    Kelly, B.; Kearney, D.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

  17. NEPA DETERM1.I"{ REClPIENT:Abengoa Solar Inc STATE: CO PROJECT

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERM1.I" REClPIENT:Abengoa Solar Inc STATE: CO PROJECT Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants TITLE: Funding...

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    exploring small-scale solar tower demonstration project andfilm PV cells, and CSP solar tower. Figure 3. Map of China'sCSP technologies such as solar towers and parabolic troughs.

  19. CX-009024: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low Cost Receivers for Solar Parabolic Trough CX(s) Applied: B3.6, B5.17 Date: 08/09/2012 Location(s): Vermont Offices(s): Golden Field Office

  20. Lite Trough LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109.Lindley,LipscombWindLitchfield,

  1. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect (OSTI)

    Annen, K.D.

    1981-08-01T23:59:59.000Z

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  2. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01T23:59:59.000Z

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  3. A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna

    E-Print Network [OSTI]

    Loizou, Loizos

    2012-02-14T23:59:59.000Z

    electro-mechanical “cam-and-gear” mechanisms. Previous work related to the excitation of TWG and the performance of TWA topologies are limited when compared to more common antenna designs, yet they possess many desirable features that can be exploited in a...

  4. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  5. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  6. Optimal control, parabolic equations, st - Optimization Online

    E-Print Network [OSTI]

    2008-12-22T23:59:59.000Z

    VII, volume 166 of Pitman. Research Notes in Mathematics, pages 69–86. Longman Scientific & Technical, New York,. 1988. [12] J.F. Bonnans and E. Casas.

  7. A PARABOLIC ALMOST MONOTONICITY FORMULA Introduction In ...

    E-Print Network [OSTI]

    2006-07-07T23:59:59.000Z

    is monotone increasing in r, 0 1, provided u± have moderate growth at infinity. ... 1 = B1 × (?1, 0] is to multiply them with a cutoff function ?(x) thus extending ...... Pure Appl. Math. 42 (1989), no. 1, 55–78. MR. 973745 (90b:35246

  8. High order difference methods for parabolic equations

    E-Print Network [OSTI]

    Matuska, Daniel Alan

    2012-06-07T23:59:59.000Z

    for all $ s C as (1. 4a) L[$(o)] = ) ~x2 ~t (0 a)n $(o) (1 ~ 4b) K[II)(8) ] = $ ( ) t 0 ac B Q E B2 LJ B3 o ) B. The difference analogs of (1. 3) and (1. 4) will be expressed in terms of finite dimensional vectors on R . For V c C, let A' V = col(V... Z(ON) V (u) h(u), o c B J i 1 i 1 k i=2 i] Q E BA2 (J B&3, n e I(O, N], n(j) where h (a) is the j th derivative of the column vector h (o) with respect to t and the matrix A is a polynomial in the matrix A of degree J ~ The integer J...

  9. Laboratoire de Conception de Systmes Mcaniques Gnie mcanique

    E-Print Network [OSTI]

    Lausanne, Ecole Polytechnique Fédérale de

    (combined cycle) Parabolic trough collectors Advantages Integration of solar renewable energy into a fossil and to fight against climate change. Solar energy transformed by Concentrating Solar Power (CSP) technologies, electrical generation of both solar and fossil installation, thermal energy stored, and fuel consumption

  10. CX-000922: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Next-Generation Parabolic Trough Collectors and Components for Concentrated Solar Power ApplicationsCX(s) Applied: B3.6Date: 02/24/2010Location(s): ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. CX-005781: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Power PlantsCX(s) Applied: A9, B3.6Date: 05/06/2011Location(s): ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. CX-001598: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aerial Photography of Solar Parabolic Trough Field at Cameo, ColoradoCX(s) Applied: B3.1, B3.6Date: 04/08/2010Location(s): Cameo, ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  13. CX-001600: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aerial Photography of Solar Parabolic Trough Field at Abengoa Research Facilities, Lakewood, ColoradoCX(s) Applied: B3.1, B3.6Date: 04/08/2010Location(s): Lakewood, ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    GENERATION USING PARABOLIC TROUGH SOLAR COLLECTION NOVEMBER 2010 CEC5002011040 Prepared for: California Energy Commission Prepared by: American Energy Assets, California L.P. #12; Prepared by: Primary Author: Steve Ruby American Energy Assets, California L.P. Denver, CO 80202 Contract

  15. Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

  16. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  17. Peer Reviewed Potential Effects of Livestock Water-Trough

    E-Print Network [OSTI]

    Theimer, Tad

    Station, Flagstaff, AZ 86001, USA TAD C. THEIMER, Department of Biology, Northern Arizona University

  18. Project Profile: Advanced High Temperature Trough Collector Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    collector was selected for the Andasol 1 and 2 plants in Spain, the Kuraymat plant in Egypt, and early Solar Millennium commercial projects in the United States. The NTPro design...

  19. Project Profile: Advanced High Temperature Trough Collector Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat High Temperature

  20. Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) |(Ward, Et Al.,

  1. Project Profile: Innovative Phase Change Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

  2. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  3. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  4. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  5. Rethinking wedges

    E-Print Network [OSTI]

    Davis, Steven J; Cao, Long; Caldeira, Ken; Hoffert, Martin I

    2013-01-01T23:59:59.000Z

    wind, biomass, and energy storage systems are not yet mature enough to provide affordable baseload power

  6. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect (OSTI)

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08T23:59:59.000Z

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  7. Solar limb darkening and ray trace evaluation of solar concentrators

    SciTech Connect (OSTI)

    Negi, B.S.; Bhowmik, N.C.; Mathur, S.S.; Kandpal, T.C.

    1985-01-15T23:59:59.000Z

    A comparison of different correlations commonly used to describe the limb darkening effect is made. A somewhat new correlation is proposed which predicts the values to within +- 1.5% of the experimental values. Using a conventional ray trace technique and assigning proper weight factors to each ray, the distribution of the local concentration ratio over a flat absorber placed in the focal plane of a cylindrical parabolic trough is also determined.

  8. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  9. Long-time asymptotics for fully nonlinear homogeneous parabolic equations

    E-Print Network [OSTI]

    Armstrong, Scott N.; Trokhimtchouk, Maxim

    2010-01-01T23:59:59.000Z

    4), 1333–1362 (1991) S. N. Armstrong, M. Trokhimtchouk 18.are credited. References 1. Armstrong, S.N. : Principalparabolic equations Scott N. Armstrong · Maxim Trokhimtchouk

  10. Analysis of Singularity Lines by Transforms with Parabolic Scaling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Phyathai Road, Patumwan, Bangkok 10330, Thailand. (2) Department of Applied Mathematics, Lappeenranta University of Technology, Lappeenranta, Finland. panuvuth@hotmail.com, jouni.sampo@lut.fi, songkiat

  11. On Parallel Asynchronous HighOrder Solutions of Parabolic PDEs

    E-Print Network [OSTI]

    Averbuch, Amir

    ) MIMD multiprocessors. Our approach is demon­ strated for the solution of the multidimensional heat for promotion of research at the Technion. 1 #12; allow larger time­step, we use remote neighbors' values rather efficiency and in the case which uses remote neighbors' values an almost linear speedup is achieved. Schemes

  12. Convergence properties of the local defect correction method for parabolic

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    and, for a one-dimensional heat equation, we study its properties analytically. Numerical experiment of adaptive grid techniques. In adaptive grid methods, a fine grid spacing and a relatively small time step requirements are minimized. An adaptive grid technique of particular interest is the Local Defect Correction

  13. ON THE GLOBAL SOLUTIONS OF THE PARABOLIC OBSTACLE PROBLEM

    E-Print Network [OSTI]

    Shahgholian, Henrik

    analysis is essential in studying the local properties of a free boundary. The idea to use information investigation in [CPS]. Notations and de#12;nitions. Throughout the paper we will use the following notations: z

  14. Bouncing plasmonic waves in half-parabolic potentials

    SciTech Connect (OSTI)

    Liu Wei [Nonlinear Physics Centre, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Neshev, Dragomir N.; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S. [Nonlinear Physics Centre, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2011-12-15T23:59:59.000Z

    We introduce a plasmonic analog for the dynamics of a quantum particle under a linear restoring force bouncing off an impenetrable barrier (''quantum paddle ball''). Paddle-ball-type plasmonic potentials are constructed in quadratically modulated metal-dielectric-metal structures with transverse metallic reflecting walls. We show, both analytically and numerically, the full-wave nature of the phenomenon, including plasmon bouncing and complete wave revivals after interference at the boundary. We show that the plasmon paddle-ball dynamics is effectively wavelength independent, opening opportunities for subwavelength manipulations of polychromatic and ultrashort-pulse plasmons.

