National Library of Energy BETA

Sample records for baseload concentrated solar

  1. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle Concentrator (Dish or Trough) Figure 1--1 : An overview of ammonia-based solar energy storage. (Sourced from

  2. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  3. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required

  4. Baseload Concentrating Solar Power Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville Energy Research Center

  5. CSP Heat Integration for Baseload Renewable Energy Deployment

    Broader source: Energy.gov [DOE]

    In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled power generation system, managed by the SunShot Initiative.

  6. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  7. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  8. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  10. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  12. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  13. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  14. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. Energy 101: Concentrating Solar Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity.

  16. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  17. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  18. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  19. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  20. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous...

  1. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    from Concentrix Solar," in Concentrator Photovoltaics, A.L.Solar Concentrators: Using optics to boost photovoltaics,”Solar Concentrators: Using optics to boost photovoltaics,”

  2. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    self-tracking solar concentration: design and materialsself- tracking solar concentration: design and materialsSolar Concentrators," in International Optical Design

  3. Design of inflatable solar concentrator

    E-Print Network [OSTI]

    Carrasquillo, Omar (Omar Y. Carrasquillo De Armas)

    2013-01-01

    Solar concentrators improve the performance of solar collection systems by increasing the amount of usable energy available for a given collector size. Unfortunately, they are not known for their light weight and portability, ...

  4. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  5. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  6. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  7. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    1 Introduction 1.1. Solar Photovoltaics Semiconductingmulti-junction photovoltaics, solar beamsplitting 1.Concentrator Photovoltaics Multijunction solar cells were

  8. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  9. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Energy Savers [EERE]

    Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium...

  10. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that’s collected as heat.

  11. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  12. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  13. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  14. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  15. Concentrating Solar Power Competitive Awards

    Broader source: Energy.gov [DOE]

    DOE funds concentrating solar power (CSP) research and development (R&D) projects through competitive solicitations, which are released for public response as financial opportunity announcements. The following projects represent recent and ongoing research efforts.

  16. Concentrated solar power on demand

    E-Print Network [OSTI]

    Codd, Daniel Shawn

    2011-01-01

    This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

  17. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  18. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Analysis and design of holographic solar concentrators,”reflection design may enable multiband solar power usingoptical geometry and design of a two band, solar splitting

  19. Modeling of concentrating solar thermoelectric generators

    E-Print Network [OSTI]

    Ren, Zhifeng

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

  20. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  2. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility...

  3. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    for generating low-cost solar power, LSC development facesand lowering the cost, luminescent solar concentrations (cells. Using solar concentrators, the cost of solar energy

  4. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 -...

  5. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  6. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  7. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):

  8. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):concentrator. Solar Energy Materials and Solar Cells, 91(1):

  9. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    improvements over first- Figure 3.14 Second-generation concentrator under test (a). A multijunction solar cellimprovements through material science and novel cell architectures [7][8][9]. Figure 1.1 Multijunction solar

  10. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power...

  11. Funding Opportunity Announcement: Concentrating Solar Power:...

    Broader source: Energy.gov (indexed) [DOE]

    transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study,...

  12. Microtracking and Self-Adaptive Solar Concentration

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar...

  14. Concentrating Solar Power Facilities and Solar Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hoursmday) 2500 4000...

  15. Light shield for solar concentrators

    DOE Patents [OSTI]

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  16. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  17. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  18. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    A. Büchtemann, “A luminescent solar concentrator with 7.1%simulations of luminescent solar concentrators for buildingVanmaekelbergh, “Luminescent Solar Concentrators - A review

  19. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  20. Concentrating Solar Power Research and Development

    Broader source: Energy.gov [DOE]

    In 2007, DOE issued the Concentrating Solar Power (CSP) Research and Development Funding Opportunity Announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  1. Project Profile: Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  2. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  3. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    Organic Solar Concentrators for Photovoltaics,” Science,Polymer Photovoltaics for Solar Energy Conversion,” Adv.solar concentrators for building integrated photovoltaics,”

  4. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    ing ?uorescent dye for solar energy conversion based on aimprove the the solar energy conversion e?ciency. Outputcheaper solar energy concentration and conversion methods,

  5. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    by one-sun solar simulator. . . . . . . . . . . . . . .two kinds of solar concentrators, one is based on geomet-to utilize the whole solar spectrum, one of the methods is

  6. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  7. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Energy Savers [EERE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  8. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot...

  9. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

  10. Resonance-shifting luminescent solar concentrators

    DOE Patents [OSTI]

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  11. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  12. MAP: Concentrating Solar Power Across the United States

    Broader source: Energy.gov [DOE]

    Explore our latest map, charting the location of concentrating solar power plants across the country.

  13. Concentrating Solar Power Commercial Application Study

    SciTech Connect (OSTI)

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  14. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  15. World's Largest Concentrating Solar Power Plant Opens in California...

    Broader source: Energy.gov (indexed) [DOE]

    Ivanpah, the world's largest concentrating solar plant, opened in California on February 13.Credit: BrightSource Energy The Ivanpah Solar Electric Generating System, the world's...

  16. Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers

    E-Print Network [OSTI]

    Reusswig, Philip David

    2014-01-01

    The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

  17. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  18. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

  19. Material for a luminescent solar concentrator

    DOE Patents [OSTI]

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  20. Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power

    SciTech Connect (OSTI)

    Kennedy, C. E.; Terwilliger, K.

    2007-01-01

    Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

  1. Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system

    E-Print Network [OSTI]

    California at San Diego, University of

    Available online 8 January 2015 Keywords: Concentrating solar power Solar absorber Cobalt oxide Light trapping High temperature a b s t r a c t Concentrating solar power is becoming an increasingly important an increasingly urgent need for human society [1,2]. Concentrating solar power (CSP) systems (or solar thermal sys

  2. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  3. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  4. Optical design and efficiency improvement for organic luminescent solar concentrators

    E-Print Network [OSTI]

    Hirst, Linda

    in a standard flat-plate PV panel3 . Nonimaging Optics: Efficient Design for Illumination and SolarOptical design and efficiency improvement for organic luminescent solar concentrators Chunhua Wanga and efficiency improvement method. Keywords: Organic luminescent solar concentrators, Photovoltaic, solar energy

  5. Shape-Adaptive Ultra-Lightweight Solar Concentrators

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS Shape-Adaptive Ultra-Lightweight Solar Concentrators From the Resnick-Lightweight Solar Concentrators Global Significance Solar energy offers a number of benefits such as reducing solar power (CSP) uses mirrors to focus the sunlight down to 100-1000x the normal intensity, and uses

  6. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    c) Cyrium multi-junction solar cell. (d) Faulhaber miniaturecan leverage expensive multi-junction solar cells to achievec) Cyrium multi-junction solar cell. ( d) Faulhaber

  7. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    silicon cells 2 . Multi-junction solar cells hope becomethe motivation for multi- junction solar cells which layerassociated with multi-junction solar cells. The superior

  8. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    12] A.Rabl, Active Solar Collectors and Their Applications (23, A.Rabl, Active Solar Collectors and Their Applications (Rabl, A. , [Active Solar Collectors and Their Applications],

  9. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Planar Micro-Optic Solar Collectors," Optics for Solarin planar micro-optic solar collectors,” Optics Express, (inin planar micro-optic solar collectors,” Optics Express (in

  10. Sandia Energy - Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,Concentrating Solar Power (CSP)

  11. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  12. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  13. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    IN LUMINESCENT SOLAR CONCENTRATOR EFFICIENCY AND COLORM.A. Baldo, "High-efficiency organic solar concentrators forin luminescent solar concentrator efficiency and color

  14. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Energy Storage in Concentrated Solar Thermal Power Plants AEnergy Storage in Concentrated Solar Thermal Power Plants by

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Coreysystems for concentrated solar thermal power (CSP) systems.