  15. Third-order spectral phase compensation in parabolic pulse compression

    E-Print Network [OSTI]

    Boyer, Edmond

    that prisms embedded gratings compressors assert itself as a simple and efficient solution to third on the use of a hybrid compressor system consisting in a set of prisms embedded in a sequence of gratings confirm that, as opposed to traditional gratings compressors, the third-order spectral phase

  16. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  17. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    Figure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-OF ENERGY DIVISION OF GEOTHERMAL ENERGY LAWRENCE BERKELEY

  18. Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California

    E-Print Network [OSTI]

    Lajoie, Lia Joyce

    2012-01-01T23:59:59.000Z

    D I P IPPO , R. (2012). Geothermal Power Plants: Principles,in the vicinity of geothermal power plants worldwide, it isregional effects of geothermal power production. This study

  19. Morphotectonics of the central Muertos thrust belt and Muertos Trough (northeastern Caribbean)

    E-Print Network [OSTI]

    ten Brink, Uri S.

    of the ongoing east­west differential motion between the Hispaniola and the Puerto Rico­Virgin Islands blocks on the north slope of the islands of Hispaniola and Puerto Rico (e.g., Larue and Ryan, 1998; Dolan et al., 1998

  20. Aeolian sediment transport pathways and aerodynamics at troughs Mary C. Bourke1

    E-Print Network [OSTI]

    Bourke, Mary C.

    margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more; accepted 2 April 2004; published 13 July 2004. [1] Interaction between wind regimes and topography can give. These include wind streaks, falling dunes, ``lateral'' dunes, barchan dunes, linear dunes, transverse ridges

  1. Solar Trough Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00289

    SciTech Connect (OSTI)

    Gray, A.

    2011-05-01T23:59:59.000Z

    New HCEs were installed on the hot sides of the thermal loops at SEGS VIII and IX from mid-2007 to mid-2008. Due to significant increases in plant performance, an interest in a further increase performance by installing new HCEs on the cold portions of the loop developed. Although it was assumed that the plant performance would increase, the exact amount was unknown. The objective of this project was to estimate the performance improvements with new HCEs installed on the cold sides of the loop, with performance being evaluated as potential increases in electrical power production (megawatt-hours). A comparison of performance prior to and post installation of new HCEs on the hot sides of the loops was done. For completeness, an estimate of performance losses - such as the optical efficiency, mirror reflectivity, and optical accuracy - was also included in this analysis. National Renewable Energy Laboratory's (NREL's) HCE Survey System was used to determine if the HCEs were hot or cold.

  2. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    Figure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-that its ux would not GEOTHERMAL ENERGY DEVELOPMENT FROM THE

  3. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    Figure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-Californta 94720 GEOTHERMAL ENERGY DEVELOPMENT FROM The map

  4. Seasonal variation of upper-level mobile trough development upstream of the Pacific storm track

    E-Print Network [OSTI]

    Myoung, Boksoon

    2002-01-01T23:59:59.000Z

    is to provide at least a partial explanation of midwinter suppression of the Pacific storm track. From 19 years of analysis, a strong stretching deformation zone (DZ) is defined over East Asia. We examine the number, average intensity and intensity change...

  5. Evolution and preservation of closed linear troughs in the Hueco bolson of west Texas

    E-Print Network [OSTI]

    Burrell, Jonathan K

    1996-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Norman Tilfo (Chair of Co ttee) ean - Louis B ud (Member) Chris op er Mathewson Member) Philip abinowi~ (Head of Department) May 1996 Major Subject: Geology Evolution and Preservation of Closed... of content and presentation. I would like to thank my committee members, Dr. Christopher Mathewson for advice and direction, and Dr. Jean - Louis Briaud for his patience and attention to detail. I am also grateful to Lloyd Morris for his positive influence...

  6. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    785-805 Table 1 MT. HOOD GEOTHERMAL PROJECT Y A. GEOLOGY ai n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

  7. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    785-805 Table 1 MT. Y HOOD GEOTHERMAL PROJECT A. a GEOLOGYi n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

  8. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    o r compiling data on geothermal energy and develop- i n g aFigure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-

  9. Geophysical Study of the Salton Trough of Southern California | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGeminiEnergy InformationNevada

  10. Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewableConcentrating Solar Power

  11. Deep-Sea Research I 51 (2004) 17691780 Sedimentation in the Southern Okinawa Trough: enhanced

    E-Print Network [OSTI]

    Huh, Chih-An

    conducted by the US during AD 1952­1954 at the Enewetak and Bikini Atolls. The vertical offset between

  12. Concentrating Solar Power Competitive Awards | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Concepts for CSP (2008) CSP ARRA (2009) Baseload (2010) CSP SunShot R&D (2012) MURI HOT Fluids (2012) CSP Heat Integration for Baseload Renewable Energy Deployment (2013)...

  13. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  14. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  15. Wind loading on tracking and field-mounted solar collectors

    SciTech Connect (OSTI)

    Murphy, L.M.

    1980-12-01T23:59:59.000Z

    Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all of the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three, or possibly more, seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  16. Theoretical analysis of error transfer from surface slope to refractive ray and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01T23:59:59.000Z

    This paper presents the general equation to calculate the standard deviation of reflected ray error from optical error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 8 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope errors in two direction is transferred to any one direction of the focus ray when the incidence angle is more than 0 for solar trough and heliostats reflector; for point focus Fresnel lens, point focus parabolic glass mirror, line focus parabolic galss mirror, the error transferring coefficient from optical to focus ray will increase when the rim angle increase; for TIR-R concentrator, it will decrease; for glass heliostat, it relates to the incidence angle and azimuth of the reflecting point. Keywords: optic error, standard deviation, refractive ray error, concentrated solar collector

  17. Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors

    SciTech Connect (OSTI)

    Padiyath, Raghunath

    2013-04-01T23:59:59.000Z

    We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

  18. Sandia Corporation (Albuquerque, NM)

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23T23:59:59.000Z

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  19. Bates solar-industrial process-steam application. Draft safety report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    It has been proposed to install approximately 35,000 square feet of linear parabolic trough collectors on the roof of a corrugator plant. The collectors are to collect 5500 lbs/hr of steam to drive the corrugator. Each of the subsystems are described, and for each subsystem the possible safety hazards are identified, and recommendations are made to either eliminate or control the hazards at an acceptable level. Specific systems discussed are the master control system and data aquisition system, the collector, and heat transfer system. Fire safety, protection of personnel from burns and eye injury, and lightning protection are discussed. (LEW)

  20. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect (OSTI)

    Not Available

    1980-01-07T23:59:59.000Z

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  1. 1980 annual report of the Coolidge Solar Irrigation Project

    SciTech Connect (OSTI)

    Torkelson, L.; Larson, D. L.

    1981-02-01T23:59:59.000Z

    The Coolidge Solar Irrigation Facility at Coolidge, Arizona, consists of a 2136.8-m/sup 2/ (23,000-ft/sup 2/) line-focus parabolic trough collector subsystem, a 113.55-m/sup 3/ (30,000-gallon) thermal storage subsystem, and a 150-kW/sub e/ (142.2-Btu/s) organic Rankine cycle power generation unit. The performance of the facility and its operational and maintenance requirements are reported. The period from the the facility's initial operation in October 1979 to 31 August 1980 is covered.

  2. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  3. Experimental performance evaluation of line-focus sun trackers

    SciTech Connect (OSTI)

    Gee, R.C.

    1982-05-01T23:59:59.000Z

    Two sun trackers have been tested for tracking accuracy on an sun tracker. Both performed well during the entire test period. Their tracking performance as a function of insolation level was established, and their overall tracking accuracy (rms tracking error) was calculated. Both the flux-line and the shadowband tracker were found to have an effective rms error of about 1 milliradian. This information was used to determine the impact that the two trackers have on the annual energy performance of typical parabolic trough concentrating collectors. One milliradian rms tracking errors were found to result in negligibly small annual performance losses.

  4. Fabricating Nano-Scale Devices: Block Copolymers and their Applications

    E-Print Network [OSTI]

    Limaye, Aditya

    2014-01-01T23:59:59.000Z

    leaving behind cylindrical troughs where the polystyrenewas deposited into these cylindrical troughs using sputter

  5. Final test results for the Schott HCE on a LS-2 collector.

    SciTech Connect (OSTI)

    Moss, Timothy A.; Brosseau, Douglas A.

    2005-07-01T23:59:59.000Z

    Sandia National Laboratories has completed thermal performance testing on the Schott parabolic trough receiver using the LS-2 collector on the Sandia rotating platform at the National Solar Thermal Test Facility in Albuquerque, NM. This testing was funded as part of the US DOE Sun-Lab USA-Trough program. The receiver tested was a new Schott receiver, known as Heat Collector Elements (HCEs). Schott is a new manufacturer of trough HCEs. The Schott HCEs are 4m long; therefore, two were joined and mounted on the LS-2 collector module for the test. The Schott HCE design consists of a 70mm diameter high solar absorptance coated stainless steel (SS) tube encapsulated within a 125mm diameter Pyrex{reg_sign} glass tube with vacuum in the annulus formed between the SS and glass tube to minimize convection heat losses. The Schott HCE design is unique in two regards. First, the bellows used to compensate for the difference in thermal expansion between the metal and glass tube are inside the glass envelope rather than outside. Second, the composition of materials at the glass-to-metal seal has very similar thermal expansion coefficients making the joint less prone to breakage from thermal shock. Sandia National Laboratories provided both the azimuth and elevation collector module tracking systems used during the tests. The test results showed the efficiency of the Schott HCE to be very similar to current HCEs being manufactured by Solel. This testing provided performance verification for the use of Schott tubes with Solargenix trough collector assemblies at currently planned trough power plant projects in Arizona and Nevada.

  6. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01T23:59:59.000Z

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  7. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect (OSTI)

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01T23:59:59.000Z

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  8. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    SciTech Connect (OSTI)

    Prythero, T.; Meyer, R. T.

    1980-09-01T23:59:59.000Z

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  9. Parallel Performance Studies for a Parabolic Test Problem on the Cluster tara

    E-Print Network [OSTI]

    Gobbert, Matthias K.

    in 2009 by the UMBC High Performance Computing Facility (www.umbc.edu/hpcf). It is an 86-node distributed purchased in 2009 by the UMBC High Performance Computing Facility (www.umbc.edu/hpcf) comprised of 82

  10. Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes

    SciTech Connect (OSTI)

    Zeng Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun Wenbing

    2008-05-01T23:59:59.000Z

    Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 {mu}rad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

  11. Computationally efficient parabolic equation solutions to seismo-acoustic problems involving

    E-Print Network [OSTI]

    or low-shear elastic layers Adam M. Metzlera) Applied Research Laboratories, University of Texas at Austin, Austin, Texas 78713 ametzler@arlut.utexas.edu Jon M. Collis Department of Applied Mathematics Society of America PACS numbers: 43.30.Ma [AL] Date Received: November 30, 2012 Date Accepted: February 19

  12. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources

    E-Print Network [OSTI]

    , Washington 98105 Jon M. Collis Department of Applied Mathematics and Statistics, Colorado School of Mines.1121/1.4790355] PACS number(s): 43.30.Ma, 43.30.Dr, 43.20.Gp, 43.30.Zk [MS] Pages: 1358­1367 I. INTRODUCTION A class

  13. PARABOLIC HARNACK INEQUALITY FOR THE MIXTURE OF BROWNIAN MOTION AND STABLE PROCESS

    E-Print Network [OSTI]

    Vondraèek, Zoran

    , transition density. The research supported in part by a joint US-Croatia grant INT 0302167. The research supported in part by MZOS grant 0037107 of the Republic of Croatia and in part by a joint US-Croatia grant

  14. The Decline in World Oil Reserves Predicted by the Parabolic Projection of Future Production and Discoveries

    E-Print Network [OSTI]

    John H. Walsh

    The expected changes in world reserves of conventional oil were interpreted in terms of the standard convention defining resources and reserves. According to this convention, oil is produced exclusively from reserves which in turn are replenished only by discoveries. The change in reserves over one year is thus the sum of discoveries less the production for that year. The total discoveries were taken as the sum from two different sources: those arising from the normal exploration process and those that contribute to the Reserves Addition specified in the Year 2000 Assessment of the U.S. Geological Survey. These two quantities may change over time in opposite directions and it is this attribute that distinguishes this paper from previous studies. The production projection taken from the previous underlying paper was based upon the Mean Value published in the Year 2000 Assessment of the U.S. Geological Survey. This paper also follows the earlier one in interpreting the Reserves Addition in two different ways that represent opposite boundary conditions. In Case 1, the Reserves Addition was only assumed active after the peak in production has passed and in Case 2, it was assumed to

  15. Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations

    E-Print Network [OSTI]

    Grepl, Martin A. (Martin Alexander), 1974-

    2005-01-01T23:59:59.000Z

    Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities of interest, evaluation of which demands the solution of a partial differential equation. We present in this thesis a ...

  16. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower Generation |

  17. Analitic modeling of a solar power plant with parabolic linear collectors.

    E-Print Network [OSTI]

    Milton Matos Rolim

    2007-01-01T23:59:59.000Z

    ??Foi desenvolvido um modelo analÃtico de um sistema solar tÃrmico de geraÃÃo de eletricidade, com concentradores parabÃlicos de foco linear. O modelo permite simular, realizar… (more)

  18. A performance data network for solar process heat systems

    SciTech Connect (OSTI)

    Barker, G.; Hale, M.J.

    1996-03-01T23:59:59.000Z

    A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

  19. A 6-year AMSU-based climatology of upper-level troughs and associated precipitation distribution in the Mediterranean region

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    orography surrounding the Mediterranean sea, and the large supply of water vapor at low levels, are all conditions such as heavy precipitation and floods, strong winds and droughts. In our study we focus on heavy that intrude into and affect the Medi- terranean region as well as on the occurrence of moderate to heavy

  20. Langmuir Trough and Brewster Angle Microscopy Study of Model Lung Surfactant Monolayers at the Air/Aqueous Interface

    E-Print Network [OSTI]

    of the subphase was lower than the main phase transition temperature. The fusion of the domains was believed monolayer, fusion of the domains appear to decrease. The fusion of the domains as the compression rate increased in a cold monolayer suggest that a faster compression rate can induce enough fluctuations

  1. Geothermal Technologies Program Peer Review Program June 6 -...

    Broader source: Energy.gov (indexed) [DOE]

    highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

  2. Possibilities of Geothermal Energy and its Competitiveness  with Other Energy Sources.

    E-Print Network [OSTI]

    Hasan, Farhan

    2014-01-01T23:59:59.000Z

    ?? Geothermal Energy is one of the common talks at present. It has the potential to run long term and can provide base-load energy, at… (more)

  3. Energy Secretary Chu Applauds World's First All-Renewable Power...

    Broader source: Energy.gov (indexed) [DOE]

    baseload power to American homes, businesses, and whole communities. To provide the solar energy, Enel Green Power North America (EGP) installed more than 89,000 polycrystalline...

  4. CX-003706: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6 Date: 09092010...

  5. High Density Thermal Energy Storage with Supercritical Fluids...

    Broader source: Energy.gov (indexed) [DOE]

    concept using supercritical fluids - Enhanced penetration of solar thermal for baseload power - Waste heat capture * Presents feasibility looking at thermodynamics of...

  6. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date:...

  7. Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.

    E-Print Network [OSTI]

    Peng, Dan

    2013-01-01T23:59:59.000Z

    ??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

  8. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

  9. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    the network of electricity generation plants that determinesredundancy in electricity generation plants. The diversionelectricity generation can come from baseload, intermediate or peaking power plants

  10. Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    cost of pulverized coal-fired generation above that of ato conventional coal-fired generation. Any resulting changeapply to coal-fired baseload generation (not just natural

  11. Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West

    E-Print Network [OSTI]

    Barbose, Galen

    2009-01-01T23:59:59.000Z

    cost of pulverized coal-fired generation above that of ato conventional coal-fired generation. Any resulting changeapply to coal-fired baseload generation (not just natural

  12. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Transmission Network Baseload Power Peaking Power Need for Demand Response (DR) Variable Power from Wind Solar Farms 50% 30% Continued geo- growth in urban ...

  13. Decentralised stable coalition formation among energy consumers in the smart grid

    E-Print Network [OSTI]

    Southampton, University of

    with complementary needs. To this ends, we present an agent-based Java simulation of a social network of energy. The amount of de- mand required on a continuous basis is usually carried by the baseload stations owing for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved. that exceed this baseload

  14. Integrated Power Management of Data Centers and Electric Vehicles for Energy and Regulation Market

    E-Print Network [OSTI]

    Zhang, Wei

    regulation signal, as well as developing a market planning strat- egy that determines the best baseload. The proposed framework is evaluated base on real workload, regulation signal, and market data. The simulation.edu, brocanelli.1@osu.edu, zhang@ece.osu.edu, xwang@ece.osu.edu B(m) Overall baseload of servers, UPS and PEVs

  15. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01T23:59:59.000Z

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  16. Self-pressurizing Stirling engine

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2010-10-12T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

  1. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2011-08-01T23:59:59.000Z

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  2. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    SciTech Connect (OSTI)

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

    1980-04-01T23:59:59.000Z

    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

  3. Intergrated function nonimaging concentrating collector tubes for solar thermal energy. Final technical report

    SciTech Connect (OSTI)

    Winston, R

    1982-09-01T23:59:59.000Z

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 m/sup 2/ panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200/sup 0/C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100/sup 0/C to 300/sup 0/C range including industrial process heat, air conditioning and Rankine engine operation.

  4. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01T23:59:59.000Z

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  5. Cost comparison of solar detoxification with conventional alternatives for the destruction of trichloroethylene

    SciTech Connect (OSTI)

    Glatzmaier, G.C.

    1991-12-01T23:59:59.000Z

    The purpose of this analysis is to compare the cost of solar waste detoxification processes with conventional alternatives for the treatment of trichloroethylene (TCE) in air. The solar processes that were evaluated are high flux photothermal oxidation (PHOTOX), high flux thermal catalytic reforming (SOLTOX), and low flux photocatalytic oxidation (PHOCAT). The high flux processes, PHOTOX and SOLTOX, were based on dish concentrator technology. The low flux photocatalytic process was based on parabolic trough concentrating technology. The conventional alternatives are thermal oxidation, thermal catalytic oxidation, off-site carbon regeneration, and on-site solvent recovery. Analysis of the seven processes showed PHOCAT to be the most economical treatment method. PHOTOX showed slightly better economics relative to SOLTOX. Both were competitive, with the best conventional destruction process, thermal oxidation. Off-site carbon regeneration was the most expensive treatment method. 9 refs., 7 figs.

  6. Siting Utility-Scale Concentrating Solar Power Projects

    SciTech Connect (OSTI)

    Mehos, M.; Owens, B.