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  17. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    and W. Warta, "Solar cell efficiency tables (version 35), "1.1 Multijunction solar cell efficiency (purple) has rapidly1.1 Multijunction solar cell efficiency (purple) has rapidly

  18. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Collectors," Optics for Solar Energy, OSA paper STuD2 (Collectors," Optics for Solar Energy, OSA paper STuD2 (Collectors," Optics for Solar Energy, OSA paper STuD2 (

  19. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    planar micro-optic solar collectors," Opt. Express 19, A673-planar micro-optic solar collectors," Opt. Express 19, A673-

  20. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  1. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  2. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    for multijunction cells," in 2009 34th IEEE Photovoltaicmultijunction solar cell (Cyrium Technologies). The photovoltaic

  3. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems,” Proceedings of

  4. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Solar Thermal Designs .temperatures. Solar Thermal Designs As stated earlier, mostperformance of any solar concentrator design. Two different

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Global Warming Potential, and Water for Distributed Concentrating SolarGlobal Warming Potential, and Water for Distributed Concentrating Solar

  6. National Laboratory Concentrating Solar Power Research and Development

    Office of Environmental Management (EM)

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  7. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  8. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  9. Low-Cost Light Weigh Thin Film Solar Concentrators

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  10. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  11. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anThermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  12. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  13. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  14. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    analysis of current solar power plants. Solar desalinationin concentrating solar power plants. Because theseor nuclear power plant can instead harness solar energy as

  17. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR

    E-Print Network [OSTI]

    solar thermal applications. As contact thermometry is often not appropriate in the presence of high;Introduction In high temperature solar thermal applications, where key components are driven near reflections1,2 . The distinction between the emitted thermal and the reflected solar radiation becomes

  19. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  20. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    I : Introduction I.A Concentrated Photovoltaic Systemsconcentrated photovoltaic (CPV) systems and their trackingConcentrated photovoltaic (CPV) systems use optical

  1. Mini-Optics Solar Energy Concentrator

    E-Print Network [OSTI]

    Mark Davidson; Mario Rabinowitz

    2003-09-12

    This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

  2. The Role of Concentrating Solar Power in Integrating Solar and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetration of about 30%. The simulation uses the REFlex dispatch model to simulate hourly operation of the thermal fleet in response to the load, wind, and solar generation...

  3. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  4. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  5. A new trough solar concentrator and its performance analysis

    SciTech Connect (OSTI)

    Tao, Tao; Hongfei, Zheng; Kaiyan, He; Mayere, Abdulkarim

    2011-01-15

    The operation principle and design method of a new trough solar concentrator is presented in this paper. Some important design parameters about the concentrator are analyzed and optimized. Their magnitude ranges are given. Some characteristic parameters about the concentrator are compared with that of the conventional parabolic trough solar concentrator. The factors having influence on the performance of the unit are discussed. It is indicated through the analysis that the new trough solar concentrator can actualize reflection focusing for the sun light using multiple curved surface compound method. It also has the advantages of improving the work performance and environment of high-temperature solar absorber and enhancing the configuration intensity of the reflection surface. (author)

  6. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Environmental Management (EM)

    Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

  7. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  8. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    mechanical tracking to maintain alignment to the sun.understand tracking needs, we first investigated the sun?stracking because it enables the concentrator to follow the sun?

  9. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  10. Secretary Chu Announces up to $62 Million for Concentrating Solar...

    Energy Savers [EERE]

    of low-cost solar technologies we can create new jobs and pave the way towards a clean-energy future." CSP technologies concentrate the sun's energy and capture that energy as...

  11. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information about the student activitylesson plan from your search. Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with...

  12. A solar concentrating photovoltaic / thermal collector J.S. Coventry

    E-Print Network [OSTI]

    solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban in this area are summarised. The Combined Heat and Power Solar (CHAPS) collector, under development collector. Some of the technical challenges in the design of the CHAPS collector are discussed

  13. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  14. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate |CSP Solar Power Research

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    nuclear power plant can instead harness solar energy as theenergy to be dissipated in concentrating solar power plants.

  16. Concentration Solar la Mancha | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtdDevelopmentsolar powerSolar la

  17. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use of Solar

  18. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

  19. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.heat transfer in solar thermal power plants utilizing phase

  20. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    3_60 (1981). [12] Solar Photovoltaics: Status, Costs, andorganic solar concentrators for photovoltaics," Sciencesolar concentrators ( LSCs) offer low cost improvements to building- integrated photovoltaics.

  1. Top 10 Things You Didn't Know About Concentrating Solar Power...

    Office of Environmental Management (EM)

    Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP...

  2. Concentrating Solar Power Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor6YellowstonePermittingComputer System RetirementConcentrating

  3. Concentrating Solar Power Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOofforCompany TemplateCompletedConcentrating

  4. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore »and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  5. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler manufacturing. The cost and design goals for the project were met with this task, but the most interesting results had to do with defining the failure modes and looking at a “shakedown analysis” of the combined creep-fatigue failure. A separate task also looked at improving the absorber coatings on the receiver tubes that would improve the efficiency of the receiver. Significant progress was made on developing a novel paint with a high absorptivity that was on par with the current Pyromark, but shows additional potential to be optimized further. Although the coating did not meet the emissivity goals, preliminary testing the new paint shows potential to be much more durable, and potential to improve the receiver efficiency through a higher average absorptivity over the lifetime. Additional coatings were also designed and modeled results meet the project goals, but were not tested. Testing for low cycle fatigue of the full length receiver tubes was designed and constructed, but is still currently undergoing testing. A novel small heliostat was developed through an extensive brainstorming and down select. The concept was then detailed further with inputs from component testing and eventually a full prototype was built and tested. This task met or exceeded the accuracy and structure goals and also beat the cost goal. This provides a significant solar field costs savings for Abengoa that will be developed further to be used in future commercial plants. Ultimately the $0.09/kWhe (real 2009 $) and 6,400 hours goals of the project were met.

  6. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect (OSTI)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  7. NREL: Learning - Concentrating Solar Power Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The Geospatial Toolkit isPublicationsConcentrating

  8. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    E-Print Network [OSTI]

    Maragliano, Carlo; Stefancich, Marco

    2015-01-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate the solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates the light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3x1 cm2 area and a maximum concentration of 210x for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the...

  9. Thermal concentrator homogenized with solar-shaped mantle

    E-Print Network [OSTI]

    Petiteau, David; Bellieud, Michel; Zerrad, Myriam; Amra, Claude

    2015-01-01

    We propose solar-shaped thermal concentrators designed with orthoradial layers and obtained in practice through the homogenization of an ideal thermal concentrator. Considering the spectral regime of the heat equation, we quantitatively evaluate at different pulsations the effectiveness of the homogenized concentrators by comparing the thermal flux existing in an ideal concentrator and the thermal flux in an homogenized concentrator. Dependence on the pulsation is shown to be negligible and plotting the effectiveness of the homogenized concentrators as a function of the number of orthoradial layers $N$, we determine the number of layers needed to achieve a certain effectiveness. Significantly high numbers $N$(ranging from a hundred to tens of thousands layers) are found highlighting the fact that achieving high effectiveness demands a high level of engineering of the homogenized concentrator.