    2005-01-01T23:59:59.000Z

    In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

  7. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01T23:59:59.000Z

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  8. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  9. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  10. IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 34, NO. 4, OCTOBER 2009 617 Extension of the Rotated Elastic Parabolic Equation

    E-Print Network [OSTI]

    IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 34, NO. 4, OCTOBER 2009 617 Extension of the Rotated into adjacent regions. This approach is extended to solve problems involving variable topography (above-ocean-dependent fluid-solid interfaces is one of the prominent issues in underwater acoustics. Realistic ocean bottoms

  11. Global Solutions and Quenching to a Class of Quasilinear Parabolic Equations 1 Bei Hu and HongMing Yin

    E-Print Network [OSTI]

    , there is indeed a nonlinear heat supply through the boundary (cf. [7]) if one regards v(x; t) as temperature

  12. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect (OSTI)

    Not Available

    1982-11-30T23:59:59.000Z

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  13. Local strong solutions of a parabolic system related to the Boussinesq approximation for buoyancy-driven ow

    E-Print Network [OSTI]

    Díaz, Jesús Ildefonso

    , 35K45, 35K50. 1 Introduction The ow of a viscous, heat-conducting uid under the force of gravity for a homogeneous, incompressible uid, coupled to a semilinear heat equation (see [16] or [20]). The main coupling term is the buoyancy force (generation of momentum due to temperature gradients); viscous heating (heat

  14. Assessment of existing studies of wind loading on solar collectors

    SciTech Connect (OSTI)

    Murphy, L. M.

    1981-02-01T23:59:59.000Z

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  15. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  16. Determining the optical quality of focusing collectors without laser ray tracing

    SciTech Connect (OSTI)

    Bendt, P.; Gaul, H.; Rabl, A.

    1980-02-01T23:59:59.000Z

    This paper describes a novel alternative to the laser ray trace technique for evaluating the optical quality of focusing solar collectors. The new method does not require any equipment beyond what is used for measuring collector efficiency; it could therefore become part of routine collector testing. The total optical errors resulting from imperfect specularity and from inaccuracies in reflector position or slope are characterized by an angular standard deviation sigma/sub optical/, the rms deviation of the reflected rays from the design direction. The method is based on the fact that the off-axis performance of a concentrator depends on sigma/sub optical/. An angular scan is performed, i.e., the collector output is measured as a function of misalignment angle over the entire range of angles for which there is measurable output (typically a few degrees). This test should be carried out on a very clear day, with receiver close to ambient temperature (if the latter conditions cannot be satisfied, appropriate corrections are necessary). The parameter sigma/sub optical/ is then determined by a least-squares fit between the measured and the calculated angular scan. We tested the method on a parabolic trough collector manufactured by Hexcel, but it is suitable for parabolic dishes as well. The method appears to be accurate enough to determine sigma/sub optical/ within about 10%.

  17. ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess

    E-Print Network [OSTI]

    illumination on a single cell proportionally reduces its current, and hence affects the performance of all, Performance, Characterisation, Light uniformity 1 INTRODUCTION The Combined Heat and Power Solar (CHAPS then be used for building heating and domestic hot water. The CHAPS system, and its electrical and thermal

  18. PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013

    E-Print Network [OSTI]

    Foulger, G. R.

    clean, renewable, and safe baseload geothermal power generation. INTRODUCTION Newberry VolcanoPROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University and shift stimulation to new fractures. The Newberry Volcano EGS Demonstration will allow geothermal

  19. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    ZLWK:LQG3RZHU´&RQIHUHQFHRQ Wind Power for the 21 st Century,Large-scale baseload wind power in China. Natural Resourceseconomics of large-scale wind power in a carbon constrained

  20. A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations Kara Silver Abstract Ocean Thermal Energy Conversion (OTEC) is a baseload renewable technology for tropical countries and islands. In order

  1. aguda baja primaria: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California and separate the southern Salton Trough into two regions of deep sedimentary fill, the Mexicali strain across the southern Salton Trough. These faults are part of the...

  2. Pattern formation in crystal growth under parabolic shear flow Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    August 2003 Morphological instability of the solid-liquid interface occurring in a crystal growing from tension is an important factor for stabilization of the solid-liquid interface on long length scales known 4 . In theoretical works, the effect of shear flow on the morphological stability has been studied

  3. arXiv:0904.0927v1[math.AG]6Apr2009 CALCULATING THE PARABOLIC CHERN CHARACTER OF A

    E-Print Network [OSTI]

    Simpson, Carlos

    characters chP ar 1 (E), chP ar 2 (E) and chP ar 3 (E). The basic idea is to use the formula given in [IS2

  4. 2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 922.

    E-Print Network [OSTI]

    Belaud, Yves

    to the first eigen- value of some quasilinear Schr¨odinger operators in semi-classical limits. We also provide://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Semi-classical analysis and vanishing properties of solutions-medium, strong absorption, regularizing effects, semi-classical limits. c 2002 Southwest Texas State University

  5. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    SciTech Connect (OSTI)

    Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

    2010-09-15T23:59:59.000Z

    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

  6. Solar Electric Generating System II finite element analysis

    SciTech Connect (OSTI)

    Dohner, J.L.; Anderson, J.R.

    1994-04-01T23:59:59.000Z

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  7. Final Technical Report

    SciTech Connect (OSTI)

    Stettenheim, Joel [Norwich Technologies] [Norwich Technologies; McBride, Troy O. [Norwich Technologies] [Norwich Technologies; Brambles, Oliver J. [Norwich Technologies] [Norwich Technologies; Cashin, Emil A. [Norwich Technologies] [Norwich Technologies

    2013-12-31T23:59:59.000Z

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  8. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01T23:59:59.000Z

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  9. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01T23:59:59.000Z

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  10. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-03-15T23:59:59.000Z

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  11. Solar production of industrial process steam. Quarterly performance report, January 16, 1980-June 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    A solar process steam system for gauze bleaching/sterilization utilizing 1065 m/sup 2/ Acurex Model 3001 line focusing parabolic trough concentrators is described. The system operates by circulating pressurized water through the collector field and then throttling it into a flash boiler. There the heated, pressurized water flashes to steam and flows into the plant steam main for distribution to various plant processes. Makeup water is supplied by the existing plant boiler feedwater system. The flash boiler retains enough thermal storage to provide freeze protection to the collector field when required. The system performance from January 16 to June 30 is summarized. A comparison of predicted and measured performance for a single day in June is presented. A summary of the operation of the system is given in Appendix A for each day of operation. Appendix B contains the hourly average values of system parameters for a single clear day in each month. These values are presented in graphical form in Appendix C. The daily values are tabulated in Appendix D and plotted in Appendix E for each month of operation. (MCW)

  12. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01T23:59:59.000Z

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  13. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    SciTech Connect (OSTI)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  14. A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification

    SciTech Connect (OSTI)

    Wendelin, T.

    1991-12-01T23:59:59.000Z

    Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

  15. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  16. Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance

    SciTech Connect (OSTI)

    Wagner, M. J.; Kutscher, C.

    2010-01-01T23:59:59.000Z

    This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL's Solar Advisor Model (SAM).

  17. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect (OSTI)

    Gomez, J. C.

    2011-09-01T23:59:59.000Z

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  18. On the Production of Dissipation by Interaction of Forced Oscillating Waves

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and parabolic type, oscillations, BKW Calculus, sta- bility. 1 Introduction In Section 1, we introduce

  19. Exact Controllability of the Superlinear Heat Equation

    SciTech Connect (OSTI)

    Barbu, V. [Institute of Mathematics of Romanian Academy, Blvd. Carol, 6600 Iasi (Romania)], E-mail: barbu@uaic.ro

    2000-07-01T23:59:59.000Z

    The exact internal and boundary controllability of parabolic equations with superlinear nonlinearity is studied.

  20. Evolution of Frictional Behavior of Punchbowl Fault Gouges Sheared at Seismic Slip Rates and Mechanical and Hydraulic Properties of Nankai Trough Accretionary Prism Sediments Deformed at Different Loading Paths

    E-Print Network [OSTI]

    Kitajima, Hiroko

    2012-02-14T23:59:59.000Z

    Frictional measurements were made on natural fault gouge at seismic slip rates using a high-speed rotary-shear apparatus to study effects of slip velocity, acceleration, displacement, normal stress, and water content. Thermal-, mechanical...

  1. Electrode supporting base for electrostatic precipitators

    SciTech Connect (OSTI)

    Honacker, H.

    1981-01-20T23:59:59.000Z

    The disclosure relates to a base for supporting hollow cylindrical and circular in cross section collector electrodes for an electrostatic precipitator. The base comprises a central portion and is generally circular; a plurality of arcuate venturi and collector trough assemblies which are generally circular and which intersect radially disposed drain troughs; said venturi and collector trough assemblies being concentric with said center portion of said base and drain troughs extending radially outward from said center portion; a circular wall structure secured to outer ends of said drain troughs; fixture means for securing said collector electrodes on said drain troughs; uppermost portions of said drain troughs and said venturi and collector troughs being substantially flush with each other and said venturi and collector trough assemblies disposed on a common plane to provide for uniform laminar flow relative to the collector electrodes.

  2. The energy to fight injustice Published 23 July 2014 in Chemistry World

    E-Print Network [OSTI]

    Hansen, James E.

    to use renewable energy for base-load electricity. As an example, the new US solar power plant, Ivanpah. And the benefits of cooperation will eventually come back to the US and other countries as cost effective powerThe energy to fight injustice Published 23 July 2014 in Chemistry World © Xinhua / Alamy As I peer

  3. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    have a much higher cost per kWh produced than baseload coal,life to 30 years on the cost per kWh is fairly small due tocosts through non-energy payments, which are incorporated as a constant per-kWh

  4. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  5. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    to today's large NP accelerators like GSI-FAIR, RHIC economical for 1-2 GWe baseload power plants. Heavy chambers. · Competitive economics: projected in several power plant studies and with no high levelSlide 1 Heavy Ion Fusion Science Virtual National Laboratory Briefing for the National Academy

  6. CX-003844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility ProjectCX(s) Applied: A9, B3.6Date: 09/07/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. Valuation of a Spark Spread: an LM6000 Power Plant

    E-Print Network [OSTI]

    Saskatchewan, University of

    report in the form of this academic paper. We have modified the plant- specific results in Section 8 . . . . . . . . . . . . . . . . . . . . . . . 16 5 Monte Carlo Simulations 17 6 Modeling the Operating Characteristics 19 6.1 Plant Operating Modes power plant that can offer peaking capacity, and some baseload power delivery. We consider 4 operating

  8. CX-003712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brayton-Cycle Baseload Power Tower Concentrated Solar Power SystemCX(s) Applied: A9, B3.6Date: 09/09/2010Location(s): Woburn, MassachusettsOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    of wind and natural gas generation, retirement of older coal- fired units that have not been retrofitted by 2025. Due to the state's heavy reliance on coal as a fuel source for electricity generation, Indiana allowances and offsets, shifting production technology from coal-fired baseload resources to a combination

  10. Journal of Policy Modeling 31 (2009) 404424 Available online at www.sciencedirect.com

    E-Print Network [OSTI]

    ) to coal-electric generation. Absent emissions controls, coal is the lowest cost fossil source for base-load electric generation. Also, coal resources are widely distributed among developed and developing countries of the Coal Sector under Carbon Constraints James R. McFarland, Sergey Paltsev, Henry D. Jacoby Joint Program

  11. Call for Papers Journal of Energy Engineering

    E-Print Network [OSTI]

    Tseng, Chung-Li

    program because it affects power generation not only from coal-fired baseload units but also other fossil, it may drive the generation mix toward less carbon-intensive technologies. The main mechanism underlying-run implications for power prices and generators' profitability · long-run implications for generation capacity mix

  12. Renewable and Sustainable Energy Reviews 16 (2012) 10991109 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    .elsevier.com/locate/rser Baseload electricity from wind via compressed air energy storage (CAES) James E. Masona, , Cristina L and (2) using elec- tricity from compressed air energy storage (CAES) power plants. The two wind modelsRenewable and Sustainable Energy Reviews 16 (2012) 1099­1109 Contents lists available at Sci

  13. Facilitating the development and integration of low-carbon energy

    E-Print Network [OSTI]

    (Papers 1­3) and development of new energy technologies (Paper 4) in service of this goal. Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload powerFacilitating the development and integration of low-carbon energy technologies Submitted in partial

  14. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect (OSTI)

    Valenti, M.

    1992-04-01T23:59:59.000Z

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  15. Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models

    E-Print Network [OSTI]

    (focusing on Denmark) Long tradition for waste incineration for district heating · How to model waste that supply base-load district heating. #12;Risø DTU 09-06-08 13 Modelling new Waste for Energy Technologies station for households and businesses. Some electricity is generated, but most energy is used for district

  16. IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 8 (2013) 014042 (9pp) doi:10.1088/1748-9326/8/1/014042

    E-Print Network [OSTI]

    Deinert, Mark

    2013-01-01T23:59:59.000Z

    .5% of the electricity Tokyo used to get from nuclear output, and do so 91% of the time. Data from a study of rooftop large scale solar power. Nuclear power plants in Japan provided more than just base-load by storing peaking capacity. If this storage were instead coupled to current generation rooftop solar systems

  17. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23T23:59:59.000Z

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  18. CX-003199: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Using Encapsulated Phase Change Material in Thermal Storage for Baseload Concentrating Solar Power PlantsCX(s) Applied: B3.6Date: 08/04/2010Location(s): Riverside, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. Managing the Night Off-Peak Power Demand in the Central Region UPS with Newly Commissioned NPP Capacities

    SciTech Connect (OSTI)

    Aminov, R. Z. [Saratov Research Center of the Russian Academy of Sciences (Russian Federation); Pron’, D. M. [Yu. A. Gagarin Saratov State Technical University (Russian Federation)

    2014-01-15T23:59:59.000Z

    The use of hydrogen technologies as a controlled-load consumer based on the newly commissioned base-load nuclear power plants to level out the daily load profile is justified for the Unified Power System (UPS) of the Central Region of Russia, as an example, for the period till 2020.

  20. Engineering&Science MARCH-APRIL 1978

    E-Print Network [OSTI]

    Faraon, Andrei

    ENERGY COST, millsikwe hr I BASELOAD PLANTS STORAGE B A E R y I COAL NUCLEAR GROUND GROUND SOLAR PHOTO decision actually will be made. Hence, there is considerable effort at present to forecast the costs who believe in solar energy production. So it is #12;PLANT ENERGY COST YEAR 2WO PLANT STARTUP T 4

  1. Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources

    E-Print Network [OSTI]

    Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

  2. Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands

    E-Print Network [OSTI]

    information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection Energy Conversion The immense size of the ocean thermal resource and the baseload capability of OTECOcean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Ocean Thermal Resources off

  3. E-Print Network 3.0 - atomic force spectroscopy Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Langmuir trough Atomic force microscope Optical microscope... W ultrasonic horn Atomic absorption spectrophotometer UVVIS spectrophotometer Centrifuge p......

  4. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using

    E-Print Network [OSTI]

    Yang, Peidong

    a photograph of the nanowires dispersed on the trough's water surface. At this stage, the surface pressu

  5. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    Source – Shell) Phase Reduce capex burden (depth of trough)share cost • Reduced capex need for new station build •

  6. JOURNALDEPHYSIQUEIV ColloqueC1, supplementauJournaldePhysique 11, Volume3, mai 1993

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) It is possible to pass from discotic micelles to cylindrical ones trough a biaxial mesophase as a function

  7. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect (OSTI)

    Kolb, G.J.

    1991-01-01T23:59:59.000Z

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  8. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  9. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22T23:59:59.000Z

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  10. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  11. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01T23:59:59.000Z

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  12. Low Cost Ceramics:Low Cost Ceramics: Applications in Water FiltrationApplications in Water Filtration

    E-Print Network [OSTI]

    Petta, Jason

    compared to price range ofprice range of commercial filterscommercial filters Drawbacks of parabolic mirrors (fires) and solarDrawbacks of parabolic mirrors (fires) and solar cookers Panel DiscussionIRC Princeton Alumnus Panel Discussion

  13. Ecological Consequences of Landscape Fragmentation on the Lizard Community in the Mescalero-Monahans Shinnery Sands

    E-Print Network [OSTI]

    Leavitt, Daniel 1979-

    2012-10-29T23:59:59.000Z

    1984). Areas of vegetated (inactive) dunes exist in greater extent ecosystem-wide. Other dune types observed in the MMSS include barchanoid, parabolic, coppice, blowouts, akle, and transverse ridges. Both vegetated parabolic and coppice dunes...

  14. Spin-dependent Hall effect in a parabolic well with a quasi-three-dimensional electron gas G. M. Gusev, C. A. Duarte, A. A. Quivy, T. E. Lamas, and J. R. Leite*

    E-Print Network [OSTI]

    Gusev, Guennady

    dependent coefficient, and is the angle between the magnetic field and the normal to the well plane valve tran- sistor or other spintronic devices, however, the existence of such a spin-dependent property has not been studied yet in transport coefficients. Only the recently spin-related quantum Hall

  15. AIAA 2004-1574 New Deployable Reflector Concept

    E-Print Network [OSTI]

    Soykasap, Omer

    an offset parabolic cylinder with a linear feed array. The required reflector shape is an offset parabolic that comprises curved surfaces formed from thin sheets of carbon-fiber-reinforced-plastic (CFRP) connected-band Synthetic Aperture Radar (SAR) instrument using an offset parabolic cylinder with a linear feed array

  16. Reversible Attraction-Mediated Colloidal Crystallization on Patterned Substrates

    E-Print Network [OSTI]

    Fernandes, Gregory

    2009-05-15T23:59:59.000Z

    for Parabolic Channels................................ 125 7.3.7 Phase Transitions for Square Channels.................................... 127 7.3.8 Comparing Parabolic and Square Channels... ............................. 129 7.3.9 Phase Transitions for Parabolic Hexagons............................... 131 7.3.10 Phase Transitions for Square Hexagons................................. 132 7...

  17. A CPU-GPU Hybrid Approach for Accelerating Cross-correlation Based Strain Elastography

    E-Print Network [OSTI]

    Deka, Sthiti

    . . . . . . . . . . . . . . . . . . . . . . . 20 a. Parabolic Interpolation . . . . . . . . . . . . . . . 20 b. Cosine Interpolation . . . . . . . . . . . . . . . . 21 c. Computational Cost of Interpolation . . . . . . . 22 5. Median Filtering . . . . . . . . . . . . . . . . . . . . . 22 a...-correlation function while we need ner resolution only near the peak [9], and hence is not used here. Two e cient interpolators used in this implementation are cosine interpolator and parabolic interpolator. a. Parabolic Interpolation This is a polynomial...