  10. Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators

    E-Print Network [OSTI]

    Patrick, David L.

    Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Luminescent solar concentrators (LSCs) collect and concentrate sunlight for use in solar power generation.1 or interior lighting, increasing the combined-cycle efficiency. Accordingly, LSC performance is expressed

  11. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  12. Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif

    E-Print Network [OSTI]

    Reif, John H.

    1 Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif, Kingdom of Saudi Arabia wsalhalabi@kau.edu.sa Abstract Solar concentrating systems are optical systems that concentrate solar energy for conversion into usable energy. Ideally, a solar concentrating system should have

  13. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Different types of solar power plants have been designed andAmong the concentrating solar power plants (CSPP) are Solar

  14. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    design," Solar Energy Materials and Solar Cells Vol. 111,Solar Energy for the Built Environment," Advanced Energy Materials,energy transfer (FRET) is demonstrated in a luminescent solar concentrator (LSC) material

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

  16. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefine ReviewImpactDepartmentGeneration | Department

  17. STEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED

    E-Print Network [OSTI]

    that commercial steam turbines operate at. It is envisaged that plants based on large arrays of dishes wouldSTEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED José Zapata, Keith response of a parabolic dish steam cavity receiver. Both approaches are based on a heat transfer model

  18. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  19. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  20. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  1. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  2. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Potential, and Water for Distributed Concentrating Solarconcentrating solar has the potential for significantscenarios evaluate the potential for solar-thermal serving

  3. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .Ho?mann. Photovoltaic Solar Energy Gen- eration. Opticalon ?uorescent glass-?lms. Solar Energy Materials and Solar

  4. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  5. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    SciTech Connect (OSTI)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  6. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  7. Low Concentration Photovoltaic Systems (LCPV), where solar irradiance is concentrated by a factor of 1-10, present

    E-Print Network [OSTI]

    Rollins, Andrew M.

    1 Abstract-- Low Concentration Photovoltaic Systems (LCPV), where solar irradiance is concentrated--concentrating photovoltaic, solar radiation durability, lifetime and degradation science, reliability. NOMENCLATURE LCPV: low modern society. As a direct method for harnessing the sun's energy, photovoltaic systems have a large

  8. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms

    E-Print Network [OSTI]

    Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid farms are interconnected in an array, wind speed correlation among sites decreases and so does

  9. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  10. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    take advantage of solar energy, one must first understanda non-tracking solar concentrator, one must first understandOne provides the reader with some of the fundamentals of solar

  11. Engineering the optical properties of luminescent solar concentrators at the molecular scale

    E-Print Network [OSTI]

    Mulder, Carlijn Lucinde

    2012-01-01

    Luminescent Solar Concentrators (LSCs) concentrate solar radiation onto photovoltaic (PV) cells using an inexpensive collector plate to absorb incoming photons and waveguide fluorescently re-emitted photons to PVs at the ...

  12. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  13. NREL: Concentrating Solar Power Research - NREL Handbook Helps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the...

  14. THEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH

    E-Print Network [OSTI]

    cost is subject to highly volatile market. Solar concentrators usually make use of mobile mirrors ableTHEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH a theoretical study of luminescent solar concentrators (LSCs) based on a ray-tracing technique with a Monte

  15. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New ! ! ! ! ! !

  16. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

  17. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  18. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  19. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  20. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  1. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    R. (1974). Principles of Solar Concentrators of a noveldesign. Solar Energy Winston, R. , and Hinterberger, H. (cylindrical concentrators for solar energy. Solar Energy 17,

  2. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New Model for

  3. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  4. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  5. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    12 2.2.1. Solar Potential ………………. …………………………… 13 2.2.2.to an electrical generator. 2.2.1. Solar Potential To fullyunderstand the energy potential of solar power, it is useful

  6. An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader

    E-Print Network [OSTI]

    An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader 1 , Maurizio Barbato 2 that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator design at the receiver's windowed aperture, amounting to 13% and 9% of the solar power input, respectively. The pressure

  7. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy, andfor efficient energy production. Solar thermal plants, such

  8. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    are like multi-junction solar cells [GH05]. Fourth, dyes canof the solar spectrum like multi-junction cells to improve

  9. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  10. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  11. Broadband enhancement of light harvesting in luminescent solar concentrator

    E-Print Network [OSTI]

    Xiao, Yun-Feng; Xiao, Lixin; Sun, Fang-Wen; Gong, Qihuang

    2010-01-01

    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) str...

  12. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    collectors to harness the energy. Passive solar techniques include orienting a build- ing to the Sun,

  13. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  14. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure)

    SciTech Connect (OSTI)

    Cochran, J.; Lew, D.; Kumar, N.

    2013-12-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  15. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    SciTech Connect (OSTI)

    Stoddard, L.; Abiecunas, J.; O'Connell, R.

    2006-04-01

    This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

  17. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  18. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Evaluation of concentration solar cells for terrestrial applications

    E-Print Network [OSTI]

    An, Tao, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

  1. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    convert solar energy directly into electricity. A PV cell isSolar energy is a prominent renewable source of electricitysolar energy will become a very prominent renewable source of electricity.

  2. NREL: Concentrating Solar Power Research - Report Targets Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Targets Data on Avian Issues at Solar Energy Facilities May 4, 2015 Understanding how birds are affected by utility-scale solar facilities is the focus of a new NREL report...

  3. A novel procedure for the optical characterization of solar concentrators

    E-Print Network [OSTI]

    Fiisicas, Universidad Complutense, Madrid E-28040, Spain b Plataforma Solar de Almeria, CIEMAT, P.O. Box 22

  4. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  5. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    solar-thermal electricity gen- eration,” Solar Energy, vol.Energy pay- back time - a key number for the assessment of thermal solarSolar Thermal Wind Coal CC Gas Turbine Nuclear Reference Energy

  6. Dye-doped polymer nanoparticles for flexible, bulk luminescent solar concentrators

    E-Print Network [OSTI]

    Rosenberg, Ron, S.B. Massachusetts Institute of Technology

    2013-01-01

    Bulk luminescent solar concentrators (LSC) cannot make use of Forster resonance energy transfer (FRET) due to necessarily low dye concentrations. In this thesis, we attempt to present a poly-vinylalcohol (PVA) waveguide ...

  7. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    point of use and one installed to the grid; solar technologyconcentrator solar technology in 2005 [13], one of only a

  8. Using Encapsulated Phase Change Material for Thermal Energy Storage for Baseload CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  10. Tarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems

    E-Print Network [OSTI]

    Drop in Crystalline Silicon Solar Cells. 20 iii. Temperature Dependence of the Spectral and Efficiency. This is because the cost of solar panels compared to the amount of power they produce makes their purchaseTarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems

  11. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  12. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    hours, since electricity storage is rather inefficient.efficient than electricity storage, solar thermal becomes ato generate electricity. Since heat storage is more

  13. Methods for Analyzing the Economic Value of Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value,...

  14. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

  15. Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove and A. Luzzi

    E-Print Network [OSTI]

    Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove to the success of all solar concentrators of this nature are cost effective and durable mirror panel components World Solar Congress 743 #12;Economic Mass Producible Mirror Panels for Solar Concentrators Johnston

  16. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    improvement, the device performance is approaching the thermodynamic limit of similar to 28% for single- junction Si solar cells.improvement by PbS near infrared QDs due to the broaden absorption spectrum and near infrared emission properties for PV solar cells.

  17. Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ........

    E-Print Network [OSTI]

    Reif, Rafael

    Energy Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ...................................................................................EN.3 Nano-engineered Organic Solar-energy-harvesting System

  18. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science,D. S. Ginley, “Low-Cost Inorganic Solar Cells: From Ink Toto lowering the cost of solar electricity production with

  19. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    of solar-thermal electricity gen- eration,” Solar Energy,electricity generation - a critical comparison of energy supply options,” in 21st European Photovoltaic Solarelectricity supply across the supply chain. (2) In many solar energy

  20. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOE Patents [OSTI]

    Lewandowski, Allan A. (Evergreen, CO); Yampolskiy, Vladislav (Moscow, RU); Alekseev, Valerie (Moscow, RU); Son, Valentin (Moscow, RU)

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  1. National Laboratory Concentrating Solar Power Research and Development...

    Office of Environmental Management (EM)

    receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for 0.06kWh. cspnatllabrdfactsheet.pdf More Documents & Publications...

  2. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolar HotSolar Cell

  3. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  4. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  5. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications 

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as ...

  6. DOE Announces up to $52.5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    plans to provide up to 52.5 million to research, develop, and demonstrate Concentrating Solar Power systems capable of providing low-cost electrical power both day and night....

  7. Solar concentrator with integrated tracking and light delivery system with summation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  8. Solar concentrator with integrated tracking and light delivery system with collimation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  9. Design of a compact, lightweight, and low-cost solar concentrator

    E-Print Network [OSTI]

    González, Gabriel J. (Gabriel Joe), 1980-

    2004-01-01

    The objective of this mechanical design project was to improve the current design of large and heavy solar concentrators. The three main design goals were: making the system compact, making the system lightweight, and ...

  10. Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative made an award to Colorado School of Mines (CSM) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  11. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  12. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  13. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Environmental Installation impacts of PV electricity generation - a critical comparison of energy supply options,” in 21st European Photovoltaic Solar

  14. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  15. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating Solar Power Research and Development Motivation

  16. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    a heat engine, such as a steam turbine or sterling enginethese concentrations, a steam turbine achieves roughly 25%ratio can run a steam turbine at 35-50% efficiency, with

  17. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  18. Energy Secretary Moniz Dedicates World's Largest Concentrating Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings PerformanceNationwide asSupercomputerPower

  19. Concentrating Solar Power: Best Practices Handbook for the Collection and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use of Solar Resource

  20. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) | SciTechSolar Power:

  1. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) | SciTechSolar

  2. A HYBRID SOLAR LINEAR CONCENTRATOR PROTOTYPE IN INDIA , J. Daniel

    E-Print Network [OSTI]

    and community power supply, and grid connected PV generation [1]. The need for heat in applications such as domestic hot water, air conditioning, or air heating for drying cash crops, makes hybrid concentrator PV-grid systems for basic lighting, irrigation pumps, cellular phone towers, urban applications, medical

  3. A NEW 500 m PARABOLOIDAL DISH SOLAR CONCENTRATOR K Lovegrove

    E-Print Network [OSTI]

    design is a 494 m² concentrator with 13.4 m focal length and altitude-azimuth tracking. It uses 380. Construction of a first prototype on the ANU campus began in the first quarter of 2008. The first on sun test of receiver support structure would favour a bigger one. A range of basic geometries for the dish tracking

  4. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  5. Low-Cost, Lightweight Solar Concentrator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProton ConductivityManagementCostConcentrator

  6. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One. Project engineers calculated the power tower would operate more efficiently if it used a working fluid it is stored in a "hot" tank. When power production is needed, hot salt is pumped from the hot tank to generate

  7. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  8. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect (OSTI)

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  9. Solar spectral variations and their influence on concentrator solar cell performance

    E-Print Network [OSTI]

    Broderick, Lirong Z.

    A comparative study is performed to quantify the difference in efficiency and spectral sensitivity between a tandem junction and its spectrum splitting parallel junction counterpart. Direct normal solar spectra in a ...

  10. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect (OSTI)

    Anderson, Bruce

    2013-12-31

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  11. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Assumptions Assembly in India Energy Breakdown t to on3. Energy Breakdown for SolFocus Concentrator System. India

  12. The design of a concentrator solar array for use in low earth orbit 

    E-Print Network [OSTI]

    Kish, Guy Leslie

    1990-01-01

    THE DESIGN OF A CONCENTRATOR SOLAR ARRAY FOR USE IN LOW EARTH ORBIT A Thesis by GUY LESLIE KISH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1990 Major Subject: Mechanical Engineering The Design of a Concentrator Solar Array for use in Low Earth Orbit. A Thesis by Guy Leslie Kish Approved as to style and content by: hn J. ngblom (Co Chair f Commi ee) Oz en 0. Ochoa...

  13. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  14. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  16. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

  17. Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  20. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  1. OPTICAL DESIGN OF A NOVEL 2-STAGE SOLAR TROUGH CONCENTRATOR BASED ON PNEUMATIC POLYMERIC

    E-Print Network [OSTI]

    ; the measured one with a flat secondary reflector was 55 suns. Keywords: parabolic trough collector, optical-length 7.9 m-width sun-tracking prototype system. Theoretical maximum solar concentration ratio is 151 suns of the sun-tracking prototype system. 2. Optical analysis Fig. 2 shows a perspective view of the optical

  2. Method and apparatus for aligning a solar concentrator using two lasers

    DOE Patents [OSTI]

    Diver Jr., Richard Boyer

    2003-07-22

    A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.

  3. Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications

    E-Print Network [OSTI]

    Thompson, Nicholas John

    2011-01-01

    High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

  4. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  5. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  6. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984

    SciTech Connect (OSTI)

    Friedman, P.S.; Parent, C.R.

    1987-04-01

    An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

  7. White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve

    E-Print Network [OSTI]

    Islam, M. Saif

    1 White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve California Solar Energy Collaborative, University of California is put into the harvest and storage of solar energy for power generation. There are two mainstream

  8. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  9. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  10. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  11. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  12. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    to be more suited to solar thermal energy sources. Airrenewable energy technologies in solar thermal and PV, andunit of solar thermal and solar electric energy from a DCS-

  13. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater water heaters, thermal protection for electronics, spacecrafts, and solar

  14. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    and solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  16. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Considerations for CPC Solar Collectors." Solar Energy2]. DeWinter, Francis. Solar Collectors, Energy Storage, andHigh-temperature, Solar Collectors for Mass Production.

  17. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  18. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  19. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  20. Design of the support structure, drive pedestal, and controls for a solar concentrator

    SciTech Connect (OSTI)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. (WG Associates, Dallas, TX (United States))

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  1. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  2. Electronic film with embedded micro-mirrors for solar energy concentrator systems

    E-Print Network [OSTI]

    Mario Rabinowitz; Mark Davidson

    2004-04-16

    A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

  3. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    been considered for solar thermal energy storages. These areTNO Symposium on Thermal Storage of Solar Energy, Amsterdam,Symposium on Thermal Application of Solar Energy, Hakone (

  4. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Solar Thermal Energy 1.1.1. Physics of Solar Thermal Energy Blackbody Radiation3]. SunTherm Energy, Inc. Solar Thermal Market Research.