  18. Transmission resonances in the bipolar quantum resonant tunneling transistor

    E-Print Network [OSTI]

    Mondragon, Antonio Richard

    1996-01-01T23:59:59.000Z

    MODEL CALCULATIONS Simple Wells Barriers and Nonparabolicity 16 20 IV CONCLUSION: DEVICES AND RESULTS 26 Collector Geometry Profile Evolution Results . 27 30 32 REFERENCES APPENDIX 36 A COMPUTER PROGRAMS Transmission (Parabolic...) . Transmission (Nonparabolic) Bound States and Wavefunctions (Parabolic). . . . Bound States and Wavefunctions (Nonparabolic) . Resonant Slopes (Parabolic) . Resonant Slopes (Nonparabolic) 37 41 46 52 59 64 VITA 68 LIST OF FIGURES FIGURE Page...

  19. Introduction Minimal Fusion Systems

    E-Print Network [OSTI]

    Thévenaz, Jacques

    Introduction Minimal Fusion Systems Maximal Parabolics Results Minimal Fusion Systems Ellen Henke University of Birmingham Ellen Henke Minimal Fusion Systems #12;Introduction Minimal Fusion Systems Maximal Parabolics Results Contents 1 Introduction 2 Minimal Fusion Systems 3 Maximal Parabolics 4 Results Ellen

  20. Concentrating solar collector with mechanical tracking apparatus

    SciTech Connect (OSTI)

    Brent, C.R.

    1980-08-19T23:59:59.000Z

    A hollow cylindrical tubing passing a coolant, a generally v shaped trough having at the apex thereof a mating semicylindrical surface for engaging said cylindrical tubing and the v-shaped trough disposed about 40/sup 0/ from each other or 20/sup 0/ angularly from a mid-plane of the trough. Linkage means are provided for moving the v-shaped trough through an angle that follows an east-to-west path of the sun and maximizing the collection of solar energy and programming means repetitively on a daily term for positioning said v-shaped trough to a start position commencing movement of said v-shaped trough from east-to-west following the sun and terminating said movement for subsequent positioning said v-shaped trough to said start position.

  1. Method and apparatus for measuring shear modulus and viscosity of a monomolecular film

    DOE Patents [OSTI]

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-10-18T23:59:59.000Z

    Apparatus for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; means for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and means for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a means for rotating the rotor about its axis is added to the apparatus.

  2. Modelling Correlation in Carbon and Energy Markets

    E-Print Network [OSTI]

    Koenig, Philipp

    2011-02-10T23:59:59.000Z

    prices are also used in optimization of power generation plant portfolios. Roques et al. (2008) use cross-correlations and standard deviations of UK quarter-ahead fuel, power and carbon prices in a Monte-Carlo simulation of power plant net present values... plant portfolio, which may contain nu- clear, gas and coal plants as well as generation from renewable sources such as wind and hydro. Relative marginal power generation costs determine which plant will serve to produce baseload electricity and which...

  3. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01T23:59:59.000Z

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  4. Streamlining the Certification Process for New Power Plants in Texas

    E-Print Network [OSTI]

    Treadway, N.

    resource alternatives and sets up barriers to others. There is general agreement that the financial incentives differ for traditional power plant investments, purchased power, small power production, and demand-side management. The current debate... to construct 1,200 megawatts of base-load capacity to replaced purchased power. Coal and lignite fuel options were proposed in two plant sizes: three 400-megawatt units or two 600-megawatt units. A hearing was set to begin in March 1985. TNP witnesses...

  5. (c) 2008-2011. Minh Ha-Duong. Rodica Loisel. CIRED Reproduction allowed. share alike. attribution. Blue cells: Numerical assumptions defining the scenario

    E-Print Network [OSTI]

    ,00 Gt CO2 generated G = g B 4,50 Gt CO2 stored S = s B Carbon dioxide emissions and coal types 2,38 t CO2 generated by t of coal (bituminous grade) Coal Types CO2 emissions 2050 2,101 Gt of coal consumed « Expected fatalities for one wedge of CCS in 2050 » Defines the « wedge of CCS at baseload coal power plants

  6. DOE Selects Projects for up to $50 Million of Federal Funding...

    Office of Environmental Management (EM)

    energy storage resources, including a novel compressed-air generation technology, wind-turbines, heat recovery systems, solar trough booster technology, a steam turbine, and...

  7. Energy 101: Concentrating Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies...

  8. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03T23:59:59.000Z

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  9. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  10. attenuated cocaine-induced suppression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 181 Three-Dimensional Compressional Attenuation Model (QP) for the Salton Trough, Southern California Geosciences Websites Summary: -frequency decay rate of...

  11. Response of oceanic hydrate-bearing sediments to thermal stresses

    E-Print Network [OSTI]

    Moridis, G.J.; Kowalsky, M.B.

    2006-01-01T23:59:59.000Z

    c) aqueous, gas and hydrate phase saturations, (d) waterIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Western Nankai Trough”, in Gas Hydrates: Challenges for the

  12. Concentrating Solar Power: Energy from Mirrors

    SciTech Connect (OSTI)

    Poole, L.

    2001-02-27T23:59:59.000Z

    This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

  13. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01T23:59:59.000Z

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

  14. Development of slotted orifice flow conditioner

    E-Print Network [OSTI]

    Ihfe, Larry Michael

    1994-01-01T23:59:59.000Z

    concentric rings of radial slots. The porosity of each ring varied so that the conditioner generated a six step parabolic profile similar to the profile tested with Fluent The overall porosity of the parabolic conditioner was 25. 1'/o, which is lower than... 19 Velocity Profile Procedure . Co Measurement Procedure Data Reduction . . . . . . 19 21 22 RESULTS 24 LDA Velocity Profile and Turbulence Intensity Analysis 24 Tube Bundle, Uniform Slotted Orifice Flow Conditioner . . Parabolic Slotted...

  15. The Effect of Personal Lighting Controls on Energy use and Occuplant Weel-Being in Offices

    E-Print Network [OSTI]

    Veitch, J. A.; Newsham, G. R.; Mancini, S.; Arsenault, C.

    2013-01-01T23:59:59.000Z

    ?yrs m ? Quasi-realistic laboratory study a l i s m R e a ? Field study Prior NRC Research ? First laboratory experiment Direct parabolic (ceiling perimeter) Direct parabolic (ceiling centre) Task light (undershelf) Indirect... sources, 40% from indirect ? Supported by more recent studiesSupporte or ecen studie Light Right Albany Righ Experiments EE xperim e BC 1 - Parabolic Louvers Best Practice @ 600 lx Best Practice + Switchable Control Dimming Control ent #1...

  16. An investigation of the heat and mass transfer by free convection from humid air to a horizontal metal plate under frosting conditions

    E-Print Network [OSTI]

    Bell, Bobby

    1967-01-01T23:59:59.000Z

    analysis by C. A . Whitehurst (6) showed that the temperature and concentration boundary layer profile curves were approximately parabolic. These curves are plotted as dimensionless ~ters, p and g , versus the ratios respectively, in Figures 18 and. 14...+. On the top side of the plate all runs except 5 and. 8 came very close to being parabolic curves for the temperature profile curves, with 5 and 8 taking on a parabolic characteristic at about, half way through the boundary layer. However, the concentration...

  17. Development and Progression of Aeolian Blowouts in Padre Island National Seashore

    E-Print Network [OSTI]

    Jewell, Mallorie E

    2013-05-28T23:59:59.000Z

    .......................... 84 1 1. INTRODUCTION Recent evidence suggests that development of dune blowouts and migration of parabolic dunes to the backbarrier shoreline may be a mechanism through which barrier islands transgress in response to relative sea level... the spatial and temporal evolution and distribution of blowouts and parabolic dunes on North Padre Island 3 2) Relate temporal and spatial evolution of blowouts and parabolic dunes to variations in climate (i.e. temperature, precipitation, storm...

  18. The calculation of ionospheric ray paths

    E-Print Network [OSTI]

    Koehler, Buford Ray

    1967-01-01T23:59:59.000Z

    Parabolic ionospheric layer of electrons, altitude versus electron density Page 1- 2 Sample ray paths with constant angle of propagation and increasing frequency, parabolic ionosphere of electrons assumed, earth's magnetic field neglected 1- 3 Sample... ray paths with constant frequency and variable angle of propagation and range, parabolic ionosphere of electrons assumed, earth's magnetic field neglected 2- 1 The vertical and lateral deviations of a radio wave propagated in a plane ionosphere...

  19. Theory and simulation of colloids near interfaces: quantitative mapping of interaction potentials

    E-Print Network [OSTI]

    Lu, Mingqing

    2009-05-15T23:59:59.000Z

    ............................. 91 7.4.4 Screened electrostatic particles on a parabolic potential well.. 93 7.4.5 Screened electrostatic particles on a square well ..................... 95 7.4.6 Screened electrostatic particles on patterned parabolic and square well... respectively........................................................................................ 93 7.6. (a) Density profiles of hard disk core repulsion and screened electrostatic repulsion particles around parabolic potential well (well depth = -4k B T...

  20. E-Print Network 3.0 - access hole parameters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small warping parabolic heavy hole model with the quasi... -elastic approximation in acoustic phonon scattering, it is shown that the hole scattering length is indepen- dent...