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    compete or exceed solar photovoltaics (PV) – which is oftenfor solar-electric energy conversion: photovoltaics whichfor solar-electric energy conversion: photovoltaics which

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  7. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    SunTherm Energy, Inc. Solar Thermal Market Research. Oct.Low-Cost High Temperature Solar Thermal Collector." Thesis.solar thermal .. 1

  8. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    been considered for solar thermal energy storages. These arePCMs for thermal energy storage in solar driven residentialfluid and thermal energy storage medium in the solar heat

  9. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Temperature Solar Thermal Collector." Thesis. University ofSolar Thermal Collectors ..by the sun [1]. A solar thermal collector is a device that

  10. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    S. A. (2004). Solar thermal collectors and applications.yet typical solar-thermal collectors at working temperaturescertain aspects of solar thermal collectors have been coded

  11. Some modifications to the design of a parabolic solar concentrator for construction in Lesotho and their effects on power production

    E-Print Network [OSTI]

    Ferreira, Toni (Toni Jolene)

    2005-01-01

    An experimental study was performed to test the effectiveness of design modifications terms of efficiency and power production in an existing parabolic solar concentrator. The proposed modifications included limiting the ...

  12. Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))

    SciTech Connect (OSTI)

    Wilkins, F.

    2007-02-01

    Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

  13. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  14. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    SciTech Connect (OSTI)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis, E-mail: i.papakonstantinou@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  15. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  16. Concentrating Solar Power (Fact Sheet), Electricity, Resources, & Building Systems Integration (ERBSI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New Model

  17. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    storage: heat storage materials, Solar Energy 30 (1983) 313–and phase change materials, Solar Energy 62 (1998) 19–28 99-heat storage materials. Solar Energy Mater Solar Sells 1992;

  18. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  19. Concentrated solar thermal (cst) system for fuelwood replacement and for household water sanitation in developing countries.

    SciTech Connect (OSTI)

    Akinjiola, O. P.; Balachandran, U. (Energy Systems); (Rsage Research, LLC)

    2012-01-01

    Concentrated Solar Thermal (CST) is a proven renewable energy technology that harnesses solar irradiation in its most primitive form. This technology with roots in ancient history is growing at a fast pace in recent times. Developing countries could use CST to solve fundamental human-needs challenges, such as for the substitution of fuelwood and the treatment of water for household use. This paper proposes a conceptual design for a standardized modular CST for these applications in developing countries. A modular-designed parabolic CST with an aperture area of 7.5 m2 is adequate to provide enough solar thermal energy to replace the fuelwood need (5 tons/yr) or to pasteurize the minimum daily water requirement (2500 liters) for a household. Critical parameters of the CST are discussed and an affordable solid thermal storage is recommended to be used as a backup when sunlight is unavailable. A funding program that includes in-country resources and external funding will be needed to sustain the development and wide spread adaptation of this technology.

  20. Development of metallization for GaAs and AlGaAs concentrator solar cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1987-04-01

    A three-layer metallization system was developed for high temperature stability on GaAs and AlGaAs solar cells. The layers are a Pt ohmic contact metal that forms thermally stable compounds with GaAs, a TiN diffusion barrier, and a gold conductor. The solar cell structure was also designed for contact stability, with the key component being a heavily doped GaAs cap layer. Reactively sputtered TiN was found to act as an excellent barrier when deposited under the proper conditions. The conditions were carefully optimized for low resistivity and low stress in the films. A low but nonzero substrate bias during sputtering was found to be important. Solar cells with sputtered metallizations of Pt/TiN/Ti/Pt/Au were found to be thermally stable up to 500/sup 0/C for 15 minutes in vacuum. At 600/sup 0/C there was catastrophic degradation of the cells due to dissociation of uncapped GaAs surfaces. Below this temperature the metallization performed as designed. The Pt and GaAs layers reacted to form a stable PtGa compound layer that gave low contact resistance. There was no penetration of Au or GaAs through the barrier layer. These results are a very encouraging first step leading to stable, reliable GaAs and AlGaAs concentrator cells.

  1. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  4. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOE Patents [OSTI]

    Angel, Roger P (Tucson, AZ); Olbert, Blain H (Tucson, AZ)

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  5. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect (OSTI)

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. (Univ. of the West Indies, St. Augustine (Trinidad and Tobago))

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  6. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-03-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  7. Standard Test Method for Determining Thermal Performance of Tracking Concentrating Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This test method covers the determination of thermal performance of tracking concentrating solar collectors that heat fluids for use in thermal systems. 1.2 This test method applies to one- or two-axis tracking reflecting concentrating collectors in which the fluid enters the collector through a single inlet and leaves the collector through a single outlet, and to those collectors where a single inlet and outlet can be effectively provided, such as into parallel inlets and outlets of multiple collector modules. 1.3 This test method is intended for those collectors whose design is such that the effects of diffuse irradiance on performance is negligible and whose performance can be characterized in terms of direct irradiance. Note 1—For purposes of clarification, this method shall apply to collectors with a geometric concentration ratio of seven or greater. 1.4 The collector may be tested either as a thermal collection subsystem where the effects of tracking errors have been essentially removed from t...

  8. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    boosting the overall solar efficiency of the system, DCS-CHPheat at 8-10% solar-electric efficiency while simultaneouslyare at 20 – 35% solar-electric efficiency (Mills [18]). This

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Performance-Cost analysis of solar combined heat and powerCHP system where the solar field cost is split between thea predicted levelized solar thermal cost of $0.03/kWh, this

  10. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    2009, May). Solar heat worldwide: Markets and contributionis a large proven market for solar energy. With widespreadSolar Rankine thermodynamics matches California demand To get a first approximation of the market

  11. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    164. Golden, Colorado, USA: Solar Energy Research Institute;heat storage materials, Solar Energy 30 (1983) 313–332 13-experimental. Trans ASME, J Solar Energy Eng 1990;112:125–

  12. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    40. 10- Lane GA. Solar heat storage—latent heat materials,332 13- Lane, G.A. Solar Heat Storage: Latent Heat Material,14-Lane, G.A. Solar Heat Storage: Latent Heat Material, vol.

  13. Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano, Muhammad Faryad, Peter B. Monk, Thomas E. Mallouk, and Akhlesh Lakhtakia

    E-Print Network [OSTI]

    Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano concentrator for photovoltaic solar cells Manuel E. Solano,1 Muhammad Faryad,2 Peter B. Monk,1 Thomas E-Si solar cells due to embedded nanoparticles J. Appl. Phys. 102, 093713 (2007); 10.1063/1.2809368 Surface

  14. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect (OSTI)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct marketing research, identify opportunities for use of this technology, and to the extent possible, secure an agreement leading to a pre-commercialization demonstration or prototype plant. This was accomplished with the agreement to conduct the Noor al Salaam program as a tri-lateral project between Egypt, Israel, and the U.S. The tri-lateral project was led by the University of Alabama in Huntsville (UAH); this included the Egyptian New and Renewable Energy Authority and the Israeli USISTC participants. This project, known was Noor al Salaam, was funded by the U.S. Agency for International Development (USAID) through the Department of Energy (DOE). The Egyptian activity was under the auspices of the Egyptian Ministry of Energy and Electricity, New and Renewable Energy Authority (NREA) as part of Egypt's plans for renewable energy development. The objective of the Noor al Salaam project was to develop the conditions necessary to obtain funding and construct and operate an approximately 10 to 20 Megawatt hybrid solar/natural gas demonstration power plant in Zaafarana, Egypt that could serve both as a test bed for advanced solar technology evaluations, and as a forerunner to commercial plant designs. This plant, termed Noor Al Salaam, or “Light of Peace”, reached the initial phase of system definition before being curtailed, in part by changes in USAID objectives, coupled with various delays that were beyond the scope of the program to resolve. The background of the USISTF technology development and pre-commercialization effort is provided in this report, together with documentation of the technology developments conducted under the Noor al Salaam program. It should be noted that only a relatively small part of the Noor al Salaam funding was expended over the approximately five years for which UAH was prime contractor before the program was ordered closed (Reference 1) so that the remaining funds could be returned to USAID.

  15. DOE to Invest More than $5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    million (Fiscal Year 2007; and FY'08, subject to Congressional appropriations) are integral to President Bush's Solar America Initiative (SAI), which seeks to make solar energy...

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    solar-electric system (typical for thin-film panels currently) plus a 58% efficient solar-thermal system (flat-plate efficiency

  17. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    for evening cooking in a solar cooker. Energy Convers ManageThermal performance of a solar cooker based on an evacuated

  18. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  19. Theoretical analysis of error transfer from surface slope to refractive ray and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01

    This paper presents the general equation to calculate the standard deviation of reflected ray error from optical error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 8 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope errors in two direction is transferred to any one direction of the focus ray when the incidence angle is more than 0 for solar trough and heliostats reflector; for point focus Fresnel lens, point focus parabolic glass mirror, line focus parabolic galss mirror, the error transferring coefficient from optical to focus ray will increase when the rim angle increase; for TIR-R concentrator, it will decrease; for glass heliostat, it relates to the incidence angle and azimuth of the reflecting point. Keywords: optic error, standard deviation, refractive ray error, concentrated solar collector

  20. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-08-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  1. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-05-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  2. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    in solar thermal electricity technology. Solar Energy 76(1-solar energy is ubiquitous, and valuable when converted to high-grade heat or electricity.electricity in a natural gas, coal or nuclear power plant can instead harness solar energy

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    California at Berkeley, University of

    of a theoretical solar CHP system. Then, we explore the economic and technological impetus for a solar powered across 1 #12;varying conditions, and concluding that solar CHP generated electricity is comparable to PV thermal power plants. Chapter 3 explores the expander as an enabling technology for small solar Rankine

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    global warming affects. Recent advances on deployment of solar energy to generate electricity shows potential

  6. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  7. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  8. Cascade luminescent solar concentrators Sthy Flores Daorta, Antonio Proto, Roberto Fusco, Lucio Claudio Andreani, and Marco Liscidini

    E-Print Network [OSTI]

    a bourgeoning inter- est in photovoltaic (PV) research with the goal of reducing the cost of solar energy. To this end, most of the efforts have been focused on decreasing the cost of PV cells while main- taining the impact of PV cells on the total cost of energy production. The most common and utilized concentrators

  9. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density – voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency – generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 – 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  10. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  11. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  12. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01

    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  13. Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 Myriam Paire,1,2,3,4,a)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    thin film solar cell material,7 and efficiencies over 20% were achieved recently. We study CIGS to decrease with illumination. The device described in this letter is a glass/Mo/CIGS/ CdS/ZnO solar cellMicroscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 thin films Myriam

  14. PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,

    E-Print Network [OSTI]

    PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui of distributed dish, central generation solar thermal power systems using either direct steam generation-dish, steam-based, solar thermal power station in White Cliffs (Kaneff 1991). A parallel line

  15. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  16. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  17. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    energy storage system; thermal storage and heat transfer in1308. 32- Telkes, M. Thermal storage for solar heating andeditor. Phase change thermal storage materials. McGraw Hill

  18. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    well a molten salt thermal storage system could be utilizedof Solar Two [2] Thermal storage in these plants is anper kilowatt goes towards thermal storage[3]. Considering a

  19. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Energy 3 Sun-of solar energy, descriptions of sun-Earth geometricemission of the energy by the sun can be used to understand

  20. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    normal to the sun at solar noon (not tracking) and recordingSun-Earth Geometry To understand the design of a non-tracking

  1. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Energy 3 Sun-that describe the sun as an energy source. Additionally, theof solar energy, descriptions of sun-Earth geometric

  2. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  3. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  4. CX-003976: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-003976: Categorical Exclusion Determination Development of a High-Concentration Low-Cost Parabolic Trough System for Baseload Concentrated Solar Power Generation CX(s)...

  5. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  6. Single element spectral splitting solar concentrator for multiple cells CPV system

    E-Print Network [OSTI]

    Stefancich, Marco

    Shockley Read Hall equation poses a limit to the maximum conversion efficiency of broadband solar radiation attainable by means of a single bandgap converter. A possible approach to overcome such a limit is to convert ...

  7. Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting

    E-Print Network [OSTI]

    Noone, Corey J. (Corey James)

    2011-01-01

    In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

  8. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    For stationary collectors, one must understand sun-Earthby the sun [1]. A solar thermal collector is a device thatthe collector due south and tilted to be normal to the sun

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    28 Life Cycle Assessment of a single solar dish collectorMay). Comparing two life cycle assessment approaches: aM. (2006). Dynamic life cycle assessment (LCA) of renewable

  10. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  11. Concentration solar power optimization system and method of using the same

    DOE Patents [OSTI]

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  12. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  13. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  15. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    SciTech Connect (OSTI)

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  16. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  17. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect (OSTI)

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-10-15

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  18. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  19. Intergrated function nonimaging concentrating collector tubes for solar thermal energy. Final technical report

    SciTech Connect (OSTI)

    Winston, R

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 m/sup 2/ panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200/sup 0/C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100/sup 0/C to 300/sup 0/C range including industrial process heat, air conditioning and Rankine engine operation.

  20. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-04-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  1. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  2. Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProtonConcentrators FY13 Q2 Low-Cost,

  3. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  4. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  5. High 400?°C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?°C. Even at 400?°C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  7. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  8. Manufacture of and Apparatus for Nearly Frictionless Operation of a Rotatable Array of Micro-Mirrors in a Solar Concentrator Sheet

    E-Print Network [OSTI]

    Mario Rabinowitz; David V. Overhauser

    2006-01-28

    Due to an ever growing shortage of conventional energy sources, there is an increasingly intense interest in harnessing solar energy. The instant invention can contribute to the goal of achieving environmentally clean solar energy to be competitive with conventional energy sources. A novel method is described for manufacturing a transparent sheet with an embedded array of mirrored spheroidal micro-balls for use in a solar energy concentrator, and analogous applications such as optical switches and solar rocket assist. The micro-balls are covered with a thin spherical shell of lubricating liquid so that they are free to rotate in an almost frictionless encapsulation in the sheet. Novel method and apparatus are presented for producing the preferred embodiment of a close-packed monolayer of the array of mirrored micro-balls.

  9. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  10. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  11. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

  12. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  13. Concentrated Solar Thermoelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document summarizes the progress of this MIT project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  14. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' Success OpensTRA51429 Vol.Jungle |

  15. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power

    E-Print Network [OSTI]

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies Marissa Hummon 3rd International Solar Power Integration on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must

  16. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    S. A. (2004). "Solar thermal collectors and applications".for High Temperature Solar Thermal Collector Units A thesisfor Solar Thermal Collectors……………………………..7 Solar Thermal

  17. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  18. Fabrication of a luminescent solar concentrator that minimizes self-absorption losses using inter-chromophore energy transfer

    E-Print Network [OSTI]

    Currie, Michael James

    2007-01-01

    The projected need for carbon-free power during this century is immense. Solar power offers the largest resource base to supply this need, but in light of recent silicon shortages, it is an open question whether silicon ...