  1. SEI2: Wide Area Wireless Networks for Geophysics

    E-Print Network [OSTI]

    Paul Davis; Allen Husker; Igor Stubailo; Richard Guy; Sam Irvine; John Propst

    2005-01-01T23:59:59.000Z

    parabolic. To antennas, solar panel, To sensor Line of radioBatteries and 40W solar panels •Field tests of acquisition

  2. In Vivo Characterization of a Wide area 802.11b Wireless Seismic Array

    E-Print Network [OSTI]

    Lukac, Martin; Naik, Vineyak; Stubailo, Igor; Husker, Allen; Estrin, D

    2007-01-01T23:59:59.000Z

    AmpH charged by a 70W solar panel. The CDCCs are con- nectedyagi antennae with solar panel and Figure 5: A parabolic and

  3. Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds

    E-Print Network [OSTI]

    Batu Güneysu

    2012-03-19T23:59:59.000Z

    We extend classical Euclidean stability theorems corresponding to the nonrelativistic Hamiltonians of ions with one electron to the setting of non parabolic Riemannian 3-manifolds.

  4. POLYMERIC MIRROR FILMS: DURABILITY IMPROVEMENT AND IMPLEMENTATION...

    Office of Environmental Management (EM)

    eviewmeeting042413chen.pdf More Documents & Publications ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS Development of an Advanced, Low-Cost parabolic...

  5. advanced conceptual design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems CiteSeer Summary: NASA has initiated technology development...

  6. Sandia National Laboratories: Advanced Bit Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

  7. Sandia National Laboratories: Marine Hydrokinetics Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

  8. Sandia National Laboratories: 2014 PV Systems Symposium Details

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

  10. Photo Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF's solid radiochemical collection (SRC) detectors with up to nine parabolic collectors for greater collection efficiency. The collectors are chemically leached after a...

  11. apoptotic signaling cascades: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a parabolic potential trap in a semiconductor microcavity. This laser would emit terahertz radiation due to bosonic stimulation of excitonic transitions. Dynamics of a...

  12. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

  13. Vita

    E-Print Network [OSTI]

    59. J. Douglas, Jr., and T. Dupont, A nite element collocation method for quasilinear parabolic ..... Multigrid Methods (T. A. Manteu el and S. F. McCormick, eds.) ...

  14. ICARUS 132, 321343 (1998) ARTICLE NO. IS985897

    E-Print Network [OSTI]

    Hansen, Vicki

    ICARUS 132, 321­343 (1998) ARTICLE NO. IS985897 Ribbon Terrain Formation, Southwestern Fortuna at southwestern Fortuna Tessera; we extend our favors an upwelling model for highland plateau formation Fortuna Tessera) trough walls are parallel and matched and would exhibit a close fit if the trough

  15. Reconstruction of a flux transfer event based on observations from five THEMIS satellites

    E-Print Network [OSTI]

    California at Berkeley, University of

    with the largest core magnetic field. THEMIS B and C observed deep troughs in the magnetic field associated troughs in the crater FTEs can be traced to intrusions of the magnetosheath plasma around the structure in the reconstruction maps. Furthermore, the resulting maps show also cylindrical asymmetry in these parameters between

  16. Non-touch thermal air-bearing shaping of x-ray telescope optics Edward Sung*a

    E-Print Network [OSTI]

    , melted glass overflows the edges of a triangular prism-shaped trough, which points downward. The overflowing glass travels down both sides of the trough and fuses at the bottom edge [3][4]. Although-Hartmann metrology tool, we found the glass to have a cylindrical bow with a peak-to-valley (P-V) of larger than 30

  17. Directing the Self-Assembly of Nanoscale Polymeric Templates S. B. Darling1

    E-Print Network [OSTI]

    Sibener, Steven

    . The preferential interaction of PS with the trough sidewalls drives the alignment of cylindrical domains along aligned cylindrical domains across the entire trough width (Figure 2). Figure 2. Macroscopic alignment structure (Figure 1). Figure 1. Schematic of alignment methodology Localized alignment of cylindrical

  18. 454 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 4, NO. 4, JULY 2014 Plasmonic Terahertz Waveguide Based on

    E-Print Network [OSTI]

    Murphy, Thomas E.

    - midal troughs. The plasmonic waveguides are found to support highly confined guided modes both by adjusting the geometrical parameters of the troughs. The existence of guided modes in plasmonic waveguides which include parallel-plate [8], [9], hollow cylindrical [10], and rectangular waveguides [11

  19. Released on receipt but intended for use

    E-Print Network [OSTI]

    -.IC Cylindrical snowballs rolled by tho wind on snow-covered f i e l d s and hvns are called ''snow rollers trough i n the snow, marking the path along which the rolling has occurred. The trough i s widest

  20. Spontaneous Spatial Alignment of Polymer Cylindrical Nanodomains on Silicon Nitride Gratings

    E-Print Network [OSTI]

    Sibener, Steven

    a simple method to align lying-down cylindrical domains of PS-b-PMMA in the trough regions of 555 nm deepSpontaneous Spatial Alignment of Polymer Cylindrical Nanodomains on Silicon Nitride Gratings Deepak to the orientation of the grating lines and essentially spans the width of the grating trough. The proposed mechanism

  1. Tecronophysics, 160 (1989) 277-291 Elsevier Science Pubhshers B.V., Amsterdam -Printed in The Netheriands

    E-Print Network [OSTI]

    Demouchy, Sylvie

    , the best fitting model is to be found in a vertical upward flow at a velocity of 100 m/yr in a cylindrical in the Nankai trough (Le Pichon et al., 1987b) and the Japan trench (Cadet et al., 1987; Pautot et al., 1987 in the Tenryu area of the Nankai trough below the Calyptogena patches. These measurements indicated heat fluxes

  2. Continuous recovery system for electrorefiner system

    SciTech Connect (OSTI)

    Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.

    2014-06-10T23:59:59.000Z

    A continuous recovery system for an electrorefiner system may include a trough having a ridge portion and a furrow portion. The furrow portion may include a first section and a second section. An inlet and exit pipe may be connected to the trough. The inlet pipe may include an outlet opening that opens up to the first section of the furrow portion of the trough. The exit pipe may include an entrance opening that opens up to the second section of the furrow portion of the trough. A chain may extend through the inlet and exit pipes and along the furrow portion of the trough. The chain may be in a continuous loop form. A plurality of flights may be secured to the chain. Accordingly, the desired product may be continuously harvested from the electrorefiner system without having to halt the electrical power and/or remove the cathode and anode assemblies.

  3. 382 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 3, JULY 2012 Design and Construction of

    E-Print Network [OSTI]

    Rollins, Andrew M.

    382 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 3, JULY 2012 Design and Construction of a 7× Low-Concentration Photovoltaic System Based on Compound Parabolic Concentrators Mark A. Schuetz, Member, IEEE, Kara A. Shell-concentration photovoltaic system based on compound parabolic concentrators (CPCs). The system is approximately a 7

  4. Hydride production in zircaloy-4 as a function of time and temperature

    E-Print Network [OSTI]

    Parkison, Adam Joseph

    2009-05-15T23:59:59.000Z

    ..................................................................................................... 40 Figure 15 Formation of zirconium hydride as a function of temperature................ 44 Figure 16 Time dependence of hydrogen pickup with Avrami correlation............. 50 Figure 17 Time dependence of hydrogen pickup with parabolic... rate study....................................................... 43 Table 8 Results of rate study using Avrami equation .......................................... 50 Table 9 Constants for parabolic hydride rate...

  5. Design and performance of a low-cost acrylic reflector for a ~7x concentrating photovoltaic module

    E-Print Network [OSTI]

    Rollins, Andrew M.

    of the prototype. The final design is an asymmetric compound parabolic concentrator mounted to an encapsulated increase in power output over an encapsulated receiver with no reflector. Keywords: compound parabolic push for drastic cost reductions in the deployment of solar electricity production has renewed interest

  6. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [University of British Columbia, Vancouver

    2009-09-01T23:59:59.000Z

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  7. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01T23:59:59.000Z

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  8. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

    2013-05-31T23:59:59.000Z

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  9. Combustion modeling in advanced gas turbine systems

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31T23:59:59.000Z

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  10. EPC Firms Expand Their Role

    E-Print Network [OSTI]

    Hernandez, L. A. Jr.

    and were financed by the investor-owned electric utilities themselves. The bulk of U.S. base-load fossil, nuclear and hydro power plants were built by major firms such as Bechtel Power, Stone & Webster Enginnering Corp., Ebasco and others. Most... and thus provide the suport required by the financial institutions." HSPE has expanded its canahilities to provide facility operations services. Its past involvement with a nroject may have been two years: it is now sp.ven to eight years, consisting...

  11. Cogeneration Plant is Designed for Total Energy

    E-Print Network [OSTI]

    Howell, H. D.; Vera, R. L.

    ,000 1b/hr of 250-psig steam and 95,000 1b/hr of 300-psig steam to the ch10rine caustic process. The combined cycle plant configur ation shown in Figure 1 comprises: 1. Two.Genera1 Electric natural gas fired gas turbine-generators (GTG), with a size... depends on 271 ESL-IE-87-09-45 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 two factors - ambient temperature and process steam demand. The gas turbines are operated at baseload, the HRSG...

  12. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    SciTech Connect (OSTI)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01T23:59:59.000Z

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  13. Characterization of open-cycle coal-fired MHD generators. 16th quarterly technical progress report, December 16, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Dvore, D.; Freedman, A.; Stanton, A.; Stewart, G.