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar Power—Technology, Cost, and2009). “Concentrating solar power plants of the southwest

  20. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  1. Energy Secretary Moniz Dedicates World's Largest Concentrating...

    Energy Savers [EERE]

    Dedicates World's Largest Concentrating Solar Power Project Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project February 13, 2014 - 5:00am Addthis...

  2. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  3. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  4. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    and future of solar thermal energy as a primary source ofon harnessing solar thermal energy for water desalinationas an alternative. Solar thermal energy has the potential to

  5. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    4 Ideal Solar Reflector Design……………………………………………5 Designand ideal solar reflector design. Sections three and four1998a). Ideal Solar Reflector Design The ideal reflector

  6. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    considerations for CPC solar collectors". Solar Energy 22(view of Dewar 58 Solar Collector Absorber ………8 Figure 3.2view of Dewar 47 Solar Collector Absorber ………11 Figure 3.4

  7. InGaAsP/InP intrastep quantum wells for enhanced solar energy conversion

    E-Print Network [OSTI]

    Chen, Winnie Victoria

    2012-01-01

    photovoltaic) and CSP (concentrated solar power), but stillcan be done. Concentrated solar power, which uses mirrors tothe amount of concentrated solar power in a concentrator

  8. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  9. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm–900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm–900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  10. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01

    for concentrating solar power plants that are much morea concentrating solar power desalination plant in Abu Dhabi,

  11. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    et al. (2003). Low-Cost Distributed Solar- Thermal-Electriccooling with solar energy, leading to a more cost effectiveSolar Thermal Collector Units Introduction Increased production costs

  12. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    Cost Distributed Solar- Thermal-Electric Power Generation.S. A. (2004). "Solar thermal collectors and applications".The present and future of solar thermal energy as a primary

  13. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  14. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  15. Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca

    SciTech Connect (OSTI)

    Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

    1998-09-01

    Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

  16. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    SciTech Connect (OSTI)

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

  17. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Environmental Management (EM)

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...

  18. Modelling of a steam based paraboloidal dish concentrator using TRNSYS Siangsukone P. and Lovegrove K. Proceedings of Solar 2002 -Australian and New Zealand Solar Energy Society Paper 1 1

    E-Print Network [OSTI]

    K. Proceedings of Solar 2002 - Australian and New Zealand Solar Energy Society Paper 1 1 Modelling.Siangsukone@anu.edu.au Abstract Solar Thermal Power plants have components with thermal time constants that can be minutes or even is the solar cavity receiver. This component models the energy balance in the receiver and takes into account

  19. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh...

  20. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in a V2O5

  1. NREL: Concentrating Solar Power Research - Southwest Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearch Staff

  2. NREL: Concentrating Solar Power Research - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEARIntegrated

  3. CX-011252: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date: 09/23/2013 Location(s): California Offices(s): Golden Field Office

  4. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  5. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  6. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01

    2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

  7. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  8. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' Success OpensTRA51429 Vol.Jungle

  9. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia Report Presents

  10. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia Report

  11. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia ReportMolten Salt

  12. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,

  13. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    the limits of solar photovoltaics (PV) in traditionalof Concentrating Solar Power and Utility-Scale Photovoltaics

  14. THE EFFECT OF CIRCUMSOLAR RADIATION ON THE ACCURACY OF PYRHELIOMETER MEASUREMENTS OF THE DIRECT SOLAR RADIATION

    E-Print Network [OSTI]

    Grether, D.

    2012-01-01

    data for proposed or actual concentrating solar energyconcentrating solar energy systems. In this paper data from

  15. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    a motorized sun-tracker to the collectors, designing a non-the sun onto each of the three solar thermal collectors. ix

  16. Concentrator Photovoltaic System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cells. However, challenges exist for concentrators. First, the required concentrating optics are significantly more expensive than the simple covers needed for flat-plate solar...

  17. BORON CONCENTRATION MEASUREMENTS AT THE I/P INTERFACE IN NIP A-SI SOLAR CELLS B.B. Van Aken1

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    , bulk plasmon energy using EELS 1 INTRODUCTION Roll-to-roll production of thin film Si solar cells has Solar Energy, P.O. Box 1, NL-1755 ZG Petten, the Netherlands 2 Center for Electron Nanoscopy, Technical, Forschungszentrum Jülich, D-52425 Jülich, Germany 4 CEA-Leti, MINATEC Campus, 17 rue des Martyrs, FR-38054 Grenoble

  18. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  19. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  20. Optimized III-V Multijunction Concentrator Solar Cells on Patterned Si and Ge Substrates: Final Technical Report, 15 September 2004--30 September 2006

    SciTech Connect (OSTI)

    Ringel, S. A.

    2008-11-01

    Goal is to demo realistic path to III-V multijunction concentrator efficiencies > 40% by substrate-engineering combining compositional grading with patterned epitaxy for small-area cells for high concentration.

  1. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  2. Energy Department Announces $32 Million to Boost Solar Workforce...

    Broader source: Energy.gov (indexed) [DOE]

    Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces 25 Million to Lower Cost of Concentrating Solar Power...

  3. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    2007-01-01

    efficiency of solar cell devices without using concentrators. r 2007 Elsevier B.V. All rights reserved) solar energy conversion systems (or solar cells) are the most widely used power systems. HoweverSolar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using

  4. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible gauges, gas sensors. Light-emitting diodes (LED's) Power amplifiers for cell phones Indium Gallium #12

  7. Estimating solar irradiance using a geostationary satellite

    E-Print Network [OSTI]

    Urquhart, Bryan Glenn

    2011-01-01

    2009. Global Concentrated Solar Power Industry Report 2010–Table 1.1 Incoming solar power at the top of the atmosphererate of 32% (WWEA, 2010). Solar power capacity was 16GW at

  8. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  9. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Multijunction cells use multiple layers of semiconductoralso second generation) is the multijunction PV cell.metamorphic multijunction solar cell. The Concentrating

  10. SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    are known to collect solar energy data that is not reporteddata for proposed or actual concentrating solar energyproviding quality solar energy research and design data in

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    tracking and fixed in place. Generally these collectors consist of a solar absorbing surface facing the suntracking. The main difference is the concentrators and often the absorber move to track the sun

  12. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  13. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  14. The Solar Wind in the Outer Heliosphere at Solar John D. Richardson and Chi Wang

    E-Print Network [OSTI]

    Richardson, John

    The Solar Wind in the Outer Heliosphere at Solar Maximum John D. Richardson and Chi Wang Center solar wind observations in the outer heliosphere, concentrating on the recent data near solar maximum. The speed and temperature tend to be lower at solar maximum, due to the lack of coronal holes. The near

  15. A Path to High-Concentration Luminescent Solar Concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News BelowAsked toUSC-Aiken,A NewA NewPath to

  16. Linear Concentrator System Basics for Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | InternationalLand andDepartmentCo-Current Dilute

  17. Public Lecture Prospects for Solar

    E-Print Network [OSTI]

    Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

  18. 2010 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    to produce electricity by concentrating solar energy andcol- lected solar energy must be converted into electricitysolar power plant without energy storage for nighttime generation produces electricity

  20. Webinar November 19: Potential Strategies for Integrating Solar...

    Office of Environmental Management (EM)

    Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar November 19: Potential Strategies for...