    1981-05-01T23:59:59.000Z

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is reported. In addition, studies related to understanding arcing and corrosion phenomena in the vicinity of an anode are reported.

  14. JEA successfully completes world's largest CFB demonstration

    SciTech Connect (OSTI)

    NONE

    2005-09-30T23:59:59.000Z

    JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

  15. Digging Begins at Hazardous Hanford Burial Ground - River Corridor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload Operation |

  16. Direct Use of Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload Operation

  17. Direct s-CO2 Reciever Development | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirect s-CO2 Reciever

  18. Disabled Veterans Affirmative Action Plan | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirect s-CO2Disabled

  19. Discussion on Carbon Capture and Sequestration Legislation | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirect

  20. Discussion on a Code Comparison Effort for the Geothermal Technologies Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirectDiscussion on a Code

  1. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirectDiscussion on

  2. Dispersion Modeling Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirectDiscussion

  3. Disposal Authorization Statement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload OperationDirectDiscussionNovember

  4. Distinctive Appliances: Order (2014-CE-23020) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCentury Challenges | Department

  5. Distinctive Appliances: Order (2015-CE-14019) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCentury Challenges |

  6. Distinctive Appliances: Proposed Penalty (2015-CE-14019) | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCentury Challenges |Energy

  7. Distributed Wind All-State Policy Summit and Strategies for Manufacturers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCentury Challenges

  8. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution: SonyaTechnologies

  9. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive a Hybrid

  10. Do You Have Your Own Tips for Saving Fuel? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive a HybridHave

  11. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive7471

  12. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive747128

  13. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive7471283

  14. Project Profile: Encapsulated Phase Change Material in Thermal Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseload CSP Plants |

  15. Project Profile: Integrated Solar Thermochemical Reaction System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseload CSP Plants

  16. Project Profile: Thermochemical Energy Storage for Stirling CSP Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseload CSP

  17. Project Safety Oversight Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseload

  18. Project of the Month

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseloadProject

  19. Project of the Month | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseloadProjectJanuary

  20. Short Term Energy Monitoring: What Does This Information Mean to the Facility Energy Manager?

    E-Print Network [OSTI]

    Bryant, J. A.; Carlson, K. A.

    2000-01-01T23:59:59.000Z

    off. Major results for this test were: Lighting: The total demand level of all lighting was found to be about 277 kW. The lighting energy used during a typical academic workweek in the Engineering Physics Building-Office side was determined... 3). EPB teaching side has a higher demand, 2 10 kW than the EPB office side at 67 kW. After the lights, AHUs and pumps were shut off in the building, a baseload of 100 kW and 25 kW were found for the teaching and office sides respectively...

  1. Apparatus for solar energy collection

    SciTech Connect (OSTI)

    Ford, R.

    1981-12-01T23:59:59.000Z

    The disclosure is directed to an apparatus for collecting solar energy. A housing is provided with an open top, and a solar radiation-transmissive cover is removably mounted on the top of the housing. A plurality of elongated open-ended troughs are mounted side-by-side in the housing, the troughs having reflective inner surfaces. A fluid-carrying tube system is provided, and has a plurality of branches which respectively extend along each trough near the bottom thereof. A pair of end panel assemblies are mounted in the housing at opposing ends of the row of troughs and form the ends of the troughs. Each of the end panel assemblies includes adjacent elongated upper and lower end panels which are removably coupled to each other and have a common elongated edge. The surface of each of the upper end panels which faces the troughs is reflective of solar radiation. Preferably, the surface of each of the lower end panels which faces the troughs is also reflective of solar energy. In accordance with a feature of the disclosed apparatus, each of the upper and lower end panels has a semicircular aperture at the common edge so as to form a circular aperture at about the lateral center of each trough. The fluid tube branches extend through the apertures of one of the end panel assemblies. A plurality of elongated cylindrical evacuated tubes are provided, each having a hollow core proportioned to fit over a respective branch of the fluid-carrying tube system. The opposing ends of each evacuated tube are supported in the apertures of the end panel assembly of the respective trough.

  2. Short time scale thermal mechanical shock wave propagation in high performance microelectronic packaging configuration

    E-Print Network [OSTI]

    Nagaraj, Mahavir

    2004-11-15T23:59:59.000Z

    for various combinations of t1 and t2 and the parabolic case..................................... 34 4-2 Time domain plots of normalized displacement at 10 nm for various combinations of t1 and t2 and the parabolic case .................. 35 4...-3 Time domain plots of normalized temperature at 30 nm for various combinations of t1 and t2 and the parabolic case .................. 37 4-4 Time domain plots of normalized displacement at 30 nm for various combinations of t1 and t2...

  3. E-Print Network 3.0 - anisotropic plates subjected Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Langmuir trough experiment is the Wilhelmy plate.1... The plate measures the net tension on the surface. The reported surface pressure is then the tension ... Source: Lee,...

  4. The Lighter Side of Optimization Collected by Michael Saunders, Stanford University, 19982005

    E-Print Network [OSTI]

    Stanford University

    ­2005 In New Zealand, the radio and TV guide is called The Listener. Every week a "Life in New Zealand" column of the NZ defence forces must be lifted from a trough of public awareness into which it has descended

  5. QUASI-STAtIC CONCENTRATED ARRAY WITH DOU8LE SIDE ILLUMINATED SOLAR CELLS I A. luque, J.M. Ruiz, A. Cuevas, J. Eguren, J. Sangrador,

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    demonstrated. 1. INTRODUCTION R. Winston(l) and his collaborators have de " veloDed" cylindrical concentrator on a trough-like collector of arbitrary sec tion, provided that the projection of the in cident rays

  6. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  7. SPECTRA OF CEMENTED, HEMATITE-RICH MATERIAL AND TES SPECTRA OF SINUS MERIDIANI, MARS. L. E. Kirkland1

    E-Print Network [OSTI]

    Kirkland, Laurel

    . The observed band strengths are inconsistent with unconsolidated, nanophase hematite dust, but are con- sistent radiation at the reststrahlen feature, causing an emissivity trough. When unconsolidated particles are small

  8. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    Torgersen, Christian

    Cressler, USGS). G, Sheep at water trough on the open range (photo by Saeid Tadayon, USGS). H, Bingham Canyon Mine, Salt Lake County, Utah (photo by Alan Cressler, USGS). I, Domestic water use in the kitchen

  9. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the Salton Trough Abstract The Rio...

  10. Temporal and petrogenetic constraints on volcanic accretionary processes at 9-10 degrees North East Pacific Rise

    E-Print Network [OSTI]

    Waters, Christopher L

    2010-01-01T23:59:59.000Z

    Volcanic accretion at the fast-spreading East Pacific Rise (EPR) occurs over a ~2-4 km wide neo-volcanic zone on either side of the axial summit trough (AST). Eruption ages are critical for understanding the distribution ...

  11. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in...

  12. Spring 2008

    E-Print Network [OSTI]

    method of cylindrical shells, the volume of the solid generated is. J \\7 X: g. 2 ... A water trough With triangular crossesection (see ?gure) is 2 feet high, 4 feet Wide.

  13. MA 16021 Exam 1 Memo Monday, October 20, 2014 6:30pm in ...

    E-Print Network [OSTI]

    2014-10-15T23:59:59.000Z

    Oct 20, 2014 ... A cylindrical tank has a radius of 3 m and a height of 10 m. ... A trough filled with water has vertical ends in the shape of an isosceles triangle 4 ft ...

  14. The EUV/Xray Astronomy Calibration and Testing Facility at the Osservatorio

    E-Print Network [OSTI]

    long stainless­steel vacuum beam line, with a 1 meter diameter cylindrical test chamber opening for inspection, instruments and feed­troughs, and a door in the back having the same diameter of the chamber

  15. aqueous biphasic system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of up to 10 nm. If the monolayer is progressively compressed (e.g. in a Langmuir trough), the profile develops overhangs and finally becomes unstable at a surface tension...

  16. Temporal measurements of surfactant squeeze-out from a surface using magnetically levitated liquid bridges

    E-Print Network [OSTI]

    Taylor, Philip L.

    A cylindrical liquid bridge, laden with surfactant and constrained at the two ends by circular rods area Langmuir trough with a plate that monitors the surface tension [6]. This techni- que is useful

  17. 3D-Face Model Tracking Based on a Multi-Resolution Active Search Chaumont M. and Puech W.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the illustration, trough a complete implementation, that our face tracking solution is near real cylindrical model. Our model's deformations are proceeded directly during the tracking which gives additional

  18. hal-00192614,version1-28Nov2007 18 me Congrs Franais de Mcanique Grenoble, 27-31 aot 2007

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ); Read (2001)). For many years, the differentially-heated, rotating cylindrical annulus has proved for the weakly turbulent flows is rather vague. Various terms applied include Structural Vacillation or Tilted-Trough

  19. Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement

    E-Print Network [OSTI]

    Sibener, Steven

    of various depths and periodicities are used to template the alignment of the high-aspect-ratio cylindrical polymer domains. Alignment is nucleated by polystyrene preferentially wetting the trough sidewalls

  20. Research Profile The research interest of the Polymer Chemistry Group is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    on the Langmuir trough TEM grids were deposited for subsequent structure analysis. Cartoon representation of a one Polymers Dendronized polymers are cylindrical macromolecules with a thickness of several nanometers