  1. Calculation of the Solar Load onto Occupants in a Room using Bidirectional Scattering Distribution Functions and a View Factor Approach

    E-Print Network [OSTI]

    Jedek, Christoph

    2012-01-01

    2007). A concentrated solar thermal energy system. Thesis (thermal energy emissivity of the individual window. As the solar

  2. Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects

    E-Print Network [OSTI]

    Armijo, Kenneth Miguel

    2011-01-01

    of concentrator photovoltaic systems using high-efficiencyconcentrator photovoltaic and photovoltaic/thermal systemof solar photovoltaic/thermal systems”, Solar Energy, 70 ,

  3. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01Concentrating Solar Power Concentrating Solar

  4. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  5. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  6. Adaptive, full-spectrum solar energy system

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  7. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    connects to a single photovoltaic cell. We refer to thisplane. Optimized photovoltaic cells can be interleaved on aand expenses. Photovoltaic cells are commonly connected into

  8. Scattering Solar Thermal Concentrators (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Pennsylvania State University is one of the 2012 SunShot CSP R&D awardee for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  9. Low-Cost, Lightweight Solar Concentrator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Jet Propulsion Laboratory Project Leader: Dr. Gani Ganapathi gani.b.ganapathi@jpl.nasa.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper,...

  10. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    version 35), "Progress in Photovoltaics: Research andsolar cell modules," Progress in Photovoltaics: Research and

  11. Concentrated Solar Thermoelectric Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  12. TOPCAT Solar Cell Alignment & Energy Concentration Technology

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-12

    This technology is a new technique for parabolic trough mirror alignment based on the use of an innovative Theoretical Overlay Photographic (TOP) approach. It is a variation of current methods used on parabolic dish systems and involves overlay of theoretical images of the Heat Collection Element (HCE) in the mirrors onto carefully surveyed photographic images and adjustment of mirror alignment until they match....

  13. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    +000 0.00000000E+000 0.00000000E+000 Pos. Mtrx. R21 R220.00000000E+000 0.00000000E+000 Pos. Mtrx. R31 R32 R33 Z :Of XYZ Position Tilt About XYZ Pos. Mtrx. R11 R12 R13 X :

  14. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Molding .Characterization of hybrid molding and lithography for SU-8structures requires complex molding using select polymer or

  15. Syngas into Fuel: Optofluidic Solar Concentrators

    SciTech Connect (OSTI)

    None

    2010-10-01

    Broad Funding Opportunity Announcement Project: Ohio State has developed an iron-based material and process for converting syngas—a synthetic gas mixture—into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State’s technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

  16. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    PV cell behind each lens tracking the sun with only lateralclimbing required for tracking the sun, and experimentalin a fixed frame tracking the sun with only micro-tracking.

  17. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    of performance ratio for multijunction cells," in 2009 34th292 [2] King, R.R. “Multijunction Cells: Record Breakers,”other cell technologies, multijunction cell performance has

  18. A replaceable reflective film for solar concentrators

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

  19. NREL: Concentrating Solar Power Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotData and Resources

  20. NREL: Concentrating Solar Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotData and

  1. NREL: Concentrating Solar Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotData andPublications

  2. NREL: Concentrating Solar Power Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearch Staff Here

  3. NREL: Concentrating Solar Power Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearch

  4. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearchTechnology

  5. NREL: Concentrating Solar Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmaster Please enter your name and email

  6. Concentrated Solar Power | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtdDevelopment JumpConInvestPower

  7. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtdDevelopmentsolar power

  8. Sandia Energy » Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesTheSandians Participate inVisit us at

  9. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before the CommitteeYears 2003SummerSunShot CSP R&D$0.21

  10. Arontis Solar Concentrator AB | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen Energy Information Application

  11. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergy Computers,dish/enginepower towerfor

  12. OpenEI Community - Concentrated Solar Power

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja Protonics JumpHomeColorado

  13. Low-Cost, Lightweight Solar Concentrators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProton

  14. Funding Opportunity Announcement: Concentrating Solar Power: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetails to austeniteof

  15. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate |CSP R&D 2012Ranga

  16. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHELEurope Limited Jump

  17. NREL: Concentrating Solar Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEARIntegratedA collage of

  18. Concentrating Solar Power Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctoberCharles DOEJungle | Department of Florida

  19. Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy Programs »Computing

  20. Thermodynamics, Entropy, Information and the Efficiency of Solar Cells

    E-Print Network [OSTI]

    Abrams, Zeev R.

    2012-01-01

    11 th E. C. Photovoltaic Solar Energy Conference, Montreal,of analytical expressions for solar cell fill factors.Solar Cells 7, 31. A. Luque and V. Andreev, Concentrator

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

  2. DOE Solar Energy Technologies Program: Overview and Highlights

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  4. Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector

    E-Print Network [OSTI]

    Hasan, Atiya

    2007-01-01

    The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

  5. Limiting and realistic efficiencies of multi-junction solar Photonic Materials Group, FOM institute AMOLF, Amsterdam

    E-Print Network [OSTI]

    Polman, Albert

    Limiting and realistic efficiencies of multi-junction solar cells Photonic Materials Group, FOM of multi-junction solar cells, varying the number of subcells, the concentration of solar light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Multi-junction Solar cells

  6. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshone County,Si

  7. Solar Tracing Sensors for Maximum Solar Concentrator Efficiency - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalForStorm CloselyDOE

  8. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinalin Fairbault, MN |Finding of NoEnergyBend,

  9. Concentrating Solar Power Facilities and Solar Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOofforCompany TemplateCompleted

  10. Entrepreneurship Concentration

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    The Entrepreneurship Concentration The Manning School of Business www.uml.edu/management Who We Are, management, management information systems, marketing and supply chain and operations management we provide business. The experience I had in the classroom was wonderful and the professors teach with real life

  11. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    concentrated energy at a high temperature is the basis of operation for a central solar thermal power

  12. 2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technology such as concentrating solar power (CSP). PV project developers first need to identify photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar) for concentrated PV (CPV) technology. Once a site has been identified, the same developers along with engineering

  13. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays

    E-Print Network [OSTI]

    Rogers, John A.

    concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators

  14. Solar 2014: The 52 Annual Conference of the Australian Solar Council

    E-Print Network [OSTI]

    .zapata@anu.edu.au Keywords: Concentrating Solar Power, Direct steam generation, Parabolic dishes, Continuous thermal power plants aims to achieve the stable operation of the plant under variable solar radiationSolar 2014: The 52 nd Annual Conference of the Australian Solar Council A Modified Extended Kalman

  15. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Residential and Utility Solar Power Generating Systems SunPower,Low Cost Thin Film Building-Integrated PV Systems Low Cost High Concentration PV Systems for Utility Power...

  16. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments Citation Details In-Document Search Title:...

  17. Energy Department Announces $25 Million to Lower Cost of Concentrating...

    Broader source: Energy.gov (indexed) [DOE]

    clean and renewable energy, even at night, by storing the heat generated by the sun. "Investments to improve the efficiency and lower the costs of concentrating solar...

  18. Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with W Infrared Reflectors

    E-Print Network [OSTI]

    Cao, Feng

    Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while ...

  19. Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects

    E-Print Network [OSTI]

    Armijo, Kenneth Miguel

    2011-01-01

    2004, “Cooling of photovoltaic cells under concentratedSolar cells and optics for photovoltaic concentration”, Adamelectric performance of a photovoltaic cells by cooling and

  20. High Efficiency Solar Fuels Reactor Concept

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